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Abstract

In adversarial machine learning, deep neural networks can fit the adversarial ex-
amples on the training dataset but have poor generalization ability on the test set.
This phenomenon is called robust overfitting, and it can be observed when adver-
sarially training neural nets on common datasets, including SVHN, CIFAR-10,
CIFAR-100, and ImageNet. In this paper, we study the robust overfitting issue of
adversarial training by using tools from uniform stability. One major challenge
is that the outer function (as a maximization of the inner function) is nonsmooth,
so the standard technique (e.g., (Hardt et al., 2016)) cannot be applied. Our ap-
proach is to consider η-approximate smoothness: we show that the outer function
satisfies this modified smoothness assumption with η being a constant related to
the adversarial perturbation ϵ. Based on this, we derive stability-based gener-
alization bounds for stochastic gradient descent (SGD) on the general class of
η-approximate smooth functions, which covers the adversarial loss. Our results
suggest that robust test accuracy decreases in ϵ when T is large, with a speed
between Ω(ϵ

√
T ) and O(ϵT ). This phenomenon is also observed in practice. Ad-

ditionally, we show that a few popular techniques for adversarial training (e.g.,
early stopping, cyclic learning rate, and stochastic weight averaging) are stability-
promoting in theory.

1 Introduction
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Figure 1: Experiments of ad-
versarial training on CIFAR-
10.

Deep neural networks (DNNs) (Krizhevsky et al., 2012; Hochreiter
and Schmidhuber, 1997) have become successful in many machine
learning tasks and rarely suffered overfitting issues (Zhang et al.,
2021). A neural network model can be trained to achieve zero train-
ing error and generalize well to the unseen data. While in the setting
of adversarial training, robust overfitting is a dominant issue (Rice
et al., 2020). Specifically, robust overfitting characterizes a train-
ing procedure shown in Fig. 1. After a particular epoch, the robust
test accuracy (black line) starts to decrease, but the robust train-
ing accuracy (blue line) is still increasing. This phenomenon can
be observed in the experiments on common datasets, e.g., SVHN,
CIFAR-10, CIFAR-100, and ImageNet. Recent works (Gowal et al.,
2020; Rebuffi et al., 2021) mitigated the overfitting issue using reg-
ularization techniques such as stochastic weight averaging (SWA)
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and early stopping, but it still has a large generalization gap. Therefore, it is essential to study this
issue from a theoretical perspective. In this paper, we study the robust overfitting issue of adversarial
training by using tools from uniform stability.

Uniform stability analysis (Bousquet and Elisseeff, 2002) in learning problems has been intro-
duced to measure generalization gap instead of uniform convergence analysis such as classical VC-
dimension (Vapnik and Chervonenkis, 2015) and Rademacher complexity (Bartlett and Mendelson,
2002). Generalization gap can be bounded in terms of uniform argument stability (UAS). Formally,
UAS is the gap between the output parameters θ of running an algorithm A on two datasets S and
S′ differ in at most one sample, denoted as δ(S, S′) = ∥θ(S)− θ(S′)∥. In a standard training prob-
lem with n training samples, assuming that the loss function is convex, L-Lipschitz and β-gradient
Lipschitz, running stochastic gradient descent (SGD) with step size α ≤ 1/β for T steps, the UAS
is bounded by O(LαT/n) (Hardt et al., 2016). Since the generalization gap is controlled by the
number of samples n, this bound (at least partially) explains the good generalization of a standard
training problem. Beyond (Hardt et al., 2016), Bassily et al. (2020) considered the case that the
loss function is non-smooth. Without the β-gradient Lipschitz assumption, they showed that the
UAS is bounded by O(Lα

√
T + LαT/n) and provided a lower bound to show that the additional

term O(Lα
√
T ) is unavoidable. In adversarial settings, two works have discussed the stability of

adversarial training to our knowledge.

Firstly, Farnia and Ozdaglar (2021) considered the stability of minimax problems. Their work in-
cludes a discussion on an algorithm called GDmax (gradient descent on the maximization of the
inner problem), which can be viewed as a general form of adversarial training. It provides the stabil-
ity of GDmax when the inner problem is further assumed to be strongly concave. Under the strongly
concave assumption, the outer function is smooth. Then, the generalization bound O(LαT/n) can
be applied in this case. However, the inner problem is not strongly concave in practice. The bound
O(LαT/n) does not match the poor generalization of adversarial training observed in practice.

