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Abstract

Neural metrics have achieved impressive corre-001
lation with human judgements in the evaluation002
of machine translation systems, but before we003
can safely optimise towards such metrics, we004
should be aware of (and ideally eliminate) bi-005
ases toward bad translations that receive high006
scores. Our experiments show that sample-007
based Minimum Bayes Risk decoding can be008
used to explore and quantify such weaknesses.009
When applying this strategy to COMET for010
en→de and de→en, we find that COMET mod-011
els are not sensitive enough to discrepancies in012
numbers and named entities. We further show013
that these biases are hard to fully remove by014
simply training on additional synthetic data.1015

1 Introduction016

Recently, neural machine translation evaluation017

metrics have reached better correlation scores018

with human evaluators than surface-level metrics019

like BLEU (Papineni et al., 2002). In particular,020

COMET (Rei et al., 2020a) has shown significant021

potential as a leading evaluation metric both in022

shared tasks (Mathur et al., 2020; Freitag et al.,023

2021c) and other studies on machine translation024

evaluation metrics (Kocmi et al., 2021). The main025

benefits of such neural metrics are that they do026

not rely on surface-level similarity to a reference027

translation and that some of them operate in a mul-028

tilingual representation space. This also allows for029

comparing translations to the source sentence.030

A recent evaluation as part of the WMT 2021031

metrics shared task (Freitag et al., 2021c) suggests032

that neural metrics are also less susceptible to many033

weaknesses of earlier non-neural metrics, e.g. an034

antonym in the translation hurting the BLEU score035

exactly the same amount as a synonym. However,036

it is still unclear whether or not these metrics also037

introduce new biases that are harder to detect since038

they are essentially ‘black box’ metrics that do not039

1Code and data will be released upon publication.

explain why a certain score is attributed to a trans- 040

lation. Failing to identify these biases in neural 041

metrics could lead the community to optimise to- 042

wards metric ‘blind spots’, either directly through 043

methods such as Minimum Risk Training (Shen 044

et al., 2016), or more slowly by basing modelling 045

choices on metric scores. It is therefore worthwhile 046

to find new means to uncover weaknesses of neural 047

machine translation metrics. 048

In this paper, we show that sampling-based Min- 049

imum Bayes Risk (MBR) decoding - where a pool 050

of samples are compared against each other using 051

a machine translation evaluation metric as a utility 052

function - can render blind spots of these metrics 053

more observable. When applying COMET as the 054

utility function, we find many examples where a 055

translation hypothesis is chosen that contains dif- 056

ferent numbers or named entities than the source 057

and reference (see examples in Table 1). Through a 058

targeted sensitivity analysis, we identify that these 059

are indeed weaknesses of COMET and we show 060

that it can be hard to remove them from the model. 061

Our contributions are the following: 062

• We propose to use sample-based MBR de- 063

coding to explore and measure weaknesses of 064

neural machine translation evaluation metrics. 065

• We find that COMET is not sensitive enough 066

to number differences and mistranslations of 067

named entities when translating from de↔en. 068

• We show that simply retraining COMET on 069

synthetic data is not enough to fully eliminate 070

these blind spots. 071

2 Related Works 072

How to best evaluate machine translation models 073

has been a long-standing question in the research 074

community. Ideally, we could employ humans to 075

judge the quality of different models but this is 076
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src Schon drei Jahre nach der Gründung verließ Green die Band 1970.

ref Green left the band three years after it was formed, in 1970.

MBRchrF++ Already three years after the foundation, Green left the band in 1970.

MBRCOMET Three years after the creation, Green left the band in 1980 .

src [...] Mahmoud Guemama’s Death - Algeria Loses a Patriot [...], Says President Tebboune.

ref [...] Mahmoud Guemamas Tod - Algerien verliert einen Patrioten [...], sagt Präsident Tebboune.

MBRchrF++ [...] Mahmoud Guemamas Tod - Algerien verliert einen Patriot [...], sagt Präsident Tebboune.

MBRCOMET [...] Mahmud Guemamas Tod - Algerien verliert einen Patriot [...], sagt Präsident Tebboene .

Table 1: Examples of MBR decoding outputs with chrF++ and COMET as utility metrics. The outputs chosen with
COMET indicate less sensitivity towards discrepancies in numbers and named entities.

