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ABSTRACT

Classification is a fundamental capability for AI systems, yet current large lan-
guage model (LLM) approaches remain poorly suited for latency-critical ap-
plications. Prompting and constrained decoding produce verbose, multi-token
outputs that require expensive token-by-token generation, while encoder-based
models achieve faster inference at the cost of flexibility and generative capac-
ity. We propose LaaC (LLM as a Classifier), a framework that formulates clas-
sification as constrained generation with single-token outputs. By introducing
atomic label tokens and applying parameter-efficient fine-tuning, our method
reduces classification to a deterministic one-step decoding problem. Experi-
ments across text and multimodal benchmarks demonstrate both strong accu-
racy and consistently fast inference. On MIntRec 2.0, a fine-tuned Gemma-3-
27B model attains 62.7% accuracy, outperforming GPT-4o (43.7%) and GPT-5
(51.8%) while running more than an order of magnitude faster. On standard text
classification benchmarks, our models match GPT-4o in accuracy while achiev-
ing 8× lower tail latency. These results establish decoder-style LLMs as prac-
tical and scalable classifiers for real-time applications. Our code is available at
https://anonymous.4open.science/r/LaaC_ICLR.

1 INTRODUCTION

Classification is a fundamental task in machine learning (Sebastiani, 2002) with widespread appli-
cations across domains, from sentiment analysis (Pang et al., 2008) and intent recognition (Goo
et al., 2018; Chen et al., 2019) to customer support and interactive dialogue agents. As these ap-
plications increasingly operate on multimodal data—combining text and vision—there is growing
demand for unified models that can handle diverse input modalities while maintaining efficiency in
latency-sensitive environments (Wang et al., 2024).

Current approaches to classification with large language models (LLMs) face significant limitations,
particularly in latency-critical applications. Prompt-based methods, while intuitive, often produce
verbose, multi-token responses that require additional parsing and introduce substantial inference
overhead. More importantly, they provide no guarantee that outputs will be single tokens: a request
such as “classify this review as positive or negative” can yield explanatory sentences or multi-token
paraphrases rather than clean categorical labels. Even with constrained decoding techniques (Geng
et al., 2023) that restrict outputs to valid label strings, models still rely on token-by-token generation.
This scales poorly with label vocabulary size and leads to unpredictable latency variations.

This latency challenge is particularly acute in real-world deployment scenarios where classification
must occur at scale with strict response time requirements. Traditional encoder-based approaches
(e.g., BERT with classification heads) offer predictable, low-latency inference but lack the flexibility
and generative capabilities that make modern LLMs attractive for complex reasoning tasks, since
they require task-specific architectures and dataset-specific fine-tuning.

In this work, we propose LaaC (LLM as a Classifier), an approach that bridges this gap by treating
classification as a constrained generation task with single-token outputs. Our key insight is to
introduce atomic special tokens (e.g., [control 1]) for each class, enabling the model to produce
decisions in exactly one generation step. As illustrated in Figure 1, this design not only eliminates
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User Topics
Y = {c1, . . . , cK}

c1: flight

c2: subscription

c3: restaurant

c4: hotel

c5: shopping

...
cK : . . .

Likelihoods
Pθ([ok]|x)
Pθ([o1]|x)
Pθ([o2]|x)
Pθ([o3]|x)
Pθ([o4]|x)
Pθ([o5]|x)

...
Pθ([oK ]|x)

Baseline
multi-token decoding

token0

token1

token2

token3

Proposed:
latency O(1)

[ok∗] where
k∗ = argmaxk Pθ([ok]|x)

la
te
n
cy

Vision-Language Models (VLMs)

LM Head + Special Tokens [o1], [o2], . . . , [oK ]

Embedding Layer + Special Tokens [o1], [o2], . . . , [oK ]

xtext: book me a flight . intent is
xvis:
Image

Figure 1: Overview of our LaaC framework. Inputs are processed by a decoder-style LLM that
directly outputs an atomic special token for the target class. Unlike baseline prompting with multi-
token decoding, the framework guarantees O(1) latency and supports zero-shot adaptation.

multi-token decoding overhead but also enables zero-shot classification: by reassigning label tokens
at inference time, the model seamlessly adapts to new tasks without task-specific retraining.

