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ABSTRACT

Online continual learning (OCL) aims to enable model learning from a non-
stationary data stream to continuously acquire new knowledge as well as retain
the learnt one, under the constraints of having limited system size and computa-
tional cost, in which the main challenge comes from the “catastrophic forgetting”
issue – the inability to well remember the learnt knowledge while learning the new
ones. With the specific focus on the class-incremental OCL scenario, i.e. OCL for
classification, the recent advance incorporates the contrastive learning technique
for learning more generalised feature representation to achieve the state-of-the-
art performance but is still unable to fully resolve the catastrophic forgetting. In
this paper, we follow the strategy of adopting contrastive learning but further in-
troduce the semantically distinct augmentation technique, in which it leverages
strong augmentation to generate more data samples, and we show that consider-
ing these samples semantically different from their original classes (thus being
related to the out-of-distribution samples) in the contrastive learning mechanism
contributes to alleviate forgetting and facilitate model stability. Moreover, in ad-
dition to contrastive learning, the typical classification mechanism and objective
(i.e. softmax classifier and cross-entropy loss) are included in our model design
for utilising the label information, but particularly equipped with a sampling strat-
egy to tackle the tendency of favouring the new classes (i.e. model bias towards
the recently learnt classes). Upon conducting extensive experiments on CIFAR-
10, CIFAR-100, and Mini-Imagenet datasets, our proposed method is shown to
achieve superior performance against various baselines.

1 INTRODUCTION

The ability to continually learning new knowledge is getting more and more important for machine
learning models nowadays as the increasing demands of automation and the dynamic nature of our
environment, e.g. the visual recognition system of the goods in the intelligent self-checkout system
for smart retail should be able to classify the newly-added items or the existing items with new
packing. In particular, the model cannot be trained from scratch whenever the classes or recognition
targets increase. Instead, it needs to keep adapting itself to learn new knowledge on the fly over time.
Online continual learning (OCL) (Delange et al., 2021) is one of the topics getting popular these
years to serve such purpose, where the machine learning agent continually learns a few new concepts
every once in awhile without forgetting the others (i.e. what the agent has learnt previously).

If the agent continually learns to classify a new set of unseen classes, this particular problem is
named class-incremental OCL. It is one of the most prevalent settings in the community of OCL.
However, learning on unseen classes would change the model parameters (and the feature repre-
sentation space) optimised for the old classes. Hence, the model classification accuracy on the old
classes inevitably deteriorates. This phenomenon is well-known and called Catastrophic Forget-
ting (McCloskey & Cohen, 1989).

To address this issue, Chaudhry et al. (2019b) propose using a small memory to store the learnt
examples. When learning new classes, the model is retrained/updated by using not only the recently
received samples that belong to new classes but the stored examples from old classes, in which such a
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strategy attempts to maintain the accuracy for both the old and new classes. Another widely-adopted
idea comes from Kirkpatrick et al. (2017), where they propose to regularise the model learning by
constraining the update of important parameters in order to alleviate the catastrophic forgetting.
However, limiting the model update space deteriorates the learning ability of the model. Recently,
the introduction of learning a generalisable representation (Mai et al., 2021; Cha et al., 2021; Gal-
lardo et al., 2021; Pham et al., 2021) brings another break. Basically, learning the generalisable
representation aims to not only distinguish between the learnt/seen classes but also have higher in-
trinsic dimension such that the features from unseen classes are more likely to be distributed away
from the seen ones (cf. Figure 1), i.e. the feature representations are richer and more reusable/trans-
ferable for the unseen classes in which the model requires relatively minor adjustments to achieve
high accuracy for the new classes.

(a) Common

Trained class 1
Trained class 2
Unseen class

(b) Generalisable

Figure 1: The main motivation of this work
comes from the idea of learning a generalis-
able representation. The generalisable fea-
ture representation would ideally make the
unseen classes more separable from the seen
classes. The representation thus requires less
adjustment while learning the new classes,
and such a property naturally reduces the for-
getting phenomenon as the main portion (re-
sponsible for feature extraction) of the classi-
fication model is minorly updated during the
incremental learning procedure.

Among the three ideas described above, learning
a generalisable representation has benefited from
the recent advance of self-supervised representation
learning (Noroozi & Favaro, 2016; Gidaris et al.,
2018). In particular, contrastive learning, e.g. Sim-
CLR (Chen et al., 2020) and SimSiam (Chen & He,
2021), has shown its effectiveness in learning gen-
eralisable image representation. For instance, Sim-
CLR leverages the composition of multiple carefully
chosen data augmentations, such as cropping and
colour distortion, to generate random views, and the
model learns to align these random views in the rep-
resentation space with the ones of the same label1.

However, Chen et al. (2020) observed that some aug-
mentations (e.g. rotation, noise) are too strong to de-
teriorate the representation quality if they involve in
the view generation, and Wang et al. (2021) discov-
ered that the semantic shift caused by these augmen-
tations is too large to align the corresponding ran-
dom views well. Despite this, it does not imply that
strong augmentations (Noroozi & Favaro, 2016; Gi-
daris et al., 2018) cannot provide meaningful semantics for representation learning. For example,
Gidaris et al. (2018) propose learning image representation by predicting rotation. Hence, those
augmentations can still be utilised for contrastive representation learning, but we should be aware of
not encouraging the model to align the views with those strong augmentations which could cause the
large semantic shift. In turn, if the diverse views produced by the strong augmentation are treated
as belonging to the other classes which are distinct from their original samples, additionally consid-
ering them in contrastive learning could help the model learn to extract rich features and represent
the unseen classes better (according to the observation made by Hendrycks et al. (2019) where the
diverse views together are similar to the auxiliary dataset and the unseen classes are analogous to the
out-of-distribution samples). In this work, we base on such a line of thought and propose a technique
named semantically distinct augmentation (SDA): given a mini-batch composed of the training sam-
ples, the strong transformations are first applied to these training samples to produce diverse views
which are treated as from different/novel classes (cf. Figure 2) and are added back to the mini-batch,
then both contrastive learning and softmax classifier are applied to the extended mini-batch (with
having both the original samples and their corresponding diverse views). The two-pronged benefits
are introduced by such SDA technique: First, learning on a diverse dataset allows the model to get a
more generalisable representation and mitigates catastrophic forgetting; Second, as data comes in a
stream for the OCL setting such that each data sample ideally can only be adopted once for training,
our SDA leverages strong augmentations for the attempt on making best use of every sample.

Furthermore, as online continual learning has a non-stationary data stream, the model is likely to face
the imbalanced training set (where the training samples are mostly from the newly added classes),
thus the softmax classifier would suffer from the class-imbalanced problem (Kang et al., 2020).
We hence adopt a specifically-designed sampling strategy to balance the learning between old and

1In the unsupervised setting for the contrastive learning, the image index is commonly treated as the label.

2



Under review as a conference paper at ICLR 2023

new classes. With conducting experiments on several datasets and different settings of online con-
tinual learning, our full model equipped with all the aforementioned designs (named as SDAF) is
demonstrated to provide the state-of-the-art performance in comparison to various baselines.