time-consuming, costly and requires trained pro-077

fessionals. Various automatic machine translation078

metrics have been proposed over the years that typ-079

ically compare a machine translation output to a080

reference sentence according to surface-level simi-081

larity (Papineni et al., 2002; Popović, 2015) or on a082

shallow semantic level (Banerjee and Lavie, 2005).083

With the rise of contextual embeddings and large084

multilingual Transformer language models, met-085

rics that map translations and references into the086

same latent space and compare the cosine similar-087

ity between them (Lo, 2020) or use them as inputs088

to predict a score (Sellam et al., 2020; Rei et al.,089

2020a) have become popular. Such neural metrics090

have been shown to agree more with human evalua-091

tion than previously popular metrics such as BLEU092

(Papineni et al., 2002) or chrF (Popović, 2015).093

However, these neural metrics can also introduce094

new biases that we are not yet aware of (Hanna and095

Bojar, 2021). In this paper, we aim to find a way to096

identify such weaknesses via Minimum Bayes Risk097

(MBR) decoding. While MBR decoding was a fre-098

quently used decoding strategy in the days of sta-099

tistical machine translation (Goel and Byrne, 2000;100

Kumar and Byrne, 2004; Tromble et al., 2008),101

it has only recently gained traction in the context102

of neural machine translation. Eikema and Aziz103

(2020) argue that MBR decoding using samples as104

hypotheses results in an unbiased candidate pool in105

contrast to beam search outputs which maximise106

the probability under the model. Indeed, if the107

machine translation model generating the samples108

is strong enough, humans prefer MBR-decoded109

hypotheses selected with BLEURT (Sellam et al.,110

2020) as the utility function over beam search out-111

puts (Freitag et al., 2021b).112

Müller and Sennrich (2021) further show that113

MBR outputs can inherit biases from the utility114

function that is used, for example, the length bias 115

(Nakov et al., 2012) with BLEU as the utility func- 116

tion. Consequently, it stands to reason that MBR 117

decoding can also be used to uncover new biases 118

of metrics that are used as utility functions, as we 119

will show in this work. 120

3 Minimum Bayes Risk Decoding 121

Traditionally, maximum a posteriori (MAP) de- 122

coding is used in the context of neural machine 123

translation. The goal is to find the translation hy- 124

pothesis hi among all possible hypotheses H that 125

is most probable under the translation model given 126

the source sentence x and the model parameters θ: 127

y∗ = argmax
hi∈H

pmodel(hi|x, θ) (1) 128

In practice, it is not feasible to consider every 129

possible hypothesis. Beam search offers a popular 130

and effective approximation. 131

In contrast, MBR decoding aims to find a trans- 132

lation that minimises the expected cost (risk) of 133

choosing a candidate translation hi, assuming that 134

we have some loss function L to compare the can- 135

didate to a true translation hj , and access to the 136

true probability distribution P : 137

y∗ = argmin
hi∈H

∑
hj∈H

P (hj |x)L(hi, hj) (2) 138

Since we do not have access to the true proba- 139

bility distribution P , and cannot exhaustively sum 140

over all possible translations H , we have to make 141

several approximations. First, we select a subset 142

of hypotheses as candidate translations C to make 143

the computation tractable. Eikema and Aziz (2020) 144

suggest drawing ancestral samples from the trans- 145

lation model as a set of unbiased hypotheses, and 146
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we follow this sampling-based MBR approach. An-147

cestral samples are created by sampling from the148

translation model according to the probability dis-149

tribution over the vocabulary at each time step (con-150

ditioned on the source sentence and the previously151

produced output tokens).152

Second, we need to create an additional set of153

“support hypotheses” S that serve as an approxima-154

tion to the unknown true translation. The set of155

candidates C and the set of support hypotheses S156

can be created separately but in this work, we fol-157

low Eikema and Aziz (2020) and let our translation158

model produce a set of 100 ancestral samples that159

are used both as candidates and support (C = S).160

Third, we need to define a loss function L. In161

practice, we often substitute the loss function for a162

similarity function where higher values are better.163

Such a “utility function” u is then used to search164

for the translation hi that maximises the expected165

utility or – to paraphrase – is most similar to all166

hypotheses in the support set S:167

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(hi, hj) (3)168

Any automatic machine translation evaluation169

metric can be used as the utility function u. Eikema170

and Aziz (2021) find that BEER (Stanojević and171

Sima’an, 2014) works best among a range of non-172

neural metrics. More recently, Freitag et al. (2021b)173

compare several metrics as utility functions in a hu-174

man evaluation of MBR-decoded outputs where the175

neural metric BLEURT (Sellam et al., 2020) clearly176

outperforms non-neural metrics. In this paper, we177

explore the use of another neural evaluation metric178

as the utility function, namely COMET. Since the179

reference-based COMET model takes the source,180

a translation hypothesis and a reference (approxi-181

mated in MBR decoding with another hypothesis)182

as input, our formulation of MBR decoding now183

takes into account the source sentence x:184

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(x, hi, hj) (4)185

For an efficiency-related discussion of our im-186

plementation, please refer to Section 4.3.187

4 Experiment Setup188

4.1 Translation Model189

To be able to generate samples, we train two Trans-190

former Base machine translation models (Vaswani191

et al., 2017) using the nematus2 (Sennrich et al., 192

2017) framework, one from de→en and one from 193

en→de. We follow Eikema and Aziz (2021) and 194

use all available parallel data from the WMT 2018 195

news shared task (Bojar et al., 2018) except for 196

Paracrawl as training data. This amounts to 5.9 mil- 197

lion sentence pairs. After deduplication, we have 198

approximately 5.6 million training examples. 199

Both models are trained for 250k updates and 200

we choose the best checkpoint based on the BLEU 201

score as evaluated on newstest2017 using 202

SacreBLEU (Post, 2018). We compute a joint 203

subword vocabulary of size 32k with byte pair 204

encoding (Sennrich et al., 2016) using the Sen- 205

tencePiece implementation (Kudo and Richardson, 206

2018). During training and decoding, the maxi- 207

mum sequence length is set to 200 tokens. 208

Our models are built with 6 encoder layers, 6 209

decoder layers, 8 attention heads with an embed- 210

ding and hidden state dimension of 512 and a feed- 211

forward network dimension of 2048. For regu- 212

larisation, we use a dropout rate of 0.1 for BPE- 213

dropout (Provilkov et al., 2020) during training, for 214

the embeddings, for the residual connections, in 215

the feed-forward sub-layers and for the attention 216

weights. We train with tied encoder and decoder 217

input embeddings as well as tied decoder input and 218

output embeddings (Press and Wolf, 2017) and ap- 219

ply exponential smoothing of model parameters 220

(decay 10−4) (Junczys-Dowmunt et al., 2018). Fol- 221

lowing previous work on MBR decoding (Eikema 222

and Aziz, 2020), we train without label smoothing. 223

For optimisation, we use Adam (Kingma and Ba, 224

2015) with standard hyperparameters and a learn- 225

ing rate of 10−4. We follow the Transformer learn- 226

ing schedule described in (Vaswani et al., 2017) 227

with a linear warm-up over 4,000 steps. Our to- 228

ken batch size is set to 16,348 and we train on 4 229

NVIDIA Tesla V100 GPUs. 230

4.2 COMET Models 231

We experiment with two COMET models that were 232

trained towards two different regression objectives: 233

• wmt20-comet-da (Rei et al., 2020b), de- 234

veloped for the WMT 2020 metrics shared 235

task (Mathur et al., 2020) and trained to pre- 236

dict Direct Assessment (DA) (Graham et al., 237

2017) scores. 238

• wmt21-comet-mqm (Rei et al., 2021), de- 239

2github.com/EdinburghNLP/nematus
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veloped for the WMT 2021 metrics shared240

