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Abstract

Continual Reinforcement Learning (CRL) aims to develop algorithms that adapt to
non-stationary sequences of tasks. A promising recent approach utilizes Recurrent
Neural Networks (RNNs) to learn contextual Markov Decision Process (MDP)
embeddings. This enables a reinforcement learning (RL) agent to discern the
optimality of actions across diverse tasks. In this study, we examine two critical
failure modes in the learning of these contextual MDP embeddings. Specifically, we
find that RNNs are prone to catastrophic forgetting, manifesting in two distinct ways:
(i) embedding collapse—where agents initially learn a contextual task structure that
later collapses to a single task, and (ii) embedding drift—where learning embeddings
for new MDPs interferes with embeddings the RNN outputs for previous MDPs in
the sequence, leading to suboptimal performance of downstream policy networks
conditioned on stale embeddings. We explore the effects of various objective functions
and network architectures concerning these failure modes, revealing that one of these
modes consistently emerges across different setups.

1 Introduction
The Continual Reinforcement Learning (CRL) class of solution methods encompasses algorithms
which deal with a broad range of non-stationary settings in sequential decision making, such as input
distribution shift and covariate shift (Berariu et al., 2021; Hadsell et al., 2020; Rolnick et al., 2019).
In the CRL setting an agent faces a sequence of Markov Decision Processes (MDPs) M1,M2, . . .
and is unable to re-attempt previously faced MDPs, unless they reappear later in the sequence. The
traditional Reinforcement Learning (RL) goal of maximizing discounted total reward is extended to
the goal of maximizing the expected cumulative reward, both on future yet unseen tasks in the sequence,
and on previously faced tasks. Oftentimes performance on previously faced tasks deteriorates as the
sequence progresses, this phenomenon is known as catastrophic forgetting (McCloskey and Cohen,
1989; Nguyen et al., 2019; Cahill, 2011; Chen and Liu, 2018).

The CRL setting can be modeled through the formalism of Partially Observable Markov Decision
Processes (POMDPs) (Kaelbling et al., 1998) (see Appendix B for a definition), where the hidden
state is a task label that remains constant throughout an episode (Khetarpal et al., 2022; Doshi-Velez
and Konidaris, 2016; Choi et al., 1999; Xie et al., 2021). This formulation connects CRL to multi-task
RL, which has utilized POMDP frameworks and recurrent networks to optimize MDPs by integrating
RNN outputs with observations (Xie et al., 2021; Rakelly et al., 2019; Sodhani et al., 2021). Using
Recurrent Neural Networks (RNNs) to generate contextual information for traditional RL algorithms
has led to strong agents in several multi-task RL studies (Ni et al., 2022; Zintgraf et al., 2019; Rakelly
et al., 2019; Nagabandi et al., 2018). Notable works like Xie et al. (2021) and Caccia et al. (2023)
adopt this POMDP perspective and apply recurrent networks to CRL settings.

In this paper, we continue with this line of investigations on applying recurrent networks for learning
contextual embeddings in CRL. In particular, we highlight the challenges of applying recurrent
policies to CRL focusing particularly on MDP sequences with the following properties: (i) First, they
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are non-backtracking, a sequence of MDPs is non-backtracking if it can be divided into segments
where all MDPs within a segment are identical, and MDPs in different segments are distinct; (ii)
The second property that defines our setting is that the MDPs are unidentifiable from any single
transition, but, identifiable given a finite history of transitions. In this setting, one cannot act
optimally given only the current state since it lacks enough information to identify the MDP and
thus the optimal action. This means applying state-of-the art knowledge distillation, parameter
regularization, or experience replay methods to actor-critic (AC) agents will not work since there
is not enough information in a single state to optimize every MDP. This setting is different than
the ones considered by Xie et al. (2021) as they experiment with sequences where the speed of
non-stationarity is so high that the agent sees every unique MDP in the non-stationary sequence at
least every 20 timesteps. Our setting is also different than Caccia et al. (2023) as the MDPs they
consider are generally identifiable from single states.