2 RELATED WORK

2.1 ONLINE CONTINUAL LEARNING

The goal of class-incremental online continual learning (Chen & Liu, 2018) focuses on how an
artificially intelligent agent learns to classify new classes without forgetting its knowledge on the
classes previously learnt (where such an issue is the so-called catastrophic forgetting). To tackle
against the catastrophic forgetting, one should balance the model learning between the old classes
and new classes, where the literature roughly contains three branches:

(1) Experience Replay. Chaudhry et al. (2019b) suggests that the online learning agent equips a
fixed-sized memory to store the learnt examples, then the model repeatedly replays the samples from
the memory to alleviate catastrophic forgetting. In particular, they adopt the reservoir sampling (Vit-
ter, 1985) strategy to draw the samples from the memory for model training, such strategy ensures
the sampling result being equivalent to having uniform sampling from the stream data without know-
ing the sequence length. Follow-up works (Aljundi et al., 2019a;b; Shim et al., 2021) assume that
every training data has different importance, and remembering a few critical samples is enough for
keeping the data distribution. Nevertheless, Prabhu et al. (2020) show that the simple greedy selec-
tion (i.e. storing the latest examples) is actually able to achieve comparable performance without
any cost to evaluate the importance of samples.

(2) Regularisation and Constraint Optimisation. Kirkpatrick et al. (2017); Li & Hoiem (2017);
Chaudhry et al. (2018) regularise the network update to alleviate catastrophic forgetting during learn-
ing new classes, and these approaches are often efficient and usually have little extra cost. For
instance, Lopez-Paz & Ranzato (2017); Chaudhry et al. (2019a) constrain the model optimisation
such that the loss on past classes never increases. However, both works limit the space for the model
optimisation, and hence they suffer from the inability of learning new classes.

(3) Improving Representation Learning. Online aware meta-learning (OML) (Javed & White,
2019) uses a meta-learning objective to learn the sparse representation which easily adapts to new
classes to mitigate catastrophic forgetting. And other approaches instead aim to learn the general-
isable representations (Mai et al., 2021; Pham et al., 2021; Gu et al., 2022). As the generalisable
representation ideally should provide better support for not only the seen classes but also the unseen
ones, hence it requires fewer tuning to optimise for the new classes and suffers less from forgetting.

There are other approaches that are unable to categorise into the above three branches. First, knowl-
edge distillation (Hinton et al., 2015) keeps an old model as a teacher to preserve the learnt knowl-
edge (Li & Hoiem, 2017; Buzzega et al., 2020; Cha et al., 2021). Second, the expansion-based online
continual algorithm dynamically expands the network capacity upon the arrival of new classes (Yoon
et al., 2018; Lee et al., 2020). We do not take these approaches in account here, as they need ad-
ditional resources for computation (e.g. much more additional memory for storing the old model
to perform knowledge distillation; and continuously growing model size for the expansion-based
methods in which it means that the requirement of memory space also keeps increasing), and we
only consider the methods with similar computational cost as our baselines to make comparison.

In this work, we focus on mitigating the forgetting issue by continually learning a generalisable
representation. The learning system additionally equips a small memory for replay, and every sample
only appears once in the entire training trajectory except that it is stored in the memory.

2.2 IMAGE REPRESENTATION LEARNING

Image representation learning is an essential foundation for various computer vision tasks. Espe-
cially, self-supervised learning is one of the most thrilling branches in this field. Self-supervised
learning encourages the machine to learn image representation from a pretext task, which is able to
automatically generate a supervision signal via a predefined transformation without any human la-
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Figure 2: The comparison among (a) supervised contrastive replay (SCR), (b) supervised contrastive
learning (SCL), and (c) our proposed SDA model. SCR contrasts the original image to a random
view, and SCL contrasts between two random views. Our proposed SDA first augments an image
into K instances in which each instance is treated as belonging to different classes, then every
instance generates two views. In results, there are 2K views in total. Specifically, since the K
instances augmented via SDA are now treated as K novel classes, the classification scenario here is
analogous to a {K(Cold+Ct)}-ways classification problem. Noting that, for every representation on
the top, the points with the same colour are encouraged to form a compact group during the learning.
Moreover, the repulsion between different classes is only performed in SCR/SCL but not used in our
SDA (as SDA adopts the contrastive learning mechanism from SimSiam, cf. Section 3.2).

belling. For example, image permutation and rotation prediction (Noroozi & Favaro, 2016; Gidaris
et al., 2018) help the model learn the image feature representation.

In particular, recent works on self-supervised learning advance to contrast between images to per-
form representation learning by leveraging the combination of various transformations, called con-
trastive learning (Chen et al., 2020; Grill et al., 2020; Chen & He, 2021; Zbontar et al., 2021; Bardes
et al., 2021). For instance, SimCLR (Chen et al., 2020) as a representative work first generates a
pair of positive views by applying a sequence of transformations to an image twice, then it learns
image representation by attracting the positive pairs and pushing negative views from other images
away. SimSiam (Chen & He, 2021) can be thought of as “SimCLR without negatives”, it intro-
duces a predictor network in its forward process on one view and applies a stop-gradient operation
in its backward process on the other view. Moreover, as it uses neither the negative sample pairs
nor the momentum encoders (what other self-supervised methods, e.g. MoCO (He et al., 2020)
and BYOL (Grill et al., 2020), would need), it has smaller model size during training (compared to
MoCO and BYOL) as well as better support for the small training batch. SimSiam thus becomes
suitable for the computational-cost-sensitive problems such as OCL, the main topic of this paper.

We argue that representation learning has a high potential to mitigate catastrophic forgetting by in-
creasing the feature generalisability. And our method proposes to utilise a strong data augmentation
to boost the feature generalisability learnt by the contrastive learning, which will be detailed later in
the following sections.

3 METHODOLOGY

In this work, given a machine learning agent to execute the class-incremental online continual learn-
ing, we assume that it has a fixed size memoryM to store the exemplars of the old/learnt classes
(for the purpose of experience replay) and there are T training stages for the entire training pro-
cess, where for each training stage t ∈ {1 · · ·T} the agent will learn from the training examples
that arrive as a data stream (in which it means that each training sample only appears once un-
less it is stored in the memory) for recognising a set of new classes Ct. Please note that in the
following paragraphs we would misuse M to represent the experience replay memory or its size
for simplicity. Following a similar setting as in previous works, the classes learnt at each training
stage are assumed to be disjoint for simplicity, i.e. Ci ∩ Cj = ϕ for any i ̸= j, and we denote
the training samples received during the training stage t as Dt where they belong to the classes
Ct. As the target of class-incremental online continual learning at the training stage t is to let the
machine learning agent not only learn the new classes Ct but also maintain its recognition ability
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for the old classes learnt during previous stages, the learning scenario at the training stage t is a
{Cold + Ct}-ways classification problem where Cold =

∑t−1
i=1 Ci and Ci denotes the cardinality of

Ci. Without loss of generality, we index the old classes Cold by {1, 2, . . . , Cold} and the new classes
Ct by {Cold+1, Cold+2, . . . , Cold+Ct}. In detail, the data stream at the training stage t is composed
of U data batches But where u = 1 · · ·U , and each batch But contains a group of training samples xi

and the corresponding class labels yi where yi ∈ {Cold +1, Cold +2, . . . , Cold +Ct}. These batches
are disjoint, i.e. every training sample only appears among batches once during the data stream, this
setting is also called one epoch setting.