We demonstrate this approach using parameter-efficient fine-tuning (LoRA) on vision-language
models, creating a unified framework that handles both text-only and multimodal classification tasks.
Our method rests on three central pillars: accuracy, latency, and generality. By constraining the
output space to a finite set of learned tokens, we achieve deterministic single-step inference while
maintaining the semantic understanding capabilities of large pretrained models. Our contributions
are threefold:

1. A unified single-token classification framework that treats classification as constrained
generation, eliminating multi-token decoding inefficiencies while preserving the general-
ization of decoder-based LLMs.

2. Significant latency improvements through atomic label tokens that enable deterministic
single-step inference, achieving predictable sub-second inference and maintains efficiency
as label spaces grow.

3. Strong empirical results across diverse benchmarks, our fine-tuned Gemma-3-27B model
outperforms GPT-4o, GPT-5, and encoder-based baselines on multimodal evaluation. On
text classification benchmarks, our models remain competitive.

Our approach proves that with careful design, decoder-based models can achieve both the effective-
ness and efficiency of specialized encoder architectures while maintaining their broader generative
capabilities, making them practical for latency-sensitive applications.
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2 RELATED WORK

2.1 PROMPT-BASED AND FEW-SHOT CLASSIFICATION WITH LLMS

One natural way to adapt large language models (LLMs) for classification is through prompting. For
example, a model can be asked: ‘‘Classify the following review as positive
or negative: {text}’’. While simple, this approach often yields verbose, multi-token an-
swers rather than a clean class symbol. Few-shot prompting (Brown et al., 2020) improves reliability
by adding in-context demonstrations, and CARP (Sun et al., 2023) further refines this by encourag-
ing models to extract clues and reason step by step. Instruction tuning further enhances this paradigm
by aligning models to follow task instructions more robustly (Ouyang et al., 2022; Wei et al., 2021),
and multimodal prompting has been demonstrated in vision–language models such as CLIP (Rad-
ford et al., 2021). Despite these advances, the outputs of prompting-based methods remain free-form
text sequences, which complicates integration into structured applications and hinders efficiency.

To mitigate this, methods such as PET and LM-BFF reformulate classification as a cloze task with
verbalizers that map each class to a natural-language string and fine-tune the model on small labeled
sets (Schick & Schütze, 2020; Gao et al., 2020). Beyond discrete verbalizers, continuous prompt-
ing methods have been proposed: Prompt Tuning learns soft prompt embeddings optimized for a
target task (Ding et al., 2023), while Prefix Tuning prepends trainable key–value vectors to each
transformer layer (Li & Liang, 2021). Although effective, these approaches are typically developed
for few-shot learning scenarios with limited labeled data; in contrast, our work targets settings with
more training examples, where parameter-efficient fine-tuning can be applied to adapt large models.

Recent efforts have also explored constrained decoding, where logits are masked or grammar rules
are applied so that only valid label strings can be produced (Geng et al., 2023). While this ensures
format consistency, it introduces longer latency (due to token-by-token decoding even for short
label strings) and limits flexibility when scaling to large label spaces or multimodal tasks. These
drawbacks motivate our design of a finite set of atomic label tokens, which reduces classification to
a single constrained generation step and eliminates the inefficiencies of multi-token verbalizers.

2.2 ENCODER-BASED FINE-TUNING FOR CLASSIFICATION

A widely adopted paradigm emphasizes fine-tuning encoder models with a dedicated classifier head.
Transformer encoders such as BERT and its successors (e.g., RoBERTa, DeBERTa) have become
the standard for text classification: the input sequence is processed by the encoder, and the contextu-
alized representation of the [CLS] token is passed through a linear layer trained with cross-entropy
loss (Devlin et al., 2019; Liu et al., 2019; He et al., 2020). For multimodal classification, encoder-
style fusion models extend this paradigm by incorporating vision or audio encoders and cross-modal
attention modules, as in MulT and MAG-BERT (Tsai et al., 2019; Rahman et al., 2020). These ap-
proaches are efficient and effective, but they require task-specific classifier heads and lack the flexi-
bility of decoder-based LLMs. In contrast, our method shows that decoder-style VLMs, adapted with
parameter-efficient fine-tuning (LoRA) and single-token label spaces, can match or surpass encoder
baselines on challenging multimodal datasets while maintaining compatibility with generative tasks
and supporting a broad range of downstream applications.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We formalize classification as a supervised learning problem. Each training instance consists of an
input tuple

x =
(
xtext, xvis),

where xtext denotes the textual input and xvis represents the vision modality, which may include
static images or short video segments. Not all instances contain both modalities; missing modalities
are treated as empty. The objective is to learn a mapping

fθ :
(
xtext, xvis) 7→ y,

where y ∈ Y is a categorical label drawn from a predefined set of classes Y = {c1, c2, . . . , cK}.
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Given a dataset
D = {(xi, yi)}Ni=1,

the learning goal is to estimate model parameters θ that minimize the expected classification loss:

