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Abstract

Recently, Multimodal Large Language Models (MLLMs) and Vision Lan-
guage Models (VLMs) have shown great promise in language-guided
perceptual tasks such as recognition, segmentation, and object detection.
However, their effectiveness in addressing visual cognition problems that
require high-level multi-image reasoning and visual working memory is
not well-established. One such challenge is matrix reasoning — the cog-
nitive ability to discern relationships among patterns in a set of images
and extrapolate to predict subsequent patterns. This skill is crucial during
the early neurodevelopmental stages of children. Inspired by the matrix
reasoning tasks in Raven’s Progressive Matrices (RPM) and Wechsler Intel-
ligence Scale for Children (WISC), we propose a new dataset MaRs-VQA
to evaluate the visual cognition capability of MLLMs and compare their
performance with existing human visual cognition studies. Based on the
training data of MaRs-VQA, we also finetune a baseline model Qwen2-
VCog with multi-stage cognition reasoning annotations. Our comparative
experiments with different baselines reveal a gap between MLLMs and
human intelligence, highlighting the visual cognitive limitations of current
MLLMs. We believe that the public release of MaRs-VQA and the Qwen2-
VCog baseline model will drive progress toward the next generation of
MLLMs with human-like visual cognition abilities. MaRs-VQA is available
at huggingface.co/datasets/IrohXu/VCog-Bench. The training code of
Qwen2-VCog is available at|github.com/IrohXu/Cognition-MLLM.

1 Introduction

Matrix reasoning is a crucial ability in human cognition. It is used in non-verbal, culture-
reduced intelligence assessments because it minimizes the influence of acquired knowledge
and skills (Jensen, [1998; [Jaeggi et al., [2010; |[Laurence & Macedo) 2023). Common matrix
reasoning problems consist of images with simple symbols governed by underlying abstract
rules (Matkinski & Mandziuk, 2023) (see Figure [I). Participants have to identify and
comprehend the rules based on a few provided patterns, and then reason about the next
pattern following the same rules. Matrix reasoning is an important reflection of many
fundamental capabilities of human visual cognition, such as processing speed and working
memory, that emerge in the early stages of children’s neurodevelopment (Gentner,1977). It
is also included in many assessment methods for fluid intelligence tests such as Wechsler
Intelligence Scale for Children (WISC) (Wechsler & Kodamal, 1949) and Raven’s Progressive
Matrices (RPM) (Raven), 2003).

*Equal contribution.
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| would choose Option C because it matches the relative positions of the three colored “arc”
shapes in the larger 3x3 pattern. In every cell of the big square, the orange “bite” shape sits
roughly to the left (tilted slightly toward the top), the blue “C” arc is up-right, and the green arc
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Looking at this visual pattern recognition problem, | believe the answer is D because it
) ) completes the sequence of rotational transformations seen across the grid where each cell
) B ) contains a Y-shaped structure with colored arcs and orange semi-circles in specific positions;

in option D, the green arc appears on the left side while the orange semi-circle sits at the top

of the Y-structure and the blue arc remains on the right side, maintaining the consistent

rotational pattern observed in the first and third rows of the grid_where green arcs
C ) D (_\ ) systematically shift positions (left, bottom, right) while orange elements follow a
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Figure 1: The example of the subpar performance of current state-of-the-art MLLMs (GPT-o1,
Claude 3.7 Sonnet) on a simple matrix reasoning task used in MaRs-VQA (similar to cases
in RPM and WISC). Both models can recognize the basic shapes in the provided patterns
but fail to reason the next pattern.