Another stability analysis of adversarial training is the work of (Xing et al., 2021a). Before they
propose their algorithm, they use the stability bound O(Lα

√
T + LαT/n) (Bassily et al., 2020)

to characterize the issue of robust generalization. However, the bound is ϵ-independent. Let us
Consider two cases, ϵ → 0 and ϵ is large (e.g., 16/255). In the first case, adversarial training
is very close to standard training and has good generalization ability. In the second case, robust
generalization is very poor. The bound is the same in these two different cases. Therefore, it cannot
provide an interpretation of robust generalization.

In summary, existing stability-based generalization bounds (Hardt et al., 2016; Bassily et al., 2020)
have limited interpretation on robust generalization. In this paper, we provide a new stability analy-
sis of adversarial training using the notion of η-approximate smoothness. We first show that, under
the same assumptions as (Hardt et al., 2016; Xing et al., 2021a), even though the outer function (ad-
versarial loss) is non-smooth, it is η-approximately smooth (see Definition 4.1), where η is a constant
linearly depending on the gradient Lipschitz of the inner function and the perturbation intensity ϵ.
Then, we derive stability-based generalization bounds (Thm. 5.1 to 5.4) for stochastic gradient de-
scent (SGD) on this general class of η-approximate smooth functions, which covers the adversarial
loss. Our main result can be summarized in the following equation. Running SGD on adversarial
loss for T steps with step size α ≤ 1/β, the excess risk, which is the sum of generalization error
and optimization error, satisfies

Excess Risk ≤ Egen + Eopt ≤
additional︷ ︸︸ ︷
LηTα +

for standard training︷ ︸︸ ︷
2L2Tα

n
+

D2

Tα
+ L2α︸ ︷︷ ︸

for adversarial training

. (1.1)

The excess risk of adversarial training has an additional term LηTα. We also provide a lower
bound of UAS of running SGD on adversarial loss. Our results suggest that robust test accuracy
decreases in ϵ when T is large, with a speed between Ω(ϵ

√
T ) and O(ϵT ). This phenomenon is

also observed in practice. It provides an understanding of robust overfitting from the perspective
of uniform stability. Additionally, we show that a few popular techniques for adversarial training
(e.g., early stopping, cyclic learning rate, and stochastic weight averaging) are stability-promoting
in theory and also empirically improve adversarial training. Experiments on SVHN, CIFAR-10,
CIFAR-100, and ImageNet confirm our results. Our contributions are listed as follows:
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• Main results: we derive stability-based generalization bounds for adversarial training us-
ing the notion of η-approximate smoothness. Based on this, we provide an analysis to
understand robust overfitting.

• We provide the stability analysis of a few popular techniques for adversarial training and
show that they are indeed stability-promoting.

• We provide experiments on SVHN, CIFAR-10, CIFAR-100, and ImageNet. The results
verify the generalization bounds.

• Technical contribution: we develop a set of properties of η-approximately smooth function,
which might be useful in other tasks.

The paper is organized as follows. After discussing the related work in Sec. 2, the rest of the paper
contains two parts. The first part is the technical part to derive stability bounds. The second part is to
analyze robust overfitting. Specifically, in the first part, Sec. 3 introduces the preliminary knowledge
about UAS. Sec. 4 provides the Lemma and properties of approximately smooth functions and Sec. 5
gives the stability bounds. In the second part, Sec. 6 analyzes the robust overfitting in the theoretical
settings and Sec. 7 presents the experiments.

2 Related Work

Adversarial Attacks and Defense. Starting from the work of (Szegedy et al., 2013), it has been
commonly realized that deep neural networks are highly susceptible to imperceptible corruptions to
the input data (Goodfellow et al., 2014; Carlini and Wagner, 2017; Madry et al., 2017). A series
of work aimed at training neural networks robust to such small perturbations (Wu et al., 2020;
Gowal et al., 2020; Zhang et al., 2020) and another line of work aimed at designing more powerful
adversarial attack algorithms (Athalye et al., 2018; Tramer et al., 2020; Fan et al., 2020; Xiao et al.,
2022c; Qin et al., 2022). A series of work considered adversarial robustness in black-box settings
(Chen et al., 2017; Qin et al., 2021). Semi-supervised learning has been used to improve adversarial
robustness (Carmon et al., 2019; Li et al., 2022). Fast adversarial training (Wong et al., 2020; Huang
et al., 2022) was introduced to save training time.