θ∗ = argmin
θ

E(x,y)∼D L
(
fθ(x), y

)
,

where L is the cross-entropy loss over labels. This formulation generalizes unimodal classification to
a multimodal setting, where textual and visual inputs are jointly leveraged for improved prediction.

3.2 MODEL ARCHITECTURE AND FINE-TUNING STRATEGY

Our proposed framework LaaC is model-agnostic and can be applied to a wide range of large lan-
guage models and vision-language models, including Gemma, Mistral and Qwen architectures. The
general principle is to treat classification as a constrained generation task, where the model is guided
to produce a single special token corresponding to the target label.

Parameter-Efficient Fine-Tuning. We adopt Low-Rank Adaptation (LoRA) as the primary fine-
tuning strategy (Hu et al., 2022). LoRA introduces a small number of trainable rank-decomposition
matrices into the attention and projection layers, while keeping the majority of model parameters
frozen. This approach enables efficient adaptation across different base models with significantly
reduced memory and compute requirements.

Special Tokens for Labels. For each classification category ck ∈ Y , we introduce a unique special
token [ok]. Conventional choices such as digits or short text labels are problematic: they can appear
naturally in the input, causing ambiguity, and larger indices (e.g., “100”) are split into multiple
subword tokens, leading to multi-step decoding and higher latency. To provide grounding, a natural-
language description of each class is included in the system prompt (see Appendix A.2 for prompt
templates). During fine-tuning, the model is trained to map

(
xtext, xvis

)
directly to the correct special

token. In implementation, we extend the tokenizer with 500 reserved control tokens [o1], . . . , [o500],
which allows the model to accommodate up to 500 classes during inference without retraining.

Training Objective. The training objective is defined as cross-entropy loss over the predicted
control token. Since classification requires only a single output, the loss is computed exclusively on
the final assistant response token (e.g., [ok]), while all preceding tokens in the input sequence are
masked out and excluded from loss calculation. Formally, for each instance (x, k), the loss is

L = − logPθ

(
[ok]

∣∣x).
3.3 SPECIAL TOKEN DESIGN (SINGLE-TOKEN OUTPUTS)

Let Y = {c1, . . . , cK} denote the label set and let V be the base tokenizer vocabulary. We augment
the vocabulary with a set of K atomic output symbols:

Ω = {[o1], [o2], . . . , [oK ]}, Ṽ = V ∪ Ω.

Each [ok] is a dedicated control token corresponding to class ck, with a trainable embedding ek ∈ Rd.
These rows are appended to the model’s embedding matrix and are updated during fine-tuning,
together with LoRA-adapted weights.

Why single-token outputs. If labels are represented as natural-language strings sk (e.g., "book
a flight"), a subword tokenizer typically produces a variable-length sequence

τ(sk) = (v1, . . . , vmk
), mk ≥ 1,

where τ(·) denotes the tokenization function. This variability requires loss over multiple decoding
steps and depends on segmentation. In contrast, our design assigns each class a single atomic symbol
ωk = [ok] ∈ Ω, which is guaranteed to decode as exactly one token. This yields three benefits: (i) the
output space collapses to K symbols, (ii) ambiguity from label strings that may appear in the input is
eliminated, and (iii) decoding and evaluation are simplified to a deterministic one-step classification.
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Randomized label assignments. To prevent memorization of static token–label associations, we
do not fix a permanent mapping between special tokens and semantic classes. Instead, during prepro-
cessing we randomly shuffle the correspondence between classes and control tokens across training
instances. This design encourages the model to rely on the contextual descriptions of labels pro-
vided in the prompt, rather than memorizing token identities. As a result, the model learns to infer
the correct output token from the input context, which improves robustness and generalization across
datasets and label spaces. Without randomization, models tended to overfit to token IDs and failed
to generalize to new mappings.