In psychometrics, matrix reasoning tasks for children are specifically designed to assess
visual reasoning abilities without prior specialized training. Children typically approach
these tests relying solely on their general cognitive skills developed from everyday interac-
tions with natural environments. This raises an intriguing question: Do Multimodal Large
Language Models (MLLMs) exhibit visual cognitive capabilities similar to those of humans?
MLLMs are trained on extensive general-domain data and have demonstrated the ability
to generalize to unfamiliar tasks through in-context learning. However, current MLLMs
still struggle with tasks that require advanced inductive reasoning, as evidenced by their
poor performance on abstract reasoning tests such as the RAVEN IQ-test (Huang et al.,
2024; |Fu et al., [2024b; [Yiu et al.| [2024). The RAVEN IQ-test itself has notable limitations,
including a relatively small dataset of only 50 samples (Huang et al 2024), potentially
introducing randomness and failing to robustly evaluate MLLMs’ capabilities. Furthermore,
it lacks comparative analyses with human performance, underscoring the need for more
comprehensive and rigorous evaluation methods.

To address these gaps, we propose MaRs-VQA, a new visual question answering (VQA)
dataset for general-purpose MLLMs, based on psychologist-certified matrix reasoning items
with extensive sample diversity and rigorous human reference Chierchia et al.|(2019). Unlike
recent works, our benchmark uniquely offers: (i) direct comparison between generic MLLMs
and humans on a scale an order of magnitude larger than previous VQA benchmarks and
with richer stimuli types; (ii) rigorous psychological validity and baseline from human
subject studies; (iii) explicit dual-modality annotation—for every question, both image and
natural-language descriptions are provided for all options, enabling probing of language-
vs-visual inference; (iv) full chain-of-thought (CoT) reasoning steps annotated, supporting
deeper cognitive diagnosis and fine-tuning.

We also conduct thorough evaluation and comparison across 5 existing MLLMs (including
their variants) and human performance under zero-shot inference setting (no prior knowl-
edge) on MaRs-VQA and another abstract reasoning datasets RAVEN containing human
studies. In our experiments, we observe that MLLMs with more parameters generally
perform better on our benchmark, adhering to established scaling laws in a limited scope.
However, even the largest open-source MLLMs and GPT-4o fall short of surpassing human
performance in matrix reasoning tasks. In conclusion, our contributions are summarized as
follows:
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* We introduce a new matrix reasoning VQA dataset — MaRs-VQA, containing 1,440
image instances designed by psychologists, which is the largest dataset for matrix
reasoning zero-shot evaluation.

* We conducted supervised fine-tuning (SFT) of Qwen2-VL using our annotated
cognitive reasoning data. Our results indicate that fine-tuning enhances Qwen2-
VL'’s accuracy on MaRs-VQA to match human performance levels; however, its
generalization capabilities remain limited.

* Our thorough experiments qualitatively reveal the visual cognition gap between
MLLMs and humans in matrix reasoning problems. We also show additional
insights of deficiencies in MLLMs, which can inspire more future investigations in
model design.

2 Related Works

Cognitive Test of Large Language Models (LLMs) The rise of LLMs has aroused interest
in exploring human-like Al in psychology and cognition (Ullman), 2023). Recent works tested
LLMs’ cognitive abilities in causal reasoning (Binz & Schulz, 2023), abstract reasoning (Xu
et al., [2023b; Moskvichev et al., 2023; |Jiang et al., 2024;|Ahrabian et al., 2024), analogical
reasoning (Webb et al||[2023), systematic reasoning (Hagendortf et al|[2023), and theory of
mind (Strachan et al}[2024). Despite this success, only limited research has been conducted
on the areas of MLLMs and visual cognition. Visual cognition involves the process by which
the human visual system interprets and makes inferences about a visual scene using partial
information. It is observed that while LLMs demonstrate a basic understanding of physical
laws and causal relationships, they lack deeper insights into intuitive human preferences
and reasoning|Buschoff et al.| (2023). Almost all existing visual cognition benchmarks focus
on testing MLLMs’ cognitive abilities in simple tasks (Zhou et al.} 2023} Jassim et al., 2023),
and ignore testing complex abstract reasoning and logical reasoning ability. Therefore, new
and challenging benchmarks based on the theory of visual cognition are needed to assess
and improve Al systems’ capabilities for human-like visual understanding.

