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Enhanced Experts with Uncertainty-Aware Routing for
Multimodal Sentiment Analysis

Anonymous Author(s)

ABSTRACT
Multimodal sentiment analysis, which has garnered widespread
attention in recent years, aims to predict human emotional states
using multimodal data. Previous studies have primarily focused on
enhancing multimodal fusion and integrating information across
different modalities, while overlooking the impact of noisy data
on the internal features of each single modality. In this paper, we
propose the Enhanced experts with Uncertainty-Aware Routing
(EUAR) method to address the influence of noisy data on multi-
modal sentiment analysis by capturing uncertainty and dynami-
cally altering the network. Specifically, we introduce the Mixture
of Experts approach into multimodal sentiment analysis for the
first time, leveraging its properties under conditional computation
to dynamically alter the network in response to different types of
noisy data. Particularly, we refine the experts within the MoE frame-
work to capture uncertainty in the data and extract clearer features.
Additionally, a novel routing mechanism is introduced. Through
our proposed U-loss, which utilizes the quantified uncertainty by
experts, the network learns to route different samples to experts
with lower uncertainty for processing, thus obtaining clearer, noise-
free features. Experimental results demonstrate that our method
achieves state-of-the-art performance on three widely used multi-
modal sentiment analysis datasets. Moreover, experiments on noisy
datasets show that our approach outperforms existing methods in
handling noisy data. Our anonymous implementation code can be
available at https://anonymous.4open.science/r/EUAR-7BF6.

CCS CONCEPTS
• Information systems → Sentiment analysis; • Computing
methodologies→ Artificial intelligence.

KEYWORDS
Multimodal Sentiment Analysis, Uncertainty Learning, Mixture of
Experts

1 INTRODUCTION
In today’s digital era, the collective influence of multiple modali-
ties has garnered widespread attention, with multimodal learning
emerging as one of the current research hotspots. Among these,
Multimodal Sentiment Analysis (MSA), as a core task in multimodal
learning, has also received significant interest from researchers.
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Figure 1: An illustrative example of the two types of noise
in MSA task: modal-wise noise and sample-wise noise. The
former may occur due to the malfunction of perceptive de-
vices and result in corrupted classification results. Mean-
while, the latter exists in the samples such as blurred images,
ambiguous text, and so on, which produce low quality data
and disrupt model’s prediction tremendously.

Most existing methods [1–4] approach this task from the perspec-
tive of multimodal fusion, addressing the interaction of information
across modalities at different levels such as early [5], intermediate
[6, 7], and late fusion [8], on raw data, feature, and decision levels
respectively. Their efforts primarily focus on resolving information
interaction among modalities, and these works have extensively
demonstrated the effectiveness of fusion in the MSA task.

However, prevalent approaches to multimodal sentiment anal-
ysis exhibit a notable limitation: they tend to overly prioritize in-
termodal information interaction, often neglecting the presence of
noise within individual modalities and the diverse degrees of noise
across different samples.We comprehend these two types of noise
as modal-wise and sample-wise. Put simply, when confronted with
noisy data, existing networks inadequately address this challenge.
The processing of multimodal data inevitably entails encountering
noise scenarios such as modality missing, image blurriness, and text
ambiguity. As depicted in Figure 1, scenarios such as audio inter-
ruptions, image distortions, and text ambiguities lead to a scenario
where samples with ground truth as positive are misclassified by
most networks as neutral or even negative. These noise instances
can result in catastrophic consequences for network performance.

Recently, some efforts [7, 9–11] have begun to address this issue
by contributing solutions to modalities’ noise scenarios like miss-
ing and blurriness. For instance, a recent work [9] quantifies the
uncertainty level of the model regarding different modality data
noise and incorporates uncertainty-weighted fusion. In [7], Wang
et al. work reconstructs data samples using multimodal flows to
address modality missing scenarios. Although these methods have

https://anonymous.4open.science/r/EUAR-7BF6
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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somewhat mitigated the impact of noise on networks, their perfor-
mance still fall short when facing samples suffering from varying
degrees of noise.

Therefore, based on these challenges, we pose two questions: (1)
How to quantify noise in samples to obtain clearer features? Inspired
by [12], we map different sample instances to a high-dimensional
Gaussian distribution space and utilize sample variance to quantify
inherent uncertainty. (2) How to dynamically adapt our network
according to different noise scenarios? We introduce a Mixture of
Experts (MoE) and utilize conditional computation to dynamically
alter our network based on the noise scenario of different samples.
Based on these considerations, we propose a novel MSA model in
this paper, termed Enhanced experts with Uncertainty-Aware Routing
(EUAR), addressing the shortcomings of previous works.

Specifically, our work can be comprised of the following com-
ponents: (1) Mapping samples to multimensional Gaussian distri-
butions using different experts in EUAR, to quantify uncertainty
using variance, and generate noise-free features using means. (2)
Introducing the MoE structure to dynamically select different ex-
perts based on different samples, dynamically altering the network
structure according to the scenario of different samples. (3) Training
on basis of uncertainty-based dynamic routing algorithms, which
enable the model to select experts with more confidence for specific
samples to handle data.

