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ABSTRACT

Spiking Neural Networks (SNNs) offer a promising, energy-efficient paradigm for
computation, but face challenges in performance and training costs. For example,
Spiking ResNet exhibits relatively low performance, whereas high-performance
Spiking Transformers are not truly event driven and cannot be implemented on
asynchronous chips. Moreover, the intrinsic time steps and neuron state dynam-
ics result in a substantial computational overhead for training SNNs. In response
to these problems, we discuss rational architectural design for SNNs and argue
that such designs should exhibit three key characteristics: fully event-driven op-
erations, low training overhead and competitive performance. In light of this, we
adopt the event-driven friendly Spiking-token Mixer (SMixer) as the foundational
architecture and develop a spiking-feature Spatial-Temporal Pruning (STP) frame-
work with a high pruning ratio and no trainable parameters to reduce the training
overhead. Based on a statistical analysis of sparse spiking features, STP eliminates
redundant spiking features across both spatial and temporal dimensions, thereby
reducing the input features and computational overhead during training. Specifi-
cally, it adaptively selects the most salient spike events in the spatial domain and
dynamically constrains the neurons’ simulation time steps and firing thresholds in
the temporal domain. By leveraging architectural design and STP, SMixer accel-
erates training while ensuring a fully event-driven characteristics and maintaining
competitive performance, offering valuable insights for SNNs’ design.

1 INTRODUCTION

Spiking Neural Networks (SNNs) Maass (1997), the third generation of neural networks, are distin-
guished by their biological plausibility Roy et al. (2019), event-driven nature, and energy efficiency.
By emulating the dynamics of biological neurons, SNNs employ asynchronous binary spikes to
transmit information. Consequently, a neuron’s membrane potential is updated only upon spike
arrival. This event-driven property allows SNNs to inherently avoid computations involving zero-
valued activations, making them highly suitable for implementation on specialized neuromorphic
hardware like TrueNorth Merolla et al. (2014) and Loihi Davies et al. (2018).

Despite the encouraging progress of SNNs, several challenges hinder their application in real-world
pattern recognition. A fundamental difficulty lies in developing potent architectures for event-driven
SNNs that not only achieve competitive performance but also adhere to the principles of purely
event-driven operations for practical deployment. While Spiking Convolutional Neural Networks Lv
et al. (2023) often lack sufficient performance, Spiking Transformers Zhou et al. (2023c; 2024a); Yao
et al. (2025) have achieved the state-of-the-art (SOTA) results across various domains. However, a
critical issue arises on asynchronous hardware where spike arrival times are less precise than in
synchronous, clock-driven scenarios. The core Spiking Self-Attention mechanism, which relies on
the multiplication of two spike matrices, is susceptible to significant computational deviations under
such conditions Deng et al. (2024). SNNs’ high training cost is also a critical issue that cannot be
overlooked, primarily due to two reasons: i) Before deployment on neuromorphic chips, spiking
neural networks typically require training on Graphics Processing Units (GPUs) Fang et al. (2023).
SNNs cannot be trained on GPUs in a truly event-driven manner, which means that even zero-
valued features consume computational resources. ii) The inherent time steps and hidden states of
spiking neurons further occupy computational resources. To address these challenges, we propose
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that rational architectural design for SNNs should embody three fundamental characteristics: fully
event-driven operations, low training overhead and competitive performance.

Our purpose is to explore potential SNNs that simultaneously satisfy the above characteristics. Com-
pared to Spiking Transformers, Spiking Token Mixer () emerges as a more promising and feasible
event-driven architecture that the spike-based matrix multiplication used to obtain attention weights
is replaced with learnable parameters. Subsequently, we need to investigate approaches to reduce
the training overhead of SMixer. The intrinsically low firing rates of SNNs result in significant net-
work redundancy, making pruning a natural and promising approach for network lightweighting and
acceleration. However, pruning SNNs presents several key challenges compared to ANNs: First,
common unstructured weight pruning in SNNs usually offers limited practical acceleration and in-
curs additional training overhead, rendering its extension to SMixer impractical. This motivates the
structured feature pruning for acceleration. Second, achieving significant acceleration necessitates
a much higher pruning ratio (≥ 0.3) in SNNs than that in ANNs. Addressing these challenges, we
begin with an analysis of the SMixer’s spiking feature, Spatial-Temporal Spiking Feature Redun-
dancy. Spiking representations are concentrated in specific spatial-temporal regions, implying that a
large number of spike tokens containing low-information can be pruned, which lays the foundation
for high-ratio pruning. Furthermore, a lightweight pruning strategy is needed to avoid introducing
excessive pruning-related computational overhead.

We explore the potential of employing Spiking-token Mixer as a prototype within mainstream archi-
tectures and find that SMixer achieves competitive performance compared to spiking self-attention
mechanisms across various architectures. To further reduce the training overhead, we propose a
Dynamic Spatial-Temporal Spiking Pruning (DSTSP) framework tailored for the SMixer, which di-
rectly prunes redundant spiking feature to accelerate training while maintaining performance at a
high pruning ratio. Inspired by previous studies measuring semantic information through activation
values in feature maps Zagoruyko & Komodakis (2016); Ding et al. (2023), spiking feature redun-
dancy is determined by accumulating spike event counts within specific regions, such as within a
single token or a particular time step. Features with high accumulated values are considered impor-
tant, whereas those with low values are regarded as redundant. The Spiking Spatial Token Pruning
scores tokens by summing their spike values and ranking them adaptively based on network output.
High-scoring tokens are passed to the Spiking-token Mixer encoder, while low-scoring 1ones are
discarded or merged. For the temporal dimension, Dynamic Spiking Temporal Pruning dynamically
reduces both the upper bound on the total number of spikes that neurons can emit and the number of
time steps, thereby decreasing the latency of SMixer. By integrating the Mixer into various architec-
tures, SMixer achieves superior performance compared to the original frameworks, demonstrating
the potential as an mainstream SNN structure. We summarize the contributions as follows:

• We analyze the inherent architectural requirements for event-driven SNNs and the need for effi-
cient training methodologies. Based on this, we propose a blueprint for a high-ratio spike feature
structured pruning framework built upon the Spiking-token Mixer.

