

000 001 002 003 004 005 SMIXER: RETHINKING EFFICIENT-TRAINING AND 006 EVENT-DRIVEN SNNs 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT 031

032 Spiking Neural Networks (SNNs) offer a promising, energy-efficient paradigm for
033 computation, but face challenges in performance and training costs. For example,
034 Spiking ResNet exhibits relatively low performance, whereas high-performance
035 Spiking Transformers are not truly event driven and cannot be implemented on
036 asynchronous chips. Moreover, the intrinsic time steps and neuron state dynam-
037 ics result in a substantial computational overhead for training SNNs. In response
038 to these problems, we discuss rational architectural design for SNNs and argue
039 that such designs should exhibit three key characteristics: fully event-driven op-
040 erations, low training overhead and competitive performance. In light of this, we
041 adopt the event-driven friendly Spiking-token Mixer (SMixer) as the foundational
042 architecture and develop a spiking-feature Spatial-Temporal Pruning (STP) frame-
043 work with a high pruning ratio and no trainable parameters to reduce the training
044 overhead. Based on a statistical analysis of sparse spiking features, STP eliminates
045 redundant spiking features across both spatial and temporal dimensions, thereby
046 reducing the input features and computational overhead during training. Specifi-
047 cally, it adaptively selects the most salient spike events in the spatial domain and
048 dynamically constrains the neurons' simulation time steps and firing thresholds in
049 the temporal domain. By leveraging architectural design and STP, SMixer accel-
050 erates training while ensuring a fully event-driven characteristics and maintaining
051 competitive performance, offering valuable insights for SNNs' design.
052
053

034 1 INTRODUCTION 035

036 Spiking Neural Networks (SNNs) Maass (1997), the third generation of neural networks, are distin-
037 guished by their biological plausibility Roy et al. (2019), event-driven nature, and energy efficiency.
038 By emulating the dynamics of biological neurons, SNNs employ asynchronous binary spikes to
039 transmit information. Consequently, a neuron's membrane potential is updated only upon spike
040 arrival. This event-driven property allows SNNs to inherently avoid computations involving zero-
041 valued activations, making them highly suitable for implementation on specialized neuromorphic
042 hardware like TrueNorth Merolla et al. (2014) and Loihi Davies et al. (2018).
043

044 Despite the encouraging progress of SNNs, several challenges hinder their application in real-world
045 pattern recognition. A fundamental difficulty lies in developing potent architectures for event-driven
046 SNNs that not only achieve competitive performance but also adhere to the principles of purely
047 event-driven operations for practical deployment. While Spiking Convolutional Neural Networks Lv
048 et al. (2023) often lack sufficient performance, Spiking Transformers Zhou et al. (2023c; 2024a); Yao
049 et al. (2025) have achieved the state-of-the-art (SOTA) results across various domains. However, a
050 critical issue arises on asynchronous hardware where spike arrival times are less precise than in
051 synchronous, clock-driven scenarios. The core Spiking Self-Attention mechanism, which relies on
052 the multiplication of two spike matrices, is susceptible to significant computational deviations under
053 such conditions Deng et al. (2024). SNNs' high training cost is also a critical issue that cannot be
054 overlooked, primarily due to two reasons: i) Before deployment on neuromorphic chips, spiking
055 neural networks typically require training on Graphics Processing Units (GPUs) Fang et al. (2023).
056 SNNs cannot be trained on GPUs in a truly event-driven manner, which means that even zero-
057 valued features consume computational resources. ii) The inherent time steps and hidden states of
058 spiking neurons further occupy computational resources. To address these challenges, we propose
059

054 that rational architectural design for SNNs should embody three fundamental characteristics: **fully**
 055 **event-driven operations, low training overhead and competitive performance.**
 056

057 Our purpose is to explore potential SNNs that simultaneously satisfy the above characteristics. Com-
 058 pared to Spiking Transformers, Spiking Token Mixer () emerges as a more promising and feasible
 059 event-driven architecture that the spike-based matrix multiplication used to obtain attention weights
 060 is replaced with learnable parameters. Subsequently, we need to investigate approaches to reduce
 061 the training overhead of SMixer. The intrinsically low firing rates of SNNs result in significant net-
 062 work redundancy, making pruning a natural and promising approach for network lightweighting and
 063 acceleration. However, pruning SNNs presents several key challenges compared to ANNs: First,
 064 common unstructured weight pruning in SNNs usually offers limited practical acceleration and in-
 065 curs additional training overhead, rendering its extension to SMixer impractical. This motivates the
 066 structured feature pruning for acceleration. Second, achieving significant acceleration necessitates
 067 a much higher pruning ratio (≥ 0.3) in SNNs than that in ANNs. Addressing these challenges, we
 068 begin with an analysis of the SMixer’s spiking feature, Spatial-Temporal Spiking Feature Redun-
 069 dancy. Spiking representations are concentrated in specific spatial-temporal regions, implying that a
 070 large number of spike tokens containing low-information can be pruned, which lays the foundation
 071 for high-ratio pruning. Furthermore, a lightweight pruning strategy is needed to avoid introducing
 072 excessive pruning-related computational overhead.

072 We explore the potential of employing Spiking-token Mixer as a prototype within mainstream archi-
 073 tectures and find that SMixer achieves competitive performance compared to spiking self-attention
 074 mechanisms across various architectures. To further reduce the training overhead, we propose a
 075 Dynamic Spatial-Temporal Spiking Pruning (DSTSP) framework tailored for the SMixer, which di-
 076 rectly prunes redundant spiking feature to accelerate training while maintaining performance at a
 077 high pruning ratio. Inspired by previous studies measuring semantic information through activation
 078 values in feature maps Zagoruyko & Komodakis (2016); Ding et al. (2023), spiking feature redun-
 079 dancy is determined by accumulating spike event counts within specific regions, such as within a
 080 single token or a particular time step. Features with high accumulated values are considered impor-
 081 tant, whereas those with low values are regarded as redundant. The Spiking Spatial Token Pruning
 082 scores tokens by summing their spike values and ranking them adaptively based on network output.
 083 High-scoring tokens are passed to the Spiking-token Mixer encoder, while low-scoring 1ones are
 084 discarded or merged. For the temporal dimension, Dynamic Spiking Temporal Pruning dynamically
 085 reduces both the upper bound on the total number of spikes that neurons can emit and the number of
 086 time steps, thereby decreasing the latency of SMixer. By integrating the Mixer into various architec-
 087 tures, SMixer achieves superior performance compared to the original frameworks, demonstrating
 088 the potential as an mainstream SNN structure. We summarize the contributions as follows:
 089

- 090 • We analyze the inherent architectural requirements for event-driven SNNs and the need for effi-
 091 cient training methodologies. Based on this, we propose a blueprint for a high-ratio spike feature
 092 structured pruning framework built upon the Spiking-token Mixer.
- 093 • Based on Spatial-Temporal Redundancy in Spiking-token Mixer, we develop the Dynamic Spatial-
 094 Temporal Spike Pruning framework, which integrates dynamic spatial and temporal spike feature
 095 pruning methods.
- 096 • We demonstrate that the SMixer architecture can achieve performance comparable to that of the
 097 Spikformers. Furthermore, we show that our efficient pruning framework built upon SMixer,
 098 accelerates training while maintaining performance close to the original model across various
 099 neuromorphic and static datasets.

100 2 RELATED WORK

101 2.1 DEEP SPIKING NEURAL NETWORKS

102 Recent advancements in Artificial Neural Networks (ANNs) have enabled significant performance
 103 improvements in SNNs, primarily through the adaptation of cutting-edge architectures from the
 104 ANN domain. SpikingCNNs Lv et al. (2023) mix spike-form tokens with the learned weights of
 105 convolution kernels. However, its performance remains suboptimal. Spiking Transformers Zhou
 106 et al. (2023c;a); Zhang et al. (2024); Shi et al. (2024); Yao et al. (2023a); Qiu et al. (2024); Wang
 107 et al. (2025); Qiu et al. (2025); Zhou et al. (2024a); Yao et al. (2025) mix tokens with pairwise corre-

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

lations weight matrix between spike-form query and key tokens and re-weights the spike-form value vectors to synthesize new token representations, which arrives the SOTA in various tasks. However, performing matrix multiplication between two spike matrices during the forward pass is incompatible with asynchronous neuromorphic hardware. In event-driven regimes, the spike arrival times lack the temporal precision, which results in significant differences in the output, ultimately precipitating a marked degradation in performance Deng et al. (2024). By jointly optimizing hardware feasibility and accuracy, STMixer Deng et al. (2024) fuses the spiking token feature with a trainable attention weight map, thereby eliminating spike-matrix multiplication. This design choice renders STMixer a significantly more practical and scalable architecture for real-world neuromorphic deployment.

