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ABSTRACT

GNNs, like other deep learning models, are data and computation hungry. There
is a pressing need to scale training of GNNs on large datasets to enable their usage
on low-resource environments. Graph distillation is an effort in that direction
with the aim to construct a smaller synthetic training set from the original training
data without significantly compromising model performance. While initial efforts
are promising, this work is motivated by two key observations: (1) Existing graph
distillation algorithms themselves rely on training with the full dataset, which
undermines the very premise of graph distillation. (2) The distillation process is
specific to the target GNN architecture and hyper-parameters and thus not robust to
changes in the modeling pipeline. We circumvent these limitations by designing a
distillation algorithm called MIRAGE for graph classification. MIRAGE is built on
the insight that a message-passing GNN decomposes the input graph into a multi-
set of computation trees. Furthermore, the frequency distribution of computation
trees is often skewed in nature, enabling us to condense this data into a concise
distilled summary. By compressing the computation data itself, as opposed to
emulating gradient flows on the original training set—a prevalent approach to
date—MIRAGE transforms into an architecture-agnostic distillation algorithm.
Extensive benchmarking on real-world datasets underscores MIRAGE’s supe-
riority, showcasing enhanced generalization accuracy, data compression, and
distillation efficiency when compared to state-of-the-art baselines.

1 INTRODUCTION AND RELATED WORK

GNNs have shown state-of-the-art performance in various machine learning tasks, including node
classification (Hamilton et al., 2017; Veličković et al., 2018), graph classification (Ying et al., 2021;
Rampášek et al., 2022), and graph generative modeling (Vignac et al., 2023; You et al., 2018; Goyal
et al., 2020; Gupta et al., 2022; Manchanda et al., 2023). Their applications percolate various do-
mains including social networks (Manchanda et al., 2020; Chakraborty et al., 2023; Wang et al.,
2021; Yang et al., 2011), traffic forecasting (Gupta et al., 2023; Jain et al., 2021; Li et al., 2020;
Wu et al., 2017), modeling of physical systems (Bishnoi et al., 2023; Bhattoo et al., 2022; Sanchez-
Gonzalez et al., 2020) and several others. Despite the efficacy of GNNs, like many other deep-
learning models, GNNs are data, as well as, computation hungry. One important area of study that
tackles this problem is the idea of data distillation (or condensation) for graphs. Data distillation
seeks to compress the vital information within a graph dataset while preserving its critical structural
and functional properties. The objective in the distillation process is to compress the train data as
much as possible without compromising on the predictive accuracy of the GNN when trained on
the distilled data. The distilled data therefore significantly alleviates the computational and storage

∗Denotes Equal Contribution

1



Published as a conference paper at ICLR 2024

demands, due to which GNNs may be trained more efficiently including on devices with limited
resources, like small chips. It is important to note that the distilled dataset need not be a subset of
the original data; it may be a fully synthetic dataset.

1.1 EXISTING WORKS

Data distillation has proven to be an effective strategy for alleviating the computational demands
imposed by deep learning models. For instance, in the case of DC (Zhao et al., 2021), a dataset
of ≈ 60, 000 images was distilled down to just 100 images, resulting in an impressive accuracy of
97.4%, compared to the original accuracy of 99.6%.

Graph distillation has also been explored in prior research (Jin et al., 2022; 2021; Xu et al., 2023).
These graph distillation algorithms share a common approach, where the distilled dataset seeks to
replicate the same gradient trajectory of the model parameters as seen in the original training set.
In this work, we observe that the process of mimicking gradients necessitates supervision from the
original training set, giving rise to significant limitations.
1. Counter-objective design: The primary goal in data distillation is to circumvent the need for

training on the entire training dataset, given the evident computational and storage constraints.
Paradoxically, existing algorithms aim to replicate the gradient trajectory of the original dataset,
necessitating training on the full dataset for distillation. Consequently, the fundamental premise
of data distillation is compromised.

2. Dependency on Model and Hyper-Parameters: The gradients of model weights are contingent
on various factors such as the specific GNN architecture and hyper-parameters, including the
number of layers, hidden dimensions, dropout rates, and more. As a result, any alteration in
the architecture, such as transitioning from a Graph Convolutional Network (GCN) to a Graph
Attention Network (GAT), or adjustments to hyper-parameters, necessitates a fresh round of
distillation. It has been shown in the literature (Yang et al., 2023), and also substantiated in
our empirical study (Appendix C), that there is a noticeable drop in performance if the GNN
architecture used for distillation is different from the one used for eventual training and inference.

3. Storage Overhead: Given the dependence of the distillation process on both the GNN
architecture and hyper-parameters, a distinct distilled dataset must be maintained for each
unique combination of architecture and hyper-parameters. This inevitably amplifies the storage
requirements and maintenance overhead.

1.2 CONTRIBUTIONS

To address the above outlined limitations of existing algorithms, we design a graph distillation al-
gorithm called MIRAGE for graph classification. MIRAGE proposes several innovative strategies
imparting significant advantages over existing graph distillation methods.

• Model-agnostic algorithm: Instead of replicating the gradient trajectory, MIRAGE emulates
the input data processed by message-passing GNNs1. By shifting the computation task to
the pre-learning phase, MIRAGE and the resulting distilled data become independent of hyper-
parameters and model architecture (as long as it adheres to a message-passing GNN framework
like GAT (Veličković et al., 2018), GCN (Kipf & Welling, 2016), GRAPHSAGE (Hamilton et al.,
2017), GIN (Xu et al., 2019), etc.). Moreover, this addresses a critical limitation of existing graph
distillation algorithms that necessitate training on the entire dataset.

• Novel GNN-customized algorithm: MIRAGE exploits the insight that given a graph, an ℓ-layered
message-passing GNNs decomposes the graph into a set of computation trees of depth ℓ. Fur-
thermore, the frequency distribution of computation trees often follows a power-law distribution
(See. Fig. 2). MIRAGE exploits this pattern by mining the set of frequently co-occurring trees.
Subsequently, the GNN is trained by sampling from the co-occurring trees. An additional benefit
of this straightforward distillation process is its computational efficiency, as the entire algorithm
can be executed on a CPU. This stands in contrast to existing graph distillation algorithms that
rely on GPUs, making MIRAGE a more resource and environment friendly alternative.

• Empirical performance: We perform extensive benchmarking of MIRAGE against state-of-
the-art graph distillation algorithms on six real world-graph datasets and establish that MIRAGE
achieves (1) higher prediction accuracy on average, (2) 4 to 5 times higher data compression, and
(3) a significant 150-fold acceleration in the distillation process when compared to state-of-the-art
graph distillation algorithms.