• Based on Spatial-Temporal Redundancy in Spiking-token Mixer, we develop the Dynamic Spatial-
Temporal Spike Pruning framework, which integrates dynamic spatial and temporal spike feature
pruning methods.

• We demonstrate that the SMixer architecture can achieve performance comparable to that of the
Spikformers. Furthermore, we show that our efficient pruning framework built upon SMixer,
accelerates training while maintaining performance close to the original model across various
neuromorphic and static datasets.

2 RELATED WORK

2.1 DEEP SPIKING NEURAL NETWORKS

Recent advancements in Artificial Neural Networks (ANNs) have enabled significant performance
improvements in SNNs, primarily through the adaptation of cutting-edge architectures from the
ANN domain. SpikingCNNs Lv et al. (2023) mix spike-form tokens with the learned weights of
convolution kernels. However, its performance remains suboptimal. Spiking Transformers Zhou
et al. (2023c;a); Zhang et al. (2024); Shi et al. (2024); Yao et al. (2023a); Qiu et al. (2024); Wang
et al. (2025); Qiu et al. (2025); Zhou et al. (2024a); Yao et al. (2025) mix tokens with pairwise corre-
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lations weight matrix between spike-form query and key tokens and re-weights the spike-form value
vectors to synthesize new token representations, which arrives the SOTA in various tasks. However,
performing matrix multiplication between two spike matrices during the forward pass is incompati-
ble with asynchronous neuromorphic hardware. In event-driven regimes, the spike arrival times lack
the temporal precision, which results in significant differences in the output, ultimately precipitating
a marked degradation in performance Deng et al. (2024). By jointly optimizing hardware feasibility
and accuracy, STMixer Deng et al. (2024) fuses the spiking token feature with a trainable attention
weight map, thereby eliminating spike-matrix multiplication. This design choice renders STMixer
a significantly more practical and scalable architecture for real-world neuromorphic deployment.

2.2 SNN PRUNING METHODS.

The pruning methods aim to further enhance the efficiency of SNNs. Neuro-inspired strategies fo-
cus on synaptic regeneration Kundu et al. (2021) and dendritic motion Kappel et al. (2015). Qi
et al. Qi et al. (2018) designed connection gates for synaptic pruning during the training process.
Kim et al. Kim et al. (2022) focus on lottery ticket-based methods, integrating Iterative Magni-
tude Pruning Frankle & Carbin (2018) with Early-Bird tickets You et al. (2020) to identify more
compact SNNs while Deng et al. Deng et al. (2023) formulate connection pruning and weight quan-
tization as a unified constrained optimization problem, which they solve by using Spatio-temporal
backpropagation and the alternating direction method of multipliers. Grad R Chen et al. (2021b)
makes improvements to Deep R method by introducing a weight regeneration mechanism. RCMO-
SNN Chen et al. (2023) presents an end-to-end minimax optimization approach for sparse learning.
For Spikformer Zhou et al. (2023c), Zhou et al. Zhou et al. (2025) propose Spatial-Temporal Spik-
ing Feature Pruning, and Liu et al. Liu et al. (2024) develop SparseSpikformer. Different from the
above, we seek to devise pruning methods tailored to superior Spiking-token Mixer architectures,
which is a direction that, to the best of our knowledge, remains entirely unexplored.

3 METHOD

3.1 SPIKING-TOKEN MIXER

The Spiking Self-Attention (SSA) involves synchronized matrix operations between spike-based
queries Q, keys K, and values V, whereas the Spiking-token Mixer involves asynchronous compu-
tations between weight matrices and inputs, as detailed below,

Q = SN (L-BNQ(X)),K = SN (L-BNK(X)),V = SN (L-BNV(X)), (1)

SSA(Q,K,V) = SN (QKTV ∗ s), (2)

SMxier(X) = SN (WMX) , (3)

(a) Spiking Transformer
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Figure 1: The overview of Spiking-token Mixer.

where SN denotes the spiking neuron and L-BN
represents that the features pass through Linear and
Batch Normalization sequentially. s is the scaling
factor. X is the spike-form input. However, calcu-
lating multiplications between spike-form Q and K
is unsuitable for asynchronous hardware. In com-
parison, Spiking-token Mixing can serve as a sub-
stitute for the SSA. Q and K converge into a single
learnable matrix WM for attention weight, which is
to gradually fit the attention map during the train-
ing process. In Figure 1, the overall architecture
includes Spiking Patch Splitting (SPS), several en-
coder blocks composed of a Spiking-token Mixer module and Spiking Multilayer Perceptron (MLP),
and classification head (CH).

3.2 SPATIAL-TEMPORAL SPIKING FEATURE REDUNDANCY IN SMIXER

To enable efficient feature pruning in SMixer, we begin by evaluating the significance of spiking
features using the Spike Intensity Value (SIV), which is defined as the sum of spike events within a
designated feature region.

3
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Image��������Feature��������Pruned���� Image��������Feature��������Pruned����

Figure 2: Visualization of Spatial Temporal Spiking Feature
Redundancy.