Robust Generalization. A series of work tried to explain robust generalization in the uniform
convergence framework, including VC-dimension (Attias et al., 2021; Montasser et al., 2019) and
Rademacher complexity (Khim and Loh, 2018; Yin et al., 2019; Awasthi et al., 2020; Xiao et al.,
2022a). Uniform algorithmic stability is another framework to study robust generalization (Farnia
and Ozdaglar, 2021; Xing et al., 2021a; Xiao et al., 2022b). The work of (Schmidt et al., 2018;
Raghunathan et al., 2019; Zhai et al., 2019) have shown that in some scenarios achieving robust
generalization requires more data. The work of (Xing et al., 2021b,c; Javanmard et al., 2020) studied
the generalization in the setting of adversarial linear regression. (Sinha et al., 2017) studied the
generalization of distributional robustness. The work of (Taheri et al., 2020; Javanmard et al., 2020;
Dan et al., 2020) analyzed robust generalization in Gaussian mixture models.

Uniform Stability. Stability is a classical approach to provide generalization bounds. It can be
traced back to the work of (Rogers and Wagner, 1978). After a few decades, it was well devel-
oped in analyzing the generalization bounds in statistical learning problems (Bousquet and Elisseeff,
2002). These bounds have been significantly improved in a recent sequence of works (Feldman and
Vondrak, 2018, 2019). The work of (Chen et al., 2018) derived minimax lower bounds for excess
risk and discussed the optimal trade-off between stability and convergence. Ozdaglar et al. (2022)
considered the generalization metric of minimax optimizer.

3 Preliminaries of Stability

Consider the following setting of statistical learning. There is an unknown distribution D over
examples from some space Z . We receive a sample dataset S = {z1, . . . , zn} of n examples drawn
i.i.d. from D. The population risk and empirical risk are defined as:

RD(θ)
def
= Ez∼D h(θ, z) and RS(θ)

def
=

1

n

n∑
i=1

h(θ, zi),
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respectively, where h(·, ·) is the loss function.

Risk Decomposition. Let θ∗ and θ̄ be the optimal solution of RD(θ) and RS(θ) respectively. Then
for the algorithm output θ̂ = A(S), the excess risk can be decomposed as

RD(θ̂)−RD(θ
∗) = RD(θ̂)−RS(θ̂)︸ ︷︷ ︸

Egen

+RS(θ̂)−RS(θ̄)︸ ︷︷ ︸
Eopt

+RS(θ̄)−RS(θ
∗)︸ ︷︷ ︸

≤0

+RS(θ
∗)−RD(θ

∗)︸ ︷︷ ︸
E=0

.

To control the excess risk, we need to control the generalization gap Egen and the optimization gap
Eopt. In the rest of the paper, we use Egen and Eopt to denote the expectation of the generalization and
optimization gap. To bound the generalization gap of a model θ̂ = A(S) trained by a randomized
algorithm A, we employ the following notion of uniform stability.
Definition 3.1. A randomized algorithm A is ε-uniformly stable if for all data sets S, S′ ∈ Zn such
that S and S′ differ in at most one example, we have

sup
z

EA [h(A(S); z)− h(A(S′); z)] ≤ ε . (3.1)

Here, the expectation is taken only over the internal randomness of A. We recall the important
theorem that uniform stability implies generalization in expectation (Hardt et al., 2016).
Theorem 3.1 (Generalization in expectation). Let A be ε-uniformly stable. Then, the expected
generalization gap satisfies

|Egen| = |ES,A[RD[A(S)]−RS [A(S)]]| ≤ ε .

Therefore, we turn to the properties of iterative algorithms that control their uniform stability.

4 Stability of Adversarial Training

Adversarial Surrogate Loss. In adversarial training, we consider the following surrogate loss
h(θ; z) = max

∥z−z′∥p≤ϵ
g(θ; z′), (4.1)

where g(θ; z) is the loss function of the standard counterpart, ∥ ·∥p is the ℓp-norm, p ≥ 1. Usually, g
can also be written in the form of ℓ(fθ(x); y), where fθ is the neural network to be trained and (x, y)
is the input-label pair. We assume the loss function g satisfies the following smoothness assumption.
Assumption 4.1. The function g satisfies the following Lipschitzian smoothness conditions:

∥g(θ1, z)− g(θ2, z)∥ ≤ L∥θ1 − θ2∥,
∥∇θg(θ1, z)−∇θg(θ2, z)∥ ≤ Lθ∥θ1 − θ2∥,
∥∇θg(θ, z1)−∇θg(θ, z2)∥ ≤ Lz∥z1 − z2∥p,

where ∥ · ∥ is Euclidean norm.