1Hence, the name MIRAGE.
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Figure 1: Pipeline of MIRAGE.

2 PRELIMINARIES AND PROBLEM FORMULATION

Definition 1 (Graph). A graph is defined as G = (V, E ,X) over a finite non-empty node set V and
edge set and E = {(u, v) | u, v ∈ V}. X ∈ R|V|×|F | is a node feature matrix where F is a set of
features characterizing each node.
As an example, in case of molecules, nodes and edges would correspond to atoms and bonds, re-
spectively, while features would correspond to properties such as atom type, hybridisation state, etc.

Equivalence between graphs is captured through graph isomorphism.

Definition 2 (Graph Isomorphism). Two graphs G1 and G2 are considered isomorphic (denoted
as G1 ∼= G2) if there exists a bijection between their node sets that preserves the edges and node
features. Specifically, G1 ∼= G2 ⇐⇒ ∃f : V1 → V2 such that: (1) f is a bijection, (2) xv =
xf(v),

2 and (3) (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.

Graph Classification: In graph classification, we are given a set of train graphs Dtr =
{G1, · · · ,Gm}, where each graph Gi is tagged with a class label Yi. The objective is to train a GNN
ΦΘtr parameterized by Θtr from this train set such that given an unseen set of validation graphs
Dval with unknown labels, the label prediction error is minimized. Mathematically, this involves
learning the optimal parameter set Θtr, where:

Θtr = argmin
Θ
{ϵ ({ΦΘ (G) | ∀G ∈ Dval})} (1)

Here, ΦΘtr (G) denotes the predicted label of G by GNN ΦΘtr and ϵ ({ΦΘ (G) | ∀G ∈ Dval})
denotes the error with parameter set Θ. Error may be measured using any of the known metrics
such as cross-entropy loss, negative log-likelihood, etc.

Hereon, we implicitly assume Φ to be a message-passing GNN (Kipf & Welling, 2016; Hamilton
et al., 2017; Veličković et al., 2018; Xu et al., 2019). Furthermore, we assume the validation set to
be fixed. Hence, the generalization error of GNN Φ when trained on dataset Dtr is simply denoted
using ϵDtr . The problem of graph distillation for graph classification is now defined as follows.

Problem 1 (Graph Distillation). Given a training set and validation set of graphs, Dtr and Dval,
respectively, generate a dataset S from Dtr with the following dual objectives:

1. Error: Minimize the error gap between S and Dtr on the validation set, i.e., mini-
mize {|ϵS − ϵDtr |}.

2. Compression: Minimize the size of S. Size will be measured in terms of raw memory consump-
tion, i.e., in bytes.

In addition to the above objectives, we impose two practical constraints on the distillation algorithm.
First, it should not rely on the specific GNN architecture, except for the assumption that it belongs to
the message-passing family. Second, it should be independent of the model parameters when trained
on the original training set. Adhering to these constraints addresses the limitations outlined in § 1.1.

3 MIRAGE: PROPOSED METHODOLOGY

MIRAGE exploits the computation framework of message-passing GNNs to craft an effective data
compression strategy. Fig. 1 presents the pipeline of MIRAGE. GNNs decompose any graph into a
collection of computation trees. In Fig. 2, we plot the frequency distribution of computation trees
across various graph datasets. We observe that the frequency distribution follows a power-law. This
distribution indicates that a compact set of top-k frequent trees effectively captures a substantial
portion of the distribution mass while retaining a wealth of information content. Empowered with
this observation, in MIRAGE, the GNN is trained only through the frequent tree sets. We next
elaborate on each of these intermediate steps.

2One may relax feature equivalence to having a distance within a certain threshold.
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(a) Construction of computation tree for v0 ∈ G1 ( ) for L = 2 hops.
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Figure 3: In (a) we show the construction of the computation tree for v0 ∈ G1. In (b), we present
G2, which has an isomorphic 2-hop computational tree for u2 despite its neighborhood being non-
isomorphic to v0. We assume the node feature vectors to be an one-hot encoding of the node colors.

3.1 COMPUTATION FRAMEWORK OF GNNS

GNNs aggregate messages in a layer-by-layer manner. Assuming xv ∈ R|F | as the input feature
vector for every node v ∈ V , the 0th layer representation of node v is simply h0

v = xv ∀v ∈ V .
Subsequently, in each layer ℓ, GNNs draw messages from its neighbours N 1

v and aggregate them as
follows: mℓ

v(u) = MSGℓ(hℓ−1
u ,hℓ−1

v ) ∀u ∈ N 1
v (2)

mℓ
v = AGGREGATEl({{mℓ

v(u),∀u ∈ Nv}}) (3)

where MSGℓ and AGGREGATEℓ are either pre-defined functions (Ex: MEANPOOL) or neural
networks (GAT (Veličković et al., 2018)). {{·}} denotes a multi-set since the same message may be
received from multiple nodes. The ℓth layer representation of v is a summary of all the messages
drawn.

hℓ
v = COMBINEℓ(hℓ−1

v ,mℓ
v) (4)

Figure 2: Frequency distribution of compu-
tation trees across datasets. The “frequency”
of a computation tree denotes the number of
occurrences of that specific tree across all
graphs in a dataset. The normalized fre-
quency of a tree is computed by dividing its
frequency with the total number of graphs in
at dataset and thus falls in the range [0, 1].
The x-axis of the plot depicts the normal-
ized frequency counts observed in a dataset,
while the y-axis represents the percentage of
computation trees corresponding to each fre-
quency count. Both x and y axes are in
log scale. The distribution is highly skewed
characterized by a dominance of trees with
low frequency counts, while a small subset of
trees exhibiting higher frequencies. For ex-
ample, in ogbg-molhiv, the most frequent tree
alone has normalized frequency of 0.32.

where COMBINEℓ is a neural network. Finally, the
representation of the graph is computed as:

hG = COMBINE(hL
v ,∀v ∈ V) (5)

Here, COMBINE could be aggregation functions
such as MEANPOOL, SUMPOOL, etc. and L is total
number of layers in the GNN.

3.2 COMPUTATION TREES

We now define the concept of computation trees and
draw attention to some important properties that sets
the base for graph distillation.

Definition 3 (Computation Tree). Given graph G,
node v and the number of layers L in a GNN, we
construct a computation tree T L

v rooted at v. Start-
ing from v, enumerate all paths, including non-
simple paths 3, of L hops. Next, merge these paths
under the following constraints to form T L

v . Two
nodes vi and v′j in paths P = {v0 = v, v1, · · · , vL}
and P ′ = {v′0 = v, v′1, · · · , v′L}, respectively, are
merged into a single node in T L

v if either i = j = 0
or vi = v′j , i = j and ∀k ∈ [0, i − 1], vk and v′k
have been merged.
Observation 1. In an L-layered GNN, the final rep-
resentation hL

v of a node v in graph G can be com-
puted from its computation tree T L

v .