task (Freitag et al., 2021c) and trained to241

predict MQM scores (Freitag et al., 2021a)242

based on the Multidimensional Quality Met-243

rics (MQM) methodology (Uszkoreit and244

Lommel, 2013).245

4.3 MBR Decoding Implementations246

For non-neural metrics, we use the MBR decod-247

ing implementation3 provided by Eikema and Aziz248

(2021). We use only unique samples such that no249

hypothesis is assigned a higher average MBR score250

simply because it perfectly matches one or multi-251

ple hypotheses in the support.4 In our experiments,252

we use chrF++ (Popović, 2017) and BLEU as non-253

neural metrics. For BLEU, the implementation254

internally uses SacreBLEU (Post, 2018)5.255

For our experiments with COMET, we adapt256

the official COMET implementation6 and imple-257

ment an option for MBR decoding. Since COMET258

first creates a pooled sentence representation of the259

source and each of the two hypotheses before con-260

structing a single vector from these representations261

and passing it through a regression layer, it is cru-262

cial that the implementation does not naively call263

COMET on every hypothesis pair. Instead, we en-264

code the source sentence and hypotheses only once265

with XLM-R (Conneau et al., 2020) and then score266

all combinations of hypothesis pairs in parallel.267

4.4 Evaluation Data268

We decide to use the test sets from the WMT 2021269

news shared task (Akhbardeh et al., 2021) as our270

evaluation data. This dataset brings two major ben-271

efits to our analysis:272

• In the de↔en directions, it provides at least273

two references for every source sentence. This274

allows us to compare how much MBR scores275

differ between two equivalent human transla-276

tion alternatives as a reference point.277

• This dataset was not part of the train-278

ing data of the wmt20-comet-da and279

wmt21-comet-mqm COMET models280

which avoids the risk that the models281

have seen scores for similarly erroneous282

translations of these source sentences before.283

3https://github.com/Roxot/mbr-nmt
4Using all samples does not affect our results.
5Using floor smoothing with a smoothing value of 0.1.
6https://github.com/Unbabel/COMET

There are 1000 sentence triplets (source, two 284

human translations) for de→en where we use trans- 285

lation A as our reference and translation B as an 286

alternative translation and 1002 sentence triplets for 287

en→de where we use translation C as our reference 288

and translation D as an alternative translation. 289

5 Exploration of MBR-Decoded Outputs 290

We employ sampling-based MBR decoding as a 291

strategy to identify weaknesses in evaluation met- 292

rics that are used as utility functions. We believe 293

that – in addition to general errors – we may also 294

find other errors that can stem from two sources: 295

First, since samples are often of lower quality 296

than hypotheses produced with beam search, neural 297

metrics may behave unexpectedly when faced with 298

errors that occur less frequently in beam search 299

based machine translation outputs on which they 300

were trained. Second, in MBR decoding, we com- 301

pare a candidate translation hypothesis to a pseudo- 302

reference (another hypothesis) instead of an actual 303

reference. This is also something neural metrics 304

were neither trained on nor designed to do. 305

We are most interested in general errors and er- 306

rors of the first type since the second type is only 307

relevant for MBR decoding itself. Therefore, we 308

conduct additional experiments in Section 6 to dis- 309

tinguish between these two sources for the errors 310

we identify below. Note that errors of the second 311

type may become more important to investigate 312

as MBR decoding becomes more prevalent or if 313

we evaluate against multiple translation hypotheses 314

instead of references (Fomicheva et al., 2020). 315

In our experiments, we first manually compare 316

MBR-decoded outputs that were chosen with two 317

different evaluation metrics as the utility function: 318

chrF++ and COMET. For COMET, we notice sev- 319

eral cases where the chosen hypothesis contains 320

numbers and named entities that do not match with 321

the source and the reference, even though the major- 322

ity of samples in the support set contain the correct 323

numbers and named entities. Two examples are 324

shown in Table 1. 325

To test if these findings apply at scale, we run 326

an automatic evaluation. For numbers, we use reg- 327

ular expressions to identify numbers in the MBR- 328

decoded outputs. We measure the overlap between 329

numbers in the source and the translation with the 330

F1-score. We decide to compare to the source to 331

be able to compute the overlaps for the reference 332

and the alternative human translation as well. The 333
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Numbers Named Entities

de-en en-de de-en en-de

reference 93.24 93.46 n/a n/a

alternative 94.83 + 1.59 95.66 + 2.20 73.73 77.66

beam search 95.91 + 2.67 95.73 + 2.27 71.55 - 2.18 70.03 - 7.63

MBR chrF++ 91.22 - 2.02 93.43 - 0.03 67.59 - 6.14 62.44 -15.22

MBR bleu 93.88 + 0.64 91.37 - 2.09 65.14 - 8.59 62.50 -15.16

MBR wmt20-comet-da 90.34 - 2.90 89.14 - 4.32 65.33 - 8.40 54.17 -23.49

MBR wmt21-comet-mqm 82.35 -10.89 77.10 -16.36 58.15 -15.58 53.31 -24.35

MBR retrain-comet-da 92.65 - 0.59 90.17 - 3.29 66.48 - 7.25 60.48 -17.18

Table 2: Results of the automatic evaluation. F1-scores (%) for number and named entity matches and F1-score
changes compared to the reference for numbers and alternative translation for named entities. F1-scores that
increased after retraining COMET are marked in green, while F1-scores that decreased are marked in red.