2.2 SNN PRUNING METHODS.

The pruning methods aim to further enhance the efficiency of SNNs. Neuro-inspired strategies focus on synaptic regeneration Kundu et al. (2021) and dendritic motion Kappel et al. (2015). Qi et al. Qi et al. (2018) designed connection gates for synaptic pruning during the training process. Kim et al. Kim et al. (2022) focus on lottery ticket-based methods, integrating Iterative Magnitude Pruning Frankle & Carbin (2018) with Early-Bird tickets You et al. (2020) to identify more compact SNNs while Deng et al. Deng et al. (2023) formulate connection pruning and weight quantization as a unified constrained optimization problem, which they solve by using Spatio-temporal backpropagation and the alternating direction method of multipliers. Grad R Chen et al. (2021b) makes improvements to Deep R method by introducing a weight regeneration mechanism. RCMO-SNN Chen et al. (2023) presents an end-to-end minimax optimization approach for sparse learning. For Spikformer Zhou et al. (2023c), Zhou et al. Zhou et al. (2025) propose Spatial-Temporal Spiking Feature Pruning, and Liu et al. Liu et al. (2024) develop SparseSpikformer. Different from the above, we seek to devise pruning methods tailored to superior Spiking-token Mixer architectures, which is a direction that, to the best of our knowledge, remains entirely unexplored.

3 METHOD

3.1 SPIKING-TOKEN MIXER

The Spiking Self-Attention (SSA) involves synchronized matrix operations between spike-based queries \mathbf{Q} , keys \mathbf{K} , and values \mathbf{V} , whereas the Spiking-token Mixer involves asynchronous computations between weight matrices and inputs, as detailed below,

$$\mathbf{Q} = \mathcal{SN}(\text{L-BN}_{\mathbf{Q}}(\mathbf{X})), \mathbf{K} = \mathcal{SN}(\text{L-BN}_{\mathbf{K}}(\mathbf{X})), \mathbf{V} = \mathcal{SN}(\text{L-BN}_{\mathbf{V}}(\mathbf{X})), \quad (1)$$

$$\text{SSA}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathcal{SN}(\mathbf{Q}\mathbf{K}^T\mathbf{V} * s), \quad (2)$$

$$\text{SMixer}(\mathbf{X}) = \mathcal{SN}(\mathbf{W}_M \mathbf{X}), \quad (3)$$

where \mathcal{SN} denotes the spiking neuron and L-BN represents that the features pass through Linear and Batch Normalization sequentially. s is the scaling factor. \mathbf{X} is the spike-form input. However, calculating multiplications between spike-form \mathbf{Q} and \mathbf{K} is unsuitable for asynchronous hardware. In comparison, Spiking-token Mixing can serve as a substitute for the SSA. \mathbf{Q} and \mathbf{K} converge into a single learnable matrix \mathbf{W}_M for attention weight, which is to gradually fit the attention map during the training process. In Figure 1, the overall architecture includes Spiking Patch Splitting (SPS), several encoder blocks composed of a Spiking-token Mixer module and Spiking Multilayer Perceptron (MLP), and classification head (CH).

3.2 SPATIAL-TEMPORAL SPIKING FEATURE REDUNDANCY IN SMIXER

To enable efficient feature pruning in SMixer, we begin by evaluating the significance of spiking features using the Spike Intensity Value (SIV), which is defined as the sum of spike events within a designated feature region.

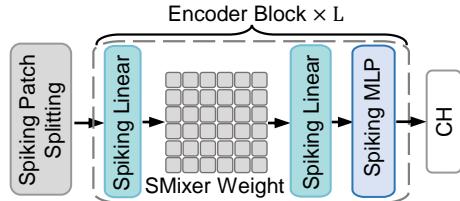


Figure 1: The overview of Spiking-token Mixer.

Similar to the concept of activation magnitudes in ANNs Zagoruyko & Komodakis (2016); Ding et al. (2023), a higher SIV indicates a greater concentration of semantic information. Our analysis of the DVS-Gesture reveals that the SIV distribution is highly imbalanced, with the majority of tokens exhibiting low values, as shown in Figure 3. This imbalance is closely linked to model performance: a model that uses only high-SIV tokens demonstrates considerably better accuracy than one relying on low-SIV tokens (97.9% vs 79.9%). Visual evidence further supports this, showing that regions with high SIV align with foreground objects, while low-SIV regions tend to correspond to the background, as shown in Figure 2. It shows samples from DVS-Gesture with a spatial pruning ratio of 0.3 and a temporal pruning ratio of 0.5. The left and middle columns of each sub-figure display the original image and its corresponding original features. The right column demonstrates the result obtained by retaining feature tokens with high SIV. These findings suggest that critical semantic content is predominantly contained within a small subset of high-SIV tokens. Importantly, the computation of SIV is highly efficient, involving only a simple summation that is well-suited to the operational characteristics of SNNs.

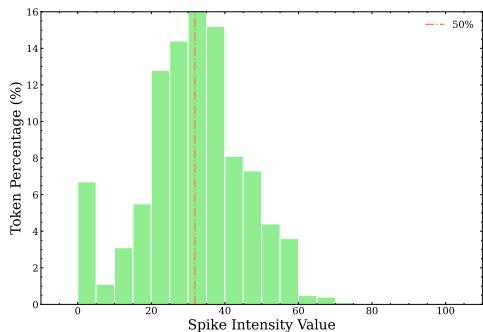


Figure 3: Distribution of Spike Intensity Value in DVS-Gesture. The maximum and minimum values are 125 and 0. The dashed line is the boundary for 50% of Spiking-tokens.

To validate the efficacy of our Spiking Information Value (SIV) metric in quantifying feature redundancy, we conducted an analysis on CIFAR-100 using RIE and MS-SSIM scores (details in Appendix C). As shown in Figure 4, we evaluated several token pruning strategies: low-SIV (LP), high-SIV (HP), and random pruning (RP), comparing pruned feature outputs against the unpruned baseline. Our analysis, which also included the LP strategy on a standard ANN-Transformer (ANN-LP), revealed two key findings. First, SIV is substantially more effective at exposing redundancy in SNNs than in ANNs. Second, the SIV-informed LP strategy is the most effective approach for SNNs. This core insight serves as the foundational principle for our DSTSP framework.

3.3 DYNAMIC SPATIAL-TEMPORAL SPIKING PRUNING

Inspired by the high sparsity and redundancy of spiking features, we propose a lightweight method, the Dynamic Spatial-Temporal Spiking Pruning (DSTSP), to prune a significant fraction of features with low SIV, as illustrated in Figure 5. This approach aims to substantially reduce training costs while preserving inference performance. Unlike conventional pruning in ANNs, which often relies

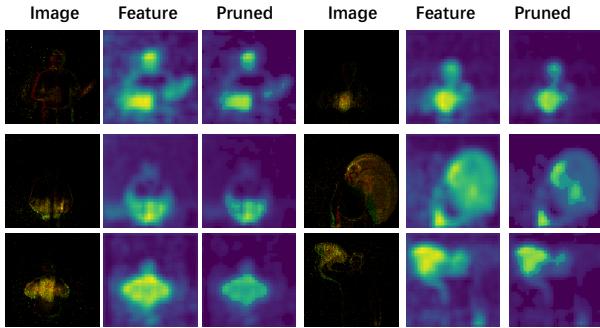


Figure 2: Visualization of Spatial Temporal Spiking Feature Redundancy.

Figure 4: The strategies investigated include pruning tokens with low-SIV (LP), high-SIV (HP), and random selection (RP). ANN-LP denotes the performance of the LP strategy on the ANN-Transformer. The Y-axis denotes the metric values.

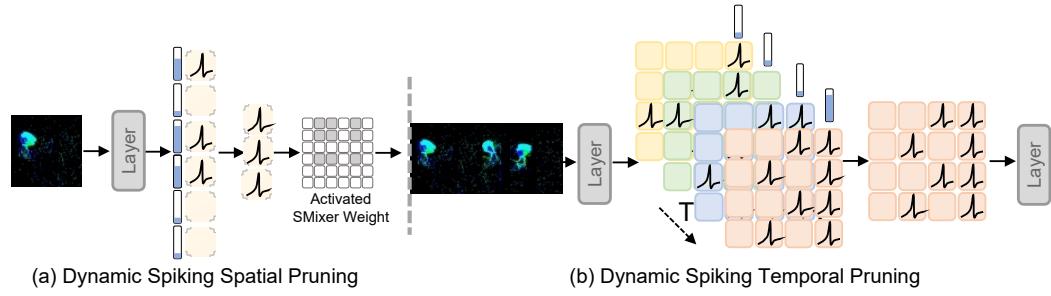


Figure 5: The illustration of Dynamic Spatial-Temporal Spiking Pruning.

on complex, trainable modules, our method is specifically designed for SNNs. It avoids introducing any learnable parameters by leveraging simple, addition-based operations that align with the spike-driven characteristic of SNNs. DSTSP operates sequentially across two dimensions. First, in the temporal domain, it computes the SIV for each spiking feature map per time step, retaining only a specified percentage of the highest-scoring maps. Subsequently, in the spatial domain, it evaluates the SIV of individual spiking tokens, preserving only those with high activation values. The specifics of DSTSP are detailed in the following sections.