Similar to the concept of activa-
tion magnitudes in ANNs Zagoruyko
& Komodakis (2016); Ding et al.
(2023), a higher SIV indicates a
greater concentration of semantic in-
formation. Our analysis of the DVS-
Gesture reveals that the SIV distribu-
tion is highly imbalanced, with the
majority of tokens exhibiting low val-
ues, as shown in Figure 3. This
imbalance is closely linked to model
performance: a model that uses only
high-SIV tokens demonstrates con-
siderably better accuracy than one re-
lying on low-SIV tokens (97.9% vs
79.9%). Visual evidence further sup-
ports this, showing that regions with high SIV align with foreground objects, while low-SIV regions
tend to correspond to the background, as shown in Figure 2. It shows samples from DVS-Gesture
with a spatial pruning ratio of 0.3 and a temporal pruning ratio of 0.5 The left and middle columns of
each sub-figure display the original image and its corresponding original features. The right column
demonstrates the result obtained by retaining feature tokens with high SIV. These findings suggest
that critical semantic content is predominantly contained within a small subset of high-SIV tokens.
Importantly, the computation of SIV is highly efficient, involving only a simple summation that is
well-suited to the operational characteristics of SNNs.
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Figure 3: Distribution of Spike Intensity Value
in DVS-Gesture. The maximum and minimum
values are 125 and 0. The dashed line is the
boundary for 50% of Spiking-tokens.
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Figure 4: The strategies investigated include
pruning tokens with low-SIV (LP), high-SIV
(HP), and random selection (RP). ANN-LP de-
notes the performance of the LP strategy on
the ANN-Transformer. The Y-axis denotes the
metric values.

To validate the efficacy of our Spiking Information Value (SIV) metric in quantifying feature re-
dundancy, we conducted an analysis on CIFAR-100 using RIE and MS-SSIM scores (details in
Appendix C). As shown in Figure 4, we evaluated several token pruning strategies: low-SIV (LP),
high-SIV (HP), and random pruning (RP), comparing pruned feature outputs against the unpruned
baseline. Our analysis, which also included the LP strategy on a standard ANN-Transformer (ANN-
LP), revealed two key findings. First, SIV is substantially more effective at exposing redundancy
in SNNs than in ANNs. Second, the SIV-informed LP strategy is the most effective approach for
SNNs. This core insight serves as the foundational principle for our DSTSP framework.

3.3 DYNAMIC SPATIAL-TEMPORAL SPIKING PRUNING

Inspired by the high sparsity and redundancy of spiking features, we propose a lightweight method,
the Dynamic Spatial-Temporal Spiking Pruning (DSTSP), to prune a significant fraction of features
with low SIV, as illustrated in Figure 5. This approach aims to substantially reduce training costs
while preserving inference performance. Unlike conventional pruning in ANNs, which often relies
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Figure 5: The illustration of Dynamic Spatial-Temporal Spiking Pruning.

on complex, trainable modules, our method is specifically designed for SNNs. It avoids introducing
any learnable parameters by leveraging simple, addition-based operations that align with the spike-
driven characteristic of SNNs. DSTSP operates sequentially across two dimensions. First, in the
temporal domain, it computes the SIV for each spiking feature map per time step, retaining only a
specified percentage of the highest-scoring maps. Subsequently, in the spatial domain, it evaluates
the SIV of individual spiking tokens, preserving only those with high activation values. The specifics
of DSTSP are detailed in the following sections.

Dynamic Spiking Spatial Pruning (DSSP) analyzes the SIV of each token to determine its seman-
tic information and prunes tokens with low SIV. For a spike-form feature X ∈ ST×N×C , where T
represents the time steps, N and C represent the number of spiking tokens and channel dimensions,
respectively. The DSSP is conducted as follows,

IS =

C∑
i=1

X[:, :, i],Xi = SORT(IS,X), N ′ = N · (1− PS),X
′ = Xi [: N

′] , (4)

W′
M = WM[N ′, N ′],SMixer(X) = SN (W′

MX′) (5)
where X is sorted in descending order to obtain Xi according to the spatial SIV IS. N ′ is the number
of spiking tokens after pruning and PS denotes the spatial pruning ratio. X′ is the remained feature
after DSSP. W′

M denotes the activated attention weight, for which we explore two approaches. The
first approach treats it as a static N ′ ×N ′ matrix. The second approach involves randomly selecting
N ′ shared row and column indices during training and reverting to a full-sized matrix for inference.
Both strategies yield nearly identical performance at inference time.

Dynamic Spiking Temporal Pruning (DSTP) prunes temporal information from two aspects. On
one hand, it assesses the importance of each time step to remove those that are less significant. Given
an input spiking feature X ∈ ST×N×C , the formulation is as follows:

IT =

N∑
n=1

C∑
i=1

X[:, n, i],Xi = SORT(IT,X), (6)

T ′ = T · (1− PT),X
′ = Xi [: T

′] ,X′′ = SN (X′) (7)

Here, IT is the SIV calculated for each time step. Based on these scores, Xi represents the feature
maps sorted in descending order of importance. The number of time steps retained, T ′ is calculated
based on a pruning ratio PT. Finally, X′ is the temporal feature after the pruning. Reducing the
number of time steps for feature inputs into the spiking neurons and network layers directly reduces
the number of neuron states and computational cost, thereby lowering training overhead.

Computational Overhead Analysis. For clarity, we choose typical size Spiking-token Mixer mod-
els to compare these operations on the ImageNet, as shown in Table 1. The results show that DSTSP
significantly lowers the computational overhead. Theoretical analysis is provided in the Appendix A.

4 EXPERIMENTS

In this section, we validate DSTSP using Spiking Token Mixer framework as the baseline. We first
conduct experiments on classification tasks, including CIFAR10-DVS Li et al. (2017), DVS128 Ges-
ture Amir et al. (2017), CIFAR10, CIFAR100 Krizhevsky (2009), and ImageNet Deng et al. (2009).
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Table 1: Comparison of the OPIncrease and OPReduce. SMixer-L-D denotes for Spiking-token Mixer
with L layers and D channels. The Rate represents the ratio of OPReduce to original cost OPOrigin.