Assumption 4.1 assumes that the loss function is smooth, which are also used in the stability litera-
ture (Farnia and Ozdaglar, 2021; Xing et al., 2021a), as well as the convergence analysis literature
(Wang et al., 2019; Liu et al., 2020). While ReLU activation function is non-smooth, recent works
(Allen-Zhu et al., 2019; Du et al., 2019) showed that the loss function of over-parameterized DNNs
is semi-smooth. It helps justify Assumption 4.1. Under Assumption 4.1, the loss function of adver-
sarial training satisfies the following Lemma (Liu et al., 2020).
Lemma 4.1. Let h be the adversarial loss defined in Eq. (4.1) and g satisfies Assumption 4.1.
∀θ1, θ2 and ∀z ∈ Z , the following properties hold.

1. (Lipschitz function.) ∥h(θ1, z)− h(θ2, z)∥ ≤ L∥θ1 − θ2∥.

2. For all subgradient d(θ, z) ∈ ∂θh(θ, z), we have ∥d(θ1, z)− d(θ2, z)∥ ≤ Lθ∥θ1 − θ2∥+ 2Lzϵ.

If we further assume that g(θ, z) is µ-strongly concave in z, the adversarial surrogate loss h(θ, z)
is also smooth (Sinha et al., 2017). Therefore, the uniform stability of adversarial training follows
(Hardt et al., 2016; Farnia and Ozdaglar, 2021), see Appendix B.3. However, g(θ, z) is non-strongly
concave in practice. The above results provide limited explanations of the poor generalization of
adversarial training. We discuss the generalization properties of adversarial training under Lemma
4.1.2.
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4.1 Basic Properties of Approximate Smoothness

To simplify the notation, we use h(θ) as a shorthand notation of h(θ, z). To simplify the argu-
ment, we consider differentiable function h. The results can be extended to non-differentiable cases.
Lemma 4.1 motivates us to analyze a function with the following modified smoothness assumption,
which we call approximate smoothness assumption.
Definition 4.1. Let β > 0 and η > 0. We say a differentiable function h(θ) is η-approximately
β-gradient Lipschitz, if ∀θ1 and θ2, we have

∥∇h(θ1)−∇h(θ2)∥ ≤ β∥θ1 − θ2∥+ η.

In definition 4.1, η controls the smoothness of the loss function h(·). When η = 0, the function h is
gradient Lipschitz. When η → +∞, h is a general non-smooth function. As our discussion before,
the adversarial surrogate loss is 2Lzϵ-approximately smooth. As far as we know, this assumption is
rarely discussed in the optimization literature since it cannot improve the convergence rate from a
general non-smooth assumption. But it affects uniform stability, as we will discuss later. We need
to develop the basic properties of approximate smoothness first.
Lemma 4.2. Assume that the function h is η-approximately β-gradient Lipschitz. ∀θ1, θ2 and ∀z ∈
Z , the following properties hold.
1. (η-approximate descent lemma.)

h(θ1)− h(θ2) ≤ ∇h(θ2)
T (θ1 − θ2) +

β

2
∥θ1 − θ2∥2 + η∥θ1 − θ2∥.

2. (η-approximately co-coercive.) Assume in addition that h(θ, z) is convex in θ for all z ∈ Z . Let
[·]+ = max(0, ·). We have

⟨∇h(θ1)−∇h(θ2), θ1 − θ2⟩ ≥
1

β

[
[∥∇h(θ1)−∇h(θ2)∥ − η]+

]2
.

We defer the proof to Appendix A. Note that the loss function is L-Lipschitz for every example z,
we have E|h(θ1, z)− h(θ2, z)| ≤ LE∥θ1 − θ2∥, for all z ∈ Z. To obtain the stability generalization
bounds, we need to analysis the difference ∥θT1 − θT2 ∥, where θT1 and θT2 are the outputs of running
SGD on adversarial surrogate loss for T iterations on two datasets with only one different sample.
Next we provide the recursive bounds under the approximate smoothness assumption.

Algorithms. We consider the stochastic gradient descent on the adversarial surrogate loss. i.e.,

θt+1 = θt − αt∇θh(θ
t, zit), (4.2)

where αt is the step size in iteration t, zit is the sample chosen in iteration t. We consider two
popular schemes for choosing the examples indices it. Sampling with replacement: One is to pick
it ∼ Uniform{1, · · · , n} at each step. Fixed permutation: The other is to choose a random permu-
tation over {1, · · · , n} and cycle through the examples repeatedly in the order determined by the
permutation. Our results hold for both variants.