Overall, our contributions can be summarized as follows:
• To our best knowledge, we are the first to introduce the
MoE structure into multimodal sentiment analysis, dynami-
cally altering the network to address noise within modalities
and varying degrees of noise across different samples, thus
complementing the shortcomings of previous works.

• We devise a novel routing algorithm to enhance the experts,
enabling the network to quantify uncertainty regarding noise
and utilize this uncertainty to guide the routing algorithm in
selecting experts with more confidence to process samples.

• We conduct extensive experiments on three widely used mul-
timodal sentiment analysis datasets, achieving state-of-the-
art performance and demonstrating superior performance
under noise conditions compared to existing methods.

2 RELATEDWORKS
2.1 Multimodal Sentiment Analysis
Previous research aimed to find superior multimodal fusion meth-
ods to comprehensively integrate multimodal information for MSA
task. These methods mainly focus on early fusion, feature fusion,
late fusion, etc. For instance, graph fusion [13] based on feature
fusion applies graph learning to integrate features, promoting fu-
sion through constructing different nodes and integrating multi-
modal information. [9] employed a late fusion approach, merging
decision levels by acquiring different weight proportions. These
methods have achieved notable success in multimodal sentiment
analysis. However, there are still some unsolved problems: both
in video datasets and text-image datasets, the varying quality of
video frames, images, and text poses challenges for these traditional
methods. When encountering situations with low video quality,
blurry images, and ambiguous text, the performance of these meth-
ods significantly diminishes, making it challenging to accurately

identify the sentiment represented in the data. Recently, some work
[14, 15] theoretically confirmed that noise in the data can bottle-
neck the model’s performance. To address this issue, we propose
the EUAR method, dynamically altering the network to effectively
alleviate the bottleneck caused by data noise,i.e., modal-wise and
sample-wise noise in sentiment analysis.

2.2 Uncertainty in Deep Learning
In general, uncertainty in deep learning can be categorized into epis-
temic uncertainty and aleatoric uncertainty. The former represents
the uncertainty inherent in the neural network itself, indicating the
confidence level in its predictions. The latter refers to the inherent
noise present in the data, such as image blurriness, text ambigu-
ity, or missing modalities, which pose significant challenges to the
model’s predictions. In recent years,some efforts have been made
to address uncertainty in conventional tasks like face recognition
[12],image classification [16] and semantic segmentation [17]. It
is worth noting that such uncertainty is also prevalent in multi-
modal sentiment analysis which impose negative impacts on final
decisions. Due to the need for integrating multimodal data, if one
modality is corrupted by noise, the overall multimodal features
are correspondingly viciously affected. Recently, some research
[7, 9, 10] has focused on addressing uncertainty in multimodal
learning. However, these efforts primarily concentrate on integrat-
ing deterministic information across different modalities without
considering the uncertainty within individual modalities. There-
fore, we develop this work to fill this gap, aiming to overcome the
information bottleneck caused by data noise in the MSA task.

2.3 Mixture of Experts
Mixture of Experts, a technique for expanding model parameters,
has attached widespread attention in recent years alongside the
rise of large models. It has been extensively explored in the fields of
computer vision [18–20] and natural language processing [21–23].
MoE employs a learned gating mechanism to selectively activate
different experts, adapting the network dynamically by activating
k experts tailored to handle specific inputs. This dynamically alters
the network without increasing additional computational overhead,
thereby expanding the model’s capacity. However, current research
[24–26] has primarily focused on utilizing MoE to augment model
parameters, neglecting the superiority of dynamic networks them-
selves in the context of conditional computation. Conditional com-
putation [19, 22] selectively activates relevant parts of the model
based on input-dependent factors, dividing the model into smaller,
specialized sub-models. Different experts exhibit targeted effects
for specific inputs. Therefore, we introduce MoE for the first time
into the task of multimodal sentiment analysis, enhancing MoE’s
experts and designing an uncertainty-guided gating mechanism.
This enables experts to capture uncertainty and dynamically selects
corresponding experts based on the varying levels of noise in dif-
ferent inputs, addressing challenges posed by noise in multimodal
sentiment analysis.

3 PROPOSED METHODS
Our proposed EUAR method is a multimodal sentiment analysis
framework that dynamically adapts its network structure based on
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Figure 2: An illustration of our proposed EUAR method. It encompasses the MoE framework we introduced, along with a
comprehensive delineation of the expert components.

different inputs. Our task is to predict the corresponding sentiment
intensity values using given video clips or image-text pairs. Taking
image-text pairs as an example, in one input sample, there are two
different modal data:textual, and visual.

As shown in Figure 2, we first perform feature extraction in a
specific manner and then use the extracted features in our proposed
EUAR to predict the corresponding sentiment intensity labels.

3.1 Feature Extraction
To align with prior research [1, 9] for fair comparison, we employed
FACET, COVAREP, and BERT as feature extractors for the visual,
audio, and text modalities, respectively, on the tri-modal dataset.
For the bi-modal dataset, ResNet-152 and BERT are utilized as fea-
ture extractors for the visual and text modalities, respectively. The
following narrative in this paper will be based on the tri-modal
dataset. Given video clips, we feed the visual(𝑣), audio(𝑎), and
text(𝑙) modalities into their respective feature extractors to ob-
tain samples 𝑋𝐵×𝐷

𝑚 ,𝑚 ∈ {𝑣, 𝑎, 𝑙} required for this task, where 𝐵
represents batch size and 𝐷 represents feature dimensions. The ob-
jective is to integrate the features 𝑣 , 𝑎, and 𝑙 , and predict continuous
sentiment intensity values 𝑦 ∈ 𝑅.