Without loss of generality, here we summarise a generic algorithmic procedure for the class-
incremental online continual learning methods with the experience replay memory in Algorithm 1.
Basically, when the machine learning agent receives a data batch Bu

t during the training stage t, it
will use the data from Bu

t (belonging to the new classes) as well as the samples from the experience
replay memory (mostly belonging to the old classes) to train itself for I iterations (for simplicity, we
assume that I is a constant). Please note that, we just train the same sample for I times which does
not violate the one epoch setting. In particular, at each iteration, the agent utilises the data Bu

t ∪BM

to perform the training where BM denotes the m samples retrieved from the experience replay
memory. After I iterations of training based on the batch Bu

t and the memory, the MemoryUpdate
operation is performed to replace some exemplars in the memoryM with the ones sampled from
Bu

t , where the reservoir sampling algorithm (Vitter, 1985) is adopted for such a MemoryUpdate
operation in our work following the practise in Mai et al. (2021).

3.1 PRELIMINARY

Algorithm 1 Generic class-incremental online
continual learning algorithm with the experience
replay memory
Input: Learning rate α; The number of iterations
for SGD update I; Training objective L
Parameter: θ

1: MemoryM← {}
2: for t = 1 to T do
3: while Bu

t ∼ Dt do
4: for i = 1 to I do
5: BM ← MemoryRetrieval(M,m)
6: θ ← SGD(Bu

t ∪BM ,L, θ, α)
7: end for
8: M← MemoryUpdate(Bu

t ,M)
9: end while

10: end for
11: return θ

As motivated previously that our proposed
method stems from the idea of learning a gener-
alisable representation via contrastive learning,
where a recent work (Mai et al., 2021) adopts
such idea to achieve the state-of-the-art in
class-incremental OCL, here we hence review
several key references (e.g. SimCLR (Chen
et al., 2020) and SCL (Khosla et al., 2020))
for traversing the main ideas behind Mai et al.
(2021) in order to build the preliminary of our
method.

First, SimCLR (Chen et al., 2020), as a repre-
sentative approach of contrastive learning, con-
sists of three components: a random transfor-
mation module H, an encoder network F , and
a projection network G. Basically, the trans-
formation module H adopts a sequence of ran-
dom transformations (e.g. sequentially apply-
ing random crop, random horizontal flip, ran-
dom colour distortion, and random gray-scaling) to generate different views x̃

(j)
i for every image

xi in a training batch {xi}i=1...B, where B is the number of samples in a batch, x̃(j)
i = H(j)(xi),

and the transformation operation H(j) is re-sampled from H for each xi. Based on such random
transformations, we construct a set of views x̃(j)

i together with their corresponding image index i:

V =

B⋃
i=1

2⋃
j=1

{(x̃(j)
i , i) | x̃(j)

i = H(j)(xi)} (1)

With denoting z
(j)
i = G(F(x̃(j)

i )), the goal of SimCLR training is to learn the feature encoder F via
the objective of encouraging two vectors z(j)i and z

(j′)
i obtained from the same xi but under different

transformations (i.e. positive pairs) to attract each other while enforcing the z vectors to repel once
they originate from different images (i.e. negative pairs).

In comparison to SimCLR which is self-supervised as the positive and negative pairs are simply
determined by their corresponding image indexes, Supervised Contrastive Learning (SCL) (Khosla
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et al., 2020) takes the class labels y into consideration thus being supervised, in which the training
views are constructed by:

VSCL =

B⋃
i=1

2⋃
j=1

{(x̃(j)
i , yi) | x̃(j)

i = H(j)(xi)} (2)

where the transformation module H here is the same as the one used in SimCLR. Similarly, given
the training views VSCL, the objective of SCL is to encourage the attraction between z vectors from
the same class and enforce the repulsion between the ones from different classes, for learning the
feature extractor F .

Supervised contrastive replay (SCR) (Mai et al., 2021) adapts SCL for the problem of class-
incremental online continual learning and provides the state-of-the-art performance, where the main
difference between SCR and SCL comes from the transformation module, as visualised in Figure 2a
and Figure 2b respectively: For SCL, its transformation module H applies two distinct transforma-
tions on the input image to construct the positive pair, while a positive pair in SCR is built upon an
input image xi and its random view x̃i, thus SCR in general has lower randomness than SCL. With
denoting the original images as Vori = {(x̃i, yi) | x̃i = xi}, the training views for SCR are then
formed by:

VSCR =

B⋃
i=1

({(x̃i, yi) | x̃i = H(xi)} ∪Vori) (3)

In particular, when SCR and SCL are both applied in the class-incremental OCL scenario, as SCR
has lower randomness than SCL during the constructing training views, it is more likely to provide
higher classification accuracy than SCL in the first few training stages; however, such lower ran-
domness of SCR in turn sacrifices the potential for learning more diverse (thus more generalised)
representations hence leading to lower classification accuracy of SCR with respect to SCL in the
later training stages. Please refer to Appendix A.3.2 for more details.

3.2 SEMANTICALLY DISTINCT AUGMENTATION

The performance difference versus training stages caused by the aforementioned randomness be-
tween SCR and SCL motivates us to conduct further research on the impact of the random trans-
formations upon the representation learning. As found by the work of SimCLR (Chen et al., 2020),
adding some particular transformations (e.g. rotation or blur) into the transformation module would
instead hurt the quality of learnt representations as these transformations cause more significant dis-
tortion to the input image (thus having the semantic shift). Following such an empirical observation,
we propose the mechanism named Semantically Distinct Augmentation (SDA) which is applied on
the input image x before the transformation module H. The SDA consists of multiple deterministic
augmentations, and every augmentation would cause a distinct semantics change of the input im-
ages. In results, if SDA are adopted during the representation learning, the feature space tends to
have higher intrinsic dimension (which leads to more generalised features) for handling the diverse
semantics produced by SDA. Later in experiments, we demonstrate that using such an SDA mech-
anism benefits the online continual learning to learn more generalised representations, thus leading
to superior performance.