Model OPIncrease(M) ↑ OPReduce(M) ↓ OPOrigin(M) Rate(%)
SMixer-2-256 0.33 243 1106 21.97
SMixer-4-384 0.45 1060 4867 21.78
SMixer-8-512 0.58 3741 17073 21.91

Image���������Feature��������DSTSP Image���������Feature��������DSTSP

Figure 6: Visualization of SMixer and relating DSTSP on the ImageNet-1K. Feature and DSTSP
represent the attention maps generated by the original SMixer module before and after being pruned
by our DSTSP method, respectively

These datasets cover both neuromorphic and conventional vision domains. Our evaluation centers
on training time, energy cost, GPU memory and inference accuracy. We further assess DSTSP on
the more demanding task of time series and object detection. Final, the ablation study examines the
efficacy, certain strategies, and position of DSTSP. The training epochs, hyperparameter settings are
consistent with the original models. Further details are provided in Appendix E.

4.1 RESULTS ON IMAGE CLASSIFICATION

ImageNet. We evaluate the feasibility of Spiking-token Mixer (SMixer) paradigm Deng et al.
(2024) and DSTSP on the ImageNet-1K dataset. We first analyze the effectiveness of DSTSP
using the original STMixer-8-512 and STMixer-8-768 as baselines. Besides, we further replace
the Spiking Self-Attention in three representative state-of-the-art Spiking Transformer frameworks
(SpikformerV2 Zhou et al. (2024b), QKFormer Zhou et al. (2024a), and Spike-driven Transformer-
V3 Yao et al. (2025)) with Spiking-token Mixer and further assess DSTSP pruning framework,
supported by visual analysis, to demonstrate its efficacy. As detailed in Table 2, replacing SSA with
Spiking-token Mixer yields comparable accuracy to the original frameworks at similar parameters,
demonstrating its capability to replace the Spiking Transformer and serve as a new prototype. With
a fixed spatial pruning ratio of 0.30 and a pruned time step of 1, our DSTSP shows remarkable effi-
ciency gains. Notably, on the STMixer-8-768 model, our pruning method improves accuracy by 0.2
% over the baseline. This high performance are achieved while reducing GPU memory consump-
tion to 76.44% and energy to just 53.03% of the original, alongside a high increase in throughput.
When applied to the modified Spikformer-V2 (T=4), our pruning framework results in only a minor
1.3% accuracy loss while also delivering substantial computational savings. Variants based on QK-
Former and SDT-v3 also diminish energy consumption and shorten training time while incurring a
performance drop of less than 2%. Our qualitative analysis in Figure 6 offers further validation.
The attention maps from Spiking-token Mixer (Feature) effectively highlight key object regions in a
manner comparable to the original Spiking Self-Attention. Crucially, we observe that after pruning,
the remaining tokens consistently align with the most semantically significant parts of the image
(DSTSP). This demonstrates our framework’s ability to preserve essential information.
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Table 2: Performance of DSTSP on ImageNet. Power is calculated as the average theoretical energy
consumption when predicting an image from ImageNet test set. The power data for ours is evalu-
ated according to Appendix B and the power data of other works are obtained from related papers.
”Model-L-D” denotes the specific Model with L encoder blocks and D channels. ”Model → M”
indicates the conversion of the original Spikformers Model into the Spiking-token Mixer. We set the
spatial pruning ratio to 0.3 and perform temporal pruning to single time step.

Methods Architecture Time Step Param (M) TP (im/s) Memory (MB) Power (mJ) Top-1 Acc (%)

STMixer STMixer-8-512 1 30.12 211 11762 2.20 73.82
STMixer-8-768 1 61.16 120 17008 4.45 76.68

STMixer + DSTSP STMixer-8-512 1 27.61 250 9578 1.68 73.56
STMixer-8-768 1 58.66 162 13002 2.36 76.87

SpikformerV2

Spikformer V2-8-384 1 29.11 130 5260 1.73 75.42
Spikformer V2-8-512 1 51.55 113 6880 2.84 79.05
Spikformer V2-8-384 4 29.11 82 12170 4.69 78.80
Spikformer V2-8-512 4 51.55 67 18786 9.36 80.38

SpikformerV2 → M

Spikformer V2-8-384 1 27.97 156 3490 1.13 76.39
Spikformer V2-8-512 1 48.56 134 5384 2.12 79.16
Spikformer V2-8-384 4 27.97 65 9256 3.65 79.12
Spikformer V2-8-512 4 48.56 56 12982 7.97 80.45

SpikformerV2 → M + DSTSP

Spikformer V2-8-384 1 27.34 245 2584 0.83 76.22
Spikformer V2-8-512 1 47.93 198 3368 1.98 78.99
Spikformer V2-8-384 4 27.34 135 7505 1.55 78.03
Spikformer V2-8-512 4 47.93 98 10387 3.44 79.15

QKFormer HST-10-384 1 16.47 377 13841 3.38 75.52
HST-10-512 1 29.08 317 20005 4.79 78.71

QKFormer → M HST-10-384 1 18.31 365 8385 2.76 76.03
HST-10-512 1 29.70 325 13051 4.06 78.69

QKFormer → M + DSTSP HST-10-384 1 14.92 461 6991 2.17 75.13
HST-10-512 1 25.92 398 9751 3.15 77.39

SDT-V3
Efficient-transformer-S 4 5.1 300 9040 1.70 75.30
Efficient-transformer-M 4 10.00 267 12388 3.00 78.50
Efficient-transformer-L 4 19.00 197 16318 5.90 79.80

SDT-V3 → M
Efficient-transformer-S 4 6.37 373 7396 1.42 75.25
Efficient-transformer-M 4 10.15 280 9988 2.56 78.65
Efficient-transformer-L 4 19.36 219 13912 4.93 79.25

SDT-V3 → M + DSTSP
Efficient-transformer-S 4 5.05 398 6060 1.01 74.15
Efficient-transformer-M 4 9.42 338 8210 2.02 76.63
Efficient-transformer-L 4 18.66 273 10710 3.91 77.75

Table 3: Comparision on CIFAR10, CIFAR100, DVS128, CIFAR10-DVS. ”Param” denotes ”Pa-
rameter (M)”, ”Acc” denotes ”Top-1 Accuracy (%)”, ”T ” denotes ”Time Step”.