Separation from context. We reserve a sentinel namespace for Ω, ensuring that these tokens are
never decomposed into subwords and never occur in the input text. Formally, Ω ∩ V = ∅ and
Ω ∩ τ(x) = ∅ for any input x. In practice, this is enforced by registering [ok] as special tokens in
the tokenizer, so that they are available to the model during output generation.

Training objective (single position). Given input x =
(
xtext, xvis

)
with gold label k ∈

{1, . . . ,K}, the model is required to emit exactly one control token [ok]. Let hT denote the de-
coder state at the output position (the single assistant step). We compute logits restricted to Ω:

zj = (WhT + b)j , Pθ([oj ] | x) =
exp(zj)∑K
i=1 exp(zi)

for j ∈ {1, . . . ,K}.

The loss is standard cross-entropy over this single prediction:

L(x, k) = − logPθ([ok] | x).

All preceding tokens (system/user prompts and any in-context descriptions) are masked out of the
loss, so classification supervision is concentrated solely on the final output position. In implementa-
tion, we construct a binary loss mask: the position of the response token is assigned its class label,
while all other positions are set to −100, which the cross-entropy loss ignores.

Inference rule. At test time, decoding reduces to a single restricted argmax:

k∗ = arg max
k∈{1,...,K}

Pθ([ok] | x).

Equivalently, we set max new tokens = 1 and restrict the decision space to Ω, ensuring the
model outputs exactly one control token (e.g., [ok∗ ]) rather than a multi-token string. This determin-
istic procedure avoids token-by-token generation and guarantees constant-time inference.

4 EXPERIMENTS

4.1 DATASETS

Training corpus. We construct a balanced training corpus of 28k examples, comprising 14k text-
only and 14k multimodal classification instances. Text datasets. The text-only portion includes
examples, each consisting of a natural language input paired with a categorical label. The corpus
spans diverse domains, specifically, we use the CLINC dataset (Larson et al., 2019) (150 intents
across 10 domains, with out-of-scope examples), the AMZN-MASSIVE dataset (FitzGerald et al.,
2022; Bastianelli et al., 2020) (60 intents spanning 18 domains), and MULTIWOZ-2.2 (Zang et al.,
2020) (11 intents across 3 domains). To encourage generalization beyond standard datasets, we ad-
ditionally incorporate constrained instruction-following data from FollowBench and Unnatural In-
structions (Jiang et al., 2023; Honovich et al., 2022), as well as synthetic data generated with Agent-
Gym (Xi et al., 2024). Multimodal datasets. The multimodal portion comprises 14k examples
from established vision–language datasets. We include video–text pairs from MINTREC (Zhang
et al., 2022) and reformulate image–question pairs from subsets of A-OKVQA (Schwenk et al.,
2022) and VISUAL7W (Zhu et al., 2016). To construct this corpus, we sample approximately 5k ex-
amples each from the image-based datasets while retaining all available MINTREC frames. All data
are reformulated into a unified JSON schema (see Fig. 2), with consistent messages fields and an
optional image path. To mitigate label memorization, we randomize control-token assignments:
class labels are mapped to tokens drawn from a reserved set of 500 control tokens.
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Example of a Classification Training Instance

{
"messages": [

{ "role": "system", "content": "You are a classification
expert. Topics: [control x] Complain, [control y] Praise,
[control z] Apologise ..." },

{ "role": "user", "content": "### USER CONVERSATION HERE ###" },
{ "role": "assistant", "content": "[control x]" }

],
"image path": "path/to/image.jpg",
}

Figure 2: Illustration of a fine-tuning training instance in our classification datasets. Each sample
includes the structured messages field and optional image path.

Evaluation benchmarks. We evaluate our approach on a diverse suite of multimodal and text-
only classification benchmarks. For multimodal evaluation, we use the official test split of
MIntRec2.0 (Zhang et al., 2024), a large-scale benchmark for intent recognition in multimodal
dialogues that combine text and vision. This dataset includes 30 fine-grained intent classes and re-
quires reasoning over conversational context and multiple modalities, making it a challenging test of
real-world multimodal classification. For text-only tasks, we consider four widely used benchmarks:
SST-2 (Socher et al., 2013) is a binary sentiment analysis benchmark consisting of movie reviews
annotated as positive or negative; Amazon Reviews Polarity (McAuley & Leskovec, 2013; Zhang
et al., 2015) contains millions of product reviews labeled as positive or negative. It evaluates senti-
ment classification in a large-scale, noisy e-commerce domain; AG News (Zhang et al., 2015) is a
topic classification dataset with four categories: World, Sports, Business, and Science/Technology;
and DBpedia (Lehmann et al., 2015) is a 14-class benchmark built from Wikipedia articles, cov-
ering categories such as Company, Artist, Athlete, and Place. It provides a broad test of factual
and encyclopedic text classification. Example prompt templates for these datasets are provided in
Appendix A.2 (Figures 4 to 8). For text-only benchmarks, we evaluate on 200 randomly sampled
test examples from each dataset to ensure consistent and efficient comparisons across models.