Specifically, our work is concerned with exploring the use of dynamics and optimality signals for
training Recurrent Neural Networks that generate learning embeddings which are additionally
concatenated to the standard input of AC networks. We show that while recurrent models greatly
enhance the adaptivity and plasticity of AC RL agents, across all the variations considered, two failure
modes consistently arise. The first failure mode is embedding collapse, where initial learning creates
a clear task structure, followed by a convergence of all embeddings to a single point. The second
failure mode resembles classical notions of catastrophic forgetting: the RNN adjusts embeddings
for all tasks when encountering a new task, leading to input drift for the policies conditioned on
those embeddings corresponding to previously seen tasks. To mitigate these failure modes we explore
combining parameter regularization and knowledge distillation methods with recurrent policies.

2 Problem Setting
We adopt the standard CRL setting where an agent faces a sequence of MDPs M1,M2,M3, . . . . We
set the contiguous segments of the non-backtracking sequence such that they are of equal size and
long enough for agents to learn optimal policies for each task individually. This allows us to evaluate
the adaptivity and stability of the agent across the MDP sequence. All MDPs in the sequence have
the same state space, action space, and transition functions, but different reward functions. We
model the MDPs as being members of a subclass of POMDPs which have constant hidden states
(MDP labels) throughout an episode but varying hidden states between episodes. This is analogous
to the Hidden-Parameter MDP (Doshi-Velez and Konidaris, 2016; Fu et al., 2024; Perez et al., 2020;
Killian et al., 2017).

3 Recurrent Agents for Continual Reinforcement Learning
We evaluate a general approach using recurrent networks to produce embedding vectors, which are
concatenated with observations to generate belief states. These belief states become the inputs to
downstream dynamics models, policy networks, and deep Q-networks. Using a vanilla replay buffer
causes old tasks to be over-sampled. So, to ensure that the agent is trained on recent tasks we
employ a recency buffer which over-samples from recent transitions, the effect of the buffer is shown
in Figure 2c (details in Appendix C). We investigate the impact of different architectural variations
on performance and embedding disentanglement. Diagrams showing the different compositions of
learned models can be found in Appendix C.

Learning Task Embeddings with Recurrent Models The goal is to infer a rich task embedding,
bi, for task Mi. We use a standard isotropic multivariate Gaussian distribution. For a specific
episode trajectory τ1:T , we partition it at the K-th time step (K < T ). We train a conditional task
embedding model pψ(τ1:K) with a Gated Recurrent Unit (GRU) (Cho et al., 2014) to process τ1:K ,
followed by a Multilayer Perceptron (MLP) to process the GRU’s final hidden state, and separate
layers for mean and variance parameters. All components are trained to minimize the loss functions
of downstream networks on the entire trajectory τ1:T .

Learning Actor and Critic Networks Following Rakelly et al. (2019); Xie et al. (2021) we extend
the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) to use a policy and value function con-
ditioned on task embeddings, states, and actions. We consider a policy πθ(at|st, gψ({(sl, al, rl)}t−1

l=1)),

2



Reinforcement Learning Conference (August 2024)

parameterized with parameters θ, receiving the input from a recurrent network gψ, with parameter
vector ψ defined over a sequence of transitions and returning a vector of fixed size representing the
encoded embedding (More details in Appendix E).

Learning Dynamics Networks For All Tasks We also make use of learned dynamics models: a
transition model qϕ and reward model qω, parametrized with parameter vectors ϕ and ω, respectively.
To learn the dynamics we use neural networks outputting means and variances of isotropic Gaussian
distributions. The distributions give log-likelihoods for every observed transition in our dataset.
The dynamics models are trained by minimizing the negative log-likelihood of the agent’s observed
rewards and next states given task embeddings, states, and actions as conditions. Currently, dynamic
networks are used to learn embeddings. Resolving catastrophic forgetting in recurrent networks
would enable their use for model-based policy optimization (Janner et al., 2019).