Proof. In each layer, a GNN draws messages from
its direct neighbors. Over L layers, a node v re-
ceives messages from nodes reachable within L
hops. All paths of length up to L from v are con-
tained within T L

v , Hence, the computation tree is sufficient for computing hL
v .

Observation 2. If T L
v
∼= T L

u , then hL
v = hL

u .
3a non-simple path allows repetition of vertices
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Proof. A message-passing GNN is at most as powerful as Weisfeiler-Lehman tests (1-WL) (Xu et al.,
2019), which implies that if the L-hop neighborhoods of nodes u and v are indistinguishable by 1-
WL, then their representations would be the same. 1-WL cannot distinguish between graphs of
identical computation trees (Shervashidze et al., 2011).
Observation 3. Two nodes with non-isomorphic L-hop neighborhoods may have isomorphic com-
putation trees.
PROOF. See Figure. 3. □

Implications: Obs. 1 reveals that any graph may be decomposed into a multiset of computation trees
(not a set since the same tree may appear multiple times) without loosing any information. By learn-
ing the representations of each computation tree root, we can construct each node representation
accurately, and consequently, derive an accurate representation for the entire graph (Recall Eq. 5).
Now, suppose the frequency distribution of these computation trees in the multiset is significantly
skewed, with a small minority dominating the count. In that case, the graph representation, obtained
by aggregating the root representations of only the highly frequent trees, will closely approximate
the true graph representation. This phenomenon, illustrated in Figure. 2, is commonly observed.
Furthermore, Obs. 3 implies that the set of all computations trees is strictly a subset of the set of
all L-hop subgraphs in the dataset, leading to further skewness in the distribution. Leveraging this
pattern, we devise a distillation process that revolves around retaining only those computation trees
that co-occur frequently. While frequency captures the contribution of a computation tree towards
the graph representation, co-occurrence among trees captures frequent graph compositions.

3.3 MINING FREQUENTLY CO-OCCURRING COMPUTATION TREES

Let T = {T1, · · · , Tn} be a set of computation trees. The frequency of T in the train set D =
{G1, · · · ,Gm} is defined as the proportion of graphs that contain all of the computation trees in T.
Formally,

freq(T) =
∣∣{G ∈ D | ∀T ∈ T,∃T L

v ∈ TG , T ∼= T L
v }

∣∣
|D|

(6)

Here, TG denotes the set of computation trees in graph G.
Problem 2 (Mining Frequent Co-occurring Trees). Given a set of |D| computation tree multi-sets4

T = {T1, · · · ,Tm} corresponding to each graph in the train set D = {G1, · · · ,Gm}, and a thresh-
old θ, mine all co-occurring trees with frequency of at least θ. Formally, we seek to identify the
following distilled answer set.

S = {X ⊂ I | freq(X ) ≥ θ} where I =
⋃

∀Ti∈T

{Ti} (7)

I denotes the universe of all unique computation trees, i.e., ∀Ti, Tj ∈ I, Ti ̸∼= Tj .
We map Problem 2 to the problem of mining frequent itemsets from transaction databases (Han
et al., 2004), which we solve using the FPGROWTH algorithm (Han et al., 2004).

3.4 MODELING AND INFERENCE

Algorithm. 1 in the appendix outlines the pseudocode of our data distillation and Algorithm. 2
outlines the modeling algorithm. We decompose each graph into their computation trees. We mine
the frequently co-occurring trees from each class separately. Instead of training on a batch of graphs,
we sample a batch of frequent tree sets. Each of these frequent tree sets serves as a surrogate for an
entire graph, allowing us to approximate the graph embedding. To achieve this approximation, we
utilize the COMBINE function (Eq. 5) on the embeddings of the root node within each tree present in
the selected set. The probability of selecting a particular tree set for sampling is directly proportional
to its frequency of occurrence.

3.5 PROPERTIES AND PARAMETERS

Parameters: As opposed to existing graph distillation algorithms (Jin et al., 2022; 2021; Xu et al.,
2023), which are dependent on the specific choice of GNN architecture and all hyper-parameters that
the GNN relies on, MIRAGE intakes only two parameters: the number of GNN layers L and the fre-
quency threshold θ. θ, which lies in [0, 1], is a GNN independent parameter. The size of the distilled
dataset increases monotonically with decrease in θ. Hence, θ may be selected based on the desired
distillation size. L is the only model-specific information we require. We note that the number of

4non-isomorphic graphs may decompose to the same set of computation trees
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layers used while training needs to be ≤ L, and need not exactly L, since T L
v ⊇ T L−1

v . Hence,
L should be set based on the expected upper limit that may be used. GNNs are typically run with
L ≤ 3 due to the well-known issue of over-smoothing and over-squashing (Topping et al., 2022).

Algorithm Characterization: MIRAGE has several salient characteristics when compared to exist-
ing baselines, all arising due to being unsupervised to original training gradients-the predominant
approach in graph distillation.

• Robustness: The distillation process is independent of training hyper-parameters (except the mild
assumption on maximum number of GNN layers) and choice of GNN architecture. Hence, it does
not need to be regenerated for changes to any of the above factors.

• Storage Overhead: MIRAGE has a smaller storage footprint since a single distilled dataset suf-
fices for all combinations of architecture and hyper-parameters.

• CPU-bound executions and efficiency: The distillation pipeline is a function of the training
dataset only. Hence, it is computationally efficient requiring only CPU-bound operations.

Complexity Analysis: A detailed complexity analysis of MIRAGE is provided in Appendix A. We
also discuss strategies to speed-up tree frequency counting through the usage of canonical labels. In
summary, the entire process of decomposing the full graph database into computation tree sets incurs
O(z × δL) cost, where z =

∑
∀G∈D |V| and δ is the average degree of nodes. Counting frequency

of all trees consume O
(
z × LδL log(δ)

)
time. FPGROWTH consumes O(2|I|) in the worst case,

but it has been shown in the literature that empirical efficiency is dramatically faster due to sparsity
in frequent patterns (Han et al., 2004).

4 EXPERIMENTS

In this section, we benchmark MIRAGE and establish:
• Accuracy: MIRAGE is the most robust distillation algorithm and consistently ranks among the

top-2 performers across all dataset-GNN combinations.
• Compression: MIRAGE achieves the highest compression on average, which is ≈ 4 and ≈ 5

times smaller that the state of the art algorithms of DOSCOND and KIDD respectively.
• Efficiency: MIRAGE is ≈ 150 and ≈ 500 times faster than DOSCOND and KIDD on average.

