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Abstract—Cache-timing attacks exploit microarchitectural
characteristics to leak sensitive data, posing a severe threat to
modern systems. Despite its severity, analyzing the vulnerability
of a given cache structure against cache-timing attacks is chal-
lenging. To this end, a method based on Reinforcement Learning
(RL) has been proposed to automatically explore vulnerabilities
for a given cache structure. However, a naive RL-based approach
suffers from inefficiencies due to the agent performing actions
that do not contribute to the exploration. In this paper, we
propose a method to identify these useless actions during training
and penalize them so that the agent avoids them and the
exploration efficiency is improved. Experiments on 17 cache
structures show that our training mechanism reduces the number
of useless actions by up to 43.08%. This resulted in the reduction
of training time by 28% in the base case and 4.84% in the
geomean compared to a naive RL-based approach.

Index Terms—Reinforcement Learning, Side-Channel Attack,
Cache-Timing Attack

I. INTRODUCTION

As computer systems process more sensitive data, security
becomes a critical concern. Among many threats, cache-timing
attacks pose a serious risk. They exploit small differences in
cache access times to leak sensitive data and leave minimal
traces, making them hard to detect.

Reinforcement Learning (RL) can discover attack sequences
for cache-timing attacks without prior knowledge. Here, an at-
tack sequence is a series of actions taken by an attacker to leak
sensitive data. Actions include reading data from a memory
address and measuring its latency, flushing a cache line, and
allowing the victim program to execute. AutoCAT [12] is an
RL-based framework that automatically discovers successful
attack sequences for a given cache structure (e.g., the number
of sets and ways).

Although AutoCAT demonstrates potential, its naive RL
approach introduces inefficiencies. We identified that many
exploratory actions taken by AutoCAT fail to generate any
meaningful change in the environment. In the context of
cache-timing attacks, actions not altering the cache states
do not contribute to exploration, because unchanged cache
states would result in the same observations. We refer to
such actions as useless actions throughout this paper. Useless
actions increase the training time without contributing to the
learning process.

This paper proposes a method to identify useless actions
and reduce them, thereby improving exploration efficiency.
We show that up to 43.08% of actions in a naive RL-based
approach are classified as useless. We then introduce a penalty

mechanism that guides the agent toward more informative
actions. Experiments on 17 cache configurations demonstrate
up to a 28% reduction in the training time.

II. BACKGROUND

A. Cache-Timing Attacks

The goal of a cache-timing attack is to infer memory
addresses that the victim process accesses. In this attack, the
attacker is assumed to have an ability to run an arbitrary
program with the user-level privilege on a CPU core that shares
cache memory with the one executing the victim process. As
the easiest example, suppose the cache is set-associative and
has 4 sets. If the attacker accesses data at address 0 at time T
and T+t and the latter access missed the cache (which can be
known by the access latency), it can be inferred that the victim
has accessed a data at address A where A mod 4 is 0 during
the time period t. More sophisticated examples can be found in
existing work such as Flush+Reload [20], Prime+Probe [11],
and Evict+Reload [13].

By inferring memory addresses that the victim process
accesses, it is possible to steal higher-level information such as
cryptographic keys [20]. This is because many cryptographic
algorithms access memory locations that are dependent on the
cryptographic key. For example, block ciphers perform S-box
lookups at table indices determined by specific bits in the key.
An S-box (substitution box) is a fixed lookup table commonly
used in block ciphers to introduce non-linearity. It maps an
n-bit input to an m-bit output, with the specific table contents
defined by the cipher’s specification. By repeating cache-
timing attacks over all possible S-box entries, it is known that
an attacker can reconstruct the whole encryption key.