In detail, we assume that there are K strong deterministic increases S = {S1, S2, . . . , SK} in the
SDA mechanism, and every augmentation in S applies to each sample xi, that is Sk(xi). Then,
similarly to SCL, H(j) is used to generate random views, x̃(j)

ik = H(j)(Sk(xi)), as visualised in
Figure 2c, and the extended label space is defined by:

ỹik = K(yi − 1) + k (4)

where the original label yi extends to K different classes. Based on such an extended label space,
the batch of views for training is defined as:

VSDA =

B⋃
i=1

2⋃
j=1

K⋃
k=1

{(x̃(j)
ik , ỹik)} (5)
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We then adopt the contrastive learning mechanism of SimSiam (Chen & He, 2021) to peform the
learning upon VSDA, where the loss function for each single view z

(j)
ik = G(F(x̃(j)

ik )) is defined as
follows to encourage the anchor view x̃

(j)
ik being grouped up with its corresponding positive views:

Lvw(z
(j)
ik ) = −

∑
j′ ̸=j

CosineSimilarity(P(z(j)ik ), stopgrad(z(j
′)

ik )) (6)

in which P is the predictor network and stopgrad denotes the stop-gradient operation. Finally, the
self-supervised objective function averaged over Lvw of all views is adopted in each iteration:

LSS =
∑

z
(j)
ik ∈A

Lvw(z
(j)
ik ) (7)

where A = {z(j)ik |z
(j)
ik = G(F(x̃(j)

ik )), ∀(x̃(j)
ik , ỹik) ∈ VSDA} includes the features of all views in a

batch.

Despite the contrastive-learning-based loss LSS, we also leverage the label information by including
the softmax classifier and the cross-entropy loss LCE:

LCE = −
∑
i

∑
k

1(ỹik)
T log p

(j)
ik (8)

where given a view x̃
(j)
ik , p(j)ik = softmax(WTF(x̃(j)

ik ) + b) is a probability vector with length
K(Cold+Ct), W is a weight matrix, b is a bias vector, the one-hot vector 1(ỹik) has value 1 for the
element indexed by ỹik and zero everywhere else.

3.3 WEIGHT-AWARE BALANCED SAMPLING

The softmax classifier is likely to be biased towards the classes with more training samples (Kang
et al., 2020; Wu et al., 2019; Zhao et al., 2020). In the online continual learning scenario, the
learning agent accesses more samples related to new classes because only a small fraction of the
old examples are stored. Thus, the model tends to classify samples into new classes. To tackle such
an issue, as every column of the weight matrix W for the softmax classifier represents the weights
for the corresponding class (hence being related to the degree of bias), we propose weight-aware
balanced sampling (WABS) which adaptively decides the sample ratio between old and new classes
to balance the classifier based on degree of bias. We first define a sampling rate γ as follows:

γ = min (1,
2× exp(wold/τw)

exp(wold/τw) + exp(wnew/τw)
) (9)

where wnew is the mean over all the weights related to the new classes (i.e. average over the columns
in W corresponding to the new classes) and wold is defined similarly for the old classes, and τw is a
hyperparameter.

Then we reformulate the cross-entropy loss as follows:

LWABS = −
∑
i

∑
k

1WABS(ỹik)1(ỹik)
T log p

(j)
ik (10)

where 1WABS is defined as below, with uniformly drawing Γ from [0, 1] for each sample:

1WABS(ỹik) =


1, if ỹik ≤ KCold

1, if ỹik > KCold, Γ < γ

0, if ỹik > KCold, Γ ≥ γ

(11)

in which we keep all those views belonging to the old classes while for each of the views belonging
to new classes it has γ probability to be kept, for the use in the cross-entropy loss. Please note that,
the WABS only applies on LWABS while LSS uses all views without any sampling.

The overall objective Ltotal for our full model (named SDAF) combines the proposed LSS to reduce
forgetting by learning on diverse views and the cross-entropy loss LWABS with adaptive sampling to
utilise the label information:

Ltotal = LWABS + λLSS (12)
where λ controls the balance between two losses.
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3.4 INFERENCE

We adopt nearest-centre-mean (NCM) classifier for inference. For any test sample x, we average
its distance to all class centres over K augmentations. First, we calculate the centres mck for all
K(Cold + Ct) classes,

mck =
1

|Rck|
∑

rik∈Rck

rik (13)

where Rck = {rik = F(Sk(xi))|yi = c, (xi, yi) ∈ M}. And we define the prediction function for
a test sample x as:

ŷ = argmin
c

1

K

∑
k

d(F(Sk(x)),mck) (14)

The distance metric d(x,m) =
√

(x−m)TΣ−1(x−m) is based on the Mahalanobis dis-
tance and Σ−1 = Cov−1(R) is the pseudo-inverse of the covariance matrix of the set R =⋃

c∈Cold∪Ct

⋃K
k=1 Rck. Noting that for previous methods (e.g. SCR) they typically adopt Euclidean

distance for d(x,m) in the nearest-centre-mean classifier. The reason behind our using Mahalanobis
distance is that it takes the feature distribution into consideration via covariance matrix, while Eu-
clidean distance only computes the distance from every individual sample to the mean of exemplars.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We conduct experiments on three popular benchmarks, including CIFAR-10 (Krizhevsky, 2009),
CIFAR-100 (Krizhevsky, 2009), and mini-imagenet (Deng et al., 2009; Vinyals et al., 2016). We
split CIFAR-10 into 5 incremental stages, and each stage contains 2 classes. We split CIFAR-100
into 10 incremental stages, and each stage contains 10 classes. We split Mini-Imagenet into 10
incremental stages and each stage contains 10 classes.

4.2 QUANTITATIVE METRICS

We adopt several evaluation metrics to assess the performance of online continual learning, includ-
ing: average incremental accuracy (A), end accuracy (E), forgetting measure (F) (Chaudhry et al.,
2018), centered kernel alignment (CKA) (Kornblith et al., 2019), and balance measure (β) (Kang
et al., 2021), in which they are detailed in Appendix A.2.

Table 1: Evaluation results in terms of end accuracy (E) ± std (average over 3 random orders of
class arrival in the data stream). All methods are trained with the similar computational cost.

Methods Mini-ImageNet CIFAR-100 CIFAR-10
M=1000 M=2000 M=5000 M=1000 M=2000 M=5000 M=200 M=500 M=1000