3.2 Enhanced Experts
In MoE technique, experts refer to a group of sub-models or neural
networks, each responsible for processing different aspects or sub-
spaces of the input data. These experts can be seen as "specialists"
focusing on different tasks or data distributions. In previous works,
experts were often defined as multi-layer perceptrons. Inspired by
[12], we enhanced the experts to capture uncertainty when dealing
with samples influenced by noise to varying degrees. After feature

extraction, we obtain multimodal features 𝑋𝑚
𝑖
,𝑚 ∈ {𝑣, 𝑎, 𝑙},where i

represents the instance. We map the features of each modality to
a diagonal multivariate normal. Specifically, we define the repre-
sentation 𝑧𝑚

𝑖
of each sample 𝑥𝑚

𝑖
in the latent space as a Gaussian

distribution,which can be represented as:

𝑝 (𝑧𝑚𝑖 |𝑥𝑚𝑖 ) ∼ 𝑁 (𝜇𝑚𝑖 , 𝜎
𝑚2
𝑖 𝐼 ), (1)

𝜇𝑚𝑖 = 𝑓𝜃𝑚1
, 𝜎𝑚𝑖 = 𝑓𝜃𝑚2

, (2)
where𝑚 represents different modalities, and 𝜃 represents the param-
eters in the neural network. For the parameters 𝜇 and𝜎 of the Gauss-
ian distribution, we employ a neural network to predict, where 𝑓1
and 𝑓2 respectively denote one fully connected layer, with non-
shared weights. The feature representation of each modal sample is
no longer a fixed value, but sampled from the distribution. Here, 𝜇𝑚

𝑖
represents the features closer to the true representation under noise-
free conditions, while 𝜎𝑚

𝑖
represents the aleatoric uncertainty of the

modality data. However, the gradients cannot be back-propagated
after sampling, thus we employ the re-parameterization trick:

𝑧𝑚𝑖 = 𝜇𝑚𝑖 + 𝜖𝜎𝑚𝑖 , 𝜖 ∼ 𝑁 (0, 𝐼 ). (3)

Here, Eq. (3) can be interpreted as stable sample representation
𝜇𝑚
𝑖

being perturbed by noise 𝜎𝑚
𝑖

to obtain𝑧𝑚
𝑖
. During training, the

loss function of the ultimate task will mitigate the impact of this
perturbation, leading to 𝜎𝑚

𝑖
being learned to be very small. This

results in 𝑧𝑚
𝑖

being almost identical to 𝜇𝑚
𝑖
, thus losing its ability to

quantify uncertainty. Therefore, we adopt a prior method [12] and
introduce a 𝐾𝐿 divergence regularization term:

𝐿𝑚
𝑘𝑙

= 𝐾𝐿[𝑁 (𝑧𝑚𝑖 |𝜇𝑚𝑖 , 𝜎
𝑚2
𝑖 ) | |𝑁 (𝜖 |0, 𝐼 )]

= −1
2
(1 + 𝑙𝑜𝑔𝜎𝑚2

𝑖 − 𝜇𝑚2
𝑖 − 𝜎𝑚2

𝑖 ) .
(4)
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We constrain 𝑁 (𝜇𝑚
𝑖
, 𝜎𝑚2

𝑖
) to be close to 𝑁 (0, 𝐼 ) so that 𝜎𝑚2

𝑖
can

accurately quantify the magnitude of uncertainty.

3.3 Adaptive MoE Architecture
In the preceding section, we defined the concept of an "expert" and
endowed it with the capability to capture uncertainty, allowing us
to quantify the magnitude of uncertainty in noisy data based on
the value of 𝜎2. Next, we will integrate it into the MoE framework.
The MoE consists of two main components: the Expert and the Gate.
The expert is responsible for processing each sample effectively,
while the Gate determines which expert is best suited to handle a
particular sample. We denote these two components as 𝐸 and 𝐺 ,
respectively. Given the feature 𝑥𝑚

𝑖
as input, and the gate selects the

top k best experts, preserving the corresponding processing results
𝐸 for further steps. The algorithm for routing by the gate can be
expressed as:

𝐺 (𝑥𝑚𝑖 ) = 𝑇𝑂𝑃𝑘 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑥𝑚𝑖 ))), (5)

where the output dimension of the Linear layer is equal to the
number of experts. The 𝑇𝑂𝑃𝑘 operation involves setting all values
except the top k values to zero. We select the top k experts corre-
sponding to the highest 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 output scores, and use their scores
as weights for the expert output results. When the total number of
experts is 𝑁 , this process can be formalized as:

ℎ𝑚𝑖 =

𝑁∑
𝑗

𝐺𝑚
𝑗 (𝑥𝑚𝑖 )𝐸𝑚𝑗 (𝑥𝑚𝑖 ) . (6)

