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ABSTRACT

The rapid development of Multimodal Large Language Models (MLLMs) like GPT-
4V has marked a significant step towards artificial general intelligence. Existing
methods mainly focus on aligning vision encoders with LLMs through supervised
fine-tuning (SFT) to endow LLMs with multimodal abilities, making MLLMs’ in-
herent ability to react to multiple languages progressively deteriorate as the training
process evolves. We empirically find that the imbalanced SFT datasets, primarily
composed of English-centric image-text pairs, lead to significantly reduced perfor-
mance in non-English languages. This is due to the failure of aligning the vision
encoder and LLM with multilingual tokens during the SFT process. In this paper,
we introduce PARROT, a novel method that utilizes textual guidance to drive visual
token alignment at the language level. PARROT makes the visual tokens condition
on diverse language inputs and uses Mixture-of-Experts (MoE) to promote the
alignment of multilingual tokens. Specifically, to enhance non-English visual to-
kens alignment, we compute the cross-attention using the initial visual features and
textual embeddings, the result of which is then fed into the MoE router to select the
most relevant experts. The selected experts subsequently convert the initial visual
tokens into language-specific visual tokens. Moreover, considering the current lack
of benchmarks for evaluating multilingual capabilities within the field, we collect
and make available a Massive Multilingual Multimodal Benchmark which includes
6 languages, 15 categories, and 12,000 questions, named as MMMB. Our method
not only demonstrates state-of-the-art performance on multilingual MMBench and
MMMB, but also excels across a broad range of multimodal tasks.

1 INTRODUCTION

The rapid development of Large Language Models (LLMs), such as GPT-4 (Radford et al., 2018;
Brown et al., 2020; OpenAI, 2023a; 2024), has gained significant attention. However, LLMs are
limited to processing a single textual modality. The expansion into visual modalities has endowed
LLMs with multimodal capabilities (Ye et al., 2023; Alayrac et al., 2022; Zhu et al., 2023; Dai et al.,
2023; Li et al., 2022), thereby accelerating the development of Multimodal Large Language Models
(MLLMs) and further bringing us closer to the realization of Artificial General Intelligence (AGI).

Current MLLMs mainly rely on pre-trained LLMs and vision encoders, focusing on bridging the
modality gap by aligning visual features with language embedding tokens. Existing research predom-
inantly employs either a Q-Former (Li et al., 2023b; Bai et al., 2023b) or an MLP projector (Liu et al.,
2023b; Chen et al., 2023b) to align vision encoders with LLMs. The training data mainly consists
of English-centric data from image captions and multimodal conversations. During training, the
alignment component converts the visual features into language embedding tokens. By incorporating
encoded visual features, the LLM can integrate visual information to respond to multimodal inputs,
thereby enabling the model to possess visual question answering and reasoning capabilities.

Multilingual capability in MLLMs entails the ability to generate responses in the same language
as the input, catering to the linguistic diversity inherent in conversation. Therefore, it is critically
important for processing language-specific content and cultural differences, ensuring equitable access
to technological benefits for individuals across diverse regions and nations (Chen et al., 2022; Hu
et al., 2023). Many LLMs possess multilingual capabilities (Touvron et al., 2023; Bai et al., 2023a;
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请问图中的人手上拿了什么东西？

图中的人手里拿着一个奖杯。

图中描述的是什么内容？

The image portrays a man who is standing an arena, holding a trophy.

图中的人手里拿着一个奖杯。

Chinese-CLIP + Qwen1.5-Chat 7B

The person in the image is a young man who is standing in a stadium, holding a trophy. He is
wearing a red and white sports uniform, which suggest that he is a member of a sports team.

🤖

🎃

🎃

👨💻

👨💻 图中描述的是一个年轻男子在比赛场上，手持奖杯，
庆祝胜利。他穿着运动服装，肌肉发达，表现出了
胜利者的自豪和喜悦。

这个人在庆祝胜利，因为他正在举着一个奖杯。他可能
是一个运动员，因为奖杯通常用于奖励胜利者。他可能
在庆祝比赛胜利，或者在庆祝团队的成就。

🤖

🤖

🎃

👨💻 图中的人在干什么？

🤖

🎃

OpenAI-CLIP + Qwen1.5-Chat 7B

Figure 1: The output of OpenAI-CLIP-based and Chinese-CLIP-based models using the same Chinese prompts.
We can observe that the OpenAI-CLIP-based model exhibits confusion between Chinese and English responses.

OpenAI, 2023b), enabling diverse language responses according to user input. However, after the
alignment training of MLLMs, the model may lose its ability to understand, process, or generate in
non-English languages, and we call this phenomenon multilingual erosion. For example, LLaVA (Liu
et al., 2023b) usually responds in English, regardless of the input language. Therefore, it is essential
to enhance MLLM’s multilingual capabilities during multimodal alignment.

The main reason for multilingual erosion is that the data used for multimodal alignment is highly
imbalanced at the language level. Due to the dominance of English-centric data, while the model
aligns visual and textual tokens well in English, it performs poorly in other languages. Hence, it
is crucial to align visual and textual tokens compatibly at the language level. We hypothesize that
multilingual erosion may arise from the lack of alignment between visual tokens and textual tokens
in other languages. From the perspective of pre-trained datasets, OpenAI-CLIP (Radford et al.,
2021) is trained on the large-scale image-text pairs through contrastive learning, with the text corpus
being mostly in English, potentially biasing image encoding towards an English semantic space. As
shown in Figure 1, we train two separate models using the same data: one with OpenAI-CLIP vision
encoder and the other with Chinese-CLIP (Yang et al., 2022) vision encoder. Interestingly, the model
equipped with OpenAI-CLIP struggles to generate suitable outputs according to Chinese inputs,
while the other model with Chinese-CLIP can not only understand the queries but also generate
appropriate outputs in Chinese. Furthermore, we observed a performance improvement, from 66.4
to 68.3, on the MMBench-CN (Liu et al., 2023c) dataset when using Chinese-CLIP. Therefore, the
challenge arises: how to use English-centric multilingual image-text data to bridge the modality
gap while enhancing the MLLM’s multilingual capabilities.

Due to the scarcity of non-English multimodal data (e.g., lack of large-scale, high-quality image-text
data), we require almost the same amount of image-text data as LLaVA to enhance the model’s multi-
lingual capabilities. Moreover, motivated by preliminary experiments, it is necessary to condition the
visual tokens on diverse language inputs. In this paper, we introduce PARROT, a novel method that uti-
lizes textual guidance to drive visual token alignment at the language level and converts visual tokens
into language-specific embeddings using a Mixture-of-Experts (MoE) module (Jacobs et al., 1991;
Shazeer et al., 2017). Specifically, we first calculate the cross-attention between the class token of vi-
sual features extracted by the vision encoder and the text embeddings derived from word token embed-
dings. The result is then passed through the router of MoE to obtain the activated probability distribu-
tion of each language expert. Subsequently, demanding the input language, the English-biased visual
tokens are converted into language-specific embeddings using the selected experts. This enables PAR-
ROT not only to enhance its multilingual capabilities but also to bridge the multimodal gap effectively.

To address the scarcity of current multilingual benchmarks, we introduce a new benchmark encom-
passing six languages: English, Chinese, Portuguese, Arabic, Turkish, and Russian. This includes
an extension of the MMBench-DEV dataset to these six languages and a Massive Multilingual
Multimodal Benchmark (MMMB) featuring 2,000 evaluation questions per language, totaling 12,000
questions. Through a semi-automatic approach, which is shown in Figure 3, we alleviate the potential
introduction of noise and errors when constructing the benchmark. To comprehensively assess
our model’s capabilities, we compare several open-source multimodal methods and evaluate some
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a) Code reasoning

Is the output of the code ‘‘b
is lower than 50’’?

c) Low relevance between image and text

What is the capital of Michigan?
A. Pierre
B. Charleston
C. Grand Rapids
D. Lansing

b) Logical reasoning

Figure 2: Some bad cases for the existing multilingual benchmark. Left: code reasoning is strongly related to
English. Middle: logical reasoning is too challenging. Right: lack relevance between image and text.

proprietary models. Extensive experiments validate the PARROT’s state-of-the-art performance across
two multilingual benchmarks. Specifically in Turkish and Arabic, our method even outperforms
LLaVA-NeXT (Liu et al., 2024) by more than 10 percentage points in both benchmarks. Additionally,
we evaluate our model across a broad range of multimodal benchmarks (e.g., MME (Fu et al., 2023),
ScienceQA-IMG (Lu et al., 2022), and SEED-Bench-IMG (Li et al., 2024a)), demonstrating its
competitive performance in diverse tasks.

Related Work. 1) Multimodal Large Language Models. Current MLLMs typically consist of a
vision encoder, LLM, and fusion module. LLaVA (Liu et al., 2023b) uses a simple MLP projector
to connect the vision encoder and LLM. BLIP2 (Li et al., 2023b) and InstructBLIP (Dai et al., 2023)
employ Q-Former to bridge the modality gap. GPT-4o (OpenAI, 2024), Gemini (Reid et al., 2024),
and Claude3 (anthropic, 2024) has achieved impressive results. 2) Multilingual Multimodal Models.
mCLIP (Chen et al., 2023a), PaLI (Chen et al., 2022), and VisCPM (Hu et al., 2023) endow models
with multilingual capabilities. A detailed related work is presented in Appendix B.

2 MMMB: A MASSIVE MULTILINGUAL MULTIMODAL BENCHMARK

In this section, we first discuss the limitations of existing benchmarks and then present the character-
istics that an ideal multilingual benchmark should possess. Furthermore, we design and construct a
new benchmark and provide its corresponding evaluation strategy.