EWC++ - 4.5 ± 0.2 - - 5.8 ± 0.3 - - 18.1 ± 0.3 -
ER 9.3 ± 0.8 12.1 ± 1.5 20.1 ± 1.8 11.1 ± 0.1 14.2 ± 0.7 20.6 ± 0.9 24.1 ± 3.0 29.1 ± 4.1 38.2 ± 3.4
AGEM 5.0 ± 0.8 5.1 ± 0.9 5.2 ± 0.6 6.1 ± 0.5 6.1 ± 0.5 6.1 ± 0.5 18.1 ± 1.4 18.2 ± 1.2 18.3 ± 0.9
GSS 8.4 ± 0.8 11.1 ± 2.7 14.9 ± 2.5 10.4 ± 0.4 12.6 ± 0.7 16.9 ± 1.1 20.3 ± 1.7 24.7 ± 2.9 32.0 ± 5.2
MIR 8.8 ± 0.5 10.9 ± 1.0 18.5 ± 1.2 10.9 ± 0.4 13.6 ± 0.7 19.0 ± 0.9 22.9 ± 3.2 29.6 ± 4.0 37.2 ± 4.2
ASER 13.7 ± 1.4 16.8 ± 1.7 24.8 ± 1.3 13.2 ± 0.8 17.3 ± 0.8 23.3 ± 1.0 22.4 ± 3.2 28.0 ± 4.3 32.5 ± 3.2
DualNet 15.8 ± 0.6 22.9 ± 1.3 27.0 ± 3.0 16.7 ± 2.2 21.5 ± 1.6 25.0 ± 1.6 44.3 ± 2.7 52.8 ± 2.4 56.0 ± 3.1
DVC 22.2 ± 0.7 27.4 ± 0.9 33.4 ± 0.5 25.4 ± 0.7 30.5 ± 0.6 36.6 ± 1.6 48.2 ± 3.0 55.6 ± 2.6 59.8 ± 4.1
SCR 15.8 ± 1.5 16.4 ± 2.0 17.7 ± 1.8 20.9 ± 1.2 22.1 ± 1.4 24.1 ± 0.9 44.6 ± 6.6 58.4 ± 5.1 65.7 ± 2.6
SCL 14.6 ± 0.8 15.8 ± 1.2 16.6 ± 1.3 18.8 ± 1.1 20.4 ± 1.3 22.0 ± 0.9 49.9 ± 5.8 61.0 ± 1.8 66.6 ± 1.5
SDAF 22.7 ± 0.5 28.3 ± 0.3 33.2 ± 0.5 29.3 ± 2.1 35.3 ± 0.7 39.0 ± 0.3 52.9 ± 3.5 66.4 ± 1.0 70.1 ± 0.5

4.3 RESULTS

End Accuracy E. We compare our full model (SDAF) with respect to several state-of-the-art base-
lines, including EWC++ (Chaudhry et al., 2018), ER (Chaudhry et al., 2019b), AGEM (Chaudhry
et al., 2019a), GSS (Aljundi et al., 2019b), MIR (Aljundi et al., 2019a), ASER (Shim et al., 2021),
DualNet (Pham et al., 2021), DVC (Gu et al., 2022), SCR (Mai et al., 2021), and SCL (Khosla
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et al., 2020), in which the corresponding explanations of these methods have been provided in Ap-
pendix A.1. As our proposed method multiplies the size of a batch by 8 times (i.e. firstly adopting
semantically distinct augmentation to augment an image into K = 4 instances, followed by gener-
ating 2 views for each of the instances), in order to have the fair comparison among our proposed
method and the baselines in terms of the same computational cost, we set the number of SGD update
I to 1 for our proposed method, I to 4 for the baselines based on contrastive learning (e.g. SCR,
SCL, DualNet, and DVC), and I to 8 for the other methods. Please note that, as DualNet contains
two components (i.e. a slow learner adopting self-supervised learning and a fast learner adopting
supervised learning), both of these two components will run for I = 4 SGD updates before receiv-
ing the next new batch. We follow the aforementioned settings of I for SGD updates in all of our
experiments unless otherwise specified. The results in terms of end accuracy E is shown in Table 1,
in which it is clear to observe that our proposed SDAF method outperforms almost of the baselines
on different datasets with various settings of memory sizeM except being slightly worse than DVC
on Mini-ImageNet withM = 5000 (noting that DVC has a specific strategy to draw the most in-
formative samples from memory, where such strategy benefits more when memory size gets larger).

Table 2: Forgetting (F) (↓).
Methods F

DVC 0.278
SCR 0.328
SCL 0.261
SDAF 0.197

Catastrophic Forgetting. Table 2 shows the forgetting measure (F)
of several methods that are trained on CIFAR-10 with M = 500,
where our proposed SDAF is shown to effectively alleviate catas-
trophic forgetting. It is contributed to our using strong augmenta-
tions for generating diverse samples as novel classes, which leads to
better learning the generalised representation and the model is able
to handle the newly arriving classes with less adjustment.

Ablation Study on SDA. Here we conduct an ablation study on different designs under similar
computational cost for our proposed SDA, where two variants are adopted in this study: “Align”
means that these samples are treated as belonging to their original classes, and “Identity” means that
S is an identity function, while “Proposed SDAF” means that we treat samples generated by S as
new classes as described in Section 3.2, As shown in Table 3, the proposed method has both superior
end accuracy E and average incremental accuracy A, demonstrating the effectiveness of our SDA.

The Impact of Distance Metric in Prediction Function. As described in Section 3.4 that we adopt
Mahalanobis distance instead of typical Euclidean distance for d(x,m) in the nearest-centre-mean
classifier, here we investigate the corresponding impact of such design choice. As shown in Table 4,
the difference in terms of end accuracy E between adopting the Euclidean distance (identity matrix
for Σ in d(x,m)) or the Mahalanobis distance in the prediction function (cf. Eq. 14) increases
along with the growing memory sizeM on all the benchmarks. For example, the difference in E
between Euclidean and Mahalanobis distance are −2.6%, 0.3%, and 1.7% corresponding toM set
to 200, 500, and 1000 respectively on CIFAR-10. The potential cause contributes to the fact that the
covariance estimation gets more accurate whenM increases, in the high-dimensional feature space.

Table 3: Ablation study on design for our se-
mantically distinct augmentation S (experi-
ments based on CIFAR-10 withM = 500).

I E A

Proposed SDAF 1 66.4 78.5
Align 1 64.6 77.6
Identity 4 61.0 76.1

Table 4: The comparison of end accuracy (E)
on adopting Euclidean or Mahalanobis dis-
tance in the prediction function (cf. Eq. 14).
This experiment conducts on CIFAR-10.

Memory size (M) 0.2k 0.5k 1.0k

Euclidean 55.5 66.1 68.4
Mahalanobis 52.9 66.4 70.1

Please refer to our Appendix for discussion on baselines, more results, and implementation details.

5 CONCLUSION

We propose a class-incremental online continual learning approach which stems from the basic
idea of learning generalised representation to alleviate the issue of catastrophic forgetting, where
we particularly utilise the strong augmentation for producing the semantically distinct classes to
enhance the generalised representation learning as well as additionally adopt the softmax classifier
and the weight-aware balanced sampling strategy to tackle the imbalanced dataset. With a similar
computational cost, our method provides superior performance with respect to several baselines.
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learning via redundancy reduction. In International Conference on Machine Learning (ICML),
2021.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination
and fairness in class incremental learning. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 BASELINES