Method
CIFAR10 CIFAR100 DVS128 CIFAR10-DVS

Param T Acc Param T Acc Param T Acc Param T Acc

Spikformer Zhou et al. (2023c) 9.32 4 95.51 9.32 4 78.21 2.57 16 98.30 2.57 16 80.90
Spikingformer Zhou et al. (2023a) 9.32 4 95.81 9.32 4 78.21 2.57 16 98.30 2.57 16 81.30
CML Zhou et al. (2023b) 9.32 4 96.04 9.32 4 80.02 2.57 16 98.60 2.57 16 80.90
S-TransformerYao et al. (2023a) 10.28 4 95.60 10.28 4 78.40 2.57 16 99.30 2.57 16 80.00

SMixer 8.29 1 95.49 8.29 1 80.00 2.63 10 97.91 2.63 10 83.30
8.29 4 96.01 8.29 4 81.87 2.63 16 98.61 2.63 16 83.02

SMixer+DSTSP 8.24 1 95.44 8.24 1 79.71 2.55 10 97.56 2.55 10 82.56
8.24 4 95.67 8.24 4 81.03 2.55 16 98.26 2.55 16 82.34

Cifar and Neuromorphic Datasets. We then conduct experiments on both static datasets (CIFAR-
10, CIFAR-100 Krizhevsky (2009)) and neuromorphic datasets (CIFAR10-DVS Li et al. (2017),
DVS128-Gesture Amir et al. (2017)), benchmarking our method against the SMixer baseline as
shown in Table 3. By applying a fixed spatial pruning ratio of 0.30 and prune the time-step to 1,
we observe a mere 0.5% performance drop on CIFAR-10 and CIFAR-100. On the neuromorphic
datasets CIFAR10-DVS and DVS128, our method incurs a performance drop less than 1%.

4.2 RESULTS ON TIME SERIES TASK

We evaluate the effectiveness of DSTSP on time-series tasks by conducting experiments on four
benchmarks Metr-La, Solar, PEMS-Bay, and Electricity under prediction horizons of 6, 24, 48, and
96 steps. As shown in Table 4, the SMixer paradigm consistently outperforms Spikformer, demon-
strating its potential. Besides, integrating DSTSP incurs no significant degradation in performance.
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Table 4: Experimental results of time-series forecasting on 4 benchmarks with various prediction
lengths 6, 24, 48, 96. The best results in SNNs are formatted in bold font format. ↑ (↓) indicates
the higher (lower) the better.

Model SNN Metric Metr-la Pems-bay Solar Electricity

6 24 48 96 6 24 48 96 6 24 48 96 6 24 48 96

Transformer × R2↑ .727 .554 .413 .284 .785 .734 .688 .673 .953 .858 .759 .718 .978 .975 .972 .964
RSE↓ .551 .704 .808 .895 .502 .558 .610 .618 .223 .377 .504 .545 .260 .277 .347 .425

Spikformer ✓ R2↑ .697 .491 .383 .242 .768 .684 .678 .663 .903 .819 .715 .656 .956 .955 .953 .943
RSE↓ .581 .753 .828 .917 .521 .607 .613 .627 .319 .439 .548 .602 .371 .375 .386 .450

SMixer ✓
R2↑ .734 .519 .422 .278 .788 .726 .689 .674 .945 .869 .789 .732 .956 .971 .967 .952

RSE↓ .544 .730 .802 .895 .496 .566 .603 .615 .216 .371 .471 .531 .371 .305 .322 .389

SMixer + DSTSP ✓ R2↑ .697 .530 .400 .277 .775 .712 .682 .662 .930 .855 .761 .662 .957 .965 .950 .955
RSE↓ .581 .722 .816 .896 .503 .577 .607 .596 .272 .381 .490 .596 .369 .335 .395 .380

4.3 RESULTS ON OBJECT DETECTION TASK

Table 5: Performance of detection on COCO
val2017 Lin et al. (2014). We benchmark our method
against representative baselines of both ANN-to-SNN
conversion and direct SNN training paradigms.

Methods Architecture Param (M) Power (mJ) Step mAP@50(%)

ANN2SNN
Spiking-Yolo [95] 10.2 - 3500 25.7
Spike Calibration [96] 17.1 - 512 45.3
Fast-SNN [13] 25.1 - 15 46.4

Direct training

Spiking Retina [97] 11.3 - 4 28.5
EMS-Res-SNN [98] 26.9 - 4 50.1

Meta-SpikeFormer* [28] 34.9 49.5 1 44.0
75.0 140.8 1 51.2

Direct training E-SpikeFormer*
38.7 56.2 2 41.8
38.7 94.5 4 58.4
38.7 119.5 8 58.8

Direct training SMixer 49.7 36.8 4 58.9
SMixer + DSTSP 39.2 21.2 4 57.4

To evaluate the effectiveness of DSTSP
on demanding object detection tasks, we
first adapt the SpikeYOLO Luo et al.
(2024) framework by integrating SMixer
blocks, then implement DSTSP. Specifi-
cally, we replace the convolutional layers
in the third and fourth stages of SpikeY-
OLO with 4 and 2 layers of SMixer
blocks, respectively. On the challenging
MS COCO dataset Lin et al. (2014), our
model trained with DSTSP by 20% spa-
tial pruning rate and single pruned time-
step and achieved a mAP50 of 57.4, com-
pared to the baseline model’s 58.9. We
consider this modest decrease in accuracy acceptable, given the highly detailed and complex nature
of the COCO task. Further deployment details are provided in the Appendix E.3.

4.4 ABLATION STUDY

Spatial-Temporal Pruning Method Ablation. This section details the implementation of various
temporal-spatial pruning configurations on the CIFAR-10 and CIFAR-100 datasets. We evaluate
their effects on key metrics, including energy consumption, FLOPs, inference latency, and overall
performance. Our findings demonstrate that even at substantial pruning ratios, the proposed strategy
preserves model robustness while significantly reducing FLOPs and increasing processing speed.
Furthermore, we conduct a granular analysis of the impact of different temporal-spatial pruning
ratios. As illustrated in the Appendix E.5, Figure 8 for the DVS-CIFAR10 and CIFAR-100 datasets,
a notable degradation is observed only at exceptionally high spatial-temporal pruning levels.