Dynamic Spiking Spatial Pruning (DSSP) analyzes the SIV of each token to determine its semantic information and prunes tokens with low SIV. For a spike-form feature $\mathbf{X} \in \mathbb{S}^{T \times N \times C}$, where T represents the time steps, N and C represent the number of spiking tokens and channel dimensions, respectively. The DSSP is conducted as follows,

$$\mathbf{I}_S = \sum_{i=1}^C \mathbf{X}[:, :, i], \mathbf{X}_i = \text{SORT}(\mathbf{I}_S, \mathbf{X}), N' = N \cdot (1 - P_S), \mathbf{X}' = \mathbf{X}_i [: N'], \quad (4)$$

$$\mathbf{W}'_M = \mathbf{W}_M[N', N'], \text{SMixer}(\mathbf{X}) = \mathcal{SN}(\mathbf{W}'_M \mathbf{X}') \quad (5)$$

where \mathbf{X} is sorted in descending order to obtain \mathbf{X}_i according to the spatial SIV \mathbf{I}_S . N' is the number of spiking tokens after pruning and P_S denotes the spatial pruning ratio. \mathbf{X}' is the remained feature after DSSP. \mathbf{W}'_M denotes the activated attention weight, for which we explore two approaches. The first approach treats it as a static $N' \times N'$ matrix. The second approach involves randomly selecting N' shared row and column indices during training and reverting to a full-sized matrix for inference. Both strategies yield nearly identical performance at inference time.

Dynamic Spiking Temporal Pruning (DSTP) prunes temporal information from two aspects. On one hand, it assesses the importance of each time step to remove those that are less significant. Given an input spiking feature $\mathbf{X} \in \mathbb{S}^{T \times N \times C}$, the formulation is as follows:

$$\mathbf{I}_T = \sum_{n=1}^N \sum_{i=1}^C \mathbf{X}[:, n, i], \mathbf{X}_i = \text{SORT}(\mathbf{I}_T, \mathbf{X}), \quad (6)$$

$$T' = T \cdot (1 - P_T), \mathbf{X}' = \mathbf{X}_i [: T'], \mathbf{X}'' = \mathcal{SN}(\mathbf{X}') \quad (7)$$

Here, \mathbf{I}_T is the SIV calculated for each time step. Based on these scores, \mathbf{X}_i represents the feature maps sorted in descending order of importance. The number of time steps retained, T' is calculated based on a pruning ratio P_T . Finally, \mathbf{X}' is the temporal feature after the pruning. Reducing the number of time steps for feature inputs into the spiking neurons and network layers directly reduces the number of neuron states and computational cost, thereby lowering training overhead.

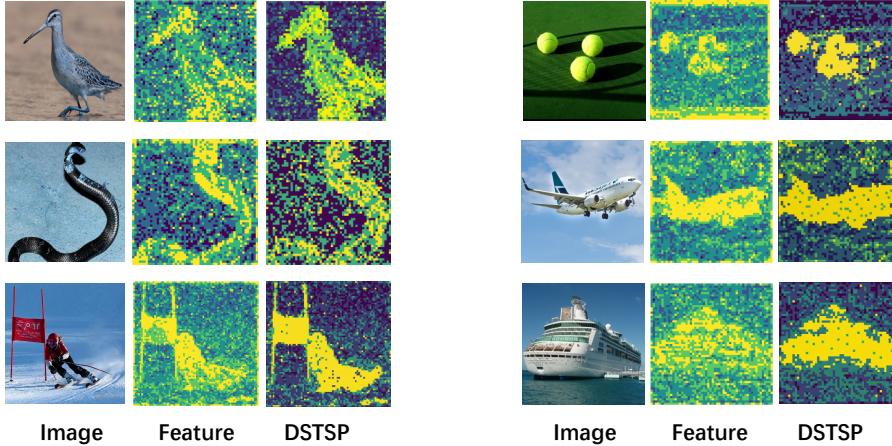
Computational Overhead Analysis. For clarity, we choose typical size Spiking-token Mixer models to compare these operations on the ImageNet, as shown in Table 1. The results show that DSTSP significantly lowers the computational overhead. Theoretical analysis is provided in the Appendix A.

4 EXPERIMENTS

In this section, we validate DSTSP using Spiking Token Mixer framework as the baseline. We first conduct experiments on classification tasks, including CIFAR10-DVS Li et al. (2017), DVS128 Gesture Amir et al. (2017), CIFAR10, CIFAR100 Krizhevsky (2009), and ImageNet Deng et al. (2009).

270 Table 1: Comparison of the OP_{Increase} and OP_{Reduce} . SMixer- L - D denotes for Spiking-token Mixer
 271 with L layers and D channels. The Rate represents the ratio of OP_{Reduce} to original cost OP_{Origin} .
 272

273 Model	274 $OP_{\text{Increase}}(M) \uparrow$	275 $OP_{\text{Reduce}}(M) \downarrow$	276 $OP_{\text{Origin}}(M)$	277 Rate(%)
274 SMixer-2-256	275 0.33	276 243	277 1106	278 21.97
275 SMixer-4-384	276 0.45	277 1060	278 4867	279 21.78
276 SMixer-8-512	277 0.58	278 3741	279 17073	280 21.91



293 Figure 6: Visualization of SMixer and relating DSTSP on the ImageNet-1K. Feature and DSTSP
 294 represent the attention maps generated by the original SMixer module before and after being
 295 pruned by our DSTSP method, respectively
 296

297 These datasets cover both neuromorphic and conventional vision domains. Our evaluation centers
 298 on training time, energy cost, GPU memory and inference accuracy. We further assess DSTSP on
 299 the more demanding task of time series and object detection. Final, the ablation study examines the
 300 efficacy, certain strategies, and position of DSTSP. The training epochs, hyperparameter settings are
 301 consistent with the original models. Further details are provided in Appendix E.
 302

304 4.1 RESULTS ON IMAGE CLASSIFICATION

305 **ImageNet.** We evaluate the feasibility of Spiking-token Mixer (SMixer) paradigm Deng et al.
 306 (2024) and DSTSP on the ImageNet-1K dataset. We first analyze the effectiveness of DSTSP
 307 using the original STMixer-8-512 and STMixer-8-768 as baselines. Besides, we further replace
 308 the Spiking Self-Attention in three representative state-of-the-art Spiking Transformer frameworks
 309 (SpikformerV2 Zhou et al. (2024b), QKFormer Zhou et al. (2024a), and Spike-driven Transformer-
 310 V3 Yao et al. (2025)) with Spiking-token Mixer and further assess DSTSP pruning framework,
 311 supported by visual analysis, to demonstrate its efficacy. As detailed in Table 2, replacing SSA with
 312 Spiking-token Mixer yields comparable accuracy to the original frameworks at similar parameters,
 313 demonstrating its capability to replace the Spiking Transformer and serve as a new prototype. With
 314 a fixed spatial pruning ratio of 0.30 and a pruned time step of 1, our DSTSP shows remarkable effi-
 315 ciency gains. Notably, on the STMixer-8-768 model, our pruning method improves accuracy by 0.2
 316 % over the baseline. This high performance are achieved while reducing GPU memory consump-
 317 tion to 76.44% and energy to just 53.03% of the original, alongside a high increase in throughput.
 318 When applied to the modified Spikformer-V2 (T=4), our pruning framework results in only a minor
 319 1.3% accuracy loss while also delivering substantial computational savings. Variants based on QK-
 320 Former and SDT-v3 also diminish energy consumption and shorten training time while incurring a
 321 performance drop of less than 2%. Our qualitative analysis in Figure 6 offers further validation.
 322 The attention maps from Spiking-token Mixer (Feature) effectively highlight key object regions in a
 323 manner comparable to the original Spiking Self-Attention. Crucially, we observe that after pruning,
 324 the remaining tokens consistently align with the most semantically significant parts of the image
 325 (DSTSP). This demonstrates our framework's ability to preserve essential information.