B. Non-ML Approaches and Limitations

Prior work have addressed side-channel attacks (a superset
of cache-timing attacks) by leveraging known attack patterns
or specific hardware characteristics. Deng et al. [15] intro-
duced a benchmark suite focusing on 88 known cache-timing
vulnerabilities. He and Lee [8] proposed a methodology for
quantitatively evaluating the resilience of cache structures
against various cache-based attacks. Xiao et al. [19] and Buiras
et al. [3] developed verification frameworks each tailored to
particular hardware behaviors or predefined threat models.
CheckMate [16] detects hardware vulnerabilities by synthe-
sizing attacking programs from predefined patterns.
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Despite these efforts, conventional methods for analyzing
cache-timing attacks face two major challenges. First, Modern
processors employ complex, proprietary cache designs. Key
features like replacement policies and prefetching algorithms
are rarely documented [2], [4], [17], forcing researchers to
reverse engineer such internals [18]. Second, the search space
for potential attack sequences is vast, making manual or
pattern-based analysis inefficient and incomplete.

C. Applying RL for Cache-Timing Attack Exploration

RL offers a promising solution to the challenges described
in Section II-B because it can explore diverse attack sequences
automatically. As long as an interface for actions and obser-
vations is defined, RL can explore attack sequences regardless
of the underlying cache structures.

AutoCAT [12] is the first framework to use RL for exploring
cache-timing attacks. In AutoCAT, an attacker is modeled
as an RL agent and the environment consists of the victim
process and the cache system. It uses a deep RL approach
where the action value function is represented by a neural
network. The network receives a vector representation of the
observation and past actions, and then outputs the expected
total reward the agent will collect if it selects each action.
The actions are reading a memory location and measuring its
latency, flushing a specific cache line, guessing which address
the victim accessed, and allowing the victim to execute.
The environment then calculates the outcome of the chosen
action and provides two types of feedback. First, it returns
an observation, indicating whether the agent’s access resulted
in a cache hit or miss. Second, it provides a reward signal
reflecting how successful the action was. In concrete, the agent
receives a small negative reward after an action as a penalty
for prolonging the attack sequence, and a large positive reward
when it successfully guesses the secret address.

Training in AutoCAT is organized as a set of epochs, each
of which is a set of episodes. An episode starts with a full reset
of the environment (e.g., clearing the cache) and ends with a
guess action by the agent. At the beginning of every episode,
the environment randomly selects a secret address that the
victim will access. An epoch ends after 3,000 actions, even
if the current episode is still in progress. After each epoch,
the correct rate is computed. The correct rate is the fraction
of episodes during the epoch in which the agent has correctly
guessed the secret address.

D. Inefficiencies in Naive RL Approach

Although promising, AutoCAT’s naive RL approach leads to
significant inefficiencies. In our experiments, a single training
run of AutoCAT [6] on a machine equipped with dual Intel
Xeon Platinum 8380 CPUs (40 cores each), 512 GB of DDR4
3200 memory, and an NVIDIA RTX A4500 GPU takes over
two hours. This is impractical for two reasons:

1) AutoCAT discovers only one attack sequence per train-
ing run by design. Therefore, multiple runs are required
to uncover a comprehensive set of vulnerabilities. In fact,

several fundamentally different attack sequences were
found for the same cache structure in our experiments.

2) Functional verification of IC and ASIC designs con-
sumes the majority of development schedules. Accord-
ing to the 2020 Wilson Research Group study [7], an
average of 56% of IC and ASIC project time was spent
on functional verification. It also reports that 68% of the
projects fall behind the original schedules. Therefore,
little time remains for security validation such as side-
channel vulnerability testing.

We identify useless agent actions as a major reason for
this inefficiency. We define an action as useless when it does
not contribute to further exploration of the RL agent. In our
context, this corresponds to actions that do not alter the cache
states after its execution. Below are typical cases.

1) Accessing data that is already cached: This does not
contribute to further exploration because observations by
any action following this action do not change.

2) Flushing a cache line that is not currently cached:
For the same reason, this does not contribute to further
exploration.

III. RELATED WORK

MACTA [5] improves the stealthiness of attack sequences,
meaning that it generates ones that are less likely to be
detected. It achieves this by adopting a dual-policy framework,
where the attacker and detector policies are alternately opti-
mized in a fictitious-play loop. Through iterative updates of
both policies, MACTA produces attack sequences that not only
remain effective on real hardware but also evade the trained
detector with over 99% success rate.