However, during training, routing algorithms often tend to favor
a few specific experts, rendering the remaining experts ineffective.
This leads to the degradation of the entire framework into a static
network, unable to dynamically adapt to different noise. To tackle
this issue, we adopt a similar approach as in the Switch Transformer
[23], incorporating the following auxiliary loss:

𝐿𝑚𝑎𝑢𝑥 =
1
𝑁

¤∑𝑁

𝑗
𝑅𝑚𝑗 𝑃

𝑚
𝑗 , (7)

where 𝑅𝑚
𝑗
represents the proportion of samples allocated to the

expert 𝑗 ,

𝑅𝑚𝑗 =
1
𝐵

∑
𝑥 ∈𝐵

1{𝑎𝑟𝑔𝑚𝑎𝑥𝐺𝑚 (𝑥𝑚) = 𝑗}. (8)

Moreover, 𝐺𝑚
𝑗
represents the proportion of weights allocated by

the router to expert 𝑗 ,and it is defined as:

𝑃𝑚𝑗 =
1
𝐵

∑
𝑥 ∈𝐵

𝐺𝑚
𝑗 (𝑥𝑚) . (9)

Through this regularization constraint, we enforce a similar number
of samples allocated to each expert during training, and ensure that
𝐺𝑚 yields weights of similar magnitudes for each expert.

3.4 Uncertainty-Aware Routing
So far, we have obtained a dynamic network capable of captur-
ing uncertainty. Next, we will empower the Gate the ability to
choose experts based on uncertainty. Specifically, we use the mag-
nitude of the 𝜎𝑚2

𝑖
value to quantify the uncertainty in noisy data. A

larger 𝜎𝑚2
𝑖

value indicates greater uncertainty, while a smaller 𝜎𝑚2
𝑖

indicates lesser uncertainty. During a forward pass, each expert

generates a 𝜎𝑚
𝑖

to express its uncertainty in processing the data.
We aim for the Gate to select experts with lower uncertainty to
handle the corresponding data. Therefore, we apply the following
constraint called U-Loss:

𝐿𝑚𝑢 =
1
𝑁

𝑁∑
𝑗

𝜎𝑚2
𝑗 𝐺 𝑗 (𝑥𝑚). (10)

With this constraint, during training, as the value of 𝜎𝑚2
𝑗

increases,
the Gate assigns a smaller weight𝐺 𝑗 to the corresponding expert.
Thus, when an expert’s uncertainty is higher, its probability of
being selected decreases.

Through the aforementioned process, we obtain clear features
ℎ𝑚
𝑖
for each single modality. Combine features from different modal-

ities by concatenating or adding them to create a joint feature ℎ̂,
which can be utilized for downstream tasks. We employ a fully
connected layer to predict the final result 𝑦and use Mean Squared
Error loss as the loss function for this regression task,

𝐿𝑡𝑎𝑠𝑘 =
1
𝑛

𝑛∑
𝑖

(𝑦 − 𝑦)2, (11)

where 𝑛 represents the number of samples. Finally, we utilize 𝐿𝑡𝑜𝑡𝑎𝑙
as the overall loss function,

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑡𝑎𝑠𝑘 + 𝛼
𝑚∈𝑀∑
𝑚

𝐿𝑚
𝑘𝑙

+ 𝛽
𝑚∈𝑀∑
𝑚

𝐿𝑚𝑎𝑢𝑥 + 𝜆
𝑚∈𝑀∑
𝑚

𝐿𝑚𝑢 , (12)

where 𝛼 , 𝛽 and 𝜆 are trade-off hyper-parameter, as introduced in
Section 4.2.

4 EXPERIMENTS
4.1 Datasets
Dataset.To verify the effectiveness of our proposedmodel in face of
different kinds of noise scenarios i.e., modality missing and modal-
ities’ noise, we conduct MSA experiments on three multimodal
datasets, namely CMU-MOSI [31] and CMU-MOSEI [32] for modal-
ity missing, and MVSA-single [33] for modalities’ noise. In addition
to that, we also conduct an extensive experiment on NYU Depth
V2 [34] in order to prove EUAR’s generalizability of real world’s
modalities. CMU-MOSI consists of 2,199 short monologue video
clips, among those 1,284,229, and 686 samples are used as training,
validation, and testing set. CMU-MOSEI contains 22,856 samples
of movie review video clips from YouTube. Followed previous stud-
ies, 16,326 samples are used for training, 1,871 and 4,659 samples are
used for validation and testing. Both datasets above are manually
annotated in continuous sentiment scores between [-3,3], represent-
ing sentiment including highly negative, negative, weakly negative,
neutral, weakly positive, and highly positive. MVSA-Single senti-
ment analysis dataset includes a set of image-text pair with manual
annotations collected from social meida. The dataset can be utilized
as a valuable benchmark for both single-view and multi-view senti-
ment analysis. NYU Depth V2 is a public indoor scenes datasets,
which are composed of two modalities, i.e., RGB and depth images.
In this dataset, each object is labeled with a class and an instance
number (cup1, cup2, cup3, etc). Following previous work [9], we
also adopt the commonly used 9 out of the 27 scene categories and
the remaining categories as "Others".
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Table 1: Comparisons with recent state-of-the-art MSA methods on the CMU-MOSI, CMU-MOSEI, NYU Depth V2 and MVSA-
Single datasets.