Matrix Reasoning Matrix reasoning is often used to determine human intelligence related
to visual cognition and working memory (Salthouse, 1993; Jaeggi et al.,|2010; |[Fleuret et al.,
2011) that is widely used by RPM (Raven), 2003; [Soulieres et al.,2009), WISC (Wechsler &
Kodama), [1949; [Kaufman et al, 2015) to evaluate human ability to detect the underlying
conceptual relationship among visual objects and use reasoning to find visual cues. Early
research indicated that deep learning models can be trained to solve simple matrix rea-
soning (Matkinski & Mandziuk} 2022; 2023; Xu et al.,[2023a;|Matkinski & Mandziuk), [2024)
and compositional visual relation tasks (Fleuret et al., 2011 Zerroug et al.}|[2022;|Liu et al.,
2021). Several datasets and benchmarks are also proposed, such as RAVEN (Zhang et al.,
2019), RAVEN-I (Hu et al., 2021), RAVEN-FAIR (Benny et al.,2021), CVR (Zerroug et al.,
2022). However, these works have a key limitation. They overlook the fact that humans
can solve such puzzles in a zero-shot manner, without explicit training on large-scale data.
Recently, there are also some useful zero-shot visual reasoning inference datasets such as
RAVEN-IQ (Huang et al.,|2024), Visual Reasoning Benchmark (Zhang et al.,|2024b), but all
of them are limited by lacking rigorous human experiments as reference and conducting
experiments on relatively small datasets without psychometrical validation.

Vision-Language Models Researchers have been actively investigating the utility of Vision-
Language Models (VLMs) for addressing vision reasoning tasks (Zellers et al.,2019; Bordes
et al., 2024). These latest VLMs are constructed using a combination of the CLIP vision
encoder, pretrained LLMs, and a connected adapter to align visual features with language
space (Zhang et al., 2024a; |Shao et al.,, |2024; Gupta & Kembhavi, 2023; [Fu et al.| [2024b).
Notably, methodologies such as MiniGPT-4 (Zhu et al., [2023), InstructBLIP (Dai et al.,
2024), LLaVA (Liu et al| 2024), CogVLM (Wang et al., [2023) underscore the significance
of employing high-quality visual instruction tuning data. Nevertheless, current VLMs
encounter challenges in adapting to high-resolution and visually complex images. These
problems stem from the absence of a robust visual search mechanism (Wu & Xie, [2023),
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Table 1: Comparison of recently released zero-shot matrix reasoning datasets to evaluate
MLLMs.

few-shot reasoning (Guo et al., 2023), compositional understanding (Yuksekgonul et al.,
2022)) and the constrained visual grounding capabilities inherent in CLIP (Tong et al.,[2024).

3 MaRs-VQA Dataset

The MaRs-VQA dataset is designed to evaluate the zero-shot abstract reasoning capabilities
of MLLMs through various matrix reasoning VQA tasks. The images in MaRs-VQA are
sourced from the questionnaires in Matrix Reasoning Item Bank, which is created by psy-
chologists including 18 sets of abstract reasoning questionnaires (80 instances in each set) for
non-verbal abstract reasoning assessment of adolescents and adults (Chierchia et al., 2019).
Each item presents an incomplete 3 x 3 matrix of abstract shapes, requiring participants to
identify relationships among the shapes. Then, we create VQA annotations in the images
from all questionnaires. The comparison among MaRs-VQA and previous matrix reasoning
benchmark datasets is shown in Table[l]

To transform the matrix reasoning problem into a VQA task, we define two option sets —
image-based set and language-based set. In the image-based set, we provide four candidates
to the missing patch in the question. We further diversify the modalities of our dataset to
support the evaluation of different kinds of models. Specifically, the author teams annotate
language-based descriptions for each option, forming language-based set. Each option
annotation is formatted by GPT-40 to ensure consistency. In this process, we first manually
design 10 formatted language-based sample pairs. These examples are then used as few-
shot samples to query GPT-4o through in-context learning. The context generation system
prompt guides GPT-4o to re-caption all annotations. After generating all samples, human
annotators in the author team review each option again and revise the incorrect description.
In Table[l} compared with other matrix reasoning datasets for MLLM’s visual cognition
evaluation, MaRs-VQA is the largest one with unique features on psychological validity,
human study reference, VQA annotations.