All experiments have been executed 5 times. We report the mean and standard deviations. The
codebase of MIRAGE is shared at https://github.com/idea-iitd/Mirage. For details on the
hardware and software platform used, please refer to Appendix B.1.

4.1 DATASETS Table 1: Dataset statistics
Dataset #Classes #Graphs Avg. Nodes Avg. Edges Domain

ogbg-molbace 2 1513 34.1 36.9 Molecules
NCI1 2 4110 29.9 32.3 Molecules
ogbg-molbbbp 2 2039 24.1 26.0 Molecules
ogbg-molhiv 2 41,127 25.5 54.9 Molecules
DD 2 1178 284.3 715.7 Proteins
IMDB-B 2 1000 19.39 193.25 Movie
IMDB-M 3 1500 13 65.1 Movie

To evaluate MIRAGE, we use
datasets from Open Graph Bench-
mark (OGB) (Hu et al., 2020) and
TU Datasets (DD, IMDB-B and
NCI1) (Morris et al., 2020) span-
ning a variety of domains. The
chosen datasets represent suffi-
cient diversity in graph sizes (≈
24 nodes to ≈ 284 nodes) and density (≈ 1 to ≈ 10).

4.2 EXPERIMENTAL SETUP

Baselines. Among neural baselines, we consider the state of the art graph distillation algorithms
for graph classification, which are (1) DOSCOND (Jin et al., 2022) and (2) KIDD (Xu et al., 2023).
We do not consider GCOND (Jin et al., 2021) since DOSCOND have been shown to consistently
outperform GCOND. KIDD supports graph distillation only GIN. We also include (3) HERD-
ING (Welling, 2009) maps graphs into embeddings using the target GNN architecture. Subsequently,
it selects the graphs that are closest to the cluster centers in the distilled set. Finally, we consider
the (4) RANDOM baseline, wherein we randomly select graphs over iterations from each class in
the dataset till the combined size exceeds the size of the distilled dataset produced by MIRAGE.

Evaluation Protocol. We benchmark MIRAGE and considered baselines across three different GNN
architectures, namely GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018) and GIN (Xu et al.,
2019). It is worth noting that this is the first graph distillation study to span three GNN architectures
when compared DOSCOND or KIDD, that evaluate only on a specific GNN of choice. KIDD only
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Table 2: AUC-ROC of benchmarked algorithms across datasets and GNN architectures. The best and
the second best AUC-ROC in each dataset is highlighted in dark and light green colors respectively.
We do not report the results of GAT in IMDB-B and IMDB-M since GAT achieves an AUC-ROC
of ≈ 0.5 across the full datasets and their distilled versions for all baselines. These datasets do not
contain any node features and GAT struggles to learn attention in this scenario.

Dataset Model RANDOM (mean) RANDOM (sum) HERDING KIDD DOSCOND MIRAGE Full Dataset
GAT 65.43± 3.57 73.75± 2.30 58.39± 7.04 66.16± 4.62 68.30± 1.01 70.77± 1.67 77.20± 2.20

ogbg-molbace GCN 62.96± 3.25 76.03± 0.60 52.46± 6.47 63.92± 13.1 67.34± 1.84 77.03± 1.24 77.31± 1.60
GIN 57.18± 10.4 74.95± 2.28 65.24± 6.17 77.09± 0.57 63.41± 0.66 76.18± 0.61 78.53± 3.70

GAT 50.46± 2.65 64.01± 6.87 66.77± 1.11 60.62± 1.47 58.10± 1.52 68.10± 0.20 83.50± 0.71
NCI1 GCN 51.36± 0.36 60.72± 8.06 66.86± 0.73 64.85± 2.32 57.90± 0.75 68.20± 0.04 87.03± 0.57

GIN 51.60± 5.85 61.15± 7.30 67.12± 1.90 60.83± 2.26 59.80± 2.30 67.91± 0.31 85.60± 2.19

GAT 57.16± 2.20 60.40± 1.84 59.15± 4.13 62.88± 3.31 61.12± 2.51 63.05± 1.10 64.70± 2.10
ogbg-molbbbp GCN 60.18± 2.66 58.76± 3.51 55.93± 1.09 58.77± 1.83 59.19± 0.95 61.30± 0.52 64.43± 2.21

GIN 60.06± 3.85 60.21± 3.14 54.88± 2.84 64.21± 0.99 61.10± 2.10 61.21± 0.77 64.95± 2.24

GAT 53.35± 4.78 64.61± 8.43 61.82± 1.75 69.79± 0.64 72.33± 0.85 73.10± 0.96 73.71± 1.36
ogbg-molhiv GCN 48.21± 5.95 67.20± 6.16 59.36± 2.79 69.56± 2.74 73.16± 0.69 69.59± 3.29 75.93± 1.29

GIN 53.07± 7.07 69.94± 1.42 69.66± 2.64 63.02± 4.48 72.72± 0.80 71.58± 1.42 78.66± 1.31

GAT 50.87± 1.10 67.31± 12.0 71.20± 2.14 73.14± 4.32 63.45± 2.47 76.08± 0.63 76.36± 0.09
DD GCN 53.58± 2.38 58.02± 8.57 65.26± 5.63 71.04± 6.04 68.39± 9.64 74.84± 2.15 75.37± 1.23

GIN 57.34± 1.60 67.50± 9.66 73.23± 3.62 64.55± 3.50 60.23± 1.76 74.45± 0.67 74.74± 0.58

IMDB-B GCN 52.06± 4.90 50.38± 0.31 60.69± 3.43 58.29± 0.61 55.56± 2.83 59.17± 0.07 60.84± 2.50
GIN 51.31± 4.10 51.12± 2.76 60.48± 3.28 57.45± 0.16 60.02± 2.49 62.18± 0.17 66.73± 1.53

IMDB-M GCN 55.10± 3.80 52.90± 2.52 61.00± 2.40 57.10± 1.11 55.90± 1.06 63.20± 1.12 64.10± 1.10
GIN 60.10± 2.67 56.30± 5.50 58.47± 4.12 54.18± 0.90 58.30± 1.70 61.80± 1.51 64.80± 1.10

supports GIN. Hence, for other GNN architectures, we use the distilled dataset for GIN, but train
using the target GNN.

Parameter settings. Hyper-parameters used to train MIRAGE, the baselines, and the GNN models
are discussed in Appendix B.2.