324 Table 2: Performance of DSTSP on ImageNet. Power is calculated as the average theoretical energy
 325 consumption when predicting an image from ImageNet test set. The power data for ours is eval-
 326 uated according to Appendix B and the power data of other works are obtained from related papers.
 327 "Model- L - D " denotes the specific Model with L encoder blocks and D channels. "Model \rightarrow M"
 328 indicates the conversion of the original Spikformers Model into the Spiking-token Mixer. We set the
 329 spatial pruning ratio to 0.3 and perform temporal pruning to single time step.

331 Methods	332 Architecture	333 Time Step	334 Param (M)	335 TP (im/s)	336 Memory (MB)	337 Power (mJ)	338 Top-1 Acc (%)
332 STMixer	333 STMixer-8-512	334 1	335 30.12	336 211	337 11762	338 2.20	339 73.82
	333 STMixer-8-768	334 1	335 61.16	336 120	337 17008	338 4.45	339 76.68
334 STMixer + DSTSP	335 STMixer-8-512	336 1	337 27.61	338 250	339 9578	340 1.68	341 73.56
	335 STMixer-8-768	336 1	337 58.66	338 162	339 13002	340 2.36	341 76.87
335 SpikformerV2	336 Spikformer V2-8-384	337 1	338 29.11	339 130	340 5260	341 1.73	342 75.42
	336 Spikformer V2-8-512	337 1	338 51.55	339 113	340 6880	341 2.84	342 79.05
	337 Spikformer V2-8-384	338 4	339 29.11	340 82	341 12170	342 4.69	343 78.80
	338 Spikformer V2-8-512	339 4	340 51.55	341 67	342 18786	343 9.36	344 80.38
339 SpikformerV2 → M	340 Spikformer V2-8-384	341 1	342 27.97	343 156	344 3490	345 1.13	346 76.39
	340 Spikformer V2-8-512	341 1	342 48.56	343 134	344 5384	345 2.12	346 79.16
	341 Spikformer V2-8-384	342 4	343 27.97	344 65	345 9256	346 3.65	347 79.12
	342 Spikformer V2-8-512	343 4	344 48.56	345 56	346 12982	347 7.97	348 80.45
343 SpikformerV2 → M + DSTSP	344 Spikformer V2-8-384	345 1	346 27.34	347 245	348 2584	349 0.83	350 76.22
	344 Spikformer V2-8-512	345 1	346 47.93	347 198	348 3368	349 1.98	350 78.99
	345 Spikformer V2-8-384	346 4	347 27.34	348 135	349 7505	350 1.55	351 78.03
	346 Spikformer V2-8-512	347 4	348 47.93	349 98	350 10387	351 3.44	352 79.15
347 QKFormer	348 HST-10-384	349 1	350 16.47	351 377	352 13841	353 3.38	354 75.52
	348 HST-10-512	349 1	350 29.08	351 317	352 20005	353 4.79	354 78.71
349 QKFormer → M	350 HST-10-384	351 1	352 18.31	353 365	354 8385	355 2.76	356 76.03
	350 HST-10-512	351 1	352 29.70	353 325	354 13051	355 4.06	356 78.69
351 QKFormer → M + DSTSP	352 HST-10-384	353 1	354 14.92	355 461	356 6991	357 2.17	358 75.13
	352 HST-10-512	353 1	354 25.92	355 398	356 9751	357 3.15	358 77.39
353 SDT-V3	354 Efficient-transformer-S	355 4	356 5.1	357 300	358 9040	359 1.70	360 75.30
	354 Efficient-transformer-M	355 4	356 10.00	357 267	358 12388	359 3.00	360 78.50
	355 Efficient-transformer-L	356 4	357 19.00	358 197	359 16318	360 5.90	361 79.80
362 SDT-V3 → M	363 Efficient-transformer-S	364 4	365 6.37	366 373	367 7396	368 1.42	369 75.25
	363 Efficient-transformer-M	364 4	365 10.15	366 280	367 9988	368 2.56	369 78.65
	364 Efficient-transformer-L	365 4	366 19.36	367 219	368 13912	369 4.93	370 79.25
371 SDT-V3 → M + DSTSP	372 Efficient-transformer-S	373 4	374 5.05	375 398	376 6060	377 1.01	378 74.15
	372 Efficient-transformer-M	373 4	374 9.42	375 338	376 8210	377 2.02	378 76.63
	373 Efficient-transformer-L	374 4	375 18.66	376 273	377 10710	378 3.91	379 77.75

354 Table 3: Comparision on CIFAR10, CIFAR100, DVS128, CIFAR10-DVS. "Param" denotes "Pa-
 355 rameter (M)", "Acc" denotes "Top-1 Accuracy (%)", "T" denotes "Time Step".

357 Method	358 CIFAR10			359 CIFAR100			360 DVS128			361 CIFAR10-DVS		
	362 Param	363 T	364 Acc	365 Param	366 T	367 Acc	368 Param	369 T	370 Acc	371 Param	372 T	373 Acc
374 Spikformer Zhou et al. (2023c)	375 9.32	376 4	377 95.51	378 9.32	379 4	380 78.21	381 2.57	382 16	383 98.30	384 2.57	385 16	386 80.90
375 Spikingformer Zhou et al. (2023a)	376 9.32	377 4	378 95.81	379 9.32	380 4	381 78.21	382 2.57	383 16	384 98.30	385 2.57	386 16	387 81.30
376 CML Zhou et al. (2023b)	377 9.32	378 4	379 96.04	380 9.32	381 4	382 80.02	383 2.57	384 16	385 98.60	386 2.57	387 16	388 80.90
377 S-TransformerYao et al. (2023a)	378 10.28	379 4	380 95.60	381 10.28	382 4	383 78.40	384 2.57	385 16	386 99.30	387 2.57	388 16	389 80.00
380 SMixer	381 8.29	382 1	383 95.49	384 8.29	385 1	386 80.00	387 2.63	388 10	389 97.91	390 2.63	391 10	392 83.30
	381 8.29	382 4	383 96.01	384 8.29	385 4	386 81.87	387 2.63	388 16	389 98.61	390 2.63	391 16	392 83.02
	382 8.24	383 1	384 95.44	385 8.24	386 1	387 79.71	388 2.55	389 10	390 97.56	391 2.55	392 10	393 82.56
394 SMixer+DSTSP	395 8.24	396 4	397 95.67	398 8.24	399 4	400 81.03	401 2.55	402 16	403 98.26	404 2.55	405 16	406 82.34

397 **Cifar and Neuromorphic Datasets.** We then conduct experiments on both static datasets (CIFAR-
 398 10, CIFAR-100 Krizhevsky (2009)) and neuromorphic datasets (CIFAR10-DVS Li et al. (2017),
 399 DVS128-Gesture Amir et al. (2017)), benchmarking our method against the SMixer baseline as
 400 shown in Table 3. By applying a fixed spatial pruning ratio of 0.30 and prune the time-step to 1,
 401 we observe a mere 0.5% performance drop on CIFAR-10 and CIFAR-100. On the neuromorphic
 402 datasets CIFAR10-DVS and DVS128, our method incurs a performance drop less than 1%.

4.2 RESULTS ON TIME SERIES TASK

403 We evaluate the effectiveness of DSTSP on time-series tasks by conducting experiments on four
 404 benchmarks Metr-La, Solar, PEMS-Bay, and Electricity under prediction horizons of 6, 24, 48, and
 405 96 steps. As shown in Table 4, the SMixer paradigm consistently outperforms Spikformer, demon-
 406 strating its potential. Besides, integrating DSTSP incurs no significant degradation in performance.

378
 379 Table 4: Experimental results of time-series forecasting on 4 benchmarks with various prediction
 380 lengths 6, 24, 48, 96. The best results in SNNs are formatted in **bold font format**. \uparrow (\downarrow) indicates
 381 the higher (lower) the better.