Although important itself, MACTA does not address the
inefficiencies we identified. This is because MACTA’s reward
function emphasizes primarily attack success and detection
evasion and only applies penalties based on sequence length.
Therefore, it does not explicitly penalize actions that do not
change the cache state and its actions could include useless
ones. We focus explicitly on enhancing the efficiency of the
RL exploration by penalizing actions that leave the cache state
unchanged, rather than improving the stealthiness of attacks
or co-training a detector.

As summarized in Section II-B, non-ML approaches rely on
known attack patterns or specific hardware characteristics [2],
[4], [16], [17], lacking RL’s ability to explore automatically. As
a result, they struggle to handle undocumented cache behaviors
and to efficiently navigate the vast search space of potential
attack sequences.

IV. PROPOSED METHOD

A. Overview

In this work, we propose a new RL-based method for
cache vulnerability exploration that is more efficient than the
naive approach. We achieve this by detecting useless agent
actions and training the agent to avoid useless actions in future
exploration. Our approach comprises two key techniques:
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1) Mechanism to identify useless actions
2) Training mechanism that drives the agent to avoid use-

less actions during exploration
We explain each of them in the following subsections.

B. Identifying Useless Actions

To systematically identify useless actions, we compare the
cache states before and after each action. This alleviates the
need to extensively elaborate all the possible cases of useless
actions (and possibly missing some corner cases).

Capturing cache states to compare them involves different
methods depending on the environment. When the environ-
ment is a cache simulator, the cache states can be captured
from the in-memory representation of the simulated cache.
When the environment is real hardware, it is not as straightfor-
ward because probing the cache states by some measures (e.g.,
accessing some data) itself might change them. Establishing a
plausible way for this is our future work.

C. Training the Agent to Avoid Useless Actions

One possible solution of reducing the useless agent actions
is to introduce an ad-hoc mechanism in which the agent
records its past actions and ensures that the next action is not
useless. For example, we can let the neural network output an
action normally, and then avoid it (choose a different one) if
it is useless. However, this method lacks generalizability and
does not fully utilize the RL framework.

To overcome this limitation, we leverage the reward signals
of the RL framework. Specifically, we assign an immediate
negative reward whenever the agent executes a useless action.
This way we can tell the agent to avoid useless actions without
ad-hoc implementation.

In concrete, our training mechanism works as follows:
1) Capture the current cache state: Before executing an

action, the environment captures the current cache states.
2) Execute the action: The agent performs the chosen

action normally.
3) Compare cache states: After the action, the environ-

ment captures the new cache states and compares them
to the previous states. If the cache states have not
changed, the action is classified as useless.

4) Assign a negative reward: Actions identified as useless
are assigned a small negative reward (e.g., −0.01).

D. Implementation

We use the public AutoCAT implementation [6] as our
baseline and extend its environment in two aspects. First, we
add logic that determines whether an action has changed the
cache states to identify useless actions. The cache states are
captured by calculating the hash value of the in-memory object
that represents the simulated cache. Therefore, our current
prototype only works for simulated caches. Second, we modify
the rewards so that the agent receives a small negative reward
whenever it performs such a useless action. The actual value
of the negative reward is written in a config file and can be
easily adjusted. Actions that allow the victim to execute and

TABLE I
TESTED CACHE CONFIGURATIONS

Config. Type Ways Sets Victim Addr Attacker Addr Flush Inst
No.1 DM 1 4 0∼3 4∼7 no
No.2 DM+PFnextline 1 4 0∼3 4∼7 no
No.3 DM 1 4 0∼3 0∼3 yes
No.4 DM 1 4 0∼3 0∼7 no
No.5 FA 4 1 0 4∼7 no
No.6 FA 4 1 0 0∼3 yes
No.7 FA 4 1 0 0∼7 no
No.8 FA 4 1 0∼3 0∼3 yes
No.9 FA 4 1 0∼3 0∼7 yes
No.10 DM 1 8 0∼7 0∼7 yes
No.11 FA 8 1 0 0∼7 yes
No.12 FA 8 1 0 0∼15 no
No.13 FA+PFnextline 8 1 0 0∼15 no
No.14 FA+PFstream 8 1 0 0∼15 no
No.15 SA 2 4 0∼3 4∼11 no
No.16 2-level SA 2 4 0∼3 4∼11 no
No.17 2-level SA 2 8 0∼7 8∼23 no

guess the secret are exempt from the negative reward because
they are not expected to change the cache states.