results can be seen in the left part of Table 2. For334

named entities, we use spaCy7 (Honnibal et al.,335

2020) to identify entities of type ‘person’. Here, we336

compute the F1-scores to measure the overlap to337

the reference rather than to the source (as done for338

numbers) since the named entity recognition (NER)339

models are different for English and German. The340

results are shown in the right part of Table 2.341

These simple automatic ‘gold’ annotations pro-342

duce false positives8, which explains why neither343

the reference nor the alternative reference (for344

named entities) achieves an F1-score of 100%.345

Nevertheless, these results indicate that MBR de-346

coding with the COMET metrics chooses more347

erroneous translations with respect to these crite-348

ria than with the two non-neural metrics or com-349

pared to beam search decoding. Interestingly, the350

wmt21-comet-mqm model performs consider-351

ably worse than the wmt20-comet-da model in352

this analysis. Oracle experiments where we choose353

the sample closest to the two references according354

to different metrics (see Appendix B) show smaller355

F1-score differences between both COMET mod-356

els and the non-neural metrics but they still perform357

worse, particularly compared to chrF++.358

It is worth noting that the beam search output has359

the highest F1-score of all tested decoding strate-360

gies. This suggests that mistranslations of numbers361

and named entities do not occur as frequently in362

beam search outputs and COMET’s insensitivity to363

numbers and named entities could therefore have364

7English: en_core_web_lg, German: de_core_news_lg
8For example, translating “3 pm” in the source to ”15:00”

is a valid translation, but would be counted as a mistake with
the automatic number matching.

less impact when evaluating beam search outputs. 365

However, Wang et al. (2021) recently showed that 366

state-of-the-art research models and commercial 367

NMT systems still struggle with numerical transla- 368

tions even when decoding with beam search. Such 369

mistranslations may also occur more frequently 370

in out-of-domain and low-resource settings and 371

therefore, we argue that this insensitivity is also 372

problematic for beam search output. 373

This automatic evaluation has strengthened the 374

findings in our manual exploration that wrong 375

number and named entity translations are recur- 376

ring problems. To better quantify how sensitive 377

COMET models are toward these error types, we 378

propose to perform an MBR-based sensitivity anal- 379

ysis in the next section. 380

6 MBR-Based Sensitivity Analysis 381

Our findings in the previous section stand in con- 382

trast to the corrupted reference analysis performed 383

as part of the WMT 2021 metrics shared task (Fre- 384

itag et al., 2021c) where COMET mostly preferred 385

the correct alternative human translation to one 386

with swapped numbers when comparing to the ref- 387

erence. In reality, we will seldom have a hypothesis 388

pool with a perfect translation and variants of it that 389

only differ in one aspect. Ideally, evaluation met- 390

rics should be able to order translation hypotheses 391

with many different error types according to their 392

severity. Therefore, it makes sense to compare how 393

much metrics punish different error types. 394

Since our previous analysis showed that many 395

samples with number and named entity mismatches 396

are chosen in MBR decoding, this indicates that 397
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Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.047 -0.054 -0.255 -0.086 -0.101 -0.385 altern. 0.022
del -0.048 -0.044 -0.214 -0.085 -0.079 -0.314 copy -0.593 -0.472
sub -0.024 -0.056 -0.270 -0.041 -0.119 -0.410 hallucin. -1.277 -1.907

whole -0.064 -0.122 -0.320 -0.111 -0.212 -0.496

en-de

add -0.024 -0.053 -0.160 -0.057 -0.108 -0.257 altern. -0.014
del -0.037 -0.044 -0.113 -0.063 -0.078 -0.215 copy -1.449 -1.350
sub -0.011 -0.064 -0.180 -0.019 -0.113 -0.295 hallucin. -1.560 -2.055

whole -0.040 -0.103 -0.347 -0.079 -0.173 -0.509

average -0.037 -0.068 -0.232 -0.068 -0.123 -0.360

Table 3: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers show
the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when using
wmt20-comet-da as the utility function.