Model	SNN	Metric	Metr-la				Pems-bay				Solar				Electricity			
			6	24	48	96	6	24	48	96	6	24	48	96	6	24	48	96
Transformer	\times	$R^2 \uparrow$.727	.554	.413	.284	.785	.734	.688	.673	.953	.858	.759	.718	.978	.975	.972	.964
		$RSE \downarrow$.551	.704	.808	.895	.502	.558	.610	.618	.223	.377	.504	.545	.260	.277	.347	.425
Spikformer	\checkmark	$R^2 \uparrow$.697	.491	.383	.242	.768	.684	.678	.663	.903	.819	.715	.656	.956	.955	.953	.943
		$RSE \downarrow$.581	.753	.828	.917	.521	.607	.613	.627	.319	.439	.548	.602	.371	.375	.386	.450
SMixer	\checkmark	$R^2 \uparrow$.734	.519	.422	.278	.788	.726	.689	.674	.945	.869	.789	.732	.956	.971	.967	.952
		$RSE \downarrow$.544	.730	.802	.895	.496	.566	.603	.615	.216	.371	.471	.531	.371	.305	.322	.389
SMixer + DSTSP	\checkmark	$R^2 \uparrow$.697	.530	.400	.277	.775	.712	.682	.662	.930	.855	.761	.662	.957	.965	.950	.955
		$RSE \downarrow$.581	.722	.816	.896	.503	.577	.607	.596	.272	.381	.490	.596	.369	.335	.395	.380

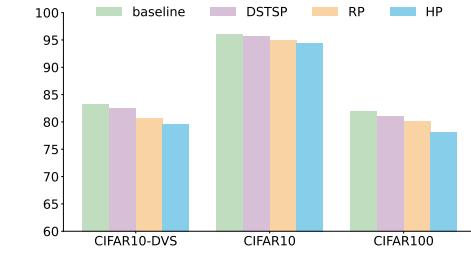
4.3 RESULTS ON OBJECT DETECTION TASK

To evaluate the effectiveness of DSTSP on demanding object detection tasks, we first adapt the SpikeYOLO Luo et al. (2024) framework by integrating SMixer blocks, then implement DSTSP. Specifically, we replace the convolutional layers in the third and fourth stages of SpikeYOLO with 4 and 2 layers of SMixer blocks, respectively. On the challenging MS COCO dataset Lin et al. (2014), our model trained with DSTSP by 20% spatial pruning rate and single pruned timestep and achieved a mAP50 of 57.4, compared to the baseline model’s 58.9. We

405 consider this modest decrease in accuracy acceptable, given the highly detailed and complex nature
 406 of the COCO task. Further deployment details are provided in the Appendix E.3.

4.4 ABLATION STUDY

Spatial-Temporal Pruning Method Ablation. This section details the implementation of various temporal-spatial pruning configurations on the CIFAR-10 and CIFAR-100 datasets. We evaluate their effects on key metrics, including energy consumption, FLOPs, inference latency, and overall performance. Our findings demonstrate that even at substantial pruning ratios, the proposed strategy preserves model robustness while significantly reducing FLOPs and increasing processing speed. Furthermore, we conduct a granular analysis of the impact of different temporal-spatial pruning ratios. As illustrated in the Appendix E.5, Figure 8 for the DVS-CIFAR10 and CIFAR-100 datasets, a notable degradation is observed only at exceptionally high spatial-temporal pruning levels.



426 Figure 7: Comparison of Pruning Strategies.
 427 The default spatial pruning ratio is set to 0.3,
 428 and time step is pruned to 1.

430 **Comparison of Spatial Pruning Strategies.** To validate the proposed pruning method, a comparative
 431 analysis is conducted against two baseline strategies: random pruning (RD) and the pruning
 432 of high-SIV tokens (HP). To ensure a fair comparison, the pruning technique is the sole variable,

Table 5: Performance of detection on COCO val2017 Lin et al. (2014). We benchmark our method against representative baselines of both ANN-to-SNN conversion and direct SNN training paradigms.

Methods	Architecture	Param (M)	Power (mJ)	Step	mAP@50(%)
ANN2SNN	Spiking-Yolo [95]	10.2	-	3500	25.7
	Spike Calibration [96]	17.1	-	512	45.3
	Fast-SNN [13]	25.1	-	15	46.4
Direct training	Spiking Retina [97]	11.3	-	4	28.5
	EMS-Res-SNN [98]	26.9	-	4	50.1
	Meta-SpikeFormer* [28]	34.9	49.5	1	44.0
Direct training	E-SpikeFormer*	38.7	56.2	2	41.8
	E-SpikeFormer*	38.7	94.5	4	58.4
	E-SpikeFormer*	38.7	119.5	8	58.8
Direct training	SMixer	49.7	36.8	4	58.9
	SMixer + DSTSP	39.2	21.2	4	57.4

Table 6: Performance of STSFP on CIFAR10 and CIFAR100. We only displayed the GPU, throughput, and FLOPs for CIFAR100 because the results for CIFAR10 are almost the same. We adopt the Softmatch strategy by default to deal with the pruned tokens. TP denotes the throughput.

P_s	P_t	TP (im/s)	GPU Memory	FLOPs	CIFAR100	CIFAR10
0	0	266	5329M	3.45G	81.78	96.01
0.40	0	337	3498M	2.72G	80.81	95.44
0.60	0	368	3045M	2.36G	79.13	94.67
0	0.50	671	3526M	2.54G	81.25	95.90
0	0.75	667	3384M	2.08G	81.23	95.89
0.20	0.50	615	2851M	2.34G	81.14	95.78
0.30	0.75	738	2346M	2.04G	81.03	95.67

432 with all other experimental settings held constant. The results affirm our prior findings from the
 433 Spatial Temporal Spiking Feature Redundancy analysis, confirming that removing low-SIV regions
 434 is the most effective approach for information preservation. As depicted in Figure 7, our method
 435 achieve a superior accuracy of 81.03% on the CIFAR100 dataset. In contrast, the HP strategy is the
 436 least performant, with its accuracy declining by 2.92% to 78.11%, while the RD strategy yield an
 437 intermediate result.

438 **Comparison with SNN Weight Pruning.** In Table 7, we benchmark DSTSP against conventional
 439 SNN pruning methods. A direct one-to-one comparison is non-trivial, as DSTSP’s methodology di-
 440 verges significantly from standard synaptic pruning. Consequently, we evaluate performance based
 441 on three key criteria: the pruning cost, the degree of sparsity achieved, and the accuracy degra-
 442 dation relative to the original dense model. By integrating pruning directly into the training loop for
 443 efficiency, DSTSP’s computational cost is treated as a single, unified stage. Notably, our proposed
 444 method incurs the minimal performance loss among all techniques benchmarked.

445 **Position of DSTSP.** This section analyzes the optimal placement of the pruning module by con-
 446 sidering its temporal and spatial operations. A critical constraint dictates that spatial pruning must
 447 be performed subsequent to the SPS module, as its 2D convolutional layers depend on the original
 448 feature map dimensions (Height \times Width) that spatial pruning would otherwise alter. The em-
 449 pirical results for different module placements are presented in Table 8. The findings indicate that
 450 applying DSTSP during both the training and inference phases (B) yields the highest performance,
 451 though employing it exclusively during training also produces commendable results. We further
 452 explore strategies involving pruning only during training (T) or inference (I). The performance of
 453 the training-only approach is comparable to that of using DSTSP in both stages, whereas applying
 454 it solely during inference results in inferior performance.

455 **Table 7:** We define the pruning cost as the ra-
 456 tio $\frac{N_p}{N_d}$, where N_p is the number of epochs
 457 for pruning and N_d is for training the origi-
 458 nal dense model. Since our method integrates
 459 pruning into the standard training process with-
 460 out requiring additional epochs, its cost is 1.
 461 Furthermore, we note that our reported spar-
 462 sity measures the ratio of pruned spiking tokens,
 463 whereas in prior works it typically refers to the
 464 ratio of zero-valued weights.

Pruning Method	Base Acc. (%)	Cost	Pruned Acc. (%)	Sparsity
NDSNN Huang et al. (2023)	69.86	5.00	68.07 66.73 63.51	0.90 0.95 0.98
Grad R Chen et al. (2021a)	71.34	34.13	67.47 67.31	0.95 0.98
IMP Chen et al. (2021a)	71.34	37.67 56.33 70.33	71.38 70.54 67.35	0.90 0.96 0.98
RCMO-SNN Chen et al. (2023)	74.71	51.67 65.67	72.67 70.80	0.95 0.97
DSTSP	81.87	1	80.67 80.13 79.78	0.50 0.60 0.70

455 **Table 8: Position of STSFP.** For the ‘Stage’,
 456 B indicates that STSFP is used during both
 457 training and inference, T indicates usage during
 458 training only, and I indicates usage during in-
 459 ference only. Regarding placement, IS denotes
 460 integrating the TSFP within the SPS, while AS
 461 indicates positioning the module after the SPS.
 462 For CIFAR10-DVS, $P_s = 0.3$ and $P_t = 0.9$.
 463 For CIFAR100, $P_s = 0.3$ and $P_t = 0.75$.