4.2 BASELINES

We benchmark against both open-source and proprietary systems.

Pretrained LLMs. We include the untuned versions of Gemma-3 (4B, 27B) and Mistral-3-24B as
base VLM checkpoints. These serve as reference points for the capability of large pretrained models
without classification adaptation.

External API models. For stronger upper-bound comparisons, we evaluate proprietary multimodal
models including GPT-4O and GPT-5 (including GPT-5-NANO). These systems represent state-
of-the-art commercial offerings.

Encoder-based models. To contextualize against specialized architectures, we also report re-
sults for strong encoder-style multimodal baselines (e.g., MAG-BERT and MulT), following the
MINTREC 2.0 benchmark protocol.

4.3 TRAINING DETAILS

We fine-tuned both Gemma-3 and Mistral-3 with a batch size of 1 and gradient accumulation of 16
(effective batch size 16). Models were trained for 30 epochs using a learning rate of 2× 10−5 with
a warmup ratio of 0.1. LoRA modules (rank 8, α = 16, dropout 0.05) were applied to attention and
feed-forward layers. Gemma-3 employed tied embeddings, whereas Mistral-3 used untied embed-
dings that required explicit saving. Training was conducted on 8×NVIDIA A100 GPUs with mixed
precision (bfloat16), gradient checkpointing, and DeepSpeed ZeRO-3. Early stopping was applied
with a patience of 8 validation steps and a minimum improvement threshold of 10−4. Model perfor-
mance was evaluated every 500 steps using validation loss as the criterion.
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4.4 EVALUATION METRICS

We evaluate models along two complementary dimensions: classification effectiveness and infer-
ence efficiency. Classification accuracy. The primary metric is accuracy, computed as the percent-
age of instances where the predicted control token matches the gold label. Accuracy is reported
separately for each dataset. Latency. To capture efficiency, we measure model response times. We
report the median latency (P50) and the tail latency (P95) across evaluation batches. All baselines
are evaluated with our vLLM-based inference framework (Kwon et al., 2023) on a single NVIDIA
A100 GPU, using consistent input formatting and datasets.

4.5 RESULTS

4.5.1 MULTIMODAL EVALUATION RESULTS

We evaluate our fine-tuned models trained on the multimodal portion of our corpus on the challeng-
ing MIntRec 2.0 dataset, which requires understanding multimodal dialogue contexts (text, image,
video) for intent recognition. The evaluation covers both base models and fine-tuned variants of
Gemma-3 and Mistral-3, with comparisons against GPT models such as GPT-4o and GPT-5, as well
as encoder-based baselines reported in the original paper.

MIntRec 2.0 (Multimodal Topic Classification). Table 1 presents results on MIntRec 2.0. Base
Gemma-3 models perform poorly (∼16–18% accuracy), underscoring the difficulty of multimodal
intent recognition without adaptation. After fine-tuning, performance improves markedly: Gemma-
3-4B reaches 55.2%, while Gemma-3-27B achieves 62.7%, significantly outperforming GPT-4o
(43.7%) and GPT-5 (51.8%) despite being much smaller and faster. Fine-tuned Gemma-3 models
also achieve low latency (P95 < 1s), in contrast to GPT-4o and GPT-5, which require 6–13s. This
efficiency makes our fine-tuned models practical for real-time applications.

Comparison with Encoder-Based Models. MAG-BERT and MulT, strong encoder-based multi-
modal baselines from the original MIntRec paper, achieve 60.6% accuracy. Our fine-tuned Gemma-
3-27B surpasses both, reaching 62.7%, while also offering the benefits of a unified generative mod-
eling framework. This result is notable since encoder-based approaches are specifically optimized
for multimodal classification with carefully designed fusion architectures, whereas our approach
adapts a general-purpose generative model. The competitive or superior performance of fine-tuned
LLMs indicates that large decoder-based architectures, when fine-tuned on in-domain data, can
match or outperform specialized encoder-based models while simultaneously enabling broader gen-
erative and reasoning capabilities.