V. EVALUATION

A. Evaluation Setup

We evaluate our method by comparing it with a naive RL-
based approach. The vanilla AutoCAT implementation [6] is
used as the baseline for the comparison. Both our system and
vanilla AutoCAT use an open-source cache simulator [1]. This
simulator supports multiple replacement policies, including
LRU, random [10], PLRU [14], and RRIP [9]. The simulated
cache is physically indexed and tagged. Both the attacker and
the victim access main memory with physical addresses.

The training hyperparameters we use are as follows. First
training continues until either the agent discovers an attack
sequence with 100% correct rate or 999 epochs are completed.
If the agent fails to reach this accuracy within 999 epochs, we
consider the training non-convergent. The other parameters are
the same as the vanilla AutoCAT. The learning algorithm is
PPO. The neural networks are updated every 2048 actions,
split into minibatches of 64.

• Hidden layer: 256 units with ReLU activation function
• Optimizer: Adam
• Discount factor (γ): 0.99
• Learning rate: 3× 10−4

• PPO clip ratio: 0.2
We conduct our experiments for 17 cache structures shown

in Table I. For each cache structure, experiments were con-
ducted 10 times and the average result is presented. We vary
the number of sets and ways, and toggle the availability of
cache flush instructions. DM, FA, and SA represent direct-
mapped, fully-associative, and set-associative caches, respec-
tively. Some configurations include prefetchers, such as the
nextline prefetcher or the stream prefetcher. Configurations
labeled “2-level SA” model a two-core system with a two-
level cache hierarchy. Each core has its own private direct-
mapped L1 cache, and both cores share a single inclusive set-
associative L2 cache.

3



TABLE II
REDUCTION OF USELESS ACTION RATIO

Config. Approach Total Actions Useless Action Ratio (%) Delta (pts)

No.1 Baseline 1,278,786 32.79 –
Proposal 1,561,594 39.62 +6.83

No.2 Baseline 1,403,410 33.13 –
Proposal 1,393,471 26.32 -6.81

No.3 Baseline 2,812,834 30.09 –
Proposal 3,160,743 27.82 -2.27

No.4 Baseline 2,436,943 33.87 –
Proposal 2,410,048 31.27 -2.60

No.5 Baseline 2,988,773 38.49 –
Proposal 2,081,238 46.70 +8.21

No.6 Baseline 1,325,707 34.43 –
Proposal 2,368,477 24.83 -9.60

No.7 Baseline 3,041,778 29.12 –
Proposal 3,545,075 27.66 -1.46

No.8 Baseline 3,145,930 34.59 –
Proposal 3,361,129 36.97 +2.38

No.9 Baseline 2,530,719 35.61 –
Proposal 5,031,057 32.49 -3.12

No.10 Baseline 44,111,128 16.32 –
Proposal Non-convergent – –

No.11 Baseline 2,160,143 37.66 –
Proposal 2,006,860 36.81 -0.85

No.12 Baseline 11,392,617 30.71 –
Proposal 4,259,088 30.94 +0.23

No.13 Baseline 12,687,713 37.22 –
Proposal 20,920,890 28.20 -9.02

No.14 Baseline 4,406,989 36.75 –
Proposal 4,916,277 32.97 -3.78

No.15 Baseline 6,117,652 43.08 –
Proposal 10,915,735 32.69 -10.39

No.16 Baseline 8,221,525 22.10 –
Proposal 5,379,145 24.28 +2.18

We evaluate our method with the following two metrics:
1) Reduction of Useless Action Ratio: We compare the

proposed method with the baseline to assess the differ-
ence in useless action rates.

2) Reduction of Total Training Time: We compare the
proposed method with the baseline to assess the differ-
ence in total training time.

B. Reduction Rate of Useless Agent Actions

Table II shows the ratio of useless actions for the baseline
and for our proposed method. The result for configuration
No. 17 is not shown because the training was non-convergent.
Overall, the results suggest that a considerable number of the
agent’s actions are useless in the baseline. Furthermore, the
proportion of these useless actions differs across various cache
configurations. In particular, configuration No. 15 experienced
the highest ratio of 43.08% while configuration No. 10 showed
the lowest ratio of 16.32%.