Dataset	Stage	TSFP	SSTP	Acc.
CIFAR10-DVS	B	AS	AS	82.56
	B	IS	AS	82.03
	T	AS	AS	82.45
	I	AS	AS	80.05
CIFAR100	B	AS	AS	81.03
	B	IS	AS	80.56
	T	AS	AS	80.95
	I	AS	AS	79.74

476 5 CONCLUSION

477 We begin by analyzing three major challenges currently faced by deep SNNs: event-driven con-
 478 straints, performance limitations, and training overhead. Specifically, we explore the potential of the
 479 Spiking-token Mixer as a prototype in terms of both performance and event-driven characteristics.
 480 By integrating SMixer into mainstream SNN variants, we demonstrate that its performance is on par
 481 with prior Spiking Transformers, highlighting the potential for high-performance architectures that
 482 are fully event-driven. To address the excessive training cost associated with SMixer, we propose
 483 Dynamic Spatial-Temporal Spiking Pruning, which reduces training overhead by pruning redun-
 484 dant spiking features while maintaining competitive performance. We hope that SMixer can inspire
 485 future research in the development of deep SNNs.

486 REFERENCES
487

488 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
489 Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz,
490 Michael Debole, Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low
491 power, fully event-based gesture recognition system. In *Proceedings of the IEEE/CVF Conference
492 on Computer Vision and Pattern Recognition*, pp. 7243–7252, 2017.

493 Jue Chen, Huan Yuan, Jianchao Tan, Bin Chen, Chengru Song, and Di Zhang. Resource constrained
494 model compression via minimax optimization for spiking neural networks. In *Proceedings of the
495 31st ACM International Conference on Multimedia (ACMMM)*, pp. 5204–5213, 2023.

496 Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
497 neural networks through gradient rewiring. In *Proceedings of International Joint Conference on
498 Artificial Intelligence (IJCAI)*, 2021a.

499 Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
500 neural networks through gradient rewiring. In Zhi-Hua Zhou (ed.), *Proceedings of the Thirtieth
501 International Joint Conference on Artificial Intelligence, IJCAI-21*, pp. 1713–1721. International
502 Joint Conferences on Artificial Intelligence Organization, 8 2021b. doi: 10.24963/ijcai.2021/236.
503 URL <https://doi.org/10.24963/ijcai.2021/236>. Main Track.

504 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
505 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin,
506 Andrew Lines, Ruokun Liu, Deepak Mathaiikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Gu-
507 ruguhanathan Venkataraman, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang.
508 Loihi: A neuromorphic manycore processor with on-chip learning. *IEEE Micro*, 38(1):82–99,
509 2018. doi: 10.1109/MM.2018.112130359.

510 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
511 hierarchical image database. In *Proceedings of the IEEE/CVF Conference on Computer Vision
512 and Pattern Recognition*, pp. 248–255, 2009.

513 Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie.
514 Comprehensive snn compression using admm optimization and activity regularization. *IEEE
515 Transactions on Neural Networks and Learning Systems*, 34(6):2791–2805, 2023.

516 Shikuang Deng, Yuhang Wu, Kangrui Du, and Shi Gu. Spiking token mixer: A event-driven friendly
517 former structure for spiking neural networks. In *The Thirty-eighth Annual Conference on Neu-
518 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=iYcY7KAKSy>.

519 Shuangrui Ding, Peisen Zhao, Xiaopeng Zhang, Rui Qian, Hongkai Xiong, and Qi Tian. Prune
520 spatio-temporal tokens by semantic-aware temporal accumulation. In *Proceedings of the
521 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 16945–16956, 2023.

522 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
523 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
524 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):ead1480, 2023.

525 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
526 networks. *arXiv preprint arXiv:1803.03635*, 2018.

527 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE
528 International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, pp. 10–14.
529 IEEE, 2014.

530 Shaoyi Huang, Haowen Fang, Kaleel Mahmood, Bowen Lei, Nuo Xu, Bin Lei, Yue Sun, Dongkuan
531 Xu, Wujie Wen, and Caiwen Ding. Neurogenesis dynamics-inspired spiking neural network train-
532 ing acceleration. In *2023 60th ACM/IEEE Design Automation Conference (DAC)*, pp. 1–6, 2023.

533 David Kappel, Stefan Habenschuss, Robert Legenstein, and Wolfgang Maass. Network plasticity as
534 bayesian inference. *PLoS computational biology*, 11(11):e1004485, 2015.

540 Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Ruokai Yin, and
 541 Priyadarshini Panda. Exploring lottery ticket hypothesis in spiking neural networks. In *Pro-
 542 ceedings of the European Conference on Computer Vision (ECCV)*, pp. 102–120. Springer, 2022.
 543

544 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

545 Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
 546 efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
 547 sion. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
 548 (WACV)*, pp. 3953–3962, 2021.

549

550 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 551 dataset for object classification. *Frontiers in neuroscience*, 11:309, 2017.

552 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 553 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Proceedings of
 554 the European Conference on Computer Vision (ECCV)*, pp. 740–755. Springer, 2014.

555

556 Yue Liu, Shanlin Xiao, Bo Li, and Zhiyi Yu. Sparsespikformer: A co-design framework for to-
 557 ken and weight pruning in spiking transformer. In *ICASSP 2024 - 2024 IEEE International
 558 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 6410–6414, 2024. doi:
 559 10.1109/ICASSP48485.2024.10446631.

560

561 Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-
 562 driven inference spiking neural network for high-performance and energy-efficient object detec-
 563 tion. *arXiv preprint arXiv:2407.20708*, 2024.

564

565 Changze Lv, Jianhan Xu, and Xiaoqing Zheng. Spiking convolutional neural networks for text
 566 classification. In *The Eleventh International Conference on Learning Representations (ICLR)*,
 567 2023.

568

569 Changze Lv, Dongqi Han, Yansen Wang, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
 570 Advancing spiking neural networks for sequential modeling with central pattern generators. In
 571 *Proceedings of the 38th International Conference on Neural Information Processing Systems,
 572 NIPS '24*, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

573

574 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 575 *Neural networks*, 10(9):1659–1671, 1997.

576

577 Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
 578 Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, and Yutaka Nakamura. A million spiking-
 579 neuron integrated circuit with a scalable communication network and interface. *Science*, 2014.

580

581 Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accu-
 582 rate deep spiking neural networks with backward residual connections, stochastic softmax, and
 583 hybridization. *Frontiers in Neuroscience*, 14:653, 2020.

584

585 Yu Qi, Jiangrong Shen, Yueming Wang, Huajin Tang, Hang Yu, Zhaohui Wu, Gang Pan, et al.
 586 Jointly learning network connections and link weights in spiking neural networks. In *Proceedings
 587 of International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 1597–1603, 2018.

588

589 Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng, and Guoqi Li. Gated atten-
 590 tion coding for training high-performance and efficient spiking neural networks. In *Proceedings
 591 of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 601–610, 2024.

592

593 Xuerui Qiu, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan,
 594 Yang Yang, Malu Zhang, and Haizhou Li. Quantized spike-driven transformer. In *The Thirteenth
 595 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=5J9B7Sb8rO>.

Roy, Kaushik, Jaiswal, Akhilesh, and Priyadarshini Panda. Towards spike-based machine intelli-
 596 gence with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

594 Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: Bridging resnet and vision transformer
 595 in spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 596 *Pattern Recognition*, 2024.

597

598 Shuai Wang, Malu Zhang, Dehao Zhang, Ammar Belatreche, Yichen Xiao, Yu Liang, Yimeng Shan,
 599 Qian Sun, Enqi Zhang, and Yang Yang. Spiking vision transformer with saccadic attention. In
 600 *ICLR*, 2025. URL <https://openreview.net/forum?id=qzzsz6MuEq>.

601 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 602 transformer. In *Proceedings of the International Conference on Neural Information Processing*
 603 *Systems*, 2023a. URL <https://openreview.net/forum?id=9FmolyOHi5¬eId=ShYKrFQugd>.

604

605 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
 606 Li. Attention spiking neural networks. *PAMI*, 45(8):9393–9410, 2023b.

607

608 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi
 609 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
 610 of next-generation neuromorphic chips. In *The Twelfth International Conference on Learning*
 611 *Representations*, 2024. URL <https://openreview.net/forum?id=1SIBN5Xyw7>.

612

613 Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luzi-
 614 we Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing
 615 approximation training. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(4):
 2973–2990, 2025. doi: 10.1109/TPAMI.2025.3530246.

616

617 Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Yingyan Lin,
 618 Zhangyang Wang, and Richard G. Baraniuk. Drawing early-bird tickets: Toward more efficient
 619 training of deep networks. In *International Conference on Learning Representations*, 2020. URL
 620 <https://openreview.net/forum?id=BJxsrgStvr>.

621

622 Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
 623 formance of convolutional neural networks via attention transfer. In *Proceedings of International*
 624 *Conference on Learning Representations (ICLR)*, 2016.