Properties of Update Rules. We define Gα,z(θ) = θ − α∇h(θ, z) be the update rule of SGD.
The following lemma holds.
Lemma 4.3. Assume that the function h is η-approximately β-gradient Lipschitz. ∀θ1, θ2 and ∀z ∈
Z ,we have

1. (αη-approximately (1 + αβ)-expansive.) ∥Gα,z(θ1)−Gα,z(θ2)∥ ≤ (1 + αβ)∥θ1 − θ2∥+ αη.

2. (αη-approximately non-expansive.) Assume in addition that h(θ, z) is convex in θ for all z ∈ Z ,
for α ≤ 1/β, we have ∥Gα,z(θ1)−Gα,z(θ2)∥ ≤ ∥θ1 − θ2∥+ αη.

3. (αη-approximately (1 − αγ)-contractive.) Assume in addition that h(θ, z) is γ-strongly convex
in θ for all z ∈ Z , for α ≤ 1/β, we have ∥Gα,z(θ1)−Gα,z(θ2)∥ ≤ (1− αγ)∥θ1 − θ2∥+ αη.

The proof of Lemma 4.3 is based on Lemma 4.2 and is deferred to Appendix A. Lemma 4.3 provides
the recursive distance ∥θ1 − θ2∥ from iteration t to t + 1. Based on this, we can recursively derive
the distance ∥θT1 − θT2 ∥. Then, we can obtain the stability generalization bounds.
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5 Stability Generalization Bounds

In the previous section, we have discussed the properties of approximate smoothness and developed
tools we need to use. In this section, we discuss the stability bounds.

5.1 Convex Optimization

We first consider the case that h(θ, z) is convex in θ for all z ∈ Z .
Theorem 5.1. Assume that h(θ, z) is convex, L-Lipschitz, and η-approximately β-gradient Lipschitz
in θ for all given z ∈ Z . Suppose that we run SGD with step sizes αt ≤ 1/β for T steps. Then,

Egen = E[RD(θT )−RS(θ
T )] ≤ L

(
η +

2L

n

) T∑
t=1

αt. (5.1)

The proof is mainly based on Lemma 4.3 that the update rule is approximately non-expansive in
this case. We defer it to appendix A. We have shown that the adversarial surrogate loss is 2Lzϵ-
approximately Lθ-gradient Lipschitz. Let η = 2Lzϵ in Eq. (5.1), we directly obtain the stability
bounds for adversarial training. In practice, the solution of the inner problem is sub-optimal. Let ∆ϵ
be the maximum error between the optimal and sub-optimal attacks in each iteration. We have the
following Corollary.
Corollary 5.1 (Uniform stability for sub-optimal attacks adversarial training.). Under Assumption
4.1, assume in addition that g(θ, z) is convex in θ for all given z ∈ Z . Suppose that we run
adversarial training with step sizes αt ≤ 1/Lθ for T steps. Then, adversarial training satisfies
uniform stability with

Egen ≤
(
2LLz(ϵ+∆ϵ) +

2L2

n

) T∑
t=1

αt ≤ O
(
L(Lzϵ+

L

n
)

T∑
t=1

αt

)
. (5.2)

Remark: Corollary 5.1 shows that adversarial training with weak attacks (large ∆ϵ) have worse
robust generalization than that with strong attacks. This is also observed in practice. However, ∆ϵ
is at most 2ϵ, the upper bound of AT with different attacks have the same order. It might be due to
the weakness of Assumption 4.1 or uniform stabilty framework.

Interpreting Robust Generalization. If we let ϵ = 0 in Eq. (5.2) , it reduced to the generalization
bound in (Hardt et al., 2016) for standard training. Therefore, the additional generalization error of
adversarial training comes from the additional term Lzϵ. The global gradient Lipschitz Lz with
respect to z plays an important role in generalization. Even though the perturbation ϵ is small, it is
amplified by the Lipschitz Lz and finally hurts the robust generalization.

5.2 Further Discussion on the Generalization Bounds

We first provide a lower bound. Then we compare our bounds with the existing bounds in Table 1.
Theorem 5.2 (Lower Bound). There exists functions h(θ, z), s.t. h is convex, L-Lipschitz, and η-
approximately β-gradient Lipschitz in θ for all given z ∈ Z . Exists S and S′ differ in one sample.
Suppose that we run SGD with step fixed step sizes α ≤ 1/β for T steps. Then,

E[δ(S, S′)] ≥ Ω

(
ηα

√
T +

LαT

n

)
. (5.3)

Table 1: Comparison of the upper and lower bounds of E[δ(S, S′)]. Comparing with the previous
results, we replace L by η and provide the matching lower bound in η.