4.3 PERFORMANCE IN GRAPH DISTILLATION

Prediction Accuracy. In Table 2, we report the mean and standard deviation of the testset AUC-
ROC of all baselines on the distilled dataset as well as the AUC-ROC when trained on the full
dataset. Several important insights emerge from Table 2.

Firstly, it is noteworthy that MIRAGE consistently ranks as either the top performer or the second-
best across all combinations of datasets and architectures. Particularly striking is the fact that MI-
RAGE achieves the best performance in 8 out of the 17 dataset-architecture combinations, which
stands as the highest number of top rankings among all considered baselines. This demonstrates that
being unsupervised to original training gradients does not hurt MIRAGE’s prediction accuracy.

Secondly, we observe instances, such as in DD, where the distilled dataset outperforms the full
dataset, an outcome that might initially seem counter-intuitive. This phenomenon has been reported
in the literature before (Xu et al., 2023). While pinpointing the exact cause behind this behavior is
challenging, we hypothesize that the distillation process may tend to remove outliers from the train-
ing set, subsequently leading to improved accuracy. Additionally, given that distillation prioritizes
the selection of graph components that are more informative to the task, it is likely to retain the most
critical patterns, resulting in enhanced model generalizability.

Finally, we note that the performance of RANDOM (sum), which involves random graph selection
and the COMBINE function (Eq. 5) being SUMPOOL, is surprisingly strong, and at times surpassing
the performance of all baselines. Interestingly, in the literature, DOSCOND and KIDD have
reported results only with RANDOM (mean), which is substantially weaker. We investigated this
phenomenon and noticed that in datasets where RANDOM (sum) performs well, the label distri-
bution of nodes and the number of nodes across the classes are noticeably different. SUMPOOL is
better at preserving these magnitude differences in node and label counts compared to MEANPOOL,
which averages them out.

Compression. We next investigate the size of the distilled dataset. MIRAGE is independent of
the underlying GNN architecture, ensuring that its size remains consistent regardless of the specific
architecture employed. On the other hand, KIDD, as previously indicated in § 4.2, conducts dis-
tillation with the assumption that GIN serves as the underlying GNN architecture. In the case of
DOSCOND and HERDING, these methods support various GNN architectures; however, the size of
the distilled datasets is architecture-specific for each. It is important to note that we exclude RAN-
DOM from this analysis as, per our discussion in § 4.2, we select graphs until the dataset’s size
exceeds that of MIRAGE. Consequently, by design, its size closely aligns with that of MIRAGE.
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Table 3: Size of distilled dataset, in terms of bytes, produced by benchmarked algorithms across
datasets and GNN architectures. The best compression is highlighted in dark green color. The
results for IMDB-B and IMDB-M for GAT represented as - are skipped since GAT achieves ≈ 0.5
AUC-ROC on IMDB-B and IMDB-M.

Method→
Dataset ↓

HERDING KIDD DOSCOND MIRAGE Full Dataset
GAT GCN GIN GAT GCN GIN

ogbg-molbace 25,771 26,007 26,129 2,592 23,176 23,176 23,176 1,612 1,610,356
NCI1 5,662 5,680 5,683 26,822 70,168 70,760 73,128 318 1,046,828
ogbg-molbbbp 10,497 10,514 10,466 3,618 13,632 14,280 20,832 6,108 740,236
ogbg-molhiv 21,096 21,096 21,140 7,672 4,808 5,280 4,400 3,288 41,478,694
DD 89,882 89,869 90,086 408,980 210,168 210,184 209,816 448 7,414,218
IMDB-B - 1,238 1,252 980 - 1184 2484 280 635,856
IMDB-M - 1,156 1,256 936 - 720 824 228 645,160

In Table 3, we present the compression results. MIRAGE stands out by achieving the highest com-
pression in 5 out of 6 datasets. In the single dataset where it does not hold the smallest size, MIRAGE
still ranks as the second smallest, showcasing its consistent compression performance. On average,
MIRAGE achieves a compression rate that is ≈ 4 times higher compared to DOSCOND and 5 times
greater than KIDD. This notable advantage of MIRAGE over the baseline methods underscores the
effectiveness of exploiting data distribution over replicating gradients, at least within the context of
graph databases where recurring patterns are prevalent.

Distillation Time. We now focus on the efficiency of the distillation process. Fig. 4a presents this
information. We observe that MIRAGE is more than ≈ 500 times faster on average than KIDD
and ≈ 150 times faster than DOSCOND. This impressive computational-efficiency is achieved
despite MIRAGE utilizing only a CPU for its computations, whereas DOSCOND and KIDD are
reliant on GPUs. This trend is a direct consequence of MIRAGE not being dependent on training
on the full data. KIDD is slower than DOSCOND since, while both seek to replicate the gradient
trajectory of model weights, KIDD solves this optimization problem exactly, whereas DOSCOND
is an approximation. When compared to the training time on full dataset (See Table I, MIRAGE is
more than 30 times faster on average). Overall, MIRAGE is not only faster, but also presents a more
environment-friendly and energy-efficient approach to graph distillation.

4.4 SUFFICIENCY OF FREQUENT TREE PATTERNS

In order to establish the sufficiency of frequent tree patterns in capturing the dataset characteristic,
we conduct the following experiment. We train the model on the full dataset and store its weights at
each epoch. Then, we freeze the model at the weights after each epoch’s training and pass both the
distilled dataset consisting of just the frequent tree patterns and the full dataset. We then compute
the differences between the losses as shown in Fig. 5a. We do this for all the models for datasets
ogbg-molbace, ogbg-molbbbp, and ogbg-molhiv (full results in Figure I in appendix). The rationale
behind this is that the weights of the full model recognise the patterns that are important towards
minimizing the loss. Now, if the same weights continue to be effective on the distilled train set,
it indicates that the distilled dataset has retained the important information. In the figure, we can
see that the difference quickly approaches 0 for all the models for all the datasets, and only starts
at a high value at the random initialization where the weights are not yet trained to recognize the
important patterns. Furthermore, gradient descent will run more iterations on trees that it sees more
often and hence infrequent trees have limited impact on the gradients. Further, in Fig. 5b, we plot
the train loss on full and distilled dataset with their own parameters learned through independent
training. As visible, the losses are similar, further substantiating the rich information content in

(a) Distillation times for the different methods. Full numbers and stan-
dard deviations are in Table E in Appendix.