625

626 Han Zhang, Chenlin Zhou, Liutao Yu, Liwei Huang, Zhengyu Ma, Xiaopeng Fan, Huihui Zhou,
 627 and Yonghong Tian. Sglformer: Spiking global-local-fusion transformer with high performance.
Frontiers in Neuroscience, 18:1371290, 2024.

628

629 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
 630 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural
 631 network. *arXiv preprint arXiv:2304.11954*, 2023a. URL <https://arxiv.org/abs/2304.11954>.

632

633 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Zhengyu Ma, Huihui Zhou, Xiaopeng
 634 Fan, and Yonghong Tian. Enhancing the performance of transformer-based spiking neural
 635 networks by improved downsampling with precise gradient backpropagation. *arXiv preprint*
 636 *arXiv:2305.05954*, 2023b.

637

638 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
 639 Zhengyu Ma, Huihui Zhou, and Yonghong Tian. QKFormer: Hierarchical spiking transformer
 640 using q-k attention. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 641 *Systems*, 2024a. URL <https://openreview.net/forum?id=AVd7DpiooC>.

642

643 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
 644 Li Yuan. Spikformer: When spiking neural network meets transformer. In *The Eleventh Interna-
 645 tional Conference on Learning Representations*, 2023c. URL https://openreview.net/forum?id=frE4fUwz_h.

646

647 Zhaokun Zhou, Kaiwei Che, Wei Fang, Keyu Tian, Yuesheng Zhu, Shuicheng Yan, Yonghong Tian,
 648 and Li Yuan. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket, 2024b.
 URL <https://arxiv.org/abs/2401.02020>.

648 Zhaokun Zhou, Kaiwei Che, Jun Niu, Man Yao, Guoqi Li, Li Yuan, Guibo Luo, and Yuesheng Zhu.
649 Spatial-temporal spiking feature pruning in spiking transformer. *IEEE Transactions on Cognitive*
650 *and Developmental Systems*, 17(3):644–658, 2025. doi: 10.1109/TCDS.2024.3500018.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A COMPUTATIONAL OVERHEAD ANALYSIS 703

704 Although they do not introduce additional training parameters, the inclusion of DSTSP in Spiking-
705 token Mixer incurs some computational overhead. For a spiking feature $\mathbf{X} \in \mathbb{S}^{T \times N \times C}$, the total
706 number of additional operations brought by DSTSP is:

$$707 \quad 708 \quad \text{OP}_{\text{DSTSP}} = (2 - P_t) \cdot TNC + ((1 - P_t) \cdot T + 1)N^2 + T^2,$$

709 where P_t denotes temporal pruning ratio and P_s denotes spatial pruning ratio. Here we choose
710 the Bubble Sort when discussing computational overhead, using it as the upper bound for the cost
711 of DSTSP. Specifically, for DTSP, the number of operations required for SIV addition is TNC ,
712 while the number of operations required for sorting is T^2 (including comparisons and swaps). For
713 the DSSP applied to the features $\mathbf{X}_{\text{tp}} \in \mathbb{S}^{T_p \times N \times C}$, $T_p = T \cdot (1 - P_t)$ after DTSP, the number of
714 operations required for SIV addition is $(1 - P_t) TNC$, while the number of operations required for
715 sorting is $(1 - P_t) TN^2$. In addition, the indexing operation on the attention weights requires an
716 additional computational cost of N^2 .

717 The reduced number of operations for which the L -layers network inference overhead after pruning
718 is:

$$719 \quad 720 \quad \text{OP}_{\text{Reduce}} = L \cdot P_t \cdot T \cdot (P_s \cdot 10NC^2 + P_s^2 \cdot N^2C). \quad (8)$$

721 Besides, the total number of operations introduced by the original Spiking-token Mixer is:

$$723 \quad \text{OP}_{\text{Origin}} = L \cdot T \cdot (10NC^2 + N^2C). \quad (9)$$

725 The preceding equations lead to the conclusion that for large values of P_s and P_t , the $\text{OP}_{\text{reduce}}$ with
726 our proposed DSTSP is considerably lower than that of the original Spiking-token Mixer $\text{OP}_{\text{Origin}}$.
727 Furthermore, the computational overhead introduced by the DSTSP operation, OP_{DSTSP} is negligible.
728 During training, the parameter-free DSTSP does not require training or gradient computation.
729 Additionally, pruned features do not need gradient back-propagation, further accelerating the training
730 process.

731 B THEORETICAL ENERGY CONSUMPTION 732

734 According to the general convention of SNNs (Panda et al. (2020); Yao et al. (2023b)), we posit
735 that the MAC and AC operations are executed on 45nm hardware (Horowitz, 2014), with energy
736 consumption values of $EC_{\text{MAC}} = 4.6\text{pJ}$ and $EC_{\text{AC}} = 0.9\text{pJ}$ per operation, respectively. The
737 theoretical Energy Consumption (EC) of ANNs can be derived as follows:

$$738 \quad EC_{\text{ANN}} = 4.6\text{pJ} \times \text{MACs}. \quad (10)$$

740 In SNNs, the AC operations can be obtained by multiplying the MAC operations by the firing rate
741 f of input spikes and the simulation time step T ,

$$742 \quad ACs = \text{MACs} \times f \times T. \quad (11)$$

743 The operations of the first layer are MACs to map the floating-point original image to spike features,
744 while subsequent-layers operations are ACs for modeling sparse spiking features,

$$746 \quad 747 \quad EC_{\text{SP}} = 4.6\text{pJ} \times \text{MACs}^1 + 0.9\text{pJ} \times \sum_{l=2}^L \text{ACs}^l, \quad (12)$$

749 where L denotes the number of linear layers in the models. Note that we ignore the energy of BN,
750 as it can be incorporated into the linear layers during inference.

752 C THEORETICAL ANALYSIS OF SPATIAL-TEMPORAL SPIKING FEATURE 753 REDUNDANCY 754

755 We propose two metrics to support quantitative analysis in Sec 3.2.

756 **Ratio of Information Entropy (RIE)** is employed to quantify the similarity of information content
 757 between two feature sets, with a score approaching 1 indicating a higher degree of resemblance. The
 758 RIE is formally defined as the ratio of the information entropy of the pruned feature map $IE(\mathbf{X}_p)$, to
 759 that of the original feature map $IE(\mathbf{X})$. The calculation for information entropy is given by:
 760

$$761 \quad IE(\mathbf{X}) = - \sum_{i=0,1} P_{\mathbf{X}=i} \log_2 P_{\mathbf{X}=i}, \quad (13)$$

$$762$$

763 and the RIE is subsequently computed as:
 764

$$765 \quad RIE(\mathbf{X}_p, \mathbf{X}) = \frac{IE(\mathbf{X}_p)}{IE(\mathbf{X})}, \quad (14)$$

$$766$$

767 where $P_{\mathbf{X}=i}$ represents the probability of a given spike value (0 or 1). In our implementation, this
 768 probability term is empirically estimated by measuring the mean spike firing frequency across all
 769 samples in the test set.
 770

771 **Multi-Scale Structural Similarity (MS-SSIM)** quantifies the structural congruence between two
 772 images across multiple scales. An MS-SSIM score approaching its maximum value of 1 signifies
 773 a higher degree of similarity. We employ this metric, in conjunction with feature visualization
 774 techniques, to analyze features in both the spatial and temporal domains.
 775

776 D THE DSTSP ALGORITHM WORKFLOW

777 The complete algorithmic details of DSTSP are presented below in Algorithm 1.
 778

779 **Algorithm 1** Dynamic Spatial-Temporal Spiking Pruning

780 **Require:** Spiking Feature $\mathbf{X} \in \mathbb{S}^{T \times N \times C}$, Spatial Pruning Ratio P_s , Temporal Pruning Ratio P_t
 781 **Ensure:** Pruned Spiking Feature $\mathbf{X}_p \in \mathbb{S}^{T_p \times N_p \times C}$, where $T_p = T \cdot (1 - P_t)$ and $N_p = N \cdot (1 - P_s)$
 782
 783 1: **Dynamic Temporal Spiking Pruning**
 784 2: Sum the \mathbf{X} for each time step to obtain SIV_t
 785 3: Sort SIV_t to obtain indices of the top T_p largest correspondences in \mathbf{X}
 786 4: Select \mathbf{X}_{tp} according to the indices for Dynamic Spiking Spatial Pruning
 787 5: **Dynamic Spatial Spiking Pruning**
 788 6: **for** $j = 1$ to T_p **do**
 789 7: Sum spikes of each token in the \mathbf{X}_j to obtain SIV_s
 790 8: Sort SIV_s to obtain indices of the top N_p largest correspondences in \mathbf{X}_j
 791 9: Select $\mathbf{X}_{j,sp}$ according to the indices
 792 10: Select $\mathbf{W}_{M,sp}$ according to the indices
 793 11: **end for**
 794