Table 1: MIntRec 2.0 evaluation results, including baselines from the original paper (⋄) and our
evaluations. FT = fine-tuned. Models are sorted by accuracy. Speedup is relative to GPT-4o (P50 =
4.30s, P95 = 6.12s).

Model Accuracy (%) P50 (s) Speedup (P50) P95 (s) Speedup (P95)

Gemma-3-4B (Base) 16.04 1.33 3.23× 1.77 3.46×
Gemma-3-27B (Base) 17.76 2.18 1.97× 2.77 2.21×
Mistral-3-24B (Base) 40.83 0.77 5.58× 1.71 3.58×
GPT-5-nano 41.02 3.67 1.17× 5.46 1.12×
GPT-4o 43.68 4.30 1.00× 6.12 1.00×
Mistral-3-24B (FT, LaaC) 49.34 0.64 6.72× 1.64 3.73×
GPT-5 51.84 7.13 0.60× 13.01 0.47×
Gemma-3-4B (FT, LaaC) 55.19 0.26 16.54× 0.60 10.20×
MAG-BERT⋄ 60.58 – – – –
MulT⋄ 60.66 – – – –
Gemma-3-27B (FT, LaaC) 62.72 0.37 11.62× 0.90 6.80×

4.5.2 TEXT CLASSIFICATION ACROSS DOMAINS

Our evaluations span four widely used classification benchmarks: SST-2, Amazon Reviews, AG
News, and DBpedia. Unlike encoder-based baselines (e.g., BERT or RoBERTa variants), which are

7
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Table 2: Text-only evaluation results on SST-2, Amazon Reviews, AG News, and DBpedia. We
report accuracy and latency (median P50 and tail P95).

Dataset Model Acc. (%) P50 Latency (s) P95 Latency (s)

SST-2

GPT-4o 95.50 0.53 0.84
Mistral-3-24B (Base) 95.50 0.07 0.07
Mistral-3-24B (FT, LaaC) 95.50 0.03 0.03
Gemma-3-27B (Base) 95.00 0.36 0.41
Gemma-3-27B (FT, LaaC) 95.50 0.11 0.12

Amazon Reviews

GPT-4o 95.00 0.53 0.97
Mistral-3-24B (Base) 95.50 0.08 0.09
Mistral-3-24B (FT, LaaC) 95.00 0.05 0.08
Gemma-3-27B (Base) 93.50 0.38 0.46
Gemma-3-27B (FT, LaaC) 94.00 0.10 0.12

AG News

GPT-4o 84.50 0.55 1.00
Mistral-3-24B (Base) 84.00 0.07 0.17
Mistral-3-24B (FT, LaaC) 83.00 0.05 0.05
Gemma-3-27B (Base) 84.00 0.25 0.60
Gemma-3-27B (FT, LaaC) 81.50 0.11 0.13

DBpedia

GPT-4o 97.00 0.61 1.23
Mistral-3-24B (Base) 94.50 0.10 0.21
Mistral-3-24B (FT, LaaC) 93.00 0.05 0.06
Gemma-3-27B (Base) 97.00 0.25 0.48
Gemma-3-27B (FT, LaaC) 95.00 0.10 0.11

typically fine-tuned directly on each dataset and thus achieve strong but task-specific results, our
framework is not fine-tuned on any of these datasets. Instead, we evaluate zero-shot generalization
by comparing our fine-tuned classifier against its untuned base model and GPT-4o.

Without task-specific adaptation, LaaC demonstrates robust cross-domain performance. As
shown in Table 2, on sentiment classification (SST-2, Amazon Reviews) and encyclopedic cate-
gorization (DBpedia), our fine-tuned models achieve accuracy comparable to GPT-4o and close to
its base model, while maintaining consistently sub-200 ms inference latency (P95 ≤ 0.13 s).

Most notably, the efficiency gains are substantial. While GPT-4o requires close to one second for
tail latency on these tasks, our approach reduces this by nearly an order of magnitude. By collaps-
ing classification into a deterministic single-token decision, inference time becomes both fast and
predictable, which is crucial for latency-sensitive deployments.