2.1 LIMITATIONS OF EXISTING BENCHMARKS

There are several existing multilingual benchmarks (e.g., Multi30K (Elliott et al., 2016),
M3Exam (Zhang et al., 2024b), MMBench (Liu et al., 2023c), and LLaVA-Bench (Liu et al., 2023b;
Hu et al., 2023)) for MLLMs, but they have some limitations: 1) Outdated Benchmarks. Multi30k
is designed for image-text retrieval tasks, and the performance has nearly reached the upper bound
due to the relatively easy problems. 2) Non-Standardized Evaluations. Other benchmarks, like
LLaVA-Bench, rely on evaluations using GPT-4. Dependence on GPT-4 as a de facto “Ground Truth”
may hinder reproducibility. Meanwhile, since LLaVA uses a deprecated version (GPT-4-0314), using
other different versions could result in unfair comparisons. On the other hand, because M3Exam
does not offer consistent test samples across different languages, it cannot ensure whether poor
performance is due to the problem’s difficulty or the model’s lack of multilingual capabilities. 3)
Limited Languages. MMBench and LLaVA-Bench are limited in English and Chinese, which can
not measure the multilingual capabilities across a broad spectrum.

2.2 CHARACTERISTICS OF AN EFFECTIVE MULTILINGUAL BENCHMARK

To more suitably evaluate the multilingual capabilities of MLLMs, an ideal benchmark should exhibit
the following characteristics:

1) Languages with Significant Differences. It should cover a diverse array of language families,
selecting languages that are as distinct and non-repetitive as possible. This ensures a broad assessment
of MLLMs’ ability to adapt across linguistic variances.

2) Problems with Medium Level of Difficulty. The problems should not be too difficult (e.g., logical
reasoning) because the aim is to assess the multilingual understanding, processing, and generating
capabilities of MLLMs, not logical reasoning skills.
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3) Tasks with Multilingual and Multimodal. As shown in Figure 2, data within datasets should not
be strongly related to English (e.g., code reasoning). It cannot be inherently transformed into multiple
languages since they are composed of English words. Moreover, images should be an indispensable
part when MLLMs answer the question. For instance, if given a map of the United States and asked
to identify its capital, MLLMs only require the text-only ability to answer this question. Therefore, it
is essential that questions highlight a significant correlation between images and texts.

4) Content Consistency across Languages. The goal of this benchmark is to evaluate the multilingual
capabilities of MLLMs, and we aim to show the discrepancies across different languages fairly. For
example, if English questions mainly focus on addition within one hundred while Chinese questions
mainly concern calculus computation, it becomes difficult to ascertain whether poor performance in
Chinese arises from the complexity of the problem or the limited multilingual capabilities of MLLMs.
Hence, it is crucial to ensure content consistency across languages for a fair comparison.

2.3 CONSTRUCTION OF THE MULTILINGUAL BENCHMARK

According to the image, what kind of 
people are primarily seen in the water?
A. Fishermen
B. Surfers
C. Swimmers
D. Scuba Divers

Initial translate

GPT-4

Refinement x 3

Voting x 3
Select the best

Görsele göre suda öncelikli olarak ne 
tür insanlar görülüyor?
A. Balıkçılar
B. Sörfçüler
C. Yüzücüler
D. Tüplü dalgıçlar

Manual
Calibration

English

Turkish

Figure 3: The calibration process for constructing a multilin-
gual benchmark. The calibration process is mainly divided
into two stages: GPT-4 Translation and Manual Calibration.

We select six languages for inclusion: En-
glish (en), Chinese (zh), Portuguese (pt), Ara-
bic (ar), Turkish (tr), and Russian (ru). These
languages represent a diverse range of lin-
guistic families, and we list the detailed in-
formation and some multilingual cases in
Figure 4. In terms of dataset requirements
and consistency, our benchmark incorporates
datasets in two main respects: 1) Since MM-
Bench (Liu et al., 2023c) officially includes
English and Chinese versions, we extend it to
the other four languages. 2) For the massive
multilingual multimodal benchmark, denoted
as MMMB, we select and clean the suit-
able data from ScienceQA (Lu et al., 2022),
MME (Fu et al., 2023), and SEED-Bench (Li et al., 2024a) datasets with established guidelines.
These datasets are then processed into a Visual Question Answering format, resulting in a total of
12,000 samples across all six languages.

To alleviate the potential introduction of noise and errors through the data acquisition process, we
employ the following strategies to enhance the quality of our translations in Figure 3. First of all,
we choose GPT-4 to translate the original problem into the target language. Then, we input the first
translation result back into GPT-4 for a re-check and refinement. This step helps to identify and
correct any immediate errors or inconsistencies in the translation. For manual calibration, we engage
two groups of professional translators for each language involved in the study:

1) First Group for Refinement. This group consists of three language experts who independently
review and refine the translations produced by GPT-4. This process results in three distinct translation
versions for each piece of content.

2) Second Group for Voting. The second group of experts is responsible for evaluating these three
refined translations. Through a voting process, they will choose the best translation that accurately
captures the intended meaning and nuances of the original text.

This calibration process significantly enhances the data quality by reducing errors and ensuring that
translations are contextually appropriate across different languages. As a result, our benchmark
reflects a better level of linguistic precision and cultural relevance, which we believe contributes
positively to the overall robustness of our research findings. In future versions, we will include more
detailed information to enhance readability and completeness.

2.4 EVALUATION STRATEGY

Since random guessing can lead to ∼25% Top-1 accuracy for 4-choice questions, potentially reducing
the discernible performance differences between various MLLMs. Additionally, MLLMs may prefer
to predict a certain choice among all given choices (Liu et al., 2023c), which further amplifies the bias
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Can you see any clouds in the sky?
A. No, it's completely clear
B. There is no sky visible
C. Yes, and they are dense
D. Yes, but they are sparse

English

 يننكمی لھ ،عطاقتلا يف ةتفلا دجوی لھ
؟ارًاسی فاطعنلاا

A. معن
B. لا

Сколько белых стульев на картинке?
A. 1
B. 2
C. 3
D. 4

Qual das seguintes opções está na terceira 
coluna?
A. a biblioteca
B. o restaurante
C. o departamento de polícia
D. a mercearia

Görsele göre suda öncelikli olarak ne 
tür insanlar görülüyor?
A. Balıkçılar
B. Sörfçüler
C. Yüzücüler
D. Tüplü dalgıçlar

6 Languages
12,000 samples

En
gli
sh

Tur
kish

Arabic

P
ortuguese

Chinese

R
us
si
an

15 categories

Ge
ogr
aph
y

Col
orCount

···

Maps

A
tt
ri
bu
te
s

图中所示的长凳是什么颜色？
A. 灰色的
B. 黑色的
C. 棕色的
D. 白色的Arabic Chinese

Russian Portuguese

Turkish

Language Language family Language group

English Indo-European Germanic

Chinese Sino-Tibetan Sinitic

Portuguese Indo-European Romance

Arabic Afro-Asiatic Semitic

Turkish Altaic Turkic

Russian Indo-European Slavic

Figure 4: Overview of MMMB. It incorporates 6 languages, 15 categories, and 12,000 questions.

in evaluation. To address these issues, we implement a circular validation strategy inspired by MM-
Bench. Specifically, MMMB is adapted to the format of Yes/No questions, where each image is paired
with two questions, demanding ‘Yes’ and ‘No’ answers, respectively. As shown in Figure 9, an answer
is considered accurate only if both questions are answered correctly; failing either result in marking
the entire instance as incorrect. This strategy ensures a more rigorous evaluation of MLLMs, reducing
the likelihood of random guessing and promoting more validated comparisons across different models.

3 METHODS

3.1 PRELIMINARIES: VISUAL INSTRUCTION TUNING

A representative work in MLLMs is LLaVA (Liu et al., 2023b), which introduces a simple yet
effective method for achieving alignment between the vision encoder and the pre-trained LLM.
Specifically, for a given input image Xv, LLaVA utilizes the pre-trained CLIP vision encoder
ViT-L/14 (Radford et al., 2021) to extract the visual features Zv = g(Xv). It then employs
Vicuna (Chiang et al., 2023) as the LLM to obtain the textual embeddings Ht. To align the vision
encoder with the LLM, a projector in the form of a multi-layer perceptron (MLP) denoted as W
is learned. This projector converts Zv into language embedding tokens Hv, effectively facilitating
the integration of multimodal information within the LLM’s framework.

Hv = W · Zv, with Zv = g(Xv). (1)

Finally, we input Hv and Ht into LLM to generate the model’s responses. However, after the
modality alignment training, LLaVA loses its ability to process in non-English languages.

3.2 PILOT STUDY

To address the challenge of multilingual erosion in MLLMs due to the dominance of English in image-
text data, we hypothesize that there is an inherent mismatch between visual tokens Hv and textual
tokens Ht, which tends to bias them towards English semantics, making the model more likely to
generate outputs in English. Specifically, the widely-used vision encoder of OpenAI-CLIP (Radford
et al., 2021) is pre-trained on a vast corpus of English-centric image-text pairs, resulting in visual
representations more aligned with English.