Assumption Upper bounds Lower bounds
Farnia and Ozdaglar (2021) convex-strongly concave O(LTα/n) Ω(LTα/n)

Xing et al. (2021a) convex-nonconcave O(L
√
Tα+ LTα/n) Ω(

√
Tα+ LTα/n)

Ours convex-nonconcave O(ηTα+ LTα/n) Ω(η
√
Tα+ LTα/n)

Comparison with the Existing UAS Bounds. Compared with the work of (Farnia and Ozdaglar,
2021), they assume that the inner problem is strongly concave. Thus the bounds are not comparable.
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Strongly concave is a strong assumption in practice. Therefore, the work of (Xing et al., 2021a)
and our analysis focus on the nonconcave cases. Comparing with the bound O(L

√
Tα+ LTα/n),

our bound captures a critical aspect of robust generalization bound: ϵ-dependent. As observed in
practice, the robust generalization gap reduces to the standard generalization gap as ϵ → 0. Our
bound consists with this observation. On the contrary, the bound O(L

√
Tα+LTα/n) is very large

when ϵ → 0. Additionally, we provide a matching lower bound w.r.t η. The comparison is provided
in Table 1.

Comparison with the Work of (Xing et al., 2021a). The work of (Xing et al., 2021a) argued
that the max function is not smooth even though the standard counterpart is smooth. Therefore,
they followed the bound in non-smooth cases (Bassily et al., 2020). Then, they aimed to solve the
non-smooth issue. They design a noise-injected algorithm and show its effectiveness in tackling the
non-smooth issue. Our work focus on providing better bounds to interpret robust overfitting.

5.3 Non-convex Optimization and Strongly Convex Optimization

Next, we consider the case that the loss function h is general non-convex and strongly convex. By
Lemma 4.3, we have

Theorem 5.3. Assume that h(θ, z) is L-Lipschitz, and η-approximately β-gradient Lipschitz in θ
for all given z ∈ Z . Assume in addition that 0 ≤ h(θ, z) ≤ B for all θ and z. Suppose that we run
SGD with diminishing step sizes αt ≤ 1/(βt) for T steps. Then

Egen ≤ BLθ + (2L2 + Lηn)T

β(n− 1)
. (5.4)

Theorem 5.4. Assume that h(θ, z) is γ-strongly convex, L-Lipschitz, and η-approximately β-
gradient Lipschitz in θ for all given z ∈ Z . Suppose that we run SGD with step sizes αt ≤ 1/β for
T steps. Then

Egen = E[RD(θ
T )−RS(θ

T )] ≤ Lη

γ
+

2L2

γn
. (5.5)

Remark: The bound in non-convex cases provides a similar interpretation of robust generaliza-
tion to the analysis in the convex case. In uniform stability analysis, whether the loss function is
convex or non-convex does not give a major difference. Therefore, we provide the analysis of the
non-convex case in Appendix B. We also provide our convergence analysis of running SGD on
a η-approximate smoothness, non-convex function in Theorem B.1. Strongly convex is a strong
assumption. We leave the analysis of the bound in strongly convex cases in Appendix B.2.

6 Excess Risk Minimization

Based on the risk decomposition, we have Excess Risk ≤ Egen + Eopt, we need to minimize Egen +
Eopt to achieve better performance. Per our previous discussion, whether the loss function is convex
or non-convex does not give a major difference in stability analysis. We study the convex case in
this section. We leave the discussion on the non-convex and strongly convex cases in Appendix B.1
and B.2, respectively. We first introduce the optimization error.

Optimization Analysis. The convergence analysis of SGD on a L-Lipschitz, convex function is
discussed in (Nemirovski et al., 2009). The convergence rate cannot be improved if we further
assume that the function h is gradient Lipschitz. Therefore, a weaker condition, approximately
gradient Lipschitz, cannot improve the convergence rate. We use the following convergence error
bound (adopted from (Nemirovski et al., 2009)) for the optimization error of both adversarial training
and standard training.

Theorem 6.1. Assume that h(θ, z) is L-Lipschitz and convex in θ for all given z ∈ Z . Let D =
∥θ0 − θ∗∥, where θ0 is the initialization of SGD. Suppose that we run SGD with step sizes αt for T
steps. Then, ∃k ≤ T , s.t.