Applying our proposal reduces the ratio in 9 out of 16 con-
vergent setups. For instance, the ratio decreases from 33.17%
to 26.35% in configuration No. 2 and from 34.49% to 24.85%
in configuration No. 6. In contrast, some configurations exhibit
an increase in the useless action ratio. For example, it increases
by 6.85 points in configuration No. 1 and by 8.21 points in
configuration No. 5.

Overall, the results indicate that our proposal effectively
reduces useless actions in many scenarios. However, its impact
depends on the cache configuration. The results suggest that
our mechanism may unintentionally penalize useful actions in
certain cache configurations.

C. Reduction of Total Training Time

Fig. 1 presents the training time results for the 17 cache
configurations. To improve readability, the figure is split into
two separate bar charts. The upper chart shows the results for
configurations No. 1 through No. 9 and No. 11 through No. 16.
Configurations No. 10 and No. 17 are shown in a separate
lower chart with a different vertical axis scale because their
training times are much longer than the others.

Our proposal reduced the total training time in 11 cache
configurations out of 17. The geometric mean of the training
time ratio against the baseline across the 16 convergent config-
urations (No. 1 to No. 16) was 0.9516 and corresponds to an
average reduction of 4.84%. In the best cases, we observed a
28% speedup compared to the baseline in configuration No. 11
and 27% speedup in configuration No. 14. However, in the
worst case, we observed a 57% slowdown compared to the
baseline in configuration No. 10.

Our hypothesis for configuration No. 11 being reduced the
total training time the most is threefold.

1) The agent sometimes issues a series of flush actions
at the start of each episode to ensure that the cache
is empty. For example, the agent may generate the
following actions: flush 0 → flush 1 → flush 2 → ...
Here, an action “flush N” invalidates the cache line that
contains data at address N.

2) However, many of these flushes do not contribute to
exploration because the victim always accesses a single
address. Therefore, if the secret address is 0, the initial
flushes besides flush 0 do not contribute to the attack.

3) Our proposal penalized these flushes because they are
useless in our definition.

In contrast, the total training time was increased the most
in configuration No. 10. Our hypothesis for the reason is that
actions contributing the attack are classified as useless due
to our definition. Because the secret address spans from 0 to
7 in this configuration, the attacker must ensure that all the
cache lines are empty before allowing the victim to execute.
However, this confirming actions are classified as useless in
our definition because flushing a cache line corresponding to
a non-cached address does not change the cache states.

D. Impact of Useless Action Reduction on Training Time

We analyze the relationship between the reduction in the
useless action ratio reported in Table II and the total training
time shown in Figure 1. Among the ten configurations where
our proposal reduced the useless action ratio (No. 2, 3, 4, 6,
7, 9, 11, 13, 14, and 15), the total training time also decreased
in nine of them (all except No. 15). However, there is no
strong correlation between the reduction rate of the useless
agent actions and the speedup of the training time. One of the
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Fig. 1. Comparison of Total Training Time (Time in 1000s)

reasons behind this is that the total number of actions also
changed under our proposal.

In configuration No. 15, the useless action ratio decreased
by 10.39 percentage points but the training time increased by
approximately 9%. This result can be attributed to the fact that
the total number of actions increased from approximately 6.1
million in the baseline to 10.9 million under our proposal. This
led to the longer training time in our proposal even though it
achieved a lower useless action ratio.

VI. CONCLUSION

Evaluating the vulnerabilities of a given cache structure to
cache-timing attacks is an important and time-consuming task.
To this end, we identified a major reason of a naive RL-
based approach for cache vulnerability exploration is useless
agent actions. Based on this observation, we proposed a
novel method to train an RL agent to avoid useless actions
to improve the training efficiency. Our evaluation revealed
that that up to 43.08% of agent actions were useless on 17
configurations, showed that our proposal reduced them by up
to 10.39 points and reducing the training time by 28% in the
best case and by 4.84% in the geomean.
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