795 E EXPERIMENTAL DETAILS

796 E.1 IMAGENET-1K EXPERIMENTAL SETTINGS

797 ImageNet-1K dataset Deng et al. (2009) is commonly used for computer vision tasks. It spans 1000
 798 object classes and contains around 1.3 million training images and 50,000 validation images. For ex-
 799 periments on the ImageNet dataset, we applied the DSTSP methodology to STMixer and three Spik-
 800 formers variants SpikformerV2, QKFormer, and SDTV3 by replacing their original token-mixing
 801 operators with the corresponding Spiking-token Mixer. We keep all training hyper-parameters iden-
 802 tical to those reported in their respective papers and conduct training on 8 NVIDIA-4090 GPUs.
 803

804 E.2 SMALL DATASETS EXPERIMENTAL SETTINGS

805 All experiments on CIFAR10 and CIFAR100 are conducted on four 3090 GPUs. We employ the
 806 same training script as SMixer and employed identical data augmentation techniques. Additionally,
 807 we conduct further experiments on two neuromorphic datasets to demonstrate the effectiveness of
 808

DSTSP. CIFAR10-DVS Li et al. (2017) is a neuromorphic dataset that is obtained from the CIFAR-10 dataset through a DVS camera. There are 10k images in CIFAR10-DVS, and we split them into 9k training images and 1k test images. We follow STMixer and downsample the image resolution from 128×128 to 48×48. DVS128 Gesture Amir et al. (2017) is a gesture recognition dataset that consists of 11 hand gesture classes performed by 29 individuals under 3 different lighting conditions. Notably, we use the ILIF neurons Luo et al. (2024) in all our experiments.

E.3 COCO EXPERIMENTAL SETTINGS

The prevalent reliance of existing SNN object detection models on convolutional networks makes it a non-trivial task to create a framework based on a Spiking-token mixer with DSTSP. Notably, even recent architectures such as the Meta Spike-driven Transformer V2 Yao et al. (2024), SpikeYOLO Luo et al. (2024) are still fundamentally structured around a large number of convolutional layers. To demonstrate the capability of the Spiking-token Mixer and our DSTSP training methodology for challenging object detection tasks, we introduce a hybrid architecture that circumvents the heavy dependence on convolution. Our approach adapts the advanced SpikeYOLO model by integrating Spiking-token Mixer blocks at critical feature extraction stages. Specifically, we replace the convolutions in the third and fourth stages of SpikeYOLO with 4 layers and 2 layers of Spiking-token Mixer blocks, respectively. During training, we fix the input resolution at 640×640. In the inference, though we rescale the image while preserving its original aspect ratio and set the longer side to a fixed maximum of 672 pixels, their spatial dimensions remain non-uniform. Before entering each SMixer block, we first convert the feature map to 640×640 via adaptive average pooling; after the block, we bilinearly interpolate the output back to the original resolution. However, such resolution switching still incurs non-negligible accuracy degradation. Thus, future work will aim to develop more advanced feature-pruning algorithms for similarly complex visual tasks.

E.4 TIME SERIES TASK EXPERIMENTAL SETTINGS AND RESULTS

Datasets The key statistics and data distribution for each dataset are summarized in the Table 9.

Table 9: The statistics of time-series datasets.

Dataset	Samples	Variables	Observation Length	Train-Valid-Test Ratio
Metr-la	34,272	207	12, (short-term)	(0.7, 0.2, 0.1)
Pems-bay	52,116	325	12, (short-term)	(0.7, 0.2, 0.1)
Solar-energy	52,560	137	168, (long-term)	(0.6, 0.2, 0.2)
Electricity	26,304	321	168, (long-term)	(0.6, 0.2, 0.2)

Metrics For evaluating time-series forecasting performance, we employ two primary metrics: the coefficient of determination (R^2) and the Root Relative Squared Error (RSE).

$$R^2 = 1 - \frac{\sum_{m=1}^M \sum_{c=1}^C \sum_{l=1}^L (Y_{c,l}^m - \hat{Y}_{c,l}^m)^2}{\sum_{m=1}^M \sum_{c=1}^C \sum_{l=1}^L (Y_{c,l}^m - \bar{Y}_{c,l})^2}, \quad (15)$$

$$RSE = \frac{\sqrt{\sum_{m=1}^M \|\mathbf{Y}^m - \hat{\mathbf{Y}}^m\|_2^2}}{\sqrt{\sum_{m=1}^M \|\mathbf{Y}^m - \bar{\mathbf{Y}}\|_2^2}}. \quad (16)$$

In the above Formulas (15), the variable M indicates the total number of test samples, C specifies the channel count, and L defines the prediction horizon. The term \bar{Y} is the average value of \mathbf{Y}^m . A specific notation, $Y_{c,l}^m$, denotes the value at the l -th future time step for the c -th variable within the m -th sample. Concurrently, $\bar{Y}_{c,l}$ represents the mean of $Y_{c,l}^m$ computed over all samples. Ground truth values are represented by the symbols \mathbf{Y}^m and $Y_{c,l}^m$. These metrics are chosen over alternatives like Mean Squared Error (MSE) or Mean Absolute Error (MAE) due to their enhanced robustness to the scale of dataset values, rendering them highly suitable for the time-series forecasting context.

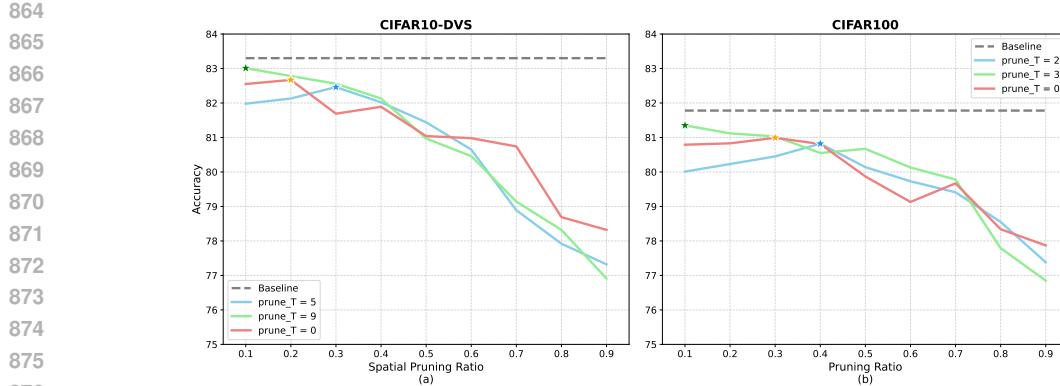


Figure 8: Performance of Spatial-Temporal Spiking Feature Pruning on CIFAR10-DVS and CIFAR100. The temporal pruning ratio is shown in the figure, $\text{prune_T} = n$ means that we discard n time steps. The original time step in CIFAR10-DVS is set to 10, and CIFAR100 is 4. The spatial pruning ratio is varied from 0.1 to 0.9.

Model Architecture and Training Hyper-parameters A fixed setting of 4 time steps is used for all SNNs. We build a model inspired by the working CPG Lv et al. (2025), replacing Spiking Self-Attention with the SMixer architecture, and introduce the DSTSP pruning mechanism before the first SMixer block. All variants are built with 2 blocks. The dimension for features is set to 256, while the hidden feature dimension within the FFN is 1024. We configure the training process with a batch size of 64 and utilized the Adam optimizer. The learning rate was managed by a cosine scheduler, starting at 1×10^{-4} . To prevent overfitting, an early stopping mechanism was implemented with a patience of 30 epochs. All experiments are executed on 32G-V100 GPUs.

E.5 MORE ABLATION RESULTS ON SPATIAL-TEMPORAL PRUNING RATIO

As shown in Figure. 8, we present the performance of our model on the CIFAR10-DVS and CIFAR100 datasets under various spatial-temporal pruning ratios. We observe that under a high temporal pruning ratio, performance degrades as the spatial pruning ratio increases. This suggests that the model requires sufficient information to make accurate inferences. Conversely, with a low temporal pruning ratio, we find that a certain degree of spatial pruning can lead to improved performance. For instance, on the CIFAR100 dataset, the best performance is achieved with a spatial pruning ratio of 0.4 when half of the time steps are pruned (i.e., two remaining time steps). Furthermore, when both spatial and temporal pruning ratios are moderate, the performance loss remains marginal, which demonstrates the robustness of our proposed pruning method.

F USE OF LLMs

We declare that the LLMs are used solely to aid or polish the writing and are not involved in the development of the main methodology or comparative experiments.