Eopt(θk) ≤
D2 + L2

∑T
t=1 α

2
t∑T

t=1 αt

. (6.1)
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If we let αt = 1/
√
T , we have Eopt ≤ O(1/

√
T ), which is the convergence rate of SGD on convex

function. Since we need to consider the generalization and optimization errors simultaneously, we
keep the αt in Theorem 6.1.

Generalization-Optimization Trade-off. We have now discussed the optimization and general-
ization errors of adversarial training. We aim to find the optimal trade-off between generalization
and optimization in terms of αt and T . However, finding the optimal αt and T simultaneously is
challenging. We consider the settings we use in practice.

Fixed Step Size. We first consider the simplest case, the step size α is fixed. Then, combining Eq.
(5.1) and Eq. (6.1), we have

Egen + Eopt ≤
additional︷ ︸︸ ︷
LηTα +

for standard training︷ ︸︸ ︷
2L2Tα

n
+

D2

Tα
+ L2α︸ ︷︷ ︸

for adversarial training

. (6.2)

Interpretation of Robust Overfitting. In standard training, overfitting is rarely observed in prac-
tice. The optimization error and generalization error are both small. In Eq. (6.2), the second to the
fourth terms are for standard training. The second term is controlled by the number of samples n,
which is small if we have sufficient training samples. The third term is controlled by T , and the
last term is fixed given a small α. This bound partially explains the good performance of standard
training. However, we have an additional term LηTα for excess risk in adversarial training. Then,
after a particular iteration that LηTα dominates Eq. (6.2), robust overfitting appears. This is con-
sistent with the training procedure in practice. Therefore, the η = 2Lzϵ approximate smoothness of
adversarial loss provides a possible explanation of robust overfitting. To achieve better performance,
we need to stop training the model earlier.

Early Stopping. It is shown that early stopping is an important training technique for adversarial
training (Rice et al., 2020). In Eq. (6.2), if we optimize the right-hand-side with respect to T , we
have

T ∗ =
∥θ0 − θ∗∥

α
√
Lη + 2L2/n

, Egen + Eopt ≤ 2

√
Lη +

2L2

n
D + L2α.

Therefore, it is the best to stop training at T ∗. However, T ∗ is unknown in practice. It is important
to select stopping criteria. For example, we can use a validation set to determine when to stop.

Varying Step Size. We discuss one popular varying step size schedule, cyclic learning rate, which
is also called super-converge learning rate for adversarial training. It is shown that it can speed up
adversarial training with fewer epochs (Wong et al., 2020). The Super-converge learning rate follows
the following rules. In the first phase (warm-up), the step size increase from 0 to α′ linearly. In the
second phase (cold down), the step size decreases back to 0 linearly. It is unclear (to our knowledge)
why this schedule can speed up convergence in optimization theory. But the generalization part can
partially be explained by UAS. If we set α′ = 2α, it is easy to check that Egen ≤ (Lη + 2L2/n)Tα
in this case, which is the same as the bound in the fixed learning rate case. Notice that the cyclic
learning rate usually requires fewer steps T to converge. Then, the generalization gap is smaller.
Cyclic learning rate can be viewed as another form of early stopping from the perspective of UAS.

Stochastic Weight Averaging. SWA is also a useful training technique for adversarial training
(Hwang et al., 2021). Instead of using the last checkpoint, SWA suggests using the average of the
checkpoints for inference. It is shown that SWA can find a model with better generalization since it
leads to wider minima (Izmailov et al., 2018). Below we study SWA from the perspective of UAS.
Theorem 6.2. Assume that h(θ, z) is convex, L-Lipschitz, and η-approximately β-gradient Lipschitz
in θ for all given z ∈ Z . Suppose that we run SGD with step sizes αt ≤ 1/β for T steps. Let θ̄ be
the average of the trajectory. Then,

Egen(θ̄) ≤
(
Lη

2
+

L2

n

) T∑
t=1

αt, Eopt(θ̄) ≤
∥θ0 − θ∗∥2 + L2

∑T
t=1 α

2
t∑T

t=1 αt

. (6.3)
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In words, SWA reduces the generalization error bound to one-half of the one without SWA. But the
training error bound remains unchanged.