To explore this phenomenon, we train two distinct models using the same data: one incorporating
OpenAI-CLIP vision encoder and the other integrating Chinese-CLIP (Yang et al., 2022) vision
encoder. As shown in Figure 1, the model equipped with OpenAI-CLIP struggles to generate suitable
outputs according to the Chinese inputs, whereas the model using Chinese-CLIP not only understands
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1. What animal is in the picture?
2.图片中的动物是什么？

3. Fotoğraftaki hayvan nedir?

Vision
Encoder

Word EmbeddingProjection

Cross-Attention

Large Language Model

Multilingual MoE

Multilingual MoE block

Router

···

Weighted-Sum

MLP 1 MLP 2 MLP nMLP 3

··· ···

1. The animal in the picture is a rabbit
2.图中的动物是一只兔子

3. Resimdeki hayvan bir tavşandır.

Vision Encoder

Projector

LLM

MoE

Pre-training

Vision Encoder

Projector

LLM

MoE

Instruction Tuning

SiLU

Linear

MLP Expert

Linear

Figure 5: The overall architecture of PARROT. It converts English-biased features to language-specific features
based on the multilingual MoE module, aiming to improve the multilingual capabilities. The training details
within each stage are presented on the right.

the queries but also generates appropriate outputs in Chinese. Moreover, to further evaluate the
model’s Chinese capability, we test it on Chinese datasets and observe improved performance: from
66.4 to 68.3 on MMBench-CN and from 62.4 to 66.1 on MMMB-zh when utilizing Chinese-CLIP.

3.3 TEXTUAL GUIDANCE TO DRIVE VISUAL TOKEN ALIGNMENT

Due to the low-resource nature of non-English multimodal data (e.g., lack of large-scale, high-
quality image-text data), we need to use nearly the same amount of data as LLaVA to enhance the
model’s multilingual capabilities. Furthermore, motivated by these interesting findings and aiming
to align visual tokens with textual embeddings at the language level, we propose PARROT, a novel
approach that leverages textual guidance to facilitate the multilingual alignment of visual features.
PARROT enables the transition of English-biased visual features acquired through the OpenAI-CLIP
to accommodate other languages. This approach ensures that it can provide language-specific visual
tokens to LLM based on the multiple language inputs, thereby enhancing its multilingual capabilities.

First, we extract visual features through the vision encoder and transform them into language
embedding tokens Hv using a projector. We obtain the embeddings Ht ∈ RN×C derived from
text inputs via the word embedding table. Subsequently, to convert the English-biased features
into language-specific features using textual guidance, we employ a cross-modal cross-attention
mechanism to obtain H′

v ∈ RC :

H′
v = Attention(Q,K,V) = Softmax

(
Hcls

v HT
t√

C

)
Ht, (2)

where Q equals the matrix Hv, K and V are equivalent to Ht. Hcls
v ∈ RC is the [CLS] token

of Hv. Based on the multilingual inputs, this process allows the visual features to be dynamically
adjusted and transformed to the language-specific semantic embeddings.

Since the projected language embedding tokens Hv are English-biased, we need to convert them
to language-specific embeddings for different languages. To this end, we introduce a lightweight
Mix-of-Experts (MoE) module, which includes a router and several language transformation experts.
The router of MoE is a linear layer that generates a probability distribution over the set of experts
E = [e1, e2, · · · , eE ], effectively predicting the probability of selecting and activating each expert.
Each expert is an MLP designed to convert English-biased embeddings into language-specific
embeddings. The inputs to experts E is Hv , and the outputs have the same dimensions as the inputs.

Subsequently, to obtain a normalized probability distribution for activating language-specific experts,
H′

v is fed as input to the router. The router network contains a linear layer that computes the
normalized weight matrix using H′

v for voting, producing P ∈ RE :

P = Softmax(Linear(H′
v)), (3)

6
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which selects and activates the specific experts. Moreover, we process the English-biased embeddings
Hv through the selected experts to convert them into language-specific visual representations:

MoE(Hv) =

k∑
i=1

P[i] · E(Hv)i. (4)

This approach effectively aligns English-biased embeddings with multiple languages, ensuring a more
accurate and comprehensive representation across different linguistic contexts. To stabilize training
and convert visual embeddings with less variance in visual-semantic information, ensuring the model
performs well in tasks beyond the multilingual multimodal domain, we utilize MoE reweighting to
obtain the final language-specific visual embeddings Gv:

Gv = Hv + αMoE(x), (5)

where α is the trade-off parameter. In conclusion, we first fuse the visual and textual inputs via Eq. 2
to transform the visual embeddings with textual guidance. Moreover, the fused result is inputted into
the MoE module to select and activate the most relevant language experts via Eq. 3 and then obtain
the language-specific embeddings via Eq. 4. Lastly, we employ MoE reweighting to convert visual
embeddings with less variance in original visual-semantic information 5. This approach enables us to
endow the MLLM with multilingual capabilities using as little multilingual data as possible. Figure 5
illustrates the architecture, the detailed MoE module, and the training stages of PARROT.

3.4 TRAINING STAGE

Our goal is to utilize as little multilingual data as possible to enhance the multilingual capabilities of
MLLMs. The whole training procedure is divided into two distinct stages:

Stage 1: Modality Alignment. In this stage, we keep both the vision encoder and the LLM weights
frozen, focusing solely on optimizing the projectors to align the visual features Hv with the pre-
trained LLM word embedding. This stage can be likened to training a visual tokenizer that is
compatible with the frozen LLM. To enhance the diversity of images, we extract a portion of data
from LAION (Schuhmann et al., 2022) and CC12M (Changpinyo et al., 2021) datasets and construct
the in-house caption data through GPT-4V.

Stage 2: Instruction Tuning for Multilingual Alignment. We still keep the vision encoder weights
frozen while continuing to train the projector, MoE, and LLM. Due to the design of the MoE module,
PARROT can rapidly learn to align visual representations across multiple languages by using a small
amount of multilingual image-text data. As shown in Table 5, we only use nearly 10K training
data for each language in stage 2. This approach is particularly beneficial given the scarcity of data
resources in low-resource languages.

To address the challenge of limited data in non-English languages, we use a semi-automatic ap-
proach similar to the one depicted in Figure 3 to acquire image-text data. Initially, we partition the
ShareGPT4V dataset (Chen et al., 2023b) randomly for each language, extracting a selection of non-
duplicate, non-parallel image-text data for training. Subsequently, we implement a translation and
calibration scheme using GPT-4 to convert English texts into texts of other languages. Recognizing
that this step may introduce noise and potential translation errors, we apply a manual calibration
process to further fine-tune and clean the data, thereby obtaining high-quality multilingual image-
text data. This two-stage training approach ensures effective modality and multilingual alignment,
even with limited non-English data, aligning well with the realities of data scarcity in low-resource
languages.

4 EXPERIMENTS

In this section, we begin with an overview of the experimental framework, providing details on specific
implementations, evaluation benchmarks, and MLLMs used for comparative evaluation. Following
this, we conduct a comprehensive comparison of PARROT with the state-of-the-art approaches
using multilingual benchmarks. Additionally, we compare PARROT with leading models across a
range of multimodal tasks. Finally, this section concludes with ablation studies and visualization of
multilingual cases, highlighting the exceptional ability of PARROT in handling multilingual tasks.
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4.1 EXPERIMENTAL SETUP

Implementation Details: In this study, we configure PARROT with the pre-trained CLIP ViT-
L/14 (Radford et al., 2021) as the vision encoder and Qwen1.5-Chat (Bai et al., 2023a) as the
backbone for LLM. The initial learning rates for the two stages are set at 1e−3 and 2e−5, respectively,
with the batch size of 256 and 128. The entire training process is notably optimized to 21 hours on
the 16×A100 GPUs setup, attributed to the use of the relatively small training datasets. Additionally,
BF16 and TF32 precision formats are employed to meticulously balance speed and accuracy through-
out the training process. As defined in Eq. 4, we set the number of experts to six to match the number
of languages. Each expert is an MLP composed of two linear layers with SiLU (Elfwing et al., 2018)
activation function. More details are shown in Table 4.

Evaluation Benchmark: Our evaluation is divided into two parts: one evaluates the multilingual
capabilities of MLLMs, while the other assesses its overall performance. The first evaluation is
performed on two datasets: MMBench (Liu et al., 2023c) and a newly developed benchmark MMMB.
For MMBench, we expand it to include six languages through translation via GPT-4, followed by
manual verification. For MMMB, we construct it following the methodology described in Section 2.
We present the accuracy for each language in Table 1. Furthermore, the second evaluation covers a
wide broad range of multimodal tasks, such as MME (Fu et al., 2023), MMStar (Chen et al., 2024b),
ScienceQA (Lu et al., 2022), RealWorldQA (x.ai, 2024) and SEED-Bench (Li et al., 2024a), with
performance reported using a radar chart in Figure 6b.

Comparison Models: For comprehensive comparisons, we select leading open-source models in
MLLMs, including LLaVA-1.5 (Li et al., 2023a), LLaVA-NeXT (Liu et al., 2024), Qwen-VL (Bai
et al., 2023b), Monkey (Li et al., 2023d), VisualGLM (Du et al., 2022), VisCPM (Hu et al., 2023),
MiniGPT-4-v2 (Zhu et al., 2023), ShareGPT4V (Chen et al., 2023b), InstructBLIP (Dai et al., 2023),
mPLUG-Owl2 (Ye et al., 2023), Mini-Gemini (Li et al., 2024c). Furthermore, we incorporate closed-
source methods in our benchmarks, including GPT-4V (Chen et al., 2023b), Qwen-VL-MAX (Bai
et al., 2023b), and Gemini Pro (Reid et al., 2024), to demonstrate their remarkable performance. For
the evaluation process, we employ the VLMEvalKit in OpenCompass (Duan et al., 2024), ensuring
consistent configuration settings across all methods to maintain fairness in comparison. For most of
the mentioned methods, we directly use the VLMEvalKit implementation. Alternatively, we integrate
other methods not officially provided into this framework to ensure consistency in evaluation.