(b) Distillation time vs
number of hops

Figure 4: (a) Distillation times for the different methods. (b) Distillation time as a function of
number of hops on ogbg-molbbbp dataset.
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(a) Sufficiency of Frequent Tree Patterns (b) Training loss vs epochs
Figure 5: (a) For this experiment the model weights are extracted after each epoch. Then, the model
weights are loaded from the epoch weights and kept fixed for the following procedure. The dataset
condensed using MIRAGE and the full dataset are then passed through the model. The difference
between the losses is plotted. The difference between the losses approaches 0. Note that the model
was trained on the full dataset. (b) Training loss vs epochs on ogbg-molhiv(GCN). Results on more
datasets can be found in Appendix H.

the distilled dataset. These results empirically establish the sufficiency of frequent tree patterns in
capturing the majority of the dataset characteristics.

4.5 IMPACT OF PARAMETERS

Impact of Frequency Threshold. In Appendix F we study the impact of frequency threshold on
distillation efficiency.

Impact of Number of Hops: In Appendix 4b we analyze the efficiency of distillation as the number
of hops increase. We observe running time of MIRAGE is lower or similar to other distillation
methods as number of hops increase. For more details see Appendix F.

We refer the reader to Appendix F and H for more experiments on parameter variations and their
impact on AUC and efficiency.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

Training Graph Neural Networks (GNNs) on large-scale graph datasets can be computationally in-
tensive and resource-demanding. To address this challenge, one potential solution is to distill the
extensive graph dataset into a more compact synthetic dataset while maintaining competitive predic-
tive accuracy. While the concept of graph distillation has gained attention in recent years, existing
methods typically rely on model-related information, such as gradients or embeddings. In this re-
search endeavor, we introduce a novel framework named MIRAGE, which employs a frequent pattern
mining-based approach. MIRAGE leverages the inherent design of message-passing frameworks,
which decompose graphs into computation trees. It capitalizes on the observation that the distribu-
tion of these computation trees often exhibits a highly skewed nature. This unique feature enables
us to compress the computational data itself without requiring access to specific model details or
hyper-parameters, aside from a reasonable assumption regarding the maximum number of GNN lay-
ers. Our extensive experimentation across six real-world datasets, in comparison to state-of-the-art
algorithms, demonstrates MIRAGE’s superiority across three critical metrics: predictive accuracy, a
distillation efficiency that is 150 times higher, and data compression rates that are 4 times higher.
Moreover, it’s noteworthy that MIRAGE solely relies on CPU-bound operations, offering a more
environmentally sustainable alternative to existing algorithms.

Limitations and Future Works: MIRAGE, as well as, existing graph distillation algorithms cur-
rently lack the ability to generalize effectively to unseen tasks. Moreover, their applicability to other
types of graphs, such as temporal networks, remains unexplored. Additionally, there is a need to
assess how these existing algorithms perform on contemporary architectures like graph transform-
ers (e.g., (Ying et al., 2021; Rampášek et al., 2022)) or equivariant GNNs (e.g., (Satorras et al.,
2022)). Our future work will be dedicated to exploring these avenues of research. Finally, MI-
RAGE relies on the assumption that the distribution of computation trees is skewed. Although we
provide compelling evidence of its prevalence across a diverse range of datasets, this assumption
may not hold universally, especially in the case of heterophilous datasets. The development of a
model-agnostic distillation algorithm remains an open challenge in such scenarios.
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Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. (Cited on pp. 1, 2, 3, 4, and 6←↩)

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh Inter-
national Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
UaAD-Nu86WX. (Cited on p. 1←↩)

11

https://api.semanticscholar.org/CorpusID:218906673
https://openreview.net/forum?id=Hy9K2WiVwW
https://doi.org/10.1007/978-3-662-04921-1_4
https://doi.org/10.1007/978-3-662-04921-1_4
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX


Published as a conference paper at ICLR 2024

Wei Wang, Haili Yang, Yuanfu Lu, Yuanhang Zou, Xu Zhang, Shuting Guo, and Leyu Lin. Influence
maximization in multi-relational social networks. In Proceedings of the 30th ACM international
conference on information & knowledge management, pp. 4193–4202, 2021. (Cited on p. 1←↩)

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121–1128, 2009. (Cited on p. 6←↩)

Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. Modeling trajectories with
recurrent neural networks. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, pp. 3083–3090, 2017. (Cited on p. 1←↩)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neu-
ral networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. (Cited on pp. 2, 3, 5, and 6←↩)

Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hang-
hang Tong. Kernel ridge regression-based graph dataset distillation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 2850–2861,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
10.1145/3580305.3599398. URL https://doi.org/10.1145/3580305.3599398. (Cited on pp. 2, 5,
6, and 7←↩)

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart? In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
VqIWgUVsXc. (Cited on p. 2←↩)

Shuang-Hong Yang, Bo Long, Alex Smola, Narayanan Sadagopan, Zhaohui Zheng, and Hongyuan
Zha. Like like alike: joint friendship and interest propagation in social networks. In Proceedings
of the 20th international conference on World wide web, pp. 537–546, 2011. (Cited on p. 1←↩)

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=OeWooOxFwDa. (Cited on pp. 1 and 9
←↩)

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In Jennifer G. Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
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Figure F: (a) and (b) show Knuth Tuples based canonical labels for two isomorphic trees. The
process starts at the leaves and goes up to the root. Whenever a node encapsulates its children’s
labels, it sorts them in increasing order of length. This can be adapted for the cases when nodes have
labels and when the edges have labels by making appropriate changes to the tuples.

APPENDIX

A COMPLEXITY ANALYSIS

Computation tree decomposition: Each graph G = (V, E ,X), decomposes into |V| computation
trees. Assuming an average node degree of δ, enumerating a computation tree consumes O(δL)
time. Hence, the entire process of decomposing the full graph database into computation tree sets
incurs O(z × δL) computation cost, where z =

∑
∀G∈D |V|.

Frequency counting: Computing the frequency of a computation tree requires us to perform tree
isomorphism test. Although no polynomial time algorithm exists for graph isomorphism, in rooted
trees, it can be performed in linear time to the number of nodes in the tree (Valiente, 2002), which in
our context is O(δL). Thus, frequency counting of all trees requires O(δL × z2) time. In MIRAGE,
we optimize frequency counting further using canonical labeling (Campbell & Radford, 1991).

Definition 4 (Canonical label). A canonical label of a graph G involves defining a unique represen-
tation or labeling of a graph in a way that is invariant under isomorphism. Specifically, if L is the
function that maps a graph to its canonical label, then

G1 ∼= G2 ⇐⇒ L(G1) = L(G2)

There are several algorithms available described in (Campbell & Radford, 1991) and (Chi et al.,
2005) that map rooted-trees to canonical labels. We use (Campbell & Radford, 1991) in our imple-
mentation, which is explained in Fig. F.