7 Experiments

Training Settings. We mainly consider the experiments on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100, and SVHN (Netzer et al., 2011). We also provide one experiment on ImageNet (Deng
et al., 2009). For the first three datasets, we conduct the experiments on training PreActResNet-18,
which follows (Rice et al., 2020), For the experiment on ImageNet, we use ResNet-50 (He et al.,
2016), following the experiment of (Madry et al., 2017). For the inner problems, we adopt the ℓ∞
PGD adversarial training in (Madry et al., 2017), the step size in the inner maximization is set to be
ϵ/4 on CIFAR-10 and CIFAR100 and is set to be ϵ/8 on SVHN. Weight decay is set to be 5× 10−4.
Additional experiments are provided in Appendix C. 3
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Figure 2: Robust overfitting in the experiments on (a) CIFAR-10, (b) CIFAR-100, (c) SVHN and
(d) ImageNet.

Robust Overfitting on Common Dataset. In Fig. 2 (a), (b), and (c), we show the experiments
on the piece-wise learning rate schedule, which is 0.1 over the first 100 epochs, down to 0.01 over
the following 50 epochs, and finally be 0.001 in the last 50 epochs, on CIFAR-10, CIFAR-100, and
SVHN. Experiments on different ϵ are shown in Appendix C. Robust Overfitting on ImageNet. We
provide one experiment on ImageNet in Fig. 2 (d). We start from a pre-trained model from Madry’s
Lab and keep running 50 more epochs. Robust overfitting can be observed in these experiments.
After a particular epoch (around the 100th epoch), the robust training accuracy is still increasing,
but the robust test accuracy starts to decrease.
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Figure 3: Experiments of adversarial training on CIFAR-10 and CIFAR-100 with a fixed learning
rate. (a) Robust training accuracy on CIFAR-10. (b) Robust test accuracy on CIFAR-10. (c) Robust
training accuracy on CIFAR-100. (d) Robust test accuracy on CIFAR-100. ϵ are set to be 2, 4, 6, 8,
and 10.

3https://github.com/JiancongXiao/Stability-of-Adversarial-Training

9

https://github.com/JiancongXiao/Stability-of-Adversarial-Training


Fixed Step Size. To better understand robust overfitting and match the theoretical settings (in
Eq. (6.2)), we consider the fixed learning rate schedule. In Fig. 3, we show the experiments of
adversarial training using a fixed learning rate 0.01. The perturbation intensity ϵ is set to be 2, 4, 6,
8, and 10. respectively. Fig. 3 (a) and (b) show the experiments on CIFAR-10. Fig. 3 (c) and (d)
show the experiments on CIFAR-100, respectively. Fig. 4 shows the experiments on SVHN.
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Figure 4: Experiments of adversarial training on
SVHN with a fixed learning rate. (a) Robust train-
ing accuracy. (b) Robust test accuracy.

Generalization Error Dominates Training
Error. In the robust overfitting phase, the ro-
bust generalization error dominates the robust
training error. This phenomenon corresponds
to the Eq. (6.2) that the first term dominates the
other terms with large T .

Robust Test Accuracy Decreases in ϵ. Com-
paring different ϵ in Fig. 3, we can see that the
robust test accuracy decreases faster when ϵ is
larger. This corresponds to the robust overfit-
ting rule in the theoretical setting that the test
performance decreases in ϵ. These phenom-
ena are similar in theoretical and practical set-
tings. Therefore, the stability analysis provides
a different perspective on understanding robust
overfitting.

Robust Test Accuracy Decreases in a Rate between Ω(ϵ
√
T ) and O(ϵT ). If ϵ is small, e.g.,

ϵ = 2, the decrease rate is close to O(ϵT ). If ϵ is large, the decrease rate is more likely to be
Ω(ϵ

√
T ). This is also the gap between the upper bound and lower bound in Sec. 5.

8 Conclusion

Limitations and Future Work. Firstly, in Fig. 3, we can see that the decrease rate of robust over-
fitting is close to O(T ) when ϵ is small and is close to Ω(

√
T ) when ϵ is large. One possible direction

is to figure out the relation. Secondly, one might improve adversarial training by controlling Lz . Lz

depends on the loss, the network architecture, and the dataset. One possible direction is to design a
smoother loss or smooth activation function (e.g., SiLU) for a lower Lz . Notice that Lz is uniform
for all θ. If we view Lz(θ) locally with respect to θ, we might use an (approximated) second-order
penalty term on its magnitude to control it.

In this paper, we show that the adversarial loss satisfies η-approximate smoothness, and we derive
stability-based generalization bounds on this general class of η-approximate smooth functions. Our
bounds give a different perspective on understanding robust overfitting. The robust test accuracy
decreases in η, and experimental results confirm this phenomenon. We think our work will inspire
more theoretical and empirical research to improve adversarial training.
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