Overall, these results highlight that our approach generalizes well across unseen text domains
without any task-specific fine-tuning. In contrast to encoder models that trade flexibility for effi-
ciency, our method preserves the generative capacity of large decoder LLMs while matching their
classification accuracy and surpassing them in efficiency.

4.6 EFFECT OF LABEL-SET SIZES

We further analyze the impact of the number of label sets on model performance by evaluating across
datasets with increasing topic sizes, ranging from binary sentiment classification (SST-2, Amazon
Reviews) to multi-class categorization (AG News with 4 topics and DBpedia with 14 topics).

Generalization ability. As shown in Figure 3a, our fine-tuned Gemma-3-27B model consistently
maintains high accuracy across datasets of varying difficulty. Even as the label space expands from
2 to 14 categories, the accuracy remains 95% on DBpedia and comparable to binary sentiment
datasets, demonstrating strong zero-shot generalization ability.

Efficiency stability. In addition to accuracy, we examine efficiency via P50 latency. The results
reveal that latency remains remarkably stable across datasets, fluctuating only within 0.10–0.11s de-
spite the growth in label space. This indicates that our design achieves scalable inference efficiency
while handling tasks of increasing complexity.
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Figure 3: Performance of Gemma-3 models across datasets.

4.7 SCALING ANALYSIS

We further investigate how accuracy and efficiency scale with model sizes. Figures 3b and 3c report
results for Gemma-3 models with 4B, 12B, and 27B parameters on four text benchmarks. Accu-
racy. Performance improves consistently as model size increases (Figure 3b). The 4B model shows
lower accuracy, particularly on AG News, while the 12B model closes much of the gap. The 27B
model achieves the strongest results across all datasets, exceeding 95% on SST-2 and DBpedia and
remaining above 94% on Amazon Reviews. Latency. Inference latency remains nearly constant
across scales (Figure 3c). Median (P50) latencies vary only between 0.02–0.06s, despite the 7× pa-
rameter increase from 4B to 27B. This stability stems from reducing classification to a single-token
decision, which eliminates the usual token-by-token decoding overhead. These results demonstrate
that larger models yield predictable accuracy gains while efficiency remains effectively unchanged.

4.8 EFFECT OF TEXT TRAINING DATA

To assess the value of incorporating both unimodal and multimodal supervision, we evaluated fine-
tuned Gemma-3-27B on a held-out proprietary dataset. When trained only on multimodal data, the
model achieved 80.6% accuracy with P50 = 0.06s and P95 = 0.18s. By contrast, when training
combined both text-only and multimodal data, accuracy improved to 84.7% while maintaining com-
parable efficiency (P50 = 0.06s, P95 = 0.06s). These results suggest that exposing the model to
both text and multimodal supervision during training provides stronger representations and leads to
consistent accuracy gains. A similar improvement (≈0.5%) at unchanged latency was also observed
on DBpedia, indicating that the effect generalizes beyond a single dataset.

5 CONCLUSION

We introduced a framework LaaC that treats classification as a constrained generation problem with
single-token outputs. By augmenting decoder-style LLMs with atomic label tokens and adapting
them through parameter-efficient fine-tuning, our method collapses classification into a determinis-
tic one-step decoding task. This design achieves significant latency reductions while preserving the
generative flexibility of large models. Empirically, fine-tuned Gemma-3 models outperform much
larger proprietary systems on the MIntRec 2.0 benchmark and match or surpass encoder-based mul-
timodal baselines, all while running with sub-second tail latency. These results demonstrate that
decoder LLMs can serve as practical, scalable classifiers for latency-sensitive applications.

Our current study focuses on text and vision inputs; extending the framework to additional modal-
ities such as audio remains an open direction. While our evaluation highlights substantial latency
improvements, a deeper analysis of calibration, robustness, and multilingual generalization is needed
to validate deployment readiness. Future work will explore scaling to larger label spaces, integrat-
ing rejection mechanisms for out-of-scope detection, and combining single-token classification with
reasoning-augmented LLMs. Together, these directions aim to advance LLMs as both versatile gen-
erators and efficient classifiers for real-world multimodal systems.
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A APPENDIX

A.1 LLM USAGE DISCLOSURE

We used large language models (e.g., ChatGPT) only to polish writing and assist with literature
search. They were not used for generating research ideas or results.

A.2 EXAMPLE PROMPTS.