Method CMU-MOSI CMU-MOSEI
Acc7 Acc2 F1 Acc7 Acc2 F1

CubeMLP [2](2022) 45.5 85.6 85.5 54.9 85.1 84.5
MHMF-BERT [27](2022) - 85.3 85.3 - 85.6 85.6

GCNet [11](2022) 44.9 85.1 85.1 51.5 85.2 85.2
MSG-MBA [4](2023) 45.3 85.7 85.6 52.8 85.4 85.4
ConFEDE [6](2023) 42.3 85.5 85.5 54.9 85.8 85.8
DiCMoR [7](2023) 45.3 85.6 85.6 53.4 85.1 85.1
EUAR(Ours) 46.1 86.3 86.3 54.9 86.6 86.4

Method NYU-Depth V2 MVSA-Single
Acc F1 Acc F1

Concat 70.30 69.82 65.59 65.43
Late Fusion 69.14 68.32 76.88 75.72

MMTM [28] (2020) 71.04 - 75.19 74.97
TMC [29] (2021) 71.06 69.83 76.06 74.55
QMF [9] (2023) 70.09 68.65 78.07 77.18

MVCN [30] (2023) - - 76.06 74.55
EUAR (Ours) 71.71 70.67 79.58 78.04

4.2 Implementation Details
Evaluation Tasks. We evaluate our model on multimodal senti-
ment analysis task, which aims to classify different sentiments into
categories such as positive, negative, or neutral using bimodal or
tri-modal data, including audio and visual data. Corresponding to
our initiation, we perform the MSA task under the following noisy
scenarios: (1) Modality Missing: Followed previous research on mul-
timodal incompleteness, we employ fixed missing strategy. For this
strategy, missing modalities are consistent for all samples, which
means all samples have the same available modalities. Since there
are three modalities: text, vision and acoustics, in CMU-MOSI and
CMU-MOSEI dataset, seven distinct combinations of missing pat-
terns are utilized in the experiments. We evaluate the performance
using the metrics below for modality missing scenario: 7-class ac-
curacy (𝐴𝐶𝐶7), binary accuracy (𝐴𝐶𝐶2) and F1 score. (2) Modality
Noise. For this scenario, we add Salt and Pepper noise and Gauss-
ian noise of different intensity to the visual modality; as for text
modality, blank which replace the content is employed in the text
in different ratio to simulate sample-wise noise. Finally, report the
performance using following metrics: binary accuracy (𝐴𝐶𝐶2) and
F1 score.
Experiment Setup. In alignment with alternative methodologies,
we employ FACET, COVAREP and BERT [35] as feature extractors
for visual, audio and text modalities in both CMU-MOSI and CMU-
MOSEI. For bimodal dataset, we utilize ResNet-152 as the feature
extractors for RGB and Depth images, accompanied with BERT as
the texual feature extractors. The hyperparameters we employed,
denoted as 𝛼 , 𝛽 , 𝜆, were set to 1e-3, 1e-5, and 1e-3, respectively.
Additionally, for the selection of the number of experts using the
Top-k mechanism, we set the value of k to 3. Due to space con-
straints, further relevant details are provided in the supplementary
materials. In short, We implemented all the experiments using Py-
Torch on a RTX 3090 GPU with 24GB memory. We set the training
batch size as 16 and train our model for 100 epochs. We run each
experiments on the testing set and report the model’s performance.

5 RESULTS AND ANALYSIS
To demonstrate the superiority of our approach, we conducted com-
parisons with state-of-the-art methods on three widely-used multi-
modal emotion analysis datasets. This includes two tri-modal video
datasets, CMU-MOSI and CMU-MOSEI. The methods compared
include CubeMLP [2], MHMF-BERT [27], GCNet [11], MSG-MBA

[4], ConFEDE [6] and DiCMoR [7]. In addition, it also includes
a bi-modal text-image dataset, MVSA-Single. The methods com-
pared include MMTM [28], TMC [29] and QMF [9]. Furthermore,
we tested the performance of our model in situations of modality
missing and noisy data.

5.1 Overall Comparisons
We report the comparison results of our method with the current
state-of-the-art methods on datasets CMU-MOSI, CMU-MOSEI, and
MVSA-Single in Table 1. From the table, it is evident that ourmethod
outperforms the current state-of-the-art methods in the majority
of metrics, with a significant improvement. It is worth noting that
our method achieves Acc2 and F1 metrics exceeding 86% on the
CMU-MOSI dataset, pushing the model’s performance to a new
peak on this dataset. Additionally, our method also demonstrates
outstanding performance on the CMU-MOSEI dataset, with Acc2
and F1 metrics surpassing the second closest by more than 1%.
Our method also performs exceptionally well on the bimodal text-
image classification dataset. It surpasses the current state-of-the-art
methods by more than 1% in both Accuracy and F1 score metrics. At
the same time, it is noticeable that our method does not outperform
other methods on the Acc7 metric on the CMU-MOSEI dataset.
We speculate that the high quality of the CMU-MOSEI dataset
itself might have limited the advantage of our uncertainty routing
method, resulting in slightly lagging performance compared to
other methods.