COMET is not as sensitive to these error types as to398

other errors. To further support this finding, we pro-399

pose to look more closely at how COMET behaves400

with different error types. As described in Section401

3, in MBR decoding, every candidate translation is402

assigned a score that represents the average simi-403

larity to the support hypotheses. Consequently, if404

the support is kept constant and a targeted change405

is made to a candidate translation, the difference in406

this MBR score indicates how sensitive the utility407

function was towards this change. We term this an408

“MBR-based sensitivity analysis”.409

To measure COMET’s sensitivity towards410

changes in numbers and named entities, we cre-411

ate a candidate pool that consists of the reference412

translation and several changed variants. Note that413

the support still contains the same 100 samples414

that were used to find the MBR-decoded outputs415

described in Section 5. In particular, we make the416

following targeted changes to the reference to mea-417

sure the sensitivity towards each change:418

• numadd: one digit is added to a number at a419

random position.420

• numdel: one digit is removed from a number421

at a random position.422

• numsub: one digit is substituted with another423

digit in a number at a random position.424

• numwhole: one entire number is substituted425

with another number.426

• NEadd: one letter is added to a named entity427

at a random position.428

• NEdel: one letter is removed from a named 429

entity at a random position. 430

• NEsub: one letter is substituted with another 431

letter in a named entity at a random position. 432

• NEwhole: a named entity is substituted with 433

another named entity. 434

As reference points, we also apply the same 435

types of changes to random nouns in the reference: 436

• nounadd: one letter is added to a random noun 437

at a random position. 438

• noundel: one letter is removed from a random 439

noun at a random position. 440

• nounsub: one letter is substituted with another 441

letter in a random noun at a random position. 442

• nounwhole: a random noun is substituted with 443

another noun. 444

Additionally, our candidate pool contains the 445

following hypotheses to be used as controls: 446

• altern.: the second human reference provided 447

as part of the WMT 2021 news shared task 448

simulating an alternative translation. 449

• copy: the original, unchanged source sentence 450

simulating a model that simply copied the 451

source to the decoder side. 452

• hallucin.: a sentence that is completely unre- 453

lated to the source. 454
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We use the same tools to identify numbers and455

named entities as in Section 5 to create these per-456

turbations of the reference. For each newly cre-457

ated candidate, we compute the difference to the458

MBR score of the reference. We then average459

those differences across sentences for each pertur-460

bation type. The results for the sensitivity analysis461

with the wmt20-comet-da model can be seen462

in the left part of Table 3. We focus here on the463

wmt20-comet-da model since this is currently464

the model the authors recommend to use.9465

The controls, i.e. alternative translation, copied466

sentence and hallucination, behave as expected.467

The MBR score difference to the hallucination is468

by far the largest, followed by the copied source.469

For the alternative reference, we see the smallest470

MBR score difference.10 More importantly, all tar-471

geted changes to numbers or named entities result472

in a much smaller difference in MBR score com-473

pared to changes to the random nouns. This shows474

that COMET is not as sensitive to such discrep-475

ancies as it should be since such mistranslations476

can drastically alter the meaning. Both BLEU and477

chrF++ are more sensitive to changes to numbers478

and named entities than to random nouns (see Ap-479

pendix C).480

Following our discussion of error sources at the481

beginning of Section 5, it is a valid concern that if482

we were to compare the candidates to high-quality483

support translations rather than samples, COMET484

may be more sensitive toward number and named485

entity differences as there would be fewer other dis-486

crepancies between the candidates and the support.487

To test if this is the case, we repeat the sensitivity488

analysis but now use the two alternative references489

as the support instead of the 100 samples that were490

used before. The candidates are formed by apply-491

ing the same perturbations as before to the 1-best492

beam search output instead of the reference. This493

mimics an oracle setup. The results for this experi-494

ment are shown in the middle of Table 3. Note that495

we cannot compare to an alternative translation for496

the beam search output in this setup.497

The differences in the MBR score of the unper-498

turbed beam search output are generally larger in499

this setup, which indicates that COMET is indeed500

9https://github.com/Unbabel/COMET/
blob/master/METRICS.md

10Note that this is due to averaging over sentences where
the alternative sometimes gets a higher, sometimes a lower
score. The average absolute difference is 0.111 which shows
that the difference to the alternative of an individual sentence
can be much larger.

more sensitive to errors when used as intended, 501

i.e. with high-quality translations and correct refer- 502

ences. However, we can still see that the perturba- 503

tions made to random nouns result in much larger 504

differences than perturbations made to numbers or 505

named entities. This indicates that the problem 506

cannot be attributed to the MBR decoding setting 507

and low-quality pseudo-references alone. 508

7 COMET Retraining 509

One possible explanation for the low sensitivity of 510

COMET to perturbations of numbers and named 511

entities is that these errors are too rare in the WMT 512

outputs used to train COMET. We decide to retrain 513

COMET on the original training data plus added 514

synthetic data on which we perform the same per- 515

turbations as described in Section 6. The idea is 516

that the newly trained model is more sensitive to- 517

ward named entity or number mismatches between 518

the translation and its reference and/or source. 519

To retrain the wmt20-comet-da model, we 520

use the data from the WMT metrics shared tasks 521

collected in the years 2017 to 2019 (Bojar et al., 522

2017; Ma et al., 2018, 2019) as training data. For 523

every de→en or en→de system output that contains 524

a number or a named entity, we randomly apply one 525

of the perturbations described in Section 6 (except 526

for the perturbations of random nouns and whole 527

named entities). To encourage COMET to punish 528

such synthetically inserted mismatches, we modify 529

the scores of the original examples by subtracting a 530

penalty from the z-score of the Direct Assessment 531

(DA) score. We retrain three different models with 532

penalties of -0.2, -0.5 and -0.8 respectively. Within 533

every experiment, the penalty is the same for all 534

error classes. The resulting ∼61k synthetic training 535

examples are then added to the ∼640k original 536

examples which means that roughly 10% of the 537

data are synthetic.11 538

We follow the hyperparameter suggestions in 539

Rei et al. (2020b) for retraining COMET but we 540

do not perform model averaging. The models are 541

trained for two epochs and the hyperparameters are 542

listed in Appendix A. We ensure that the retrained 543

models still perform as well as the original model 544

on the WMT 2020 metrics shared task (Mathur 545

et al., 2020). The average difference in system- 546

level Pearson correlation to the original COMET 547

model lies within 0.006 for all three penalties. The 548

11We also trained models with larger amounts of synthetic
data but did not see an improvement.
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Figure 1: Difference in sensitivity to the same error type applied to a random noun for the de-en test set with
samples as support. Comparing the original wmt20-comet-da to three retrained models, with different amounts
subtracted from the original score for synthetic examples (-0.2, -0.5 and -0.8).