We compare our proposed SDAF with a suite of state-of-the-art online continual learning algo-
rithms: First, EWC++ (Chaudhry et al., 2018) is an online version of elastic weight consolida-
tion (EWC) (Kirkpatrick et al., 2017) that regularises the update of the crucial weights for the past
classes, in which no replay buffer is used in such approach; Experience replay (ER) (Chaudhry et al.,
2019b) and all the following baselines are built upon a replay bufferM, where ER is among the sim-
plest one which adopts reservior sampling (Vitter, 1985) for MemoryUpdate operations and uniform
sampling for MemoryRetrieval as introduced in Algorithm 1 (noting that all the baselines described
below also adopt the same sampling strategies for the MemoryUpdate and MemoryRetrieval oper-
ations unless otherwise specified); Averaged gradient episodic memory (AGEM) (Chaudhry et al.,
2019a) utilises the samples in the replay buffer to constrain the update of the parameters; Gradient-
based sample selection (GSS) (Aljundi et al., 2019b) is a replay update method that improves Mem-
oryUpdate operation by selecting samples with diversification of gradients to be stored in the replay
memory; Maximally interfered retrieval (MIR) (Aljundi et al., 2019a) provides an improved re-
play retrieval algorithm (related to MemoryRetrieval) that finds the samples impacted by the current
batch for performing training iterations; Adversarial shapley value experience replay (ASER) (Shim
et al., 2021) leverages Shapley value to determine the contribution of memory samples for learn-
ing performance, and develop the corresponding strategies to improve both the memory update and
retrieval operations; DualNet (Pham et al., 2021) contains two components, called fast learner and
slow learner. When it gets a new batch of data Bu

t , it first updates the slow learner by self-supervised
learning (i.e. Barlow twins (Zbontar et al., 2021)) on the samples from memory (BM ), then it per-
forms supervised learning to update both the fast learner and slow learner on Bu

t

⋃
BM ; Supervised

contrastive replay (SCR) (Mai et al., 2021) leverages the supervised contrastive learning to learn the
representation for better continual learning performance, and it observed that the nearest class mean
(NCM) classifier is better to deal with the recency bias than the softmax classifier; SCL (Khosla
et al., 2020) is not an online continual learning method initially. We borrow it from representation
learning, with having all the settings to follow the SCR ones except the transformation moduleH as
described in Figure 2b. DVC (Gu et al., 2022) proposes the dual view consistency (which highly
relates to contrastive learning but instead adopts mutual information in its objective) to fully utilises
the single-pass data stream. Moreover, DVC provides an improved replay retrieval algorithm (related
to MemoryRetrieval, cf. Algorithm 1 in the main manuscript) that selects the samples whose gradi-
ents generated in the network are most interfered by the new incoming samples, but such retrieval
algorithm actually consumes 10 times forward operations (where the cost is estimated according to
its hyperparameter setting) to select a single sample for replay, which is extremely costly for OCL
thus being relatively impractical.

A.2 QUANTITATIVE METRICS

Average Incremental Accuracy (A) measures the accuracy over all the stages. Given that the
learning target of the recognition system at stage t is to achieve a Ct-ways classification (i.e. there
are in total Ct classes till stage t), and we denote at,c the recognition accuracy for a class c ∈ Ct at
the stage t where t = 1, 2, . . . , T and c = 1, 2, . . . ,Ct, the average incremental accuracy A is then
defined as A = 1

T

∑T
t=1

1
Ct

∑Ct

c=1 at,c
End Accuracy (E) is the accuracy of the last stage T which averages over CT classes. That is,
E = 1

CT

∑CT

c=1 aT,c

Forgetting Measure (F) is the average deterioration of accuracy over all the classes, and lower
forgetting measure (F) implies less forgetting on the previously learnt classes. With denoting ft,c
the deterioration on accuracy for a class c (i.e. the maximum decrease on accuracy for classifying
class c since the first time that the model learns to recognize it at stage t′) after the model finishes
the training stage t, i.e.

ft,c = max
l∈{t′,...,t−1}

al,c − at,c, (15)
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the forgetting measure F is then defined as following:

F =
1

T − 1

T∑
t=2

1

Ct−1

Ct−1∑
c=1

ft,c (16)

Centred Kernel Alignment (CKA) proposed by Kornblith et al. (2019) is a metric to measure the
representation similarity between two networks. Here in this work, we leverage the linear CKA (as
later shown in Eq. 17) to evaluate the similarity between the feature representations (obtained by
the feature extractor of our model) learnt by our models in different stages, in order to observe how
much the network is changed/updated across stages. We denote the feature extractor in our learnt
model after finishing the training stage t as Ft, the data available or used in the training stage ṫ as
Dṫ, and the collection of feature representations of Dṫ projected by Ft as Rt,ṫ ∈ Rn×d where n and
d denote the number of data samples in Dṫ and the feature dimensionality respectively. Given the
data samples Dṫ, the representation similarity between two stages t and t+ 1 is now formulated as

CKA(Rt,ṫ, Rt+1,ṫ) =
∥R⊤

t,ṫ
Rt+1,ṫ∥2F

∥R⊤
t,ṫ
Rt,ṫ∥F∥R⊤

t+1,ṫ
Rt+1,ṫ∥F

(17)

where ∥ · ∥F is the Frobenius norm of a matrix, with noting that R·,· is already centered (i.e. sub-
tracting the mean) in this computation.

A larger CKA value implies a higher similarity between two representations or models; Hence, less
forgetting between stages. Moreover, CKA is invariant to orthogonal transformation of representa-
tions, and the normalisation term of CKA ensures that it is invariant to scaling.
Balancedness (β) (Kang et al., 2021) measures the classification uniformity of a classifier, in which
we adopt it to examine whether the model is biased towards new classes or not at the last stage. The
balancedness (β) is defined as following:

β =
1

(CT )2

CT∑
i,j=1

exp

(
−|aT,i − aT,j |2

σ

)
(18)

where the scaling parameter σ is set to 0.5. The metric achieves maximum when the accuracy values
for all classes are equal, indicating that the model does not have any bias.

A.3 MORE RESULTS

A.3.1 AVERAGE INCREMENTAL ACCURACY A

The results in terms of average incremental accuracy A is shown in Table 5, in which it is clear to
observe that our proposed SDAF method outperforms almost of the baselines on different datasets
with various settings of memory sizeM.

Table 5: Evaluation results in terms of average incremental accuracy (A) ± std (average over 3
random orders of class arrival in the datastream). All methods are trained with the similar computa-
tional cost.

Methods Mini-ImageNet CIFAR-100 CIFAR-10
M=1k M=2k M=5k M=1k M=2k M=5k M=0.2k M=0.5k M=1k