5.2 Additional Experiments
In addition to analyzing the aforementioned three widely used
sentiment analysis datasets, we conducted further experiments.
Specifically, we conducted additional validation on the scene recog-
nition dataset NYU Depth V2. The sentiment analysis datasets we
used encompass features from three modalities: text, audio, and vi-
sion. However, the real world consists of more than just these three
modalities of data, hence we decided to conduct more experiments.
The NYU Depth V2 dataset for scene recognition includes features
from two modalities: RGB images and depth images. By utilizing
inputs from both modalities, we aim to recognize the scenes de-
picted in the images. We report the experimental results in the right
subtale of Table 1. As can be observed from the graph, our approach
still outperforms existing state-of-the-art methods even when in-
cluding RGB images and depth images data. It is noteworthy that
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Table 2: Comparison on fixed missing strategy. The term "Available" denotes the presented modality. We rendered inactive all
modalities except for the one indicated as "Available," evaluated the model’s performance, and compared it with the current
state-of-the-art methods. The values reported in each cell denote Acc2/F1/ACC7.

Datasets Available DCCA [36] MCTN [37] MMIN [38] GCNet [11] DiCMoR [7] EUAR(Ours)
{ L } 76.4/76.5/28.3 79.1/70.2/41.0 83.8/83.8/41.6 83.7/83.6/42.3 84.5/84.4/44.3 86.0/86.0/46.1
{ V } 52.6/51.1/17.1 55.0/54.4/16.3 57.0/54.0/15.5 56.1/55.7/16.9 62.2/60.2/20.9 64.9/64.9/23.6
{ A } 48.8/42.1/16.9 56.1/54.5/16.5 55.3/51.5/15.5 56.1/54.5/16.6 60.5/60.8/20.9 63.0/62.3/23.2

CMU-MOSI { L, V } 76.7/76.8/30.0 81.1/81.2/42.1 83.8/83.9/42.0 84.3/84.2/43.4 85.5/85.4/45.2 86.2/86.2/45.5
{ L, A } 77.0/77.2/30.2 81.0/81.0/43.2 84.0/84.0/42.3 84.3/84.2/43.4 85.5/85.5/44.6 86.1/86.1/44.7
{ V, A } 54.0/52.5/17.4 57.5/57.4/16.8 60.4/58.5/19.5 62.0/61.9/17.2 64.0/63.5/21.9 66.1/65.8/24.2
{ L, V, A } 77.3/77.4/31.2 81.4/81.5/43.4 84.6/84.4/44.8 85.2/85.1/44.9 85.6/85.6/45.3 86.3/86.3/46.1

{ L } 79.7/79.5/47.0 82.6/82.8/50.2 82.3/82.4/51.4 83.0/83.2/51.2 84.2/84.3/52.4 85.3/85.2/52.9
{ V } 61.1/57.2/40.1 62.6/57.1/41.6 59.3/60.0/40.7 61.9/61.6/41.7 63.6/63.6/42.0 66.3/65.3/42.4
{ A } 61.4/53.8/40.9 62.7/54.5/41.4 58.9/59.5/40.4 60.2/60.3/41.1 62.9/60.4/41.4 64.5/60.7/41.6

CMU-MOSEI { L, V } 80.4/80.4/47.1 83.2/83.2/50.4 83.8/83.4/51.2 84.3/84.4/51.1 84.9/84.9/53.0 86.0/86.0/53.2
{ L, A } 80.0/80.0/47.4 83.5/83.3/50.7 83.7/83.3/52.0 84.3/84.4/51.3 85.0/84.9/52.7 85.1/85.1/53.7
{ V, A } 62.7/59.2/41.6 63.7/62.7/42.1 63.5/61.9/41.8 64.1/57.2/42.0 65.2/64.4/42.4 66.3/65.3/42.7
{ L, V, A } 81.2/81.2/48.2 84.2/84.2/51.2 84.3/84.2/52.4 85.2/85.1/51.5 85.1/85.1/51.4 86.6/86.4/54.9

our method exceeds the state-of-the-art methods by 1% in accuracy,
demonstrating a significant performance improvement. Addition-
ally, our method performs remarkably well in terms of F1 Score.
This proves the generalizability of our approach to applications
beyond just text, audio, and visual modalities.

Table 3: Comparisons with state-of-the-arts concerning
model performance on noisy NYU Depth V2 datasets.