4 Problem Statement

In this section, we introduce the evaluation pipeline of MaRs-VQA under multi-image
reasoning setting.
Assume that the test set contains 7 VQA samples, denoted as {(q;, X;, yi)}_,. q; represents

the question image showing the 3 x 3 matrix reasoning task. x; = [x}, ..., xf‘] represents the
images in the option set, where k is the number of options. y; is the answer of the matrix
reasoning question. The inference pipeline can be formulated as:

Yi = Fo(qi, Xi, Xsys)- o
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Figure 2: An overview of using CoT to solve matrix reasoning problem in MaRs-VQA. The
left part is the model input, including a question image, multiple option images. The right
part shows the step-by-step CoT for multi-image reasoning for GPT series and Claude series
inference.

Xsys is the system prompt, including independent information about the matrix reasoning
problem setting, step-by-step reasomng examples (optional), few-shot examples (optional),
requirements for the output format. y; is the prediction result. Fy is an autoregressive
decoder in the MLLM for answer generation. It is defined as:

L
P(yi|qi1xi/xsys = HP Yz,] qz/xi)rxsys/yi,<j;9)/ (2)
1

]:

where f is the visual encoder and adapter layer, L is the sequence length of answers and
¥i < is all answer tokens before y; ;.

5 Methods

As we claim in previous sections, our initial goal is to complete the 3 x 3 matrix by finding
the missing cell from multiple options by zero-shot prompt engineering under the same
setting in human’s matrix reasoning test. To this end, MLLMSs have to deduce relationships
across the other cells of the matrix and infer the missing cell accordingly. We use CoT prompt
engineering to guide closed-source MLLMs solving this problem. To further promote related
visual cognition foundation model, we also propose to use step-by-step structured reasoning
annotations in MaRs-VQA to supervised finetune (SFT) Qwen2-VL with LoRA. Then we
test the performance of Qwen2-VCog in both MaRs-VQA test set (in-domain) and a subset
of RAVEN as Out-of-Domain (OOD) data. The observation in the experiment could reveal
why this problem is hard for MLLM and highlight the gap between human intelligence and
MLLM reasoning.

5.1 Multi-Image Reasoning via Chain-of-Thought (CoT)

Building on recent insights into systematic, language-based reasoning (Wei et al., 2022;
Kojima et al [2022), we propose a straightforward yet effective division of the reasoning
workflow into two distinct and clearly tagged stages (<think> and <answer>), as illustrated
in Figure 3| This design draws inspiration from methods such as OpenAl ol (Zhong et al.,
2024), LLaVA-CoT (Xu et al., 2024), and R1-V |Chen et al.|(2025) where each stage contributes
a different level of abstraction to the overall inferential process:

* Reasoning (<think>): It includes: (i) a concise overview of the task (e.g., ‘examining
a 3x3 grid puzzle and determining the missing cell’); (ii) a structured description
of relevant visual elements (color, shape, position, etc.) that guide the reasoning;
and (iii) a methodical analysis of the discovered pattern(s). Crucially, this step
covers both rule identification (the model pinpoints how objects or elements follow
consistent patterns) and option verification (each candidate option is tested against
the identified rule).
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¢ Conclusion (<answer>): A single, succinct statement that specifies the best or
correct choice among the provided options. No extra explanation is given here. It
simply states which option is correct as the final answer.