4.2 MAIN RESULTS

In this section, we present the results of the multilingual experiment in Table 1 and the overall
experiment in Figure 6b. According to Table 1, PARROT-14B achieves state-of-the-art (SOTA)
performance in all languages on the MMBench benchmark and also achieves the SOTA performance
in five languages on the MMMB benchmark, with English in the second place. The multilingual
capabilities of PARROT-14B closely reach that of GPT-4V, demonstrating the exceptional ability
of our proposed architecture. Notably, PARROT-7B also validates the SOTA performance on both
benchmarks across all languages, even surpassing the LLaVA-NeXT-13B. Additionally, as shown
in Figure 6b, this evaluation aims to show that PARROT not only possesses excellent multilingual
capabilities but also provides an overall understanding of PARROT’s capabilities in handling
various complex multimodal tasks (e.g., MME (Fu et al., 2023), MMStar (Chen et al., 2024b), and
SEED-Bench (Li et al., 2024a)). Additionally, as depicted in Figure 6c, we visualize the expert
distributions within the MoE. It is evident that the second expert is predominantly activated when
using the Chinese prompt, indicating that different experts are utilized for various language prompts.
In existing multilingual benchmarks, PARROT also demonstrates competitive performance while
using less than 1% of the data compared to other multilingual MLLMs, as illustrated in Figure 6.

4.3 ABLATION STUDY

In this section, we present an ablation study to examine the contribution of individual components to
the overall performance of PARROT. Additionally, we will demonstrate the impact of incorporating
training datasets in various languages on multilingual performance.

Ablation study on each component. We conduct an ablation experiment on the multilingual data
and the MoE module. As shown in Figure 6a, using multilingual data improves performance in
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Table 1: Accuracy performance comparison on multilingual benchmarks. We report all compared methods with
VLMEvalKit (Duan et al., 2024). The best and second results are shown in bold and underline, respectively.

Method LLM MMMB MMBench
en zh pt ar tr ru en zh pt ar tr ru

Open-source models

LLaVA-1.5 (Liu et al., 2023a) Vicuna-v1.5-7B 67.07 58.83 59.76 43.50 46.43 59.06 65.37 58.33 59.02 36.16 43.90 56.95
LLaVA-1.5 (Liu et al., 2023a) Vicuna-v1.5-13B 69.76 62.86 60.76 45.49 54.44 62.69 68.98 63.23 62.97 46.56 53.17 61.59
LLaVA-NeXT (Liu et al., 2024) Vicuna-v1.5-7B 70.87 61.57 61.81 42.74 46.95 63.85 67.95 60.56 60.39 38.40 45.36 59.62
LLaVA-NeXT (Liu et al., 2024) Vicuna-v1.5-13B 74.44 67.19 63.21 45.36 53.09 68.24 70.87 64.51 64.08 45.36 52.92 61.85
Qwen-VL (Bai et al., 2023b) Qwen-7B 52.63 36.37 38.65 36.54 37.42 40.70 42.26 22.25 25.08 18.72 26.37 28.17
Qwen-VL-Chat (Bai et al., 2023b) Qwen-7B 56.02 57.77 46.37 43.04 41.05 48.65 54.29 56.52 43.12 35.73 39.17 42.86
MiniGPT-4-v2 (Zhu et al., 2023) LLaMA2-13B 38.71 30.05 31.52 26.60 26.02 29.23 23.88 11.76 14.26 2.49 6.78 12.54
ShareGPT4V (Chen et al., 2023b) Vicuna-v1.5-7B 69.24 60.23 60.29 43.57 45.26 61.23 69.59 61.6 59.62 37.37 43.38 59.45
InstructBLIP (Dai et al., 2023) Vicuna-7B 39.47 32.92 35.67 23.80 28.36 36.37 27.83 18.81 27.14 3.26 8.50 20.87
mPLUG-Owl2 (Ye et al., 2023) LLaMA2-7B 67.25 60.99 59.70 45.78 45.43 62.63 66.15 59.36 58.24 37.88 47.68 60.39
Monkey (Li et al., 2023d) Qwen-VL-7B 66.02 58.18 46.31 38.83 37.66 48.59 58.07 53.52 49.57 31.01 31.35 45.18
Monkey-chat (Li et al., 2023d) Qwen-VL-7B 71.63 66.54 60.35 48.77 46.31 58.59 70.79 65.72 65.03 46.90 48.10 59.36
VisualGLM (Du et al., 2022) ChatGLM-6B 31.05 18.07 19.42 15.38 22.81 19.77 23.2 17.18 11.43 2.92 6.62 5.33
VisCPM-Chat (Hu et al., 2023) CPM-Bee-10B 53.10 47.54 28.19 26.90 26.78 26.84 45.88 46.39 15.81 1.46 9.19 1.20

PARROT Qwen1.5-7B 70.00 68.13 67.31 62.69 58.01 66.26 70.70 70.36 65.12 57.82 58.43 64.00
PARROT Qwen1.5-14B 73.92 71.64 69.82 68.13 64.33 70.18 74.40 72.25 69.16 66.15 64.52 69.33

Closed-source models

GPT-4V (OpenAI, 2023b) Private 74.97 74.21 71.46 73.51 68.95 73.10 77.60 74.40 72.51 72.34 70.53 74.83
Gemini Pro (Team et al., 2023) Private 75.03 71.87 70.64 69.94 69.59 72.69 73.63 72.08 70.27 61.08 69.76 70.45
Qwen-VL-MAX (Bai et al., 2023b) Private 77.19 75.26 72.16 70.82 66.02 74.21 76.80 77.58 74.57 75.00 69.07 75.00

en zh pt ar tr ru
Languages
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(a) Ablation study.
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Figure 6: Left: The ablation study of multilingual data and the MoE module using the MMBench benchmark.
Middle: The performance of PARROT on a broad range of multimodal tasks compared with existing models.
Models with 7B parameters are used for the two experiments. Right: Expert distributions of MoE. We summarize
the activated experts during the feed-forward process using Chinese Prompts.

each language. Moreover, the MoE module significantly improves performance, demonstrating the
effectiveness of our proposed method.

Ablation study on different datasets. As shown in Table 2, it is evident that the inclusion of different
multilingual datasets continually improves performance on the MMBench benchmark, and all models
with 7B parameters are used for this experiment. This highlights the robustness and scalability of
our approach to handling multiple languages effectively. We also conduct an ablation study using
different multilingual datasets in Table 10.

Ablation study on monolingual fine-tuning datasets. The ablation study presented in Table 16
evaluates the performance of different monolingual datasets added incrementally to the baseline
dataset LLaVA-1.5-finetune. It highlights the significant impact of adding different multilingual
datasets to a baseline model. Each dataset incrementally improves performance in its respective
language and, when combined, leads to overall enhanced performance across all evaluated languages.

Table 2: Ablation study on different multilingual training datasets in MMBench benchmark. Models with 7B
parameters are used for this ablation.

Dataset English Chinese Portuguese Arabic Turkish Russian
LLaVA-1.5-finetune 69.4 66.6 60.3 55.3 52.1 60.7
+ zh 69.2 -0.2 68.6 +2.0 64.1 +3.8 59.1 +3.8 50.9 -1.2 61.6 +0.9
+ zh pt 71.1 +1.7 70.4 +3.8 65.4 +5.1 57.9 +2.6 52.1 +0.0 62.9 +2.2
+ zh pt ar 71.0 +1.6 68.6 +2.0 65.7 +5.4 58.6 +3.3 52.2 +0.1 62.2 +1.5
+ zh pt ar tr 70.4 +1.0 68.7 +2.1 64.9 +4.6 61.2 +5.9 59.7 +7.6 62.0 +1.3
+ zh pt ar tr ru 70.7 +1.3 70.4 +3.8 65.1 +4.8 57.8 +2.5 58.4 +6.3 64.0 +3.3
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Arabic: ؟ةروصلا يف صخشلا اھسرامی يتلا ةضایرلا يھ ام
[Arabic-English Trans: What sport is the person in the picture doing?]

Output: سنتلا بعلی ةروصلا يف صخشلا.
[Arabic-English Trans: The person in the picture is playing tennis.]

Turkish: Sporcu hangi etkinliği kazandı ve görsele göre kaç Grand Slam şampiyonluğu kazandı?
[Turkish-English Trans: What event did the athlete win and how many Grand Slam titles has the athlete won according to the image?]

Output: Sporcu, 2023 ABD Açık'ı kazandı ve görsele göre 24 Grand Slam şampiyonluğu kazandı.
[Turkish-English Trans: The athlete won the US Open 2023, and according to the image, he has won 24 Grand Slam titles.]

Portuguese: Descreva as emoções ou expressões capturadas no rosto do atleta na imagem. O que isso sugere sobre os sentimentos dele em relação à sua vitória? 
[Portuguese-English Trans: Describe the emotions or expressions captured in the athlete's face in the image. What does this suggest about their feelings regarding their victory?]

Output: O jogador de tênis, que está em pé e segurando uma raquete de tênis, parece estar expressando felicidade e orgulho em relação à sua vitória. Ele está sorrindo, o que 
sugere que ele está animado e feliz com o resultado de seu esforço. A imagem captura um momento de realização e conquista, com o jogador no centro do quadro, destacado 
por uma cor vibrante e uma fonte proeminente que diz "Campeão". No geral, a imagem transmite uma sensação de orgulho, realização e realização.
[Portuguese-English Trans: The tennis player, standing and holding a tennis racket, appears to be expressing happiness and pride about his victory. He is smiling, which 
suggests he is excited and pleased with the outcome of his effort. The image captures a moment of achievement and conquest, with the player at the center of the frame, 
highlighted by a vibrant color and a prominent font that says "Champion". Overall, the image conveys a sense of pride, accomplishment, and fulfillment.]