CIFAR10-DVS CIFAR10 CIFAR10060

65

70

75

80

85

90

95

100 baseline DSTSP RP HP

Figure 7: Comparison of Pruning Strategies.
The default spatial pruning ratio is set to 0.3,
and time step is pruned to 1.

Table 6: Performance of STSFP on CIFAR10
and CIFAR100. We only displayed the GPU,
throughput, and FLOPs for CIFAR100 because
the results for CIFAR10 are almost the same.
We adopt the Softmatch strategy by default to
deal with the pruned tokens. TP denotes the
throughput.

Ps Pt
TP

(im/s)
GPU

Memory FLOPs CIFAR100 CIFAR10

0 0 266 5329M 3.45G 81.78 96.01
0.40 0 337 3498M 2.72G 80.81 95.44
0.60 0 368 3045M 2.36G 79.13 94.67

0 0.50 671 3526M 2.54G 81.25 95.90
0 0.75 667 3384M 2.08G 81.23 95.89

0.20 0.50 615 2851M 2.34G 81.14 95.78
0.30 0.75 738 2346M 2.04G 81.03 95.67

Comparison of Spatial Pruning Strategies. To validate the proposed pruning method, a compar-
ative analysis is conducted against two baseline strategies: random pruning (RD) and the pruning
of high-SIV tokens (HP). To ensure a fair comparison, the pruning technique is the sole variable,
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with all other experimental settings held constant. The results affirm our prior findings from the
Spatial Temporal Spiking Feature Redundancy analysis, confirming that removing low-SIV regions
is the most effective approach for information preservation. As depicted in Figure 7, our method
achieve a superior accuracy of 81.03% on the CIFAR100 dataset. In contrast, the HP strategy is the
least performant, with its accuracy declining by 2.92% to 78.11%, while the RD strategy yield an
intermediate result.
Comparison with SNN Weight Pruning. In Table 7, we benchmark DSTSP against conventional
SNN pruning methods. A direct one-to-one comparison is non-trivial, as DSTSP’s methodology di-
verges significantly from standard synaptic pruning. Consequently, we evaluate performance based
on three key criteria: the pruning cost, the degree of sparsity achieved, and the accuracy degrada-
tion relative to the original dense model. By integrating pruning directly into the training loop for
efficiency, DSTSP’s computational cost is treated as a single, unified stage. Notably, our proposed
method incurs the minimal performance loss among all techniques benchmarked.

Position of DSTSP. This section analyzes the optimal placement of the pruning module by con-
sidering its temporal and spatial operations. A critical constraint dictates that spatial pruning must
be performed subsequent to the SPS module, as its 2D convolutional layers depend on the original
feature map dimensions (Height × Width) that spatial pruning would otherwise alter. The empir-
ical results for different module placements are presented in Table 8. The findings indicate that
applying DSTSP during both the training and inference phases (B) yields the highest performance,
though employing it exclusively during training also produces commendable results. We further
explore strategies involving pruning only during training (T) or inference (I). The performance of
the training-only approach is comparable to that of using DSTSP in both stages, whereas applying
it solely during inference results in inferior performance.

Table 7: We define the pruning cost as the ra-
tio Np

Nd
, where Np is the number of epochs

for pruning and Nd is for training the origi-
nal dense model. Since our method integrates
pruning into the standard training process with-
out requiring additional epochs, its cost is 1.
Furthermore, we note that our reported spar-
sity measures the ratio of pruned spiking tokens,
whereas in prior works it typically refers to the
ratio of zero-valued weights.

Pruning Method Base Acc. (%) Cost Pruned Acc. (%) Sparsity

NDSNN Huang et al. (2023) 69.86 5.00
68.07 0.90
66.73 0.95
63.51 0.98

Grad R Chen et al. (2021a) 71.34 34.13 67.47 0.95
67.31 0.98

IMP Chen et al. (2021a) 71.34
37.67 71.38 0.90
56.33 70.54 0.96
70.33 67.35 0.98

RCMO-SNN Chen et al. (2023) 74.71 51.67 72.67 0.95
65.67 70.80 0.97

DSTSP 81.87 1
80.67 0.50
80.13 0.60
79.78 0.70

Table 8: Position of STSFP. For the ‘Stage’,
B indicates that STSFP is used during both
training and inference, T indicates usage during
training only, and I indicates usage during in-
ference only. Regarding placement, IS denotes
integrating the TSFP within the SPS, while AS
indicates positioning the module after the SPS.
For CIFAR10-DVS, Ps = 0.3 and Pt = 0.9.
For CIFAR100, Ps = 0.3 and Pt = 0.75.

Dataset Stage TSFP SSTP Acc.

CIFAR10-DVS

B AS AS 82.56
B IS AS 82.03
T AS AS 82.45
I AS AS 80.05

CIFAR100

B AS AS 81.03
B IS AS 80.56
T AS AS 80.95
I AS AS 79.74

5 CONCLUSION

We begin by analyzing three major challenges currently faced by deep SNNs: event-driven con-
straints, performance limitations, and training overhead. Specifically, we explore the potential of the
Spiking-token Mixer as a prototype in terms of both performance and event-driven characteristics.
By integrating SMixer into mainstream SNN variants, we demonstrate that its performance is on par
with prior Spiking Transformers, highlighting the potential for high-performance architectures that
are fully event-driven. To address the excessive training cost associated with SMixer, we propose
Dynamic Spatial-Temporal Spiking Pruning, which reduces training overhead by pruning redun-
dant spiking features while maintaining competitive performance. We hope that SMixer can inspire
future research in the development of deep SNNs.
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A COMPUTATIONAL OVERHEAD ANALYSIS