Method Clean Salt-Pepper Noise Gaussian Noise
𝜖 = 0 𝜖 = 5 𝜖 = 10 𝜖 = 5 𝜖 = 10

Concat 70.44 57.98 44.51 59.97 53.20
Late Fusion 69.16 56.27 41.22 59.63 51.99

Align 70.31 57.54 43.01 59.47 51.74
MMTM 71.04 59.45 44.59 60.37 52.28
TMC [29] 71.06 59.34 44.65 61.04 53.36
QMF [9] 70.09 58.50 45.69 61.62 55.60

EUAR (Ours) 71.71 61.35 46.63 63.15 57.79

5.3 Experiments on Noisy Datasets
In order to demonstrate the supremacy of our method in handling
noisy data, we conducted experiments under scenarios of modality
missing, Gaussian noise, Salt and Pepper noise, etc. The experimen-
tal results are reported in Tables 2 and 3. From Table 2, it can be
observed that our method exhibits significant performance improve-
ment compared to other methods under the modality missing condi-
tion. It is noteworthy that our method consistently outperforms the
state-of-the-art methods by nearly 1% in all scenarios. Particularly,
when considering only the visual modality, our method surpasses
the second-best by nearly 3% across three metrics, demonstrating
the advantage of our approach. Similarly, as only the acoustic modal-
ity is available, our EUAR outperforms the second-best by around
2%. In Table 3, we report the performance of our method under the

Table 4: Ablation studies on training objectives on the CMU-
MOSI and CMU-MOSEI datasets.

KL-Loss U-Loss CMU-MOSI CMU-MOSEI
Acc2 F1 Acc7 Acc2 F1 Acc7

✓ ✓ 86.3 86.3 46.1 86.6 86.4 54.9
- ✓ 85.1 85.1 46.1 85.5 85.6 52.5
✓ - 83.8 83.7 44.1 85.3 85.2 51.5
- - 81.7 81.6 31.1 85.2 84.8 50.7

presence of Gaussian noise and Salt and Pepper noise. It is evident
that our method achieves state-of-the-art performance under both
noise conditions. Specifically, our method shows a noticeable lead,
surpassing the second-best by 2% when the Salt and Pepper noise
intensity is 5 and the Gaussian noise intensity is 10. Whether in the
case of modality missing or Gaussian and Salt and Pepper noise, our
method consistently demonstrates superior performance in noisy
data scenarios.

5.4 Further Analysis
Ablation Study on Loss. In order to investigate the effectiveness
of the loss function proposed in our routing strategy, we conducted
thorough ablation experiments on the loss function on both CMU-
MOSI and CMU-MOSEI. We performed ablation experiments on the
uncertainty loss 𝐿𝑘𝑙 and the uncertainty routing loss 𝐿𝑢 separately,
and the experimental results are shown in Table 4. From the table,
it can be observed that the performance of the model significantly
decreases on all metrics when any of the loss is ablated. It is worth
noting that when both losses are ablated, compared to the complete
model, every metric of the model’s result decreases dramatically,
especially on CMU-MOSI by more than 4%. The 𝐿𝑘𝑙 loss enables
better quantification of uncertainty by experts, while the 𝐿𝑢 loss
helps the gate to route samples to the expert with lower uncertainty
for processing. Especially, when we solely dissolve the KL-loss, our
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performance only declines marginally, bymerely around 1% on both
datasets. This further corroborates the validity of our introduction
of MoE. The intrinsic dynamism of MoE confers an advantage in
this task, beyond solely relying on more precise routing methods.
However,the improvements we propose complement the inherent
nature of MoE. Only when these two losses interact can the overall
effectiveness of the model be optimized.
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Figure 3: Analysis under different noise conditions. We sub-
stituted the "expert" with a regular MLP and tested the per-
formance under varying noise conditions.

Analysis on Model Robustness. Since our motivation is to ad-
dress noise within modalities, we conduct more ablation studies on
the CMU-MOSI and MVSA-Single under different noise scenarios
to verify the robustness and stability of our proposed model. In
particular, on CMU-MOSI, we implemented different kinds of miss-
ing modality combinations, the experimental results are shown in
the Figure 3. The MLP model which uses simple linear layers to
process data (we use MLP model to represent this ablated model in
the following paragraph as well) is adapted as the ablated model in
the experiment under six distinct missing combinations. By observ-
ing the final results, it is obvious to find: the simple MLP model
is outperformed by complete model on all missing combinations.
Especially, when the text modality present in the combination, com-
plete model possesses more evident performance. Contrastively,
the complete model has more concentrated outcomes and reduced
fluctuations, revealing its remarkable robustness and stability.

Moreover, on NYU Depth v2, we also replaced the expert with
a standard MLP and tested under four different noise conditions,
as shown in right picture of Figure 3. From the graph, it can be
observed that our comprehensive approach significantly outper-
forms. It is worth noting that as the noise intensity increases, the
advantage of our method becomes more apparent, demonstrating
the excellence of our approach. Especially in the case of Gaussian
noise with an intensity of 5, our method consistently outperforms
the standard MLP in both average performance and stability.
Ablation Study on Experts Number. To further explore the im-
pact of different experts number on our proposed MoE module, we
conduct ablation experiment on experts number, as shown in Fig.
4. The numbers of experts range from 2 to 32, and it is clear to tell
that as the number of expert increase, the model’s performance
present upward trend. The results indicate that with more experts,
our model is able to exclude the noise in the samples more precisely,

2 4 8 16 32
Expert Number

84.0

84.5

85.0

85.5
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Ac
c2

CMU-MOSI
CMU-MOSEI

Figure 4: Ablation Study on Expert Number.We conducted
experiments on the CMU-MOSI and CMU-MOSEI datasets,
testing expert quantities ranging from 2 to 32, and reported
the accuracy Acc2 metric.

and more discriminatively extract the useful features that are ben-
efit the final classification results. It is noteworthy that when we
increase the number of experts from 2 to 32, the performance of
our model on Acc2 improves by nearly 2%. This demonstrates the
success of our proposed dynamic network strategy. However, it
can be observed that the improvements in Acc2 metrics on CMU-
MOSEI during the early part are not as significant when changing
the number of experts. We analyzed that the CMU-MOSEI dataset
has a larger volume of data, requiring a greater number of param-
eters for fitting. This is also why there is a significant increase in
Acc2 during the latter part of the experiment. With an increase in
the number of experts in our approach, there is an enhancement in
our network’s ability to perform finer-grained sentiment analysis.
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Figure 5: Analysis concerning the training convergence. We
ablate different modules and observe performance fluctua-
tions in training.