English: How are the overall colors and composition of the image?

Output: The image features a painting of a deer and a swan standing near a river. The deer is positioned on the right side of the 
painting, while the swan is on the left side. The river is surrounded by lush greenery, with many different types of flowers 
scattered throughout the scene. The painting has a vibrant and colorful composition, with various shades of green, blue, and 
white. The painting is done in a watercolor style, which adds to its artistic and artistic qualities.

Chinese:图中有哪些动物？
[Chinese-English Trans: What animals are present in the image?]

Output:这张图片中有两种动物：一只白天鹅在水中游泳，以及一只鹿站在岸边。
[Chinese-English Trans: The picture features two animals: a swan swimming in the water and a deer standing on the shore.]

Russian: Погода на изображении - это солнечный день. 
[Russian-English Trans: What is the weather shown in this picture?]

Output: Погода на этой картинке выглядит очень солнечной. Небо чистое, с голубым небом и белыми облаками, ярким 
солнечным светом, окружающий пейзаж яркий и полон жизни. Вся обстановка кажется очень спокойной и красивой, 
подходит для активного отдыха на свежем воздухе. 
[Russian-English Trans: The weather in this picture looks very sunny. The sky is clear, with blue sky and white clouds, bright 
sunlight, and the surrounding scenery is bright and full of life. The overall environment appears very peaceful and beautiful, 
suitable for outdoor activities.]

Figure 7: Multimodal conversation cases of PARROT in multiple languages.

This indicates the robustness and effectiveness of the proposed method in handling multilingual data,
making it a scalable solution for multilingual tasks.

4.4 VISUALIZATION OF MULTILINGUAL CONVERSATIONS

To enhance the intuitive understanding of the PARROT’s multilingual capability, we prepare a
comprehensive case study accompanied by illustrative visuals. For instance, as depicted in Figure 7,
our framework demonstrates remarkable multilingual capabilities. This underscores the PARROT’s
versatility in navigating different languages and presents its potential in bridging linguistic gaps
across diverse domains. Through careful analysis and visualization, we aim to provide a deeper
insight into the mechanism driving this capability, illustrating its practical implications and potential
applications in real-world scenarios. This visualization serves as a strong indicator of the PARROT’s
solid architecture and its exceptional ability to understand, process, and generate multiple languages
with remarkable efficiency. More multilingual conversation cases are shown in Appendix H.

5 CONCLUSION

This paper addresses the critical challenge of enhancing the multilingual capabilities of MLLMs. We
introduce PARROT, a novel method leveraging textual guidance to drive visual token alignment at
the language level, thus enabling the transition of English-biased visual embeddings into language-
specific ones using an MoE module. Extensive experiments conducted on a newly introduced Massive
Multilingual Multimodal Benchmark (MMMB) across six languages demonstrate the state-of-the-art
performance of PARROT compared to existing methods, particularly presenting remarkable improve-
ments in Turkish and Arabic. Furthermore, our model exhibits competitive results across a wide
range of diverse multimodal benchmarks, emphasizing its efficacy in addressing both multilingual
and multimodal challenges. PARROT not only advances the frontier of MLLMs but also underscores
the importance of equitable access to technological benefits across linguistic and cultural diversities.
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A MORE DETAILS OF TRAINING DATASETS

In this section, we analyze the multilingual data in LLaVA (Liu et al., 2023b). From Table 3 and
Figure 8, it is evident that during the pre-train stage, LLaVA solely utilizes multimodal image-text
pairs data for training, comprising 558K of English data. During the SFT stage, both multimodal
and text-only data are incorporated into the training process. Multilingual data appear only in the
text-only dataset. Apart from English, the most prominent non-English data is Chinese, amounting
to just 3.1K, constituting 0.25% of the total dataset. Therefore, it is evident that LLaVA’s datasets
are English-centric and imbalanced. The specific language and abbreviation are as follows: English
(en), Chinese (zh), Korean (ko), Spanish (es), French (fr), Japanese (ja), German (de), Portuguese
(pt), Traditional Chinese (zh-tw), Italian (it).

Table 3: The detailed information about LLaVA’s datasets.

(a) The language information in two stages.

Training Stage Type Total Size English Other Languages

Stage 1 (Pre-train) Multimodal 558K 558K -
Text-only - - -

Stage 2 (SFT) Multimodal 624K 558K -
Text-only 41K 31K 10K

(b) The top-10 multilingual information

Language en zh ko es fr ja de pt zh-tw it

Size 31K 3192 1219 1123 1049 551 435 422 305 234

Total Size

en zh ko es fr ja de pt zh-tw it

Figure 8: The pie chart of LLaVA’s multilingual data.

B RELATED WORK

Multimodal Large Language Models. The domain of MLLMs has witnessed significant advances,
particularly in the enhancement of visual and language processing. Current MLLMs are usually
a combination of visual encoders (Radford et al., 2021; Sun et al., 2023; Fang et al., 2023; Zhang
et al., 2022; Oquab et al., 2023; Zhai et al., 2023), LLMs, and fusion modules. Innovations like
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Flamingo (Alayrac et al., 2022) have advanced visual representation by integrating a Perceiver
Resampler with vision encoders. BLIP-2 (Li et al., 2023b) and InstructBLIP (Dai et al., 2023)
employ Q-Former to connect the frozen LLM and vision encoder. InternVL (Chen et al., 2023c)
trains huge ViT and QFormer to integrate visual modalities through a multi-stage training method.
MiniGPT4 (Zhu et al., 2023) leverages both a Q-Former and a linear projector to bridge the gap
between the vision module and LLM. Furthermore, LLaVA (Liu et al., 2023b) adopts a simple
MLP projector to promote the alignment between the LLM and vision encoder. mPLUG-Owl (Ye
et al., 2023) introduces an approach that begins to finetune the vision encoder and align visual
features, followed by tuning the LLM using LoRA (Hu et al., 2021). Qwen-VL (Bai et al., 2023b)
improves visual module resolution to 448, aiming to refine the model’s visual processing capabil-
ities. Fuyu-8B (Bavishi et al., 2023) directly projects image patches before integration with LLM.
MM1 (McKinzie et al., 2024) has conducted ablative studies on connector design choices, revealing
that the modality adapter type is less critical than the number of visual tokens and the resolution.
MiniGemini (Li et al., 2024c) utilizes high-resolution visual tokens and high-quality data to narrow
the performance gap with GPT-4 and Gemini. With the rapid advancements in open-source models,
proprietary models such as GPT-4V/4o (OpenAI, 2023b; 2024), Gemini (Team et al., 2023; Reid
et al., 2024), Qwen-VL-Plus/MAX (Bai et al., 2023b), and Claude3 (anthropic, 2024) have achieved
outstanding results in evaluations and practical applications. In this work, owing to the simplicity of
the LLaVA architecture, we adopt a framework similar to LLaVA to design our model.

Multilingual Multimodal Models. Recent years have witnessed rapid progress in the expansion of
multimodal models to include a wider variety of languages. M3P (Ni et al., 2021) leverages English
as a pivot and alternates between English-only vision-language pre-training and multilingual masked
language modeling. In contrast, UC2 (Zhou et al., 2021) translates English captions into various
languages and uses images as the anchor. mCLIP (Chen et al., 2023a) enhances the CLIP model by
aligning it with a multilingual text encoder through knowledge distillation. Thanks to the expansion of
the overall capabilities of large language models (AI, 2024; Bai et al., 2023a; Jiang et al., 2023; Young
et al., 2024), their multilingual capacities have significantly improved. Integrating multilingual LLMs
with visual abilities has increasingly become a research focus. In the domain of LLMs, PaLI (Chen
et al., 2022) develops a 17B multilingual language-image model that spans over 100 languages.
Ying-VLM (Li et al., 2023c) discovers that instruction tuning in English can extend its applicability
to other languages. Ziya-Visual (Lu et al., 2023) illustrates the translation of English image-text
datasets into Chinese, using in-context learning for instruction-response generation. VisCPM (Hu
et al., 2023) introduces a training paradigm that fine-tunes the MLLM in a quasi-zero-shot manner
based on a strong multilingual large language model. Despite these advancements, they are primarily
confined to two languages or rely on the massive translated corpus. On the other hand, there is no
suitable multilingual benchmark for MLLMs to evaluate the performance of multiple languages.
There are also some multilingual research studies in other domains, such as multilingual machine
translation (Zhao et al., 2024; Pires et al., 2023; Purason & Tättar, 2022; Zhang et al., 2021).

C TRAINING DETAILS

As shown in Table 4, we provide the training hyperparameters for PARROT. Throughout all stages
of training, we consistently train for one epoch, with a batch size of 256 for the first stage and 128
for the second stage. We maintain an image resolution of 336x336 for all two stages and enable the
gradient checkpoint mode for each training stage.

D EXTENDED EXPERIMENTS

In this section, we further provide more experiments and ablation studies to validate the generality
and capability of PARROT across various tasks. Additionally, we present more training details about
Figure 1 to offer a clearer understanding for readers.

D.1 BILINGUAL EVALUATION ON LLAVA-BENCH

VisCPM (Hu et al., 2023) extends the LLaVA-Bench dataset to the Chinese version for bilingual
evaluation. To comprehensively compare PARROT with other multilingual models, we conduct
experiments on this benchmark. Due to the deprecation of the GPT-4-0314 version by OpenAI, we
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Table 4: Training hyperparameters.