Although they do not introduce additional training parameters, the inclusion of DSTSP in Spiking-
token Mixer incurs some computational overhead. For a spiking feature X ∈ ST×N×C , the total
number of additional operations brought by DSTSP is:

OPDSTSP = (2− Pt) · TNC + ((1− Pt) · T + 1)N2 + T 2,

where Pt denotes temporal pruning ratio and Ps denotes spatial pruning ratio. Here we choose
the Bubble Sort when discussing computational overhead, using it as the upper bound for the cost
of DSTSP. Specifically, for DTSP, the number of operations required for SIV addition is TNC,
while the number of operations required for sorting is T 2 (including comparisons and swaps). For
the DSSP applied to the features Xtp ∈ STp×N×C , Tp = T · (1 − Pt) after DTSP, the number of
operations required for SIV addition is (1− Pt) TNC, while the number of operations required for
sorting is (1 − Pt) TN

2. In addition, the indexing operation on the attention weights requires an
additional computational cost of N2.

The reduced number of operations for which the L-layers network inference overhead after pruning
is:

OPReduce = L · Pt · T · (Ps · 10NC2 + P 2
s ·N2C). (8)

Besides, the total number of operations introduced by the original Spiking-token Mixer is:

OPOrigin = L · T · (10NC2 +N2C). (9)

The preceding equations lead to the conclusion that for large values of Ps and Pt, the OPreduce with
our proposed DSTSP is considerably lower than that of the original Spiking-token Mixer OPOrigin.
Furthermore, the computational overhead introduced by the DSTSP operation, OPDSTSP is negligi-
ble. During training, the parameter-free DSTSP does not require training or gradient computation.
Additionally, pruned features do not need gradient back-propagation, further accelerating the train-
ing process.

B THEORETICAL ENERGY CONSUMPTION

According to the general convention of SNNs ( Panda et al. (2020); Yao et al. (2023b)), we posit
that the MAC and AC operations are executed on 45nm hardware (Horowitz, 2014), with energy
consumption values of ECMAC = 4.6pJ and ECAC = 0.9pJ per operation, respectively. The
theoretical Energy Consumption (EC) of ANNs can be derived as follows:

ECANN = 4.6pJ× MACs. (10)

In SNNs, the AC operations can be obtained by multiplying the MAC operations by the firing rate
f of input spikes and the simulation time step T ,

ACs = MACs × f × T. (11)

The operations of the first layer are MACs to map the floating-point original image to spike features,
while subsequent-layers operations are ACs for modeling sparse spiking features,

ECSP = 4.6pJ× MACs1 + 0.9pJ×
L∑

l=2

ACsl, (12)

where L denotes the number of linear layers in the models. Note that we ignore the energy of BN,
as it can be incorporated into the linear layers during inference.

C THEORETICAL ANALYSIS OF SPATIAL-TEMPORAL SPIKING FEATURE
REDUNDANCY

We propose two metrics to support quantitative analysis in Sec 3.2.
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Ratio of Information Entropy (RIE) is employed to quantify the similarity of information content
between two feature sets, with a score approaching 1 indicating a higher degree of resemblance. The
RIE is formally defined as the ratio of the information entropy of the pruned feature map IE(Xp), to
that of the original feature map IE(X). The calculation for information entropy is given by:

IE(X) = −
∑
i=0,1

PX=i log2 PX=i, (13)

and the RIE is subsequently computed as:

RIE(Xp,X) =
IE(Xp)
IE(X)

, (14)

where PX=i represents the probability of a given spike value (0 or 1). In our implementation, this
probability term is empirically estimated by measuring the mean spike firing frequency across all
samples in the test set.

Multi-Scale Structural Similarity (MS-SSIM) quantifies the structural congruence between two
images across multiple scales. An MS-SSIM score approaching its maximum value of 1 signifies
a higher degree of similarity. We employ this metric, in conjunction with feature visualization
techniques, to analyze features in both the spatial and temporal domains.

D THE DSTSP ALGORITHM WORKFLOW

The complete algorithmic details of DSTSP are presented below in Algorithm 1.

Algorithm 1 Dynamic Spatial-Temporal Spiking Pruning

Require: Spiking Feature X ∈ ST×N×C , Spatial Pruning Ratio Ps, Temporal Pruning Ratio Pt
Ensure: Pruned Spiking Feature Xp ∈ STp×Np×C , where Tp = T · (1−Pt) and Np = N · (1−Ps)

1: Dynamic Temporal Spiking Pruning
2: Sum the X for each time step to obtain SIVt
3: Sort SIVt to obtain indices of the top Tp largest correspondences in X
4: Select Xtp according to the indices for Dynamic Spiking Spatial Pruning
5: Dynamic Spatial Spiking Pruning
6: for j = 1 to Tp do
7: Sum spikes of each token in the Xj to obtain SIVs
8: Sort SIVs to obtain indices of the top Np largest correspondences in Xj

9: Select Xj,sp according to the indices
10: Select WM,sp according to the indices
11: end for

E EXPERIMENTAL DETAILS

E.1 IMAGENET-1K EXPERIMENTAL SETTINGS

ImageNet-1K dataset Deng et al. (2009) is commonly used for computer vision tasks. It spans 1000
object classes and contains around 1.3 million training images and 50,000 validation images. For ex-
periments on the ImageNet dataset, we applied the DSTSP methodology to STMixer and three Spik-
formers variants SpikformerV2, QKFormer, and SDTV3 by replacing their original token-mixing
operators with the corresponding Spiking-token Mixer. We keep all training hyper-parameters iden-
tical to those reported in their respective papers and conduct training on 8 NVIDIA-4090 GPUs.