full results can be found in Appendix E.549

The effects of retraining with different penalties550

can be seen in Figure 1 (tables in Appendix D).551

Subtracting -0.2 from the original scores for syn-552

thetic examples can slightly reduce the difference553

between the MBR scores for numbers / named en-554

tities and random nouns with the same error types.555

Retraining with -0.5 subtracted from the original556

score improves this further but still cannot close557

this gap completely. With a penalty of -0.8, we now558

see a larger sensitivity to numbers and named en-559

tities than to random nouns for several error types.560

However, the difference to random nouns is still561

rather high for substituting a digit in numbers.562

When repeating the automatic analysis from Sec-563

tion 5 with the penalty -0.8 model, we see that564

retraining does improve the F1-scores (see last row565

in Table 2). However, the retrained COMET model566

can still not beat non-neural utility functions which567

indicates that it is still less sensitive to mismatches568

in numbers and named entities.569

From this experiment, we conclude that remov-570

ing such blind spots from COMET - once identified571

- might need more effort than simply training on572

additional synthetic data. We hypothesise is that573

the XLM-R component learns very similar repre-574

sentations for numbers and rare words like named575

entities during pretraining which could be hard to576

reverse with finetuning only. Lin et al. (2020) show577

that pretrained language models are surprisingly578

bad at guessing the correct number from context579

(e.g. "A bird usually has [MASK] legs.") which580

supports this hypothesis. Several other works also581

find that task-specific models often struggle with582

numbers and named entities such as in summari-583

sation (Zhao et al., 2020) or question answering584

(Dua et al., 2019; Kim et al., 2021). We leave a585

more extensive analysis of biases in the human 586

evaluation training data (e.g. unpunished number 587

mismatches) and further experiments on weakness- 588

targeted training for future work. 589

8 Conclusion 590

Identifying weaknesses of neural machine transla- 591

tion evaluation metrics becomes more important 592

as these essentially ‘black box’ evaluation tools 593

become more popular and are optimised towards 594

during model development. We show that MBR 595

decoding can be used to explore biases of such met- 596

rics. Through a case study, we show that COMET 597

is relatively insensitive to mistranslated numbers 598

and named entities. This can be seen both in the 599

MBR-decoded output which contains a higher num- 600

ber of these errors compared to beam search (or 601

MBR with other utility functions) and in an MBR- 602

based sensitivity analysis which compares the dif- 603

ferences in MBR scores that arise when such errors 604

are introduced to a candidate translation. We also 605

show that this insensitivity is not simply the result 606

of insufficient training data containing such errors: 607

retraining COMET with additional synthetic data 608

did not fully alleviate this weakness. 609

While errors related to number and named en- 610

tity translation were very salient in our exploration, 611

we do not claim that this case study is exhaustive. 612

In our manual analysis, we also see anecdotal ev- 613

idence of polarity errors and nonsensical German 614

compounds. We hope our findings motivate further 615

research into identifying and mitigating biases of 616

neural machine translation metrics – we envision 617

that actively searching for biases in neural metrics, 618

for example by using them as utility functions in 619

MBR, could become an important step during met- 620

ric development. 621
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9 Ethical Considerations622

In our work, we only use publicly available toolk-623

its and datasets and do not collect any additional624

data. Our experiments also do not involve human625

annotators. The main contribution of our paper626

is a new approach for identifying weaknesses in627

neural machine translation evaluation metrics using628

MBR decoding. We believe this approach is largely629

beneficial to the research community as a tool to630

investigate ‘blind spots’ of commonly used metrics631

and we do not see any immediate risks.632
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dalena Biesialska, Ondřej Bojar, Rajen Chatter-635
jee, Vishrav Chaudhary, Marta R. Costa-jussa,636
Cristina España-Bonet, Angela Fan, Christian Fe-637
dermann, Markus Freitag, Yvette Graham, Ro-638
man Grundkiewicz, Barry Haddow, Leonie Harter,639
Kenneth Heafield, Christopher Homan, Matthias640
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,641
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp642
Koehn, Nicholas Lourie, Christof Monz, Makoto643
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki644
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-645
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-646
cos Zampieri. 2021. Findings of the 2021 conference647
on machine translation (WMT21). In Proceedings of648
the Sixth Conference on Machine Translation, pages649
1–88, Online. Association for Computational Linguis-650
tics.651

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:652
An automatic metric for MT evaluation with im-653
proved correlation with human judgments. In Pro-654
ceedings of the ACL Workshop on Intrinsic and Ex-655
trinsic Evaluation Measures for Machine Transla-656
tion and/or Summarization, pages 65–72, Ann Arbor,657
Michigan. Association for Computational Linguis-658
tics.659
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A Hyperparameters for COMET943

Retraining944

We list all hyperparameters used for training945

the retrain-comet-da models with different946

penalties in Tables 4. Each model was trained on 1947

NVIDIA Tesla V100 GPU.948

Hyperparameter Value

nr_frozen_epochs 1
keep_embeddings_frozen True
optimizer Adam
encoder_learning_rate 1.0e-05
learning_rate 3.0e-05
layerwise_decay 0.95
encoder_model XLM-RoBERTa
pretrained_model xlm-roberta-large
pool avg
layer mix
dropout 0.1
batch_size 2
accumulate_grad_batches 8
hidden_sizes 3072, 1536
load_weights_from_checkpoint null
min_epochs 2
max_epochs 2

Table 4: Hyperparameters used to retrain
wmt20-comet-da.