Config Stage 1 Stage 2

Experts - 6
MLP expert network 2 Linear layers with SiLU
Deepspeed Zero2 Zero3
Image resolution 336×336
Image encoder Clip-ViT-L/14-336
Feature select layer -2
Image projector 2 Linear layers with GeLU
Epoch 1
Optimizer AdamW
Learning rate 1e-3 2e-5
Learning rate scheduler Cosine
Weight decay 0.0
Text max length 2048
Batch size per GPU 16 8
GPU 16 × A100-80G
Precision Bf16
Gradient checkpoint True

Table 5: Details on the PARROT’s training data, derived from publicly available datasets and our in-house
multilingual data.

Training Stage Datasets Samples Total

Stage 1
LLaVA-1.5-pretrain (Liu et al., 2023b) 558K

1.2MLaion-Caption∗ (Schuhmann et al., 2022) 12K
CC12M-Caption∗ (Changpinyo et al., 2021) 645K

Stage 2

LLaVA-1.5-finetune (Liu et al., 2023b) 665K

793K

ShareGPT4V-zh∗ (Chen et al., 2023b) 71K
ShareGPT4V-pt∗ (Chen et al., 2023b) 14K
ShareGPT4V-ar∗ (Chen et al., 2023b) 12K
ShareGPT4V-tr∗ (Chen et al., 2023b) 17K
ShareGPT4V-ru∗ (Chen et al., 2023b) 14K

test PARROT in LLaVA-Bench following the version of GPT-4-1106-preview for comparison. As
shown in Table 6, PARROT not only demonstrates exceptional ability in the English version of this
benchmark but also presents competitive performance in the Chinese version.

Notably, as shown in Table 7, VisCPM uses 140M English data and 1M Chinese data to train the
model. In comparison, Qwen-VL-Chat uses 1.1B English data and 300M Chinese data, whereas
PARROT only utilizes approximately 2M data in total. Despite using less than 1% of the training
data, PARROT achieves remarkable performance in both the English and Chinese versions on LLaVA-
Bench. Owing to the architecture we proposed, significant improvement in the model’s multilingual
capability can be achieved with minimal data usage.
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Table 6: Experimental results on LLaVA Test Set accessed by GPT-4. Con: Conversation, DD: Detailed
Description, CR: Complex Reasoning, AVG: the average score of three tasks. The best/second best results
are marked in bold and underlined, respectively. The symbol ∗ denotes that the data are judged following the
version of GPT-4-1106-preview because the GPT-4-0314 version is deprecated by OpenAI.

Model LLM
Backbone

English Chinese

Con DD CR AVG Con DD CR AVG

English
Model

MiniGPT-4 Vicuna-13B 65.0 67.3 76.6 69.7 - - - -
InstructBLIP Vicuna-13B 81.9 68.0 91.2 80.5 - - - -

LLaVA Vicuna-13B 89.5 70.4 96.2 85.6 - - - -

En-Zh
Bilingual

Model

mPLUG-OWL BLOOMZ-7B 64.6 47.7 80.1 64.2 76.3 61.2 77.8 72.0
VisualGLM ChatGLM-6B 62.4 63.0 80.6 68.7 76.6 87.8 83.6 82.7

Qwen-VL-Chat Qwen-7B 82.4 76.9 91.9 83.8 82.3 93.4 89.5 88.2
VisCPM-Balance CPM-Bee-10B 75.5 64.7 91.3 77.3 85.4 81.4 96.6 88.0

Multilingual
Model PARROT∗ Qwen1.5-7B 82.5 71.0 89.3 81.1 82.1 88.6 92.3 87.7

Table 7: Comparison of vision encoders, LLMs, and training data in different models.

Model vision encoder LLM Training Data

mPLUG-Owl ViT-L/14 (0.3B) BLOOMZ-7B -
VisualGLM Q-Former (1.6B) ChatGLM-6B English: 300M; Chinese 30M
Qwen-VL-Chat ViT-bigG (1.9B) Qwen-7B English: 1.1B; Chinese: 300M
VisCPM Muffin (0.7B) CPM-Bee-10B English: 140M; Chinese: 1M
PARROT ViT-L/14 (0.3B) Qwen1.5-Chat-7B English: 1.8M; Chinese: 71K

Yes

Is this an apple?

Is this a pear?

No

The answer is correct.

The answer is wrong.

No

Yes

Figure 9: An example of circular evaluation strategy.

D.2 RADAR CHARTS ON MMBENCH AND MMMB

For a more intuitive demonstration of the multilingual capabilities of PARROT, we present radar charts
for the multilingual MMBench and MMMB benchmarks. As depicted in Figure 11a and Figure 11b,
our proposed method PARROTexhibits significantly better performance compared to other models.

D.3 MORE EXPERIMENTAL DETAILS ABOUT DIFFERENT BACKBONES

In this section, we provide detailed information to explain Figure 1. Firstly, to ensure a fair comparison
between the OpenAI-CLIP-based model and the Chinese-CLIP-based model, we train distinct models
using the same training data as LLaVA, as shown in Table 3a. The hyperparameters are listed in
Table 4 without the MoE hyperparameters. As depicted in Figure 1, the OpenAI-CLIP-based model
struggles to generate Chinese outputs when given Chinese prompts due to the English-centric training
data. In contrast, despite the extremely scarce amount of Chinese training data, the Chinese-CLIP-
based model naturally acquires zero-shot capability to understand, process, and generate Chinese texts.
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Furthermore, we compare both models on MMBench-CN and MMMB-zh to evaluate their Chinese
capability. As shown in Table 9, the performance of the Chinese-CLIP-based model is significantly
higher than that of the OpenAI-CLIP-based model. On the other hand, we empirically find that
different LLMs have a significant impact on performance. Qwen (Bai et al., 2023a) demonstrates
superior Chinese capability compared to Vicuna (Chiang et al., 2023), yet its English capability
remains competitive.

D.4 COMPARISON OF DIFFERENT VISION ENCODERS

We also compare the different vision encoders within the Parrot framework in Table 8. It shows that
the Chinese-CLIP-based model maintains comparable multilingual performance to the OpenAI-CLIP-
based one. This demonstrates that our framework can be compatible with different vision encoders
and achieve multilingual alignment through the MoE module.

Table 8: The comparison of various vision encoders within the PARROT framework.

Method LLM Vision Encoder MMMB MMBench
en zh pt ar tr ru en zh pt ar tr ru

LLaVA-1.5 Vicuna-v1.5-7B OpenAI-CLIP 67.07 58.83 59.76 43.50 46.43 59.06 65.37 58.33 59.02 36.16 43.90 56.95
LLaVA-1.5 Vicuna-v1.5-7B Chinese-CLIP 66.45 59.23 59.22 42.68 46.11 58.89 65.92 57.85 58.45 36.90 44.82 56.32
ShareGPT4V Vicuna-v1.5-7B OpenAI-CLIP 69.24 60.23 60.29 43.57 45.26 61.23 69.59 61.60 59.62 37.37 43.38 59.45
ShareGPT4V Vicuna-v1.5-7B Chinese-CLIP 68.65 60.85 59.49 44.33 44.90 61.88 70.28 61.91 58.83 37.00 42.55 58.97
Parrot Qwen1.5-7B OpenAI-CLIP 70.00 68.13 67.31 62.69 58.01 66.26 70.70 70.36 65.12 57.82 58.43 64.00
Parrot Qwen1.5-7B Chinese-CLIP 69.22 69.24 66.32 62.15 57.77 64.31 69.95 70.87 64.92 56.57 57.13 63.15

Table 9: The performance of different vision encoders and LLMs on MMBench and MMMB. MMB refers to
MMBench. “En/en” represents the English version, and “CN/zh” represents the Chinese version.

Method Vision encoder LLM MMB-EN MMB-CN MMMB-en MMMB-zh

LLaVA OpenAI-CLIP ViT-L/14 Vicuna 7B 65.4 58.3 67.1 58.8
LLaVA OpenAI-CLIP ViT-L/14 Qwen1.5-Chat 7B 68.8 66.4 68.2 62.4
LLaVA Chinese-CLIP ViT-L/14 Qwen1.5-Chat 7B 68.1 68.3 67.6 66.1
PARROT OpenAI-CLIP ViT-L/14 Qwen1.5-Chat 7B 70.7 70.4 70.0 68.1

D.5 ABLATION STUDY OF DIFFERENT MULTILINGUAL DATASETS

We conduct an ablation study using only the original LLaVA-1.5-finetune dataset and its translated
subsets (∼10K samples for each language) without including ShareGPT4V data in Stage 2. As shown
in Table 10, PARROT continues to enhance multilingual performance, confirming the robustness of
our framework.

Table 10: The ablation study of the subsets of ShareGPT4V and LLaVA-1.5-finetune.

Method Multilingual SFT Dataset MMMB MMBench
en zh pt ar tr ru en zh pt ar tr ru

Parrot LLaVA1.5 w/multilingual ShareGPT4V 70.00 68.13 67.31 62.69 58.01 66.26 70.70 70.36 65.12 57.82 58.43 64.00
Parrot LLaVA1.5 w/its multilingual subset 69.31 67.56 66.67 62.02 57.29 65.53 69.97 69.57 64.47 57.03 57.71 63.21

D.6 DATA SCALING AND MODEL SIZE SCALING

To further investigate the scaling law in multilingual settings, we have conducted experiments where
we progressively expanded the multilingual data (excluding Chinese and English) until it reached
a volume comparable to the amount of Chinese data (∼70K). The results, shown in the Table 11,
demonstrate that Parrot still satisfies the multilingual scaling law. For instance, the performance
on Portuguese improved by 3.0 points, and Arabic saw a gain of 5.2 points. As we increase
the multilingual data, the model’s performance on the MMMB benchmark continues to improve,
suggesting that our model can handle imbalanced multilingual data while still achieving effective
scaling and performance gains.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: The performance comparison on MMMB when using different sample sizes of each language.