EWC++ - 6.4 ± 0.8 - - 8.9 ± 1.1 - - 35.8 ± 4.6 -
ER 21.6 ± 2.4 25.2 ± 3.0 32.2 ± 2.9 24.8 ± 1.3 29.3 ± 1.6 34.5 ± 1.8 48.2 ± 2.0 53.7 ± 2.8 59.7 ± 3.1
AGEM 10.4 ± 1.2 10.5 ± 1.0 10.6 ± 0.9 14.9 ± 0.6 15.0 ± 0.5 14.9 ± 0.5 40.8 ± 1.3 40.8 ± 1.3 40.8 ± 1.4
GSS 20.3 ± 3.2 23.7 ± 3.4 27.4 ± 3.4 24.3 ± 1.7 27.1 ± 2.0 31.0 ± 2.1 43.4 ± 0.9 46.5 ± 0.8 53.9 ± 2.9
MIR 20.9 ± 2.1 24.0 ± 1.4 31.1 ± 2.9 24.5 ± 1.6 28.1 ± 1.7 33.6 ± 2.5 46.9 ± 2.0 53.6 ± 2.0 58.4 ± 2.3
ASER 24.8 ± 2.7 29.5 ± 2.0 35.9 ± 2.1 26.2 ± 0.6 30.8 ± 1.3 36.4 ± 1.9 44.6 ± 1.4 48.3 ± 1.4 53.0 ± 2.6
DualNet 27.2 ± 1.5 30.5 ± 2.5 32.6 ± 1.4 28.9 ± 2.0 31.9 ± 2.4 33.7 ± 2.3 61.3 ± 0.9 65.2 ± 2.4 67.4 ± 2.0
DVC 33.4 ± 1.0 37.0 ± 0.8 41.5 ± 0.9 36.9 ± 0.6 40.4 ± 1.0 43.8 ± 0.6 64.1 ± 1.6 67.1 ± 2.2 70.4 ± 2.3
SCR 25.2 ± 2.6 25.9 ± 2.4 26.8 ± 2.4 31.2 ± 3.7 32.5 ± 3.5 33.2 ± 3.6 65.9 ± 3.6 73.6 ± 2.1 78.4 ± 1.2
SCL 23.3 ± 2.4 23.8 ± 2.0 25.0 ± 2.4 28.7 ± 3.5 29.2 ± 3.6 30.6 ± 3.1 68.7 ± 2.6 75.5 ± 1.6 78.2 ± 0.7
SDAF 34.2 ± 2.0 38.8 ± 2.0 41.3 ± 1.5 40.2 ± 2.1 44.4 ± 1.3 46.6 ± 1.8 71.3 ± 1.2 78.5 ± 0.8 80.7 ± 0.6
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A.3.2 STAGE-WISE ACCURACY

Here in Table 6 we provide detailed stage-wise accuracy for SCR, SCL, and our proposed SDAF,
where the experiments are based on CIFAR-10 dataset withM = 500. Noting that SCR, SCL, and
our SDAF are under the similar computational cost by setting I = 4 to SCR/SCL and I = 1 to our
SDAF. From the results, we can observe that our full model SDAF has superior accuracy on every
stage as well as better average incremental accuracy A.

Table 6: The stage-wise accuracy based on CIFAR-10 dataset with M = 500 to demonstrate the
contributions of our semantically distinct augmentation (SDA).

Stage SCR SCL SDAF

1 95.2 94.6 95.8
2 82.1 82.8 83.7
3 71.6 73.7 76.8
4 65.3 67.9 69.7
5 59.6 61.2 66.4

A 74.8 76.1 78.5

A.3.3 REPRESENTATION SIMILARITY

We use the linear centered kernel alignment (linear CKA) (Kornblith et al., 2019) to measure the
representation similarity between the models of different stages on CIFAR-10 (i.e. how much the
model is updated/adjusted across stages), and the results are shown in Table 7 and Table 8. In Table 8,
the grey cells indicate that the given dataset Dṫ is seen (trained) at both stages on comparison (i.e.
Dṫ has been used to train Ft and Ft+1, where ṫ ≤ t), and the white cells indicate that the given
dataset Dṫ is unseen at either one or both of the stages on comparison. The column “Seen” in the
Table 7 is the average linear CKA over the seen classes (i.e. related to grey cells in Table 8) and
the column “Unseen” is the unseen classes (i.e. related to white cells in Table 8). Higher linear
CKA (what is achieved by our SDAF) means that the model changes less while learning new classes
(thanks to the more generalised representation); hence, it has less forgetting.

Table 7: Linear CKA (↑).
Methods Seen Unseen

SCR (Mai et al., 2021) 0.799 0.442
SCL (Khosla et al., 2020) 0.773 0.456
SDAF 0.847 0.644

A.3.4 CONFUSION MATRIX – BALANCEDNESS β

In Figure 3, we compare the confusion matrix of SCR, SCL, and our SDAF in a single-run experi-
ment. All models are trained on CIFAR-10 andM is 500, where Figure 3 shows the inference result
of the CIFAR-10 test split using the model that completes the training of five stages. Our proposed
SDAF model has the highest balancedness β among three methods, in which such result together
with the visualisation of confusion matrix indicate that our SDAF is least biased toward new classes
(i.e. class 8 and class 9) and suffers less from an unbalanced training dataset.

A.3.5 OUT-OF-DISTRIBUTION DETECTION

One way to evaluate the generalisability of a learnt representation is to testify its performance on the
out-of-distribution (OOD) detection task (i.e. how likely we are able to detect the unknown samples
from novel classes based on the feature representation being used). The basic motivation behind such
experiments is that: Since the continual learning agent aims to sequentially extend its recognition
ability on the unseen classes (i.e. unseen classes with respect to the current model, which can also be
treated as out-of-distribution samples), the generalisable feature representation, which ideally would
make the unseen classes more separable from the seen classes thus requires less adjustment while
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Table 8: Linear CKA (↑) of a given dataset Dṫ between two feature extractors of contiguous stages,
Ft and Ft+1.

(a) SCR (Mai et al., 2021) D1 D2 D3 D4 D5

stage 1 & 2 0.775 0.442 0.491 0.254 0.486
stage 2 & 3 0.799 0.816 0.58 0.358 0.451
stage 3 & 4 0.755 0.805 0.847 0.248 0.491
stage 4 & 5 0.759 0.795 0.88 0.759 0.616

(b) SCL (Khosla et al., 2020) D1 D2 D3 D4 D5

stage 1 & 2 0.767 0.532 0.464 0.232 0.396
stage 2 & 3 0.782 0.856 0.689 0.399 0.449
stage 3 & 4 0.660 0.760 0.87 0.394 0.38
stage 4 & 5 0.658 0.811 0.881 0.685 0.626

(c) SDAF D1 D2 D3 D4 D5

stage 1 & 2 0.685 0.612 0.581 0.331 0.617
stage 2 & 3 0.787 0.838 0.784 0.629 0.692
stage 3 & 4 0.867 0.892 0.918 0.688 0.785
stage 4 & 5 0.843 0.902 0.925 0.812 0.762

(a) SCR (b) SCL (c) SDAF

Figure 3: The confusion matrix at 5th stage of CIFAR-10 withM set to 500 (noting that here we
report the results of a single-run experiment instead of having the average over 5 random orders of
class arrival, for the purpose of better visualising the confusion matrix). The old classes include
classes 0 to 7, and the new classes includes class 8 and 9. (a) SCR. β = 0.737 (b) SCL. β = 0.858
(c) SDAF. β = 0.867

learning the unseen/new classes, hence is able to alleviate the catastrophic forgetting phenomenon
in continual learning as the feature extractor of the classification model only needs to be minorly
updated. To this end, we take the training set of CIFAR-10 as inliers and treat the other datasets
(e.g. MNIST (LeCun et al., 2010), Omniglot (Lake et al., 2011), and SVHN (Netzer et al., 2011))
as outliers, ideally the test samples from the test set of CIFAR-10 should be closer to the inliers than
the samples from the outlier dataset (where such distance is computed via the Mahalanobis distance
from the test sample to the nearest centre of inlier classes, averaged over various augmentations of
the test sample). The performance of OOD detection is then evaluated by the area under ROC curve
(AUC) based on the aforementioned distance, and the results are shown in Table 9. We can see that
the representation learnt by our proposed SDAF provides a better OOD detection performance than
SCL and SCR thus being more generalised (with following a clear logic behind: improvement in the
contrastive learning leads to better generalizability as shown by better OOD detection performance,
and the better generalizability leads to better alleviation of the catastrophic forgetting thus boosting
the continual learning performance).
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Table 9: Out-of-distribution (OOD) detection result.
AUC MNIST Omniglot SVHN