Analysis on Training Process. As illustrated in Fig 5, we also
studied the our proposed model’s training convergence and per-
formance fluctuations in the training process on the CMU-MOSI.
According to the results, it can tell that, different from the other two
structural ablated model, the complete model exhibits a smoother
training process and eventually obtained a remarkably better per-
formance. Specifically, the training processes of two ablated models
show that, compared to the MLP model, the other model that adapts
our MoE structure without the proposed 𝐿𝑢 loss (U-loss in the leg-
end) exhibits relatively better training convergence. The reason lies
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in the MoE’s capacity of quantitatively acquiring uncertainty of
the projected features, forcing the ablated model to neglect the fea-
tures with high uncertainty. On the other hand, due to the absence
of proposed 𝐿𝑢 loss, the ablated model failed to route features to
the experts more precisely, resulting in more fluctuating training
process and worse final performance. In another word, proposed
U-loss can help assist the MoE structure to adaptively select experts
based on uncertainty, acquiring more steady training processes
and more salient results. In a conclusion, the structural ablation
experiments above proves again the rationality and effectiveness
of our proposed model.
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Figure 6: Visualizations of joint representations generated
by different abalted models with t-SNE [39] on the CMU-
MOSI dataset. The upper row represents the results under
the full modality condition, while the lower row depicts the
results when the audio modality is absent.

Visualizations of Joint Representations Furthermore, using the
features that are projected into a 2D space by t-SNE is a straight-
forward way to exhibit learning joint representations of EUAR.
Hence, we employ the t-SNE to visualize the learned joint repre-
sentations of simple concatenation, MLP, and complete EUAR for
a quantitative comparison. In detail, we randomly select joint fea-
tures processed by our proposed EUAR model from the testing set
of the CMU-MOSI dataset, and use three colors to represent their
true sentimental labels.

As illustrated in Fig 6, the picture above is the visualization of
complete modalities combination, while the figure below is the
combination whose acoustic modality is unavailable. It is evident
to observe that the features generated by the complete model are
in compact and discriminative distribution. On the contrary, when
MLP are utilized, the ablated model can separate the features in
different classes to some degree, the final distribution is less compact
and distinguishing, resulting in corrupted classification results at
last. And the clusters are still closer than those generated by the
complete EUAR, indicating less discriminability. Consequently, the
t-SNE visualization results indicate that with the help of both MoE
structure and proposed U-loss, effectively enables our EUAR model
to resist noise in themodalities, making it more capable of learning a
representative joint representations. Because of the limitation of the

space, more missing modality combinations’ t-SNE visualizations
will be attached in the supplementary materials.
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Figure 7: Visualizations of test cases selected from the CMU-
MOSI datasets. It can be observed that our EUARmethod re-
veals better robustness against the noise.

Qualitative Analysis Additionally, for a qualitative study, we also
illustrate several representative test cases from CMU-MOSI with
different missing modalities situations. Specially, when the modal-
ity is unavailable in the combination, we use rectangles with red
dash lines to denote. As shown in Fig 7, we compare our proposed
model with the recent counterpart DiCMoR [7]. Under different
missing modalities circumstances, our EUAR method consistently
produce correct classifications, while DiCMoR fails to fulfill the
task accurately. It explicates that with the assistance of the MoE ar-
chitecture and the novel routing algorithm we proposed, our model
is capable of learning more stable and robust joint representations
from deteriorated multimodal data and excluding the interference
of noise that exists across the modalities, gaining noise-resistant
performance with higher accuracy.

6 CONCLUSION
In this paper, we proposed a novel multimodal sentiment analy-
sis framework called Enhanced Experts with Uncertainty-Aware
Routing (EUAR), which excelled at handling noise in multimodal
data and dynamically adjusted the network based on different sam-
ples. Specifically, we introduced the MoE in multimodal sentiment
analysis tasks to address varying noise levels in multimodal data.
Particularly, we enhanced the functionality of experts to quantify
uncertainty and extract clear unimodal features. Moreover, we de-
vised novel routing strategies to train the model to route samples
with different noise levels to corresponding experts with lower
uncertainty for processing. Our approach outperformed existing
state-of-the-art methods in multimodal sentiment analysis tasks
and excelled in extended experiments with additional modalities.
Furthermore, we conducted experiments under conditions of miss-
ing modalities and noisy data, demonstrating the superiority of our
method in handling noisy data. For future work, we aim to delve
deeper into methods for handling noise in multimodal data.
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