Example Prompt (SST-2)

{
"messages": [

{ "role": "system", "content": "You are a classification
expert. Topics: [control 1] Negative, [control 2] Positive. Based
on the overall sentiment expressed in this review, respond with the
relevant control token:" },

{ "role": "user", "content": "it’s a charming and often
affecting journey." },

{ "role": "assistant", "content": "[control 2]" }
],
"image path": "none",
}

Figure 4: Prompt template for classifying SST-2 movie reviews.
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Example Prompt (AG News)

{
"messages": [

{ "role": "system", "content": "You are a classification
expert. Topics: [control 1] World, [control 2] Sports, [control 3]
Business, [control 4] Science/Technology. Based on the content of
this article, respond with the relevant control token:" },

{ "role": "user", "content": "Fears for T N pension after
talks. Unions representing workers at Turner Newall say they are
’disappointed’ after talks with stricken parent firm Federal
Mogul." },

{ "role": "assistant", "content": "[control 3]" }
],
"image path": "none",
}

Figure 5: Illustration of an inference prompt from AG News (Business category).

Example Prompt (Amazon Reviews)

{
"messages": [

{ "role": "system", "content": "You are a classification
expert. Topics: [control 1] Negative, [control 2] Positive. Based
on the overall sentiment expressed in this review, respond with the
relevant control token:" },

{ "role": "user", "content": "DVD Player crapped out after one
year. I also began having the incorrect disc problems that I’ve
read about on here. The VCR still works, but the DVD side is
useless. I understand that DVD players sometimes just quit on you,
but after not even one year? To me that’s a sign of bad quality.
I’m giving up JVC after this as well. I’m sticking to Sony or
giving another brand a shot." },

{ "role": "assistant", "content": "[control 1]" }
],
"image path": "none",
}

Figure 6: Illustration of an inference prompt from Amazon Reviews (Negative sentiment).
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Example Prompt (DBpedia)

{
"messages": [

{ "role": "system", "content": "You are a classification
expert. Topics: [control 1] Company, [control 2]
EducationalInstitution, [control 3] Artist, [control 4] Athlete,
[control 5] OfficeHolder, [control 6] MeanOfTransportation,
[control 7] Building, [control 8] NaturalPlace, [control 9] Village,
[control 10] Animal, [control 11] Plant, [control 12] Album,
[control 13] Film, [control 14] WrittenWork. Based on the content
of this article, respond with the relevant control token:" },

{ "role": "user", "content": "Pizza Port Brewing Company is a
brewpub with five locations in Southern California: Solana Beach,
two in Carlsbad (Downtown and Bressi Ranch), Ocean Beach and San
Clemente. A former Pizza Port location in San Marcos spun out of
Pizza Port in 2006 and is now an independent operation, the Port
Brewing Company / Lost Abbey brewery. It has received multiple
awards, including S̈mall Brewpub of the Yearf̈or both 2003 and 2004
by the Great American Beer Festival and six awards for its beers at
the World Beer Cup." },

{ "role": "assistant", "content": "[control 1]" }
],
"image path": "none",
}

Figure 7: Illustration of an inference prompt from DBpedia (Company category).

Example of a Classification Training Instance (Topic
Classification)

{
"messages": [

{ "role": "system", "content": "You are a topic classification
expert. Before making a decision, carefully follow all the
topic-specific instructions/descriptions. Topics: [control 1]
Acknowledge, [control 2] Advise, [control 3] Agree, [control 4]
Apologise, [control 5] Arrange, [control 6] Ask for help, [control 7]
Asking for opinions, [control 8] Care, [control 9] Comfort,
[control 10] Complain, [control 11] Confirm, [control 12] Criticize,
[control 13] Doubt, [control 14] Emphasize, [control 15] Explain,
[control 16] Flaunt, [control 17] Greet, [control 18] Inform,
[control 19] Introduce, [control 20] Invite, [control 21] Joke,
[control 22] Leave, [control 23] Oppose, [control 24] Plan,
[control 25] Praise, [control 26] Prevent, [control 27] Refuse,
[control 28] Taunt, [control 29] Thank, [control 30] Warn. Based on
the above conversation, respond with the relevant topic ID:" },

{ "role": "user", "content": "Thank you so much for your help!
I really appreciate it." },

{ "role": "assistant", "content": "[control 29]" }
],
"image path": "none",
}

Figure 8: Illustration of a prompt from the Topic Classification dataset (Thank intent).
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