Sample Size (each language) MMMB
en zh pt ar tr ru

10K 70.0 68.1 67.3 62.7 58.0 66.3
30K 70.1 68.0 67.6 64.1 59.9 66.7
50K 69.9 67.9 67.8 64.8 61.4 67.2
70K 70.3 68.4 68.3 65.7 63.2 67.4

Additionally, we extend Parrot’s LLM backbone from Qwen1.5-7B to Qwen1.5-32B, using the same
model design and configuration, and evaluate them on the MMMB dataset. As shown in Table 12, the
results indicate that Parrot continues to yield better performance even with a larger LLM backbone.
This finding validates the idea that the scaling law for model parameters still holds, and our design
remains effective as the model size increases. While we are currently limited to the Qwen1.5-32B
model, these results suggest that our approach can scale well with model size, and we believe similar
trends would be observed with even larger models, such as those with 30B parameters or beyond.

Table 12: The performance comparison on MMMB when using different model sizes of Qwen1.5.

Method MMMB
en zh pt ar tr ru

Parrot-7B 70.0 68.1 67.3 62.7 58.0 66.3
Parrot-14B 73.9 71.6 69.8 68.1 64.3 70.1
Parrot-32B 76.3 75.4 73.8 72.1 71.2 73.5

D.7 COMPARISON WITH LLAVA USING THE SAME DATA

To validate the effectiveness of our proposed approach, we conduct further experiments with an
ablation study. Specifically, we expand the baseline LLaVA method by incorporating the same
multilingual data used in Parrot. Both models are evaluated on the MMMB dataset, and the results are
presented in the Table 13. From the results, we observe that while LLaVA shows a slight improvement
with the addition of multilingual data, the increase in performance is limited. In contrast, our Parrot
model demonstrates a substantial improvement when multilingual data is included, significantly
outperforming LLaVA. This highlights that simply adding multilingual data is not sufficient to bridge
the multilingual gap, further emphasizing the effectiveness of our proposed design.

Table 13: We compare the baseline LLaVA with Parrot using the same multilingual training data.

Method MMMB
en zh pt ar tr ru

LLaVA w/o Multilingual data 67.1 58.8 59.8 43.5 46.4 59.1
LLaVA w/ Multilingual data 67.0 59.1 60.3 44.2 48.1 59.7

Parrot 70.0 68.1 67.3 62.7 58.0 66.3

D.8 COMPARISON WITH THE LATEST MODELS

Despite Qwen2-VL and LLaVA-OV being contemporary to our work, we compare to them using
the MMMB and multilingual MMBench dataset in Table 14. These models achieve impressive
performance as significantly benefiting from significant advancements in LLM backbones and scaling
of their datasets. To ensure a fair comparison, we also extend Parrot on top of the Qwen2-7B
backbone.
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Interestingly, despite Qwen2-VL and LLaVA-OV being trained with over 10x the amount of data
used by our model, our Parrot still outperforms them on the multilingual benchmark. This result
further demonstrates the effectiveness and robustness of our approach.

Table 14: We extend the Parrot with Qwen2-7B and compare it with the latest models.

Method LLM MMMB MMBench
en zh pt ar tr ru en zh pt ar tr ru

Qwen2-VL Qwen2-7B 80.5 80.2 78.1 74.0 71.7 79.3 79.6 79.6 75.9 71.7 70.9 76.0
LLaVA-OV Qwen2-7B 79.0 78.2 75.9 73.3 67.8 76.4 77.1 76.6 73.2 66.9 65.5 71.3

Parrot Qwen1.5-7B 70.0 68.1 67.3 62.7 58.0 66.3 70.7 70.4 65.1 57.8 58.4 64.0
Parrot Qwen2-7B 80.1 80.0 79.6 76.5 75.0 79.9 78.7 78.4 76.3 75.2 74.1 77.8

E FURTHER DESCRIPTION

E.1 MOE TRAINING STRATEGY

During the first pre-training stage, the MoE module is initialized with random parameters but is not
activated or included in the training process. Instead, we focus exclusively on training the projector.
This avoids the issue of training a good projector under a randomly initialized MoE. In detail:

1) Pre-training Stage: In this stage, the MoE module is bypassed entirely, meaning the image tokens
do not pass through the MoE. The primary goal of this stage is to train the projector using a large
number of image-text pairs. This enables the projector to align image tokens and textual tokens
effectively without interference from the untrained MoE module.

2) SFT Stage: Since the SFT stage requires the participation of MoE modules, we randomly initialize
the parameters of the MoE components prior to the SFT phase. Once the projector has been trained
and achieves robust alignment capabilities in the pre-training stage, we introduce multilingual training
data and activate the MoE parameters. At this stage, the MoE is optimized with textual guidance,
which drives the alignment of visual tokens while leveraging the well-trained projector. The prior
alignment achieved in the pre-training stage allows the MoE to optimize efficiently during this phase.

We present the entire training process of PARROT in the form of pseudocode, as shown in Algorithm 1.
It is clear from the algorithm that during the pre-training phase, only the projector is trained. Before
the start of the SFT phase, the MoE modules are randomly initialized and incorporated into the
training process during the SFT phase.

Algorithm 1 PARROT for MLLM
Input: Pre-training datasets: D1, SFT datasets: D2;
1: Construct the training data’s format like LLaVA;
2: Activate the parameters of the projector and freeze others;
3: for each data in D1 do ▷ Pre-training stage
4: Optimize the projector;
5: end for
6: Randomly initialize the parameters of MoE.
7: Activate the parameters of the projector, LLM, and MoE;
8: for each data in D2 do ▷ SFT stage
9: Select the multilingual experts by the textual guidance;

10: Optimize the projector, LLM, and MoE;
11: end for

E.2 ANALYSIS OF THE TRANSLATION-BASED BASELINE

There is a naive baseline where we first translate the question into English and then translate the
English answer back to the target language. On the one hand, our experimental setting follows recent
work in multilingual and multimodal large language models (Hu et al., 2023; Zhang et al., 2024a;
Hinck et al., 2024), where such a naive baseline has not been commonly considered. While the
translation-based approach could be a straightforward alternative, it faces some significant challenges.
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First, it is highly susceptible to translation noise, particularly issues related to polysemy and meaning
ambiguity between languages. Moreover, our benchmark includes a substantial number of cultural-
specific questions, which require deep cultural context knowledge that translation alone cannot
effectively capture. In practical use, adding an additional translation step would also introduce extra
overhead, increasing both the time and computational cost.

Despite these challenges, we acknowledge the importance of evaluating this baseline and conduct-
ing experiments to assess the performance of this translation-based baseline by using the Google
Translation API. As shown in the Table 15, the results reveal a "seesaw effect"—while the naive
baseline shows some improvements in certain languages, such as Chinese, it leads to performance
degradation in others, such as Russian and Portuguese. This highlights the difficulty of addressing
multilingualism and multimodal tasks solely through translation.

Table 15: We compare the translation-based baseline with our method. While the naive baseline shows some
improvements in certain languages, such as Chinese, it leads to performance degradation in others, such as
Russian and Portuguese.

Method MMMB
en zh pt ar tr ru

LLaVA 67.1 58.8 59.8 43.5 46.4 59.1
LLaVA w/ translation 67.1 60.7 58.6 47.3 48.6 58.9

Parrot 70.0 68.1 67.3 62.7 58.0 66.3

E.3 CONSTRUCTION OF THE IN-HOUSE DATASET

Regarding the construction of the dataset, we sample images from the LAION (Schuhmann et al.,
2022) and CC12M (Changpinyo et al., 2021) datasets, which encompass a wide variety of categories,
including nature, lifestyle, humanities, architecture, cartoons, and abstract art. For each image, we use
the Gemini-Pro or GPT-4V API with a unified prompt to generate image descriptions. This prompt
ensures that the API generates concise and clear visual information, performs OCR if necessary, and
avoids embellishments or subjective interpretations.

Additionally, we generate visual instruction samples from images in the CC12M dataset in a manner
similar to ALLaVA (Chen et al., 2024a). We employ Gemini-Pro and GPT-4V to conduct self-
questioning and answering tasks, which result in diverse questions and high-quality answers, enriching
the dataset further.

In terms of the manual calibration process, our approach indeed follows the same methodology as
the MMMB dataset construction. Given that GPT-4 may not perform optimally for certain minor
languages (e.g., Arabic and Russian), we introduce a two-stage calibration process to improve
performance. This process includes GPT-4 translation followed by manual calibration, as depicted in
Figure 3, to address any inaccuracies or biases in the automated generation.

F BROADER IMPACT AND LIMITATIONS

Broader Impact. PARROT leveraging MoE to enhance multilingual alignment presents a positive
social impact by promoting linguistic diversity and inclusivity. To address the challenge of the
imbalanced language data in SFT datasets and improve non-English visual tokens alignment, this
approach contributes to breaking language barriers and facilitating cross-cultural communication,
thereby fostering understanding and collaboration across diverse linguistic communities. Addition-
ally, the creation of the Massive Multilingual Multimodal Benchmark (MMMB) fills a crucial gap
in evaluating multilingual capabilities, enabling researchers to assess and improve upon models’
performance across different languages and cultures. However, it’s crucial to acknowledge potential
negative social impacts, such as the risk of hallucination. This could potentially result in the model
generating misleading or incorrect information, which is a common challenge observed in MLLMs.