Canonical label construction for a rooted tree consumes O(m log(m)) time if the tree contains
m nodes. In our case, m = O(δL) as discussed earlier. Thus, the complexity is O(δL log(δL)) =
O(LδL log(δ)) time. Once trees have been constructed, frequency counting involves hashing each of
the canonical labels, which takes linear time to the number of graphs. Hence, the complexity reduces
to O(z × LδL log(δ)) when compared to the all pairs tree isomorphism approach of O(δL × z2)
(L log(δ)≪ z).

Frequent itemset mining: Finally, in the frequent itemset mining step, the complexity in the worst
case is O(2|I|). In reality, however, the running times are dramatically smaller due to majority of
items (trees in our context) being infrequent (and hence itemsets as well) (Han et al., 2004).

B EMPIRICAL SETUP

B.1 HARDWARE AND SOFTWARE PLATFORM

All experiments are performed on an Intel Xeon Gold 6248 processor with 96 cores and 1 NVIDIA
A100 GPU with 40GB memory, and 377 GB RAM with Ubuntu 18.04. In all experiments, we have
trained using the Adam optimizer with a learning rate of 0.0001 and choose the model based on the
best validation loss.
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Algorithm 1 MIRAGE: Proposed graph distillation algorithm
Input Train set D, number of layers L in GNN, frequency threshold θ.
Output Distilled dataset S and parameters Θ of the GNN when trained on S

1: S ← ∅
2: for each Class c in dataset do
3: Tc ← ∅
4: for each G = (V, E ,X) ∈ D such that YG = c do
5: T← ∅
6: for each v ∈ V do
7: T← T ∪

{
T L
v = compute-tree(G, v, L) | ∀v ∈ V

}
8: Tc ← Tc ∪ T
9: S ← S ∪ FPGROWTH(Tc, θ)

10: Return S

Algorithm 2 Training a GNN using data distilled using MIRAGE

Input Distilled dataset S
Output Parameters Θ of the GNN when trained on S

1: Randomly initialize Θ
2: while Model loss has not converged do
3: B←a batch of tree sets sampled in proportion to their frequencies from S
4: for each T ∈ B do
5: hT ←COMBINE(hL

v ,∀T L
v ∈ T)

6: Update Θ using backpropagation based on loss over {hT | ∀T ∈ B}
7: Return Θ

B.2 PARAMETERS

Table Da presents the parameters used to train MIRAGE. Note that the same distillation parameters
are used for all benchmarked GNN architectures and hence showcasing its robustness to different
flavors of modeling pipelines.

For neural baselines KIDD and DOSCOND, we use the same parameters recommended in their
respective papers on datasets that are also used in their studies. Otherwise, the optimal parameters
are chosen using grid search.

For the model hyper-parameters, we perform grid search to optimize performance on the whole
dataset. The same parameters are used to train and infer on the distilled dataset. The hyper-
parameters used are shown in Table Db.

Train-validation-test Splits. The OGB datasets come with the train-validation-test splits, which
are also used in DOSCOND and KIDD. For TU Datasets, we randomly split the graphs into
80%/10%/10% for training-validation-test. We stop the training of a model if it does not improve
the validation loss for more than 15 epochs.

Table D: Parameters used for MIRAGE.

(a) Distillation parameters. θ0 and θ1
represent the frequency thresholds in
class 0 and 1 respectively.

Dataset θ0 θ1 #hops (L)
NCI1 27% 35% 2
ogbg-molbbbp 5% 7% 2
ogbg-molbace 13% 10% 3
ogbg-molhiv 5% 8% 3
DD 2% 2% 1
IMDB-B 20% 20% 1

(b) Model parameters

Model Layers Hidden Dimension Dropout Reduce Type
GCN {2, 3} {64, 128} [0, 0.6] {sum,mean}
GAT {2, 3} {64, 128} [0, 0.6] {sum,mean}
GIN {2, 3} {64, 128} [0, 0.6] {sum,mean}
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Table E: Graph distillation time (in seconds) consumed by various algorithms. In the last column, we
also present the total training time in the full dataset to showcase the efficiency gain of distillation.

Method→
Dataset ↓

HERDING DOSCOND KIDD MIRAGE
GAT GCN GIN GAT GCN GIN

ogbg-molbace 13.47± 0.52 13.41± 0.57 13.62± 0.72 255.62± 7.52 191.22± 5.62 198.89± 6.21 2839.40 2.57± 0.12
NCI1 13.86± 0.29 14.64± 0.48 14.70± 0.43 1348.21± 11.2 1275.82± 13.2 1237.98± 82.5 2200.04 2.39± 0.16
ogbg-molbbbp 23.35± 1.59 23.18± 1.33 23.86± 1.32 295.02± 3.34 240.91± 7.58 244.44± 5.33 1855.81 14.78± 0.09
ogbg-molhiv 473.44± 23.8 530.89± 27.8 535.08± 32.74 808.11± 42.3 708.33± 7.54 755.48± 54.9 6421.98 50.86± 0.32
DD 8.18± 0.51 7.95± 0.57 9.02± 0.56 551.39± 8.36 485.81± 3.79 511.14± 4.13 2201.09 13.93± 0.16
IMDB-B - 4.31± 0.52 4.14± 0.63 - 482.01± 4.21 455.02± 3.98 1841.80 1.47± 0.01

Table F: Cross-arch performance: The performance of DOSCOND when graph distillation is per-
formed using gradients of a particular GNN, while the model is trained on another GNN.

train+test→
condensed using↓ GAT GCN GIN

GAT 61.12± 2.51 59.86± 1.50 59.36± 1.26
GCN 59.33± 3.37 59.19± 0.95 57.02± 3.09
GIN 58.20± 1.91 56.42± 1.68 61.10± 2.10

(a) ogbg-molbbbp
train+test→

condensed using↓ GAT GCN GIN

GAT 68.30± 1.01 67.01± 4.21 62.90± 4.84
GCN 63.70± 2.98 67.34± 1.84 58.91± 4.85
GIN 65.7± 3.81 66.47± 3.83 63.41± 0.66

(b) ogbg-molbace

C DISTILLATION GENERALIZATION OF DOSCOND

While message-passing GNNs come in various architectural forms, one may argue that the embed-
dings generated, when the data and the loss are same, are correlated. Hence, even in the case of
GNN-dependent distillation algorithms, such as DOSCOND, it stands to reason that the same distil-
lation data could generalize well to other GNNs. In Table F, we investigate this hypotheses. Across
the six evaluated combinations, except for the case of GCN in ogbg-molbbbp, we consistently ob-
serve that the highest performance is achieved when the distillation GNN matches the training GNN.
This behavior is unsurprising since although GNNs share the initial task of breaking down input
graphs into individual components of message-passing trees, subsequent computations diverge. For
instance, GIN employs SUMPOOL, which is density-dependent and retains magnitude information.
Conversely, GCN, owing to their normalization based on node degrees, does not preserve magni-
tude information as effectively. GAT, on the other hand, utilizes attention mechanisms, resulting in
varying message weights learned as a function of the loss. In summary, Table F provides additional
evidence supporting the necessity for GNN-independent distillation algorithms.