B Oracle Results for Automatic Analysis949

In MBR, we use machine translation metrics in950

an unintended way since we compare translation951

hypotheses against other hypotheses rather than a952

reference translation. To check if the results for953

the COMET models in our automatic analysis stem954

from this train-test mismatch, we also run an oracle955

experiment. Rather than comparing all samples956

against each other with MBR, we choose the sam-957

ple that is most similar to the human reference958

translations. The results can be seen in Table 5.959

Most error rates are better in the oracle setup com-960

pared to the MBR setup. Especially, the error rates961

for the COMET models are now closer to the non-962

neural metrics. However, the gap to chrF++ is still963

rather large, especially for named entities.964

C MBR-based Sensitivity Analysis for965

BLEU and chrF++966

The MBR-based sensitivity analysis can also be967

used to compare COMET to non-neural metrics.968

The results when using BLEU or chrF++ as the util-969

ity function can be seen in Table 6 and Table 7 re-970

spectively. We can see that with BLEU the changes 971

made to random nouns result in smaller MBR dif- 972

ferences than changes to numbers or named entities. 973

For chrf++, the changes to random nouns result in 974

smaller MBR differences than changes to named 975

entities but slightly larger differences than changes 976

to numbers. The cause for this may be that num- 977

bers are often shorter than named entities or nouns 978

and a change will affect fewer n-grams. For ran- 979

dom nouns, there may be many possible alternative 980

translations in the samples and the references. If 981

the random noun does not occur in the sentence 982

we compare to, making a change to it will not af- 983

fect the BLEU score and only partially the chrF++ 984

score which can explain these results. 985

D Retraining with Different Penalties 986

Tables 8, 9, 10 show the results of the sensitivity 987

analysis for the retrained models with penalties 988

of -0.2, -0.5 and -0.8 respectively. The difference 989

between the sensitivity scores for numbers / named 990

entities and for random nouns becomes smaller as 991

the penalty increases. With a penalty of -0.8, we see 992

that for most error types the sensitivity scores for 993

random nouns are either lower than either (blue) or 994

both (green) for numbers and named entities. Note 995

that the differences in MBR score compared to the 996

reference (left) and the 1-best beam search output 997

(right) also become larger as the penalties increase. 998

However, this does not affect on the models’ ability 999

to score real translations as we confirm in Section 1000

E. 1001

E Correlation with Human Evaluators 1002

We use our retrained retrain-comet-da mod- 1003

els to score all systems that are part of the WMT 1004

2020 metrics shared task evaluation (Mathur et al., 1005

2020).12 Then, we use the official evaluation 1006

script13 from the WMT 2020 shared task to com- 1007

pute the system-level Pearson correlation for our 1008

retrained models. The results can be seen in Ta- 1009

ble 11. We also ensure that evaluation setup re- 1010

sults in the same scores as in the WMT 2020 1011

publication (Mathur et al., 2020) when we use 1012

wmt20-comet-da to score the systems. For 1013

most language pairs, all models reach an almost 1014

identical correlation with human assessments. 1015

12We run the run_ref_metrics.sh script provided
at https://drive.google.com/drive/folders/
1n_alr6WFQZfw4dcAmyxow4V8FC67XD8p

13https://github.com/WMT-Metrics-task/
wmt20-metrics

12

https://drive.google.com/drive/folders/1n_alr6WFQZfw4dcAmyxow4V8FC67XD8p
https://drive.google.com/drive/folders/1n_alr6WFQZfw4dcAmyxow4V8FC67XD8p
https://github.com/WMT-Metrics-task/wmt20-metrics
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Numbers Named Entities

de-en en-de de-en en-de

reference 93.24 93.46 n/a n/a

alternative 94.83 + 1.59 95.66 + 2.20 73.73 77.66

beam search 95.91 + 2.67 95.73 + 2.27 71.55 - 2.18 70.03 - 7.63

Oracle chrF++ 91.91 - 1.33 93.64 + 0.18 69.54 - 4.19 63.59 -14.07

Oracle bleu 90.77 - 2.47 92.05 - 1.41 65.73 - 8.00 60.16 -17.50

Oracle wmt20-comet-da 90.83 - 2.41 88.79 - 4.67 65.64 - 8.09 56.41 -21.25

Oracle wmt21-comet-mqm 91.35 - 1.89 86.01 - 7.45 64.75 - 8.98 55.98 -21.68

Table 5: Results of the automatic evaluation. “Oracle” means choosing the sample closest to the two reference
translations. F1-scores (%) for numbers and named entities and F1-score changes compared to the reference for
numbers and alternative translation for named entities.

Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -1.80 -1.80 -1.20 -4.92 -5.62 -4.41 altern. 1.11
del -1.70 -1.79 -1.20 -4.84 -5.62 -4.41 copy -5.87 -21.43
sub -1.78 -1.84 -1.19 -5.10 -5.78 -4.44 hallucin. -6.71 -22.75

whole -1.80 -2.28 -1.25 -4.92 -6.64 -4.46

en-de

add -1.62 -1.41 -0.88 -4.10 -3.56 -2.73 altern. -0.33
del -1.65 -1.37 -0.88 -4.24 -3.58 -2.73 copy -6.02 -20.06
sub -1.57 -1.41 -0.86 -4.09 -3.71 -2.75 hallucin. -6.71 -21.14

whole -1.62 -1.72 -0.90 -4.10 -4.41 -2.79

average -1.69 -1.70 -1.05 -4.54 -4.87 -3.59

Table 6: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE). Average difference to MBR score for reference (left) and 1-best beam search output (right) when using BLEU
as the utility function.

Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -1.18 -1.66 -1.20 -2.18 -2.91 -2.55 altern. 0.32
del -1.52 -1.99 -1.41 -2.53 -3.30 -2.94 copy -17.18 -32.94
sub -1.54 -2.00 -1.47 -2.74 -3.53 -3.07 hallucin. -22.82 -43.39

whole -1.91 -4.85 -2.50 -3.25 -8.57 -5.27

en-de

add -0.88 -1.25 -0.80 -2.28 -2.04 -1.52 altern. -0.73
del -1.10 -1.47 -0.94 -1.89 -2.37 -1.78 copy -19.13 -32.68
sub -1.08 -1.51 -0.96 -1.87 -2.44 -1.81 hallucin. -24.96 -42.11

whole -1.33 -3.72 -1.98 -2.28 -5.81 -3.68

average -1.32 -2.31 -1.41 -2.38 -3.87 -2.83

Table 7: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE). Average difference to MBR score for reference (left) and 1-best beam search output (right) when using chrf++
as the utility function. chrf++ scores are mapped to 0-100 scale for better comparison to BLEU.
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Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.059 -0.067 -0.230 -0.116 -0.135 -0.386 altern. 0.021
del -0.048 -0.053 -0.199 -0.092 -0.105 -0.326 copy -0.778 -0.690
sub -0.028 -0.065 -0.242 -0.054 -0.146 -0.403 hallucin. -1.081 -1.720

whole -0.082 -0.127 -0.287 -0.151 -0.250 -0.493

en-de

add -0.040 -0.044 -0.153 -0.083 -0.107 -0.260 altern. -0.015
del -0.046 -0.038 -0.117 -0.080 -0.083 -0.211 copy -1.513 -1.625
sub -0.015 -0.051 -0.169 -0.034 -0.111 -0.277 hallucin. -1.402 -1.891

whole -0.055 -0.106 -0.353 -0.109 -0.197 -0.541

average -0.047 -0.069 -0.219 -0.090 -0.108 -0.362

Table 8: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers show
the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when using
retrain-comet-da with a penalty of -0.2 as the utility function.

Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.243 -0.229 -0.337 -0.417 -0.382 -0.523 altern. 0.026
del -0.217 -0.180 -0.261 -0.380 -0.295 -0.410 copy -0.471 -0.409
sub -0.152 -0.223 -0.347 -0.256 -0.402 -0.542 hallucin. -1.076 -1.724

whole -0.312 -0.197 -0.320 -0.529 -0.374 -0.521

en-de

add -0.224 -0.210 -0.231 -0.405 -0.379 -0.379 altern. -0.017
del -0.197 -0.156 -0.148 -0.319 -0.261 -0.262 copy -1.142 -1.133
sub -0.129 -0.196 -0.250 -0.213 -0.352 -0.392 hallucin. -1.370 -1.895

whole -0.275 -0.196 -0.339 -0.493 -0.351 -0.516

average -0.219 -0.198 -0.279 -0.377 -0.350 -0.511

Table 9: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named entity
(NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers show
the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when using
retrain-comet-da with a penalty of -0.5 as the utility function.

Samples as Support References as Support Controls

Numbers NEs Nouns Numbers NEs Nouns Samples Ref.

de-en

add -0.435 -0.412 -0.401 -0.706 -0.687 -0.617 altern. 0.024
del -0.385 -0.331 -0.293 -0.655 -0.526 -0.450 copy -0.306 -0.234
sub -0.305 -0.547 -0.394 -0.472 -0.667 -0.614 hallucin. -1.225 -1.962

whole -0.547 -0.267 -0.320 -0.889 -0.495 -0.539

en-de

add -0.381 -0.337 -0.337 -0.657 -0.635 -0.575 altern. -0.015
del -0.355 -0.254 -0.230 -0.614 -0.457 -0.402 copy -0.852 -0.755
sub -0.264 -0.322 -0.351 -0.437 -0.585 -0.570 hallucin. -1.498 -2.046

whole -0.470 -0.271 -0.370 -0.827 -0.484 -0.550

average -0.393 -0.343 -0.337 -0.657 -0.567 -0.540

Table 10: Effects of randomly adding, substituting or deleting a digit in a number or a letter in a noun or named
entity (NE) compared to the controls (alternative translation, copy of the source or hallucination). The numbers
show the average difference to the MBR score for the reference (left) and 1-best beam search output (right) when
using retrain-comet-da with a penalty of -0.8 as the utility function.

14



wmt20-comet-da retrain-comet-da

-0.2 -0.5 -0.8

en-cs 0.978 0.981 0.981 0.981

en-de 0.972 0.971 0.965 0.963

en-ja 0.974 0.987 0.974 0.982

en-pl 0.981 0.983 0.985 0.983

en-ru 0.925 0.863 0.900 0.918

en-ta 0.944 0.948 0.949 0.954

en-zh 0.007 0.026 0.034 0.049

en-iu 0.860 0.861 0.851 0.873

cs-en 0.783 0.799 0.798 0.808

de-en 0.998 0.996 0.995 0.997

ja-en 0.964 0.966 0.968 0.968

pl-en 0.591 0.570 0.570 0.563

ru-en 0.923 0.924 0.921 0.925

ta-en 0.880 0.888 0.887 0.890

zh-en 0.952 0.952 0.942 0.951

iu-en 0.852 0.878 0.866 0.880

km-en 0.971 0.981 0.981 0.974

ps-en 0.941 0.951 0.949 0.945

avg diff +0.0016 -0.0006 +0.0060

Table 11: Pearson correlation of to-and-from-English system-level COMET scores with DA human assessments.
Last row shows the average difference to the original wmt20-comet-damodel. Results with wmt20-comet-da
corresponding to “COMET” in Tables 5 and 6 in Mathur et al. (2020).
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