4 Experiments
Benchmarks To evaluate the different approaches and task embeddings, we use two benchmarks. The
first is a 2D point-reaching environment where an agent must reach a non-backtracking goal point on
the boundary of a disc. The second is a non-stationary variant of the Gymnasium Reacher environment
(Towers et al., 2023), featuring a 2-DOF arm that must move its fingertip to a non-stationary goal
location. In our variant, the goal location is occluded and moves to create a non-backtracking
sequence of MDPs. Hyper-parameters for both environments are detailed in Appendix G.

Models: Here, we introduce our methods for generating task embeddings. In each recurrent agent,
the task embeddings are concatenated with the state and sent to actor-critic networks trained using
the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018).

• 3RL: Introduced by Caccia et al. (2023). It uses one RNN for each critic network and one
RNN for the policy network. The networks are trained end to end using the SAC algorithm.

• Recurrent Dynamics (RD): Uses a single RNN whose output is sent to reward and
transition networks. The RNN is trained as a VAE, minimizing the negative log likelihood
of the dynamics models’ outputs and a KL-divergence with a normal prior.

• Separate Recurrent Dynamics (SRD): Uses one RNN for the reward network and
another for the transition network. The RNNs are trained to minimize the negative log
likelihood of their respective models and a KL-divergence with a normal prior. When samples
are taken uniformly from the dataset we denote the algorithm as USRD.

• SAC: Introduced by Haarnoja et al. (2018), serves as a baseline for a non-recurrent agent

5 Results
5.1 Adaptivity and General Performance

In Figure 1a and 1c, we depict the distance to the goal at the conclusion of each episode across both
benchmarks and all models examined. Notably, SAC’s performance deteriorates as the sequence
unfolds, only improving at the end when the goal point nears the original location. However,
introducing recurrent networks enables the agent to consistently refine its performance on the ongoing
task. In Figure 1d and 1b we plot how the average reward of the agent averaged over all MDPs in
the sequence changes as the agent progresses through the task sequence. We observe that while the
agents are able to optimize at least one MDP at every point (from the top dashed line), this comes at
the cost of forgetting other MDPs as the performance over all MDPs stays constant. This suggests
that recurrence improves adaptability but still suffers from catastrophic forgetting.

5.2 Failure Mode #1: Embedding Collapse
In Figure 2a, we show how the distance between task embeddings for "adversarial" tasks changes as
different agents progress through the MDP sequence. Adversarial tasks are defined as those with
goal points farthest apart relative to all tasks in the sequence. We observe that all models see this
distance go to zero in the 2D point reacher environment. Furthermore, we see 3RL and RD having
this distance go to zero in Figure 2a implying that these models suffer from embedding collapse.
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(a)
(b)

(c)
(d)

Figure 1: Performance across all models, including final distance to goal point (1a,1c) and averaged
reward on all MDPs (1b, 1d), in 2D Point Reacher and Non-stationary MuJoCo Reacher respectively.
Dotted and dashed lines represent the max and min performance of each model over tasks.

(a) (b) (c)

Figure 2: Distance between embeddings for adversarial tasks (2a) and distance between embedding
for same task between checkpoints (2b) in the Non-stationary MuJoCo Reacher benchmark. Figure
2c shows how changing the % of batch samples from a recency buffer impacts performance.