Limitations. Despite advancements, MLLMs may still exhibit limitations in accurately understanding
and responding to complex language-specific contexts, leading to misinformation or misinterpretation
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of multilingual inputs. On the other hand, due to the visual component of PARROT being based on
CLIP, there are inherent limitations in its ability to process high-resolution images, resulting in the
inability to recognize extremely detailed content in some images. Hence, enhancing PARROT’s ability
to handle high-resolution processing will be part of future work.

G FUTURE WORK OF MULTILINGUAL BENCHMARK

In future work, we plan to incorporate more culture-related samples in various languages. This will
enhance the representation of diverse cultural contexts and ensure that our benchmark accurately
reflects the complexities of multilingual interactions. Additionally, we will focus on developing
tasks that not only assess linguistic capabilities but also evaluate cultural nuances, which are crucial
for effective communication in multilingual settings. By doing so, we aim to provide a more
comprehensive evaluation of multilingual models and their performance across different cultural
backgrounds.

Chinese

According to this comic, which country has the 
most direct way of expressing rejection?
A. France
B. American
C. Chinese
D. All the same

Por favor, com base nesta imagem, selecione a 
descrição que melhor se encaixa.
A. Jacaré entre peixes.
B. Predador em calma.
C. em rio tem piranha, jacaré nada de costas
D. Convivência aquática insólita.

图中的标志对应着一个中文汉字，该中
文汉字是中国某一省会，请问该标志所
对应的省份为：
A. 湖南
B. 武汉
C. 浙江
D. 上海

这是中国一个运动赛事的会徽，图中舞
动的人型与哪个汉字最为形似？
A. 湘
B. 粤
C. 京
D. 齐

Chinese

English Portuguese

Chinese

这幅漫画所对应的成语是：
A. 掩耳盗铃
B. 鸡鸣狗盗
C. 月黑风高
D. 蹑手蹑脚

What is the name of the character in the middle of 
the picture？
A. Hulk
B. Black Widow
C. Captain America
D. Iron Man

English

Figure 10: Several culture-related samples in different languages.

H MORE VISUALIZATION RESULTS

In this section, we include additional visualization results between users’ questions and PARROT’s
responses using multiple languages. These pictures are selected from LLaVA (Liu et al., 2023b) and
CuMo (Li et al., 2024b). As depicted in Figures Figures 12 to 17, it is evident that PARROTpossesses
superior multilingual capabilities for understanding, processing, and generating multilingual texts. In
certain specific cases, PARROT may also experience hallucinations. As depicted in the upper case of
Figure 12, it misidentifies Xiaomi SU7 as a Porsche Taycan.
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Figure 11: The radar charts for the multilingual MMBench and MMMB benchmarks. It demonstrates the
impressive multilingual capability of PARROT compared to similar size-based models.

Table 16: Ablation study on monolingual fine-tuning dataset in MMMB benchmark. The table shows an
effect of performance on six languages when using fine-tuning data from different languages. Models with 7B
parameters are used for this ablation.

Dataset English Chinese Portuguese Arabic Turkish Russian
LLaVA-1.5-finetune 72.69 67.60 65.61 57.72 48.30 63.80
+ zh 71k 69.18 69.06 63.92 58.13 48.95 63.63
+ pt 14k 69.94 68.83 65.67 58.65 51.11 63.04
+ ar 12k 70.47 68.36 64.39 60.79 51.11 63.16
+ tr 17k 70.82 69.01 64.85 60.76 60.70 64.39
+ ru 14k 69.59 68.07 64.27 60.35 53.92 64.15

+ zh pt ar tr ru 70.00 68.13 67.31 62.69 58.01 66.26
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English: What car is it in this image?

Output: The turquoise blue car is Porsche Taycan.

English: What animals are in this image?

Output: A cat and a dog are in the image.

Figure 12: More visualization results between the user and PARROT using English prompts. We highlight the
hallucinations from the responses of PARROT.

Chinese:你知道这幅画是谁画的吗?
[Chinese-English Trans: Do you know who drew this painting]

Output:莱昂纳多·达芬奇
[Chinese-English Trans: Leonardo da Vinci]

Chinese:请描述这幅画的主要内容
[Chinese-English Trans: Please describe the main content of this painting.]

Output:这幅画是一幅肖像画，描绘了一个年轻女子的头部和肩膀。她穿着一件黑色连衣裙，上
面有金色的装饰。她的头发是深棕色的，被梳成一个发髻。她的脸上有褐色的斑点，眼睛是棕
色的。她正在微笑，表明她心情愉快。这幅画的风格是肖像画，它以描绘人物的头部和肩膀为
特征。肖像画通常使用逼真的技巧，以捕捉人物的特征和表情。这幅画中人物的服装和环境暗
示着它可能描绘的是文艺复兴时期的艺术家。
[Chinese-English Trans: This painting is a portrait, depicting the head and shoulders of a young woman. 
She is dressed in a black dress with gold embellishments. Her hair is dark brown and styled into a bun. 
There are brown spots on her face, and her eyes are brown. She is smiling, indicating she is in a good 
mood. The style of the painting is portraiture, characterized by the depiction of the subject's head and 
shoulders. Portraits often use realistic techniques to capture the features and expressions of the person. 
The attire and setting of the figure in this painting suggest it may be depicting an artist from the 
Renaissance period.]

Figure 13: More visualization results between the user and PARROT using Chinese prompts.
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Portuguese: Qual é o final deste filme?
[Portuguese-English Trans: What's the ending of this movie?]

Output: O filme "Titanic" é um romance histórico de 1997 que apresenta uma narrativa fictícia de uma 
mulher chamada Rose e um homem chamado Jack. A narrativa se passa durante o final do século XIX, 
quando o navio "Titanic" está se preparando para sua viagem de luxo para Nova York. Jack e Rose se 
enamoram e se casam, mas a viagem é marcada por um desastre inesperado. 
[Portuguese-English Trans: The movie "Titanic" is a 1997 historical romance that features a fictional 
narrative about a woman named Rose and a man named Jack. The story is set during the late 19th century, 
as the ship "Titanic" is preparing for its luxury voyage to New York. Jack and Rose fall in love and get 
married, but the journey is marked by an unexpected disaster.]

Figure 14: More visualization results between the user and PARROT using Portuguese prompts.

Arabic:  ؟انھ يترایز دنع اھنم ارًذح نوكأ نأ بجی يتلا ءایشلأا ام
[Arabic-English Trans: What's the ending of this movie?]

Output: قئاوع يأ وأ ،ةیئاملا ءایشلأا وأ ،ةللبملا حطسلأا لثم ،ةلمتحم رطاخم يأ نم ارًذح نوكی نأ بجی ،عقوملا اذھ ةرایز ءانثأ 
 لثم ،ةیئیبلا لماوعلاب ملع ىلع اونوكی نأ راوزلا ىلع بجی ،كلذ ىلإ ةفاضلإاب .ةیئاملا ءایشلأا وأ روخصلا وأ روخصلا لثم ،ةلمتحم

 .ةیضرمو ةنمآ ةبرجت نامضل ،ةیئاملا فورظلا وأ ،ةرارحلا تاجرد وأ ،سقطلا تاریغت
[Arabic-English Trans: During the visit to this site, one should be cautious of any potential hazards, such 
as wet surfaces, or water-related objects, or any potential obstacles, like rocks or boulders or aquatic 
objects. Additionally, visitors should be aware of environmental factors, such as changes in weather, 
temperature, or water conditions, to ensure a safe and satisfying experience.]

Figure 15: More visualization results between the user and PARROT using Arabic prompts.
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Turkish: Bu malzemelerle hangi yemekleri yapabilirim?
[Turkish-English Trans: What are the meals that I can cook with these?]

Output: Buzdolabındaki çeşitli malzemelerle, çilekli bir salata, havuçlu bir sandviç, meyveli bir yemek 
ve süt ve yoğurtla bir yemek gibi çeşitli yemekler yapılabilir. Buzdolabı, havuç, çilek ve yoğurt gibi 
diğer gıda maddelerini de içerir; bunlar çeşitli yemekler yaratmak için kullanılabilir. Birden fazla 
yiyecek maddesi ve kapların olması, buzdolabının iyi stoklandığını ve çeşitli yemek seçeneklerine 
olanak tanıdığını gösterir.
[Turkish-English Trans: With the various items in the refrigerator, one can cook a variety of meals, such 
as a salad with strawberries, a sandwich with carrots, a meal with berries, and a meal with milk and 
yogurt. The refrigerator also contains other food items, such as carrots, strawberries, and yogurt, which 
can be used to create a diverse range of dishes. The presence of multiple food items and containers 
suggests that the refrigerator is well-stocked, allowing for a variety of meal options.]

Figure 16: More visualization results between the user and PARROT using Turkish prompts.

Russian: Пожалуйста, помогите мне представить это место на 
фотографии.
[Russian-English Trans: Please help me introduce the place in this 
picture.]

Output: Место, изображенное на картинке, - это собор Василия Блаженного, официально 
известный как собор Покрова Пресвятой Богородицы на рву. Это знаковое строение находится в 
Москве, Россия, на Красной площади.
[Russian-English Trans: The place depicted in the picture is the Saint Basil's Cathedral, officially known 
as the Cathedral of the Intercession of the Most Holy Theotokos on the Moat. This iconic structure is 
located in Moscow, Russia, on Red Square. ]

Figure 17: More visualization results between the user and PARROT using Russian prompts.
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