SCR (Mai et al., 2021) 92.6 57.0 68.3
SCL (Khosla et al., 2020) 94.0 34.7 57.2
SDAF 95.7 83.7 88.7

A.3.6 REPRESENTATION VISUALISATION

Figure 4 is the tSNE (van der Maaten & Hinton, 2008) visualisation of the features learnt by SCR
and our SDAF, both models complete the training of the 5th stages on CIFAR-10 dataset withM
being set to 500. This visualisation result shows the effectiveness of our SDAF method in separating
trained classes (i.e. inlier, from the test split of CIFAR-10 dataset) from unseen classes (i.e. outlier,
from the test split of SVHN dataset), which actually implies that our SDAF method is better gener-
alised to unseen classes hence will suffer less from the forgetting issue while learning to recognize
the new classes.

(a) SCR (b) SDAF

Figure 4: tSNE visualisation of the features learnt by SCR and our SDAF. Both SCR and our SDAF
are trained till the end of 5th stage of CIFAR-10. Inlier points (colorized by orange) are from the
test split of CIFAR-10, and the outlier points (colorized by blue) are from the test split of the SVHN
dataset. We are able to see that our SDAF better separates the inlier and outlier than what SCR can
do.

A.3.7 REPRESENTATION DIVERSITY

Figure 5 shows the scree plot (i.e. the line plot of the eigenvalues) for the covariance matrix of
the normalised feature representations (with the maximum norm being one) obtained from various
methods (i.e. our SDAF, SCL, and SCL) which are trained on CIFAR-10 withM set to 500. The x-
axis of the scree plot presents the indices of the eigenvalues which are sorted in a descending order,
and the y-axis presents the corresponding eigenvalues. From the plot we can see that our proposed
method SDAF has the highest number of significant eigenvalues (much greater than zero) among the
three methods, in which containing more significant eigenvalues means that the corresponding rep-
resentations have large variance along numerous orthogonal directions. Thus, the proposed SDAF
captures diverse features on the same dataset, contributing to benefit the learning on the future tasks.
Note that from 40th eigenvalues they are nearly zero, so we skip those for a clear plot.

A.3.8 EXECUTION TIME

Figure 6 shows the execution time (including training and inference) of the baselines and our
method, based on the experiments in CIFAR-10 with a memory sizeM = 500. We ran the exper-
iment on a computer equipped with a Xeon E5-2620 CPU and a GTX-1080ti GPU. The proposed
method spends less executive time since the number of total training iterations is shorter than oth-
ers though the SDA multiplies the mini-batch K by times which can be easily accelerated by GPU
parallelism.
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Figure 5: Scree plot of normalised rep-
resentations on CIFAR-10 dataset with
M set to 500.
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Figure 6: Executive time (seconds) of
5 incremental stages on CIFAR-10 with
M set to 500.

A.4 NETWORK ARCHITECTURE

The full architecture of our proposed SDAF model is illustrated in Figure 7. First, the semantically
distinct augmentation S generates K different images Sk(x) from the input image x. Then, we
sample 2K random transformations H ∼ H to create 2K views for those K images, followed by
using the feature extractor F to project the 2K images into the latent representation space. The
network G further projects the resultant feature representation into another low-dimensional space
to perform the contrastive learning. On the other hand, the softmax classifier Gsoft is responsible
for computing the cross-entropy loss, which is equipped with the weight-aware balanced sampling
strategy (LWABS) upon the representations.

Contrastive

Figure 7: Model architecture. S is semantically distinct augmentation. H is the transformation
module for contrastive learning which is described in Section A.5. F is a feature extractor. G is
a multilayer perceptron (MLP). Gsoft is a single-layer softmax classifier (i.e. built upon one fully-
connected layer).

A.5 IMPLEMENTATION DETAILS

A.5.1 HYPERPARAMETERS

The network architecture for the components used in our proposed method basically follows the
ones in Mai et al. (2021). For all experiments, we adopt a reduced ResNet18 (He et al., 2016) as
our feature extractor F with resultant feature dimension set to 160, the projection head G is a two-
layer multilayer perceptron (MLP) with width 160 and 128 respectively, and the predictor P is also
a two-layer MLP with both input and output width being 128. The transformation module H of
contrastive learning consists of random cropping, random horizontal flip, random colour distortion,
and random grey scale. The detailed setting for transformation module H is described later in the
next paragraph. We adopt the SGD optimiser with learning rate 0.1. The batch size |Bu

t | is 10, and
the retrieval batch size |BM | is 10. We adopt the rotation as the SDA strategy S, where S consists
of four different degree of rotation (K = 4), i.e. 0◦, 90◦, 180◦, and 270◦. We empirically set λ in
the total loss function (cf. Eq. 12) to 1.5, and the temperature τw in our WABS (cf. Eq. 9) to 0.5. We
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use reservoir sampling (Vitter, 1985) and uniform random sampling for operations MemoryUpdate
and MemoryRetrieval as described in Algorithm 1.

A.5.2 TRANSFORMATION MODULE

The transformation module H for contrastive learning composes of a long series of random trans-
formations and another short series of random transformations, where each series is responsible for
generating one view in a positive pair (following the common practice as used in FixMatch (Sohn
et al., 2020)). The long series of random transformations includes a uniformly random cropping, a
random horizontal flip, a random colour distortion, and a random grey scale operator. Uniformly
random cropping keeps the original image from 50% to 100% in terms of area, and it has been im-
plemented in Pytorch (Paszke et al., 2019) as “torchvision.transforms.RandomResizedCrop”. Ran-
dom horizontal flip has 50% chance to flip the image. Random colour distortion has also been
realized in Pytorch (Paszke et al., 2019) as “torchvision.transforms.ColorJitter”, and we set the fac-
tors for brightness, contrast, saturation to 0.4, and the factor for hue is set to 0.1. Last, with a
chance of 20%, the image is converted to gray scale, and this operator is implemented as “torchvi-
sion.transforms.RandomGrayscale” in Pytorch (Paszke et al., 2019). On the other hand, the short
series of random transformations comprises of a uniformly random cropping and a random colour
distortion. The implementation is the same as the long series of random transformation, except the
cropping area is set to 75% to 100%, the factors for brightness, contrast, saturation to 0.2, and the
factor for hue is set to 0.05.
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