Previous research on representation collapse in reinforcement learning and contrastive learning finds
that significant data augmentation or implicit regularization can induce embedding collapse (Kumar
et al. (2021), Jing et al. (2021)). Our results extend these findings to the CRL setting, as optimal
agents for two different tasks may have almost zero overlap in their state visitation distribution, which
can be viewed as data augmentation, while the recency buffer can be seen as implicit regularization.
Removing the recency buffer may alleviate collapse, but it has disastrous effects on the agent’s
experienced reward, as shown in Figure 2c.
5.3 Failure Mode #2: Embedding Drift
When scaling up to the Non-stationary MuJoCo Reacher, we observe a new failure mode causing
catastrophic forgetting. We hypothesize this occurs when gradient updates to the recurrent network
adjust task embeddings for all tasks, moving them away from the inputs that downstream dynamics
networks were previously optimized on. Figure 2b visualizes the Euclidean distances between task
embeddings every 200 episodes. The consistently above-zero change in embeddings for SRD implies
the encoder is continuously adjusting embeddings. Similar reasons for failure have been studied
before in parameter regularization methods like EWC (Kirkpatrick et al., 2017) showing promising
future directions using a combination of these methods.

6 Discussion & Future Directions
This paper investigates the application of recurrent networks for learning contextual embeddings
in Continual Reinforcement Learning (CRL), specifically in non-backtracking sequences of Markov
Decision Processes (MDPs) which cannot be identified from single transitions. Our findings demon-
strate that while recurrent models significantly enhance the adaptivity and plasticity of reinforcement
learning agents, they also introduce two persistent failure modes: embedding collapse and continual
forgetting. These issues underscore the complexities involved in maintaining performance across
evolving tasks within CRL settings. Future research should focus on integrating parameter regular-
ization and knowledge distillation methods with recurrent policies to mitigate these failure modes.
Additionally, exploring hybrid architectures that combine the strengths of different learning signals
could further enhance the robustness and effectiveness of CRL agents in dynamic environments.
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Appendices
A MDP Definition

Markov Decision Processes (MDP) A discrete-time infinite-horizon discounted MDP ((Puter-
man, 1994)) is a 6-tuple {S,A, T,R, P, γ}, with state space S, action space A, transition function T ,
reward function R, and discount factor γ ∈ [0, 1).

B POMDP Definition

Partially Observable MDP (POMDP) A POMDP is an extension of MDPs (MDP definition
in Appendix A) to include hidden state components (Kaelbling et al., 1998). It includes a hidden
state that influences transitions and rewards. In a POMDP the full state has an observable and
hidden component which both evolve as the MDP progresses.

C Model Layouts

The non-stationary setting makes for an unbalanced input distribution, such that more recent
observations are more relevant to future tasks. For all models we include a recency buffer which
contains the last 500 transitions, 500 was chosen as it empirically led to the best results. We
simultaneously sample from both the recency buffer and general buffer according to a chosen balance
β. Figure 2c shows the impact changing β has on the reward RD attains as it progresses through the
MDP sequence.

In all the following graphics solid lines indicate the flow of information while dashed lines indicate
how losses backpropagate between learned models.
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C.1 Layout of RD Model

Figure 3: Layout of our RD Model

C.2 Layout of SRD Model

Figure 4: Layout of our SRD Model

C.3 Layout of 3RL

Figure 5: Layout of our 3RL Model

D Related Work

Belief State Based Approaches to Reinforcement Learning Prior methods have use vari-
ational inference to learn posteriors over belied states given the current trajectory. A recurrent
network learns to take a trajectory through the BAMDP and returns a posterior belief distribution
over the current MDP, p(b|τ1:t). The policy is then conditioned on a sample from this posterior, and
both the policy and recurrent network are trained to maximize within-task performance conditioned
on the sampled belief. Xie et al. (2021) attempts to apply this approach to continual learning,
assuming that the task embeddings evolve according to some stationary distribution over episodes.
In their experiments the rate of non-stationarity is such that after only 20 episodes all MDPs in the
non-stationary sequence have been seen at least once and will be seen again with that same frequency.
As we are focused on the ability of these models to extrapolate to unseen tasks their findings are
peripheral to the findings we present.
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Continual Reinforcement Learning Task embeddings represented via recurrent networks have
been previously explored in CRL by Caccia et al. (2023), demonstrating superior performance of
the task-conditional policies even in comparison to policies conditioned on the ground truth task,
for certain task sequences. The authors show that the emerging task structure acquires semantic
meaning. Importantly, the authors do not learn dynamics networks alongside the policy. Chandak
et al. (2020) assume the task sequence changes smoothly or impose more stringent assumptions on the
task non-stationarity process. When it comes to accounting for how the task will change in the next
coming episodes of the sequence Pro-WLS and LiLAC Xie et al. (2021) are two existing approaches
proposed under varying assumptions different than our case of study. Pro-WLS Chandak et al. (2020)
assumes that the loss of a policy with respect to its objective is smooth over time and implements
an importance sampling approach for approximating future gradients by weighting the gradients of
previous episodes. Both Pro-WLS and LiLAC impose strong assumptions on the sequence of tasks
that agents face that show prospective optimization to be possible in more restricted cases than ours.