E.2 SMALL DATASETS EXPERIMENTAL SETTINGS

All experiments on CIFAR10 and CIFAR100 are conducted on four 3090 GPUs. We employ the
same training script as SMixer and employed identical data augmentation techniques. Additionally,
we conduct further experiments on two neuromorphic datasets to demonstrate the effectiveness of
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DSTSP. CIFAR10-DVS Li et al. (2017) is a neuromorphic dataset that is obtained from the CIFAR-
10 dataset through a DVS camera. There are 10k images in CIFAR10-DVS, and we split them into
9k training images and 1k test images. We follow STMixer and downsample the image resolution
from 128×128 to 48×48. DVS128 Gesture Amir et al. (2017) is a gesture recognition dataset that
consists of 11 hand gesture classes performed by 29 individuals under 3 different lighting conditions.
Notably, we use the ILIF neurons Luo et al. (2024) in all our experiments.

E.3 COCO EXPERIMENTAL SETTINGS

The prevalent reliance of existing SNN object detection models on convolutional networks makes
it a non-trivial task to create a framework based on a Spiking-token mixer with DSTSP. Notably,
even recent architectures such as the Meta Spike-driven Transformer V2 Yao et al. (2024), SpikeY-
OLO Luo et al. (2024) are still fundamentally structured around a large number of convolutional
layers. To demonstrate the capability of the Spiking-token Mixer and our DSTSP training method-
ology for challenging object detection tasks, we introduce a hybrid architecture that circumvents
the heavy dependence on convolution. Our approach adapts the advanced SpikeYOLO model by
integrating Spiking-token Mixer blocks at critical feature extraction stages. Specifically, we replace
the convolutions in the third and fourth stages of SpikeYOLO with 4 layers and 2 layers of Spiking-
token Mixer blocks, respectively. During training, we fix the input resolution at 640×640. In the
inference, though we rescale the image while preserving its original aspect ratio and set the longer
side to a fixed maximum of 672 pixels, their spatial dimensions remain non-uniform. Before enter-
ing each SMixer block, we first convert the feature map to 640×640 via adaptive average pooling;
after the block, we bilinearly interpolate the output back to the original resolution. However, such
resolution switching still incurs non-negligible accuracy degradation. Thus, future work will aim to
develop more advanced feature-pruning algorithms for similarly complex visual tasks.

E.4 TIME SERIES TASK EXPERIMENTAL SETTINGS AND RESULTS

Datasets The key statistics and data distribution for each dataset are summarized in the Table 9.

Table 9: The statistics of time-series datasets.

Dataset Samples Variables Observation Length Train-Valid-Test Ratio
Metr-la 34,272 207 12, (short-term) (0.7, 0.2, 0.1)
Pems-bay 52,116 325 12, (short-term) (0.7, 0.2, 0.1)
Solar-energy 52,560 137 168, (long-term) (0.6, 0.2, 0.2)
Electricity 26,304 321 168, (long-term) (0.6, 0.2, 0.2)

Metrices For evaluating time-series forecasting performance, we employ two primary metrics: the
coefficient of determination (R2) and the Root Relative Squared Error (RSE).

R2 = 1−
∑M

m=1

∑C
c=1

∑L
l=1(Y

m
c,l − Ŷ m

c,l )
2∑M

m=1

∑C
c=1

∑L
l=1(Y

m
c,l − Ȳc,l)2

, (15)

RSE =

√∑M
m=1 ||Ym − Ŷm||2√∑M
m=1 ||Ym − Ȳ||2

. (16)

In the above Formulas ( 15), the variable M indicates the total number of test samples, C specifies
the channel count, and L defines the prediction horizon. The term Ȳ is the average value of Ym.
A specific notation, Y m

c,l , denotes the value at the l-th future time step for the c-th variable within
the m-th sample. Concurrently, Ȳc,l represents the mean of Y m

c,l computed over all samples. Ground
truth values are represented by the symbols Ym and Y m

c,l . These metrics are chosen over alternatives
like Mean Squared Error (MSE) or Mean Absolute Error (MAE) due to their enhanced robustness
to the scale of dataset values, rendering them highly suitable for the time-series forecasting context.
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Figure 8: Performance of Spatial-Temporal Spiking Feature Pruning on CIFAR10-DVS and CI-
FAR100. The temporal pruning ratio is shown in the figure, prune T = n means that we discard
n time steps. The original time step in CIFAR10-DVS is set to 10, and CIFAR100 is 4. The spatial
pruning ratio is varied from 0.1 to 0.9.

Model Architecture and Training Hyper-parameters A fixed setting of 4 time steps is used for
all SNNs. We build a model inspired by the working CPG Lv et al. (2025), replacing Spiking Self-
Attention with the SMixer architecture, and introduce the DSTSP pruning mechanism before the first
SMixer block. All variants are built with 2 blocks. The dimension for features is set to 256, while
the hidden feature dimension within the FFN is 1024. We configure the training process with a batch
size of 64 and utilized the Adam optimizer. The learning rate was managed by a cosine scheduler,
starting at 1 × 10−4. To prevent overfitting, an early stopping mechanism was implemented with a
patience of 30 epochs. All experiments are executed on 32G-V100 GPUs.

E.5 MORE ABLATION RESULTS ON SPATIAL-TEMPORAL PRUNING RATIO

As shown in Figure. 8, we present the performance of our model on the CIFAR10-DVS and CI-
FAR100 datasets under various spatial-temporal pruning ratios. We observe that under a high tempo-
ral pruning ratio, performance degrades as the spatial pruning ratio increases. This suggests that the
model requires sufficient information to make accurate inferences. Conversely, with a low temporal
pruning ratio, we find that a certain degree of spatial pruning can lead to improved performance. For
instance, on the CIFAR100 dataset, the best performance is achieved with a spatial pruning ratio of
0.4 when half of the time steps are pruned (i.e., two remaining time steps). Furthermore, when both
spatial and temporal pruning ratios are moderate, the performance loss remains marginal, which
demonstrates the robustness of our proposed pruning method.

F USE OF LLMS

We declare that the LLMs are used solely to aid or polish the writing and are not involved in the
development of the main methodology or comparative experiments.
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