Table G: Below we present the AUCROC numbers of DOSCOND on randomly initialized GCN
models, warm start (100 epochs) and converged DOSCOND (typically around 1000 epochs).

Dataset Random Warm Started Convergence
ogbg-molbace 55.04± 9.07 59.95± 1.61 67.34± 1.84
NCI1 51.22± 2.00 48.18± 2.78 57.90± 0.75
ogbg-molbbbp 52.64± 1.98 50.72± 3.48 59.19± 0.95
ogbg-molhiv 48.21± 5.95 34.99± 7.25 73.16± 0.69
DD 52.39± 7.19 61.58± 2.11 68.39± 9.64
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Table H: Node classification results

Dataset Type Size (bytes) AUC-ROC (%)
Full 1610356 91.15± 0.09
Distilled using MIRAGE 1816 88.92± 0.77
Distilled using DOSCOND 7760 81.29± 3.81

D DOSCOND DISTILLATION: RANDOM, WARM-STARTED AND FULLY OPTIMIZED

In this section we investigate how the quality of condensed dataset synthesized by DOSCOND
changes during its course of optimization. Towards this, we obtain the condensed dataset at ran-
dom initialization, after optimizing for small number of epochs and after training of DOSCOND
until convergence. In Table G, we present the results. As visible, there is a noticeable gap in the
AUCROC numbers indicating full training is necessary.

E NODE CLASSIFICATION

The primary focus of MIRAGE is on graph classification. However, it can be easily extended to node
classification. Specifically, we omit the graph level embedding construction (Eq. 5) and training is
performed on node level embeddings (Eq. 4). We use ogbg-molbace to analyze performance in node
classification. Here, each node is labeled as aromatic or non-aromatic depending on whether it is
part of an aromatic ring substructure. The results are tabulated in Table H. Consistent with previous
results, MIRAGE outperforms DOSCOND in both AUC-ROC and compression (smaller size of the
distilled dataset). DOSCOND produces a dataset that is ≈ 4 times the size of that produced by
MIRAGE, yet performs more than 7% lower in AUC-ROC. This coupled with model-agnostic-ness
further solidifies the superiority of MIRAGE.

F COMPUTATIONAL COST OF DISTILLATION

In clarifying the computational overhead inherent in the dataset distillation procedure, we conduct a
series of experiments. Initially, we manipulate the number of hops, recording the corresponding dis-
tillation time (Figure H). Simultaneously, we provide training time metric for the full dataset setting
(Table I), facilitating a comparative analysis. Our findings reveal that even under high hop counts
from the GNN perspective, the distillation process is more time-efficient than complete dataset train-
ing. Moreover, the distilled dataset’s performance converges closely with that of the full dataset, as
evident in Table 2.

(a) DD (b) IMDB-B (c) ogbg-molhiv
Figure G: Impact of frequency threshold (both positive and negative classes) on the distillation time.
Here, the thresholds on the positive and negative classes are varied in the y and x axis respectively,
and the time is presented as a contour.
Subsequently, we subject the system to variations in threshold parameters, graphically showing
the resulting time in Figure G. Notably, the distillation process exceeds the time of full dataset
training solely under extreme threshold values. This divergence occurs when distilled dataset reaches
equality with the full dataset in size post-distillation. Conversely, for pragmatic threshold values,
the dataset distillation procedure consistently manifests as a significantly faster option to full dataset
training.

16



Published as a conference paper at ICLR 2024

Figure H: Distillation times of MIRAGE, DOSCOND, and KIDD against the number of hops (layers)
in the GNN.

Table I: Training time (in seconds) for full dataset

Model→
Dataset ↓

GAT GCN GIN

ogbg-molbace 98.08 73.49 72.99
NCI1 90.71 145.09 120.96
ogbg-molbbbp 150.52 114.55 106.71
ogbg-molhiv 2744.21 1510.36 2418.61
DD 110.06 29.35 106.64
IMDB-B 12.84 11.42 9.81

G SUFFICIENCY OF FREQUENT TREE PATTERNS

This section contains the extended result of the experiment described in section 4.4 as shown in
Fig. I. From the Fig. I, it is clearly visible that the dataset distilled using MIRAGE is able to capture
the important information present in the full dataset since the difference between the losses when the
full dataset is passed through the model and when the distilled dataset is passed through the model
quickly approaches 0. This trend is held across models even though any information from the model
was not used to compute the distilled dataset.

H PARAMETER VARIATIONS

In investigating the influence of the number of hops on the Area Under the Curve (AUC), we present
a graphical representation of the AUC’s variation in relation to the number of hops (Fig. K). Also,
we depict the AUC in correlation with dataset sizes (Fig. L). It is important to note that sizes are
closely tied to threshold parameters; however, the latter is not explicitly shown in the graphical
representation due to their inherent high correlation with dataset sizes.

We see mild deterioration in AUC at higher hops in Fig. K. This is consistent with the literature
since GNNs are known to suffer from oversmoothing and oversquashing at higher layers (Shirzad
et al., 2023).

Training Efficiency. We now investigate the reduction in training loss over the course of multiple
epochs. The outcomes for the datasets ogbg-molbace, ogbg-mohiv, DD, and IMDB-B are displayed
in Fig. J. We selected these four datasets due to their representation of the smallest and largest
graph dataset, the dataset with the largest graphs, and the densest graphs, respectively. Across all
these datasets, the loss in the distilled dataset remains close to the loss in the full dataset. More
interestingly, in three out of four datasets (DD and IMDB-B), the loss begins at a substantially lower
value in the distilled dataset and approaches the minima quicker than in the full dataset. This trend
provides evidence of MIRAGE’s ability to achieve a dual objective. By identifying frequently co-
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Figure I: Sufficiency of Frequent Tree Patterns: It is seen that the trend that the loss difference
quickly approaches 0 holds across model and datasets.

(a) ogbg-molhiv (b) DD (c) IMDB-B (d) ogbg-molbace
Figure J: Variation of training loss against the number of epochs in GCN.

occurring computation trees, we simultaneously preserve the most informative patterns within the
dataset while effectively removing noise.
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Figure K: ROC-AUC versus the n hops parameter used during dataset distillation.

Figure L: Size vs. AUC for MIRAGE. Note that size is correlated to {θ0, θ1}
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