E Mathematical Formalization of Recurrent Policies

We define a recurrent policy as a set of parameters θ, ψ which parameterize an RNN gψ : (S ×
A × R)T → Rdz and a policy network πθ : S × Rdz × A → [0, 1] such that πθ defines a conditional
probability measure over A when conditioned on a state s ∈ S and embedding z ∈ Rdz and dz is
a pre-defined dimension size for the learned task embeddings. Given this definition for the two
models that make our recurrent policy we give an action probability for an action at, conditioned on
state st and previous history {sk, ak, rk}t−1

k=1 by: i) passing {sk, ak, rk}t−1
k=1 to gψ to get embedding

vector zt, ii) then passing st, and zt to πθ to get the mean µ and covariance matrix Σ for an
isotropic multivariate Gaussian distribution, iii) finally we calculate the log likelihood of at under the
distribution parameterized by µ,Σ. We can write the above evaluation and composition of models as
πθ(at|st, gψ({sk, ak, rk}t−1

k=1)).

F Minimization Functions

F.1 Actor Loss

Jπ = Es,a,r,s′,τ∼D
z∼pψ(τ)

[KL(π(a|s, z)||exp(Q(s, a, z)
Z(s) )],

F.2 Critic Loss

JQ = Es,a,r,s′,τ∼D
z∼pψ(τ)

a′∼π(a′|s′,z)

[(Q(s, a, z) − r − Q̄(s′, a′, z))2]

G Benchmark Hyper-parameters

G.1 2D Point Reacher

The 2D Point Reacher benchmark consists of an agent and a goal point configured as 2D points
existing on a disk of fixed radius α. The agent can move 1 unit in any direction on the disk with
actions a = (a1, a2) that correspond directly to adding a1 to the first dimension and a2 to the second
dimension of the agents location. We place the goal point on the boundary of the disc. In our
experiment we set the disk to have radius 10 and rotate it by θ = π/2000 degrees every 100 episodes.
If an agent chooses an action that takes it outside the disk we re-normalize it’s new position to have
a norm of size at most α.
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G.2 Non-Stationary MuJoCo Reacher

The Reacher environment (Towers et al., 2023) is a 2-DOF arm planted on the middle of a plane
that must move its fingertip to a specific goal location. We show a picture of the Reacher robot and
environment with 4 sample goal points in Figure 6. To create the Non-stationary MuJoCo Reacher
benchmark we occlude the goal point and move it by a constant degree θ = π/1000 around the object
every 100 episodes for a total of 2000 episodes. This choice of θ and rotation speed means that the
goal returns to the starting position at the end of the MDP sequence. For the starting state of the
robot, the 2 degrees of freedom correspond to the angle of the base of the arm makes and the second
degree is the angle between the two straight components of the arm. we initialize the agent to be
in the same configuration for every episode setting the first degree of freedom to be 0 and second
degree of freedom to be π causing the fingertip to be in the center.

Figure 6: Visualization of the Reacher arm with 4 sample goal points around it
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