This two-section format promotes

a structured and transparent rea- e

soning style by first concisely out- A Visual Encoder

lining the puzzle, then detailing v v v K

all pertinent visual characteris- Yo we o« /

tics, followed by explicit discov- « o0 @ Autoregressive

Decoding

1

1
ery and testing of candidate rules, we ew e |
and finally isolating the single cor- e v ' LLM (%) D
rect response. To further clar-
ify the CoT processes in LLM-
based reasoning, our method an-
notates each stage of the two-
section format with dedicated tags,
such as <think>...</think> and
<answer>...</answer>. By explic-
itly marking the beginning and
end of each reasoning stage, the
model is guided to retain clarity Figure 3: Supervised fine-tuning VLM to generate two-
and precision throughout the en- section format for matrix reasoning problem.
tire solution path. Unlike the tradi-
tional free-form CoT that allows the model to produce unconstrained self-talk, our approach
enforces a well-structured methodology. A detailed template demonstrating this two-section
CoT format is provided in our code repository.

<think>...</think>
<reasoning>...</ reasoning >

5.2 SFT for Vision-Language Model (VLM)

To enhance the reasoning capabilities of vision-language models (VLMs), we leverage
the reasoning responses generated using the two-section CoT format as training data (in
Figure . LoRA |Hu et al.| (2022) is employed to fine-tune Qwen2-VL, enabling efficient
adaptation of the model to these structured reasoning tasks. Specifically, the step-by-step
reasoning annotations in MaRs-VQA are used as supervision signals during fine-tuning.
After training, the performance of the resulting model, Qwen2-VCog, is evaluated on MaRs-
VQA test set for in-domain performance and a subset of RAVEN for Out-of-Domain (OOD)
performance.

To further probe the contribution of explicit cognitive supervision, we conduct an ablation
study by fine-tuning a variant of Qwen2-VL without the step-by-step reasoning annotations,
in parallel to Qwen2-VCog (which was trained with full reasoning chains). This allows us
to isolate the effect of reasoning supervision on both in-domain (MaRs-VQA) and out-of-
domain (RAVEN) performance.

6 Experiments

6.1 Experimental Settings

Datasets For MaRs-VQA, We split 480 VQA samples as the test set and the rest of them is
the training set for SFT. In addition to MaRs-VQA, we also select 560 VQA pairs serving
as OOD samples from matrix reasoning dataset RAVEN (Zhang et al., [2019). Details of
difference between MaRs-VQA and RAVEN are shown in Table E?in appendix.

MLLM Baselines We selected the Claude 3 Sonnet, Claude 3 Opus, Claude 3.5 Sonnet (An{
thropic, [2024), GPT-4V (OpenAl, 2023), GPT-40 (OpenAl, 2024b), GPT-o1 (OpenAl, 2024c),
LLaVA-NEXT (Liu et al}2024), Qwen2-VL (Wang et al., 2024), InternVL-2.5/Chen et al.|(2024)
as the primary multi-image CoT baselines as they support multiple images input and can
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Method Model Scale Accuracy (%) T
MaRs-VQA (4-options) RAVEN (8-options)
Random Select - 25.00 12.50
LLaVA-NEXT (Liu et al.||2024) 7B 16.88 14.29
InternVL-2.5|Chen et al.|(2024) 8B 20.00 13.21
Qwen2-VL|Wang et al.|(2024) 7B 23.75 29.27
Claude 3 Sonnet (Anthropic/[2024) - 23.22 13.39
Claude 3 Opus (Anthropic|[2024) - 24.13 11.95
Claude 3.5 Sonnet (Anthropic){2024) - 24.28 15.36
GPT-4V (OpenAl}[2023) - 33.13 15.63
GPT-40 (OpenAl}2024b) - 33.96 25.89
GPT-o1 (OpenAl}2024a) - 52.29 25.36
Qwen2-VCog (Our SFT Baseline) 7B 72.71 31.96*
Human - 81.00 84.41

Table 2: Benchmarking experiments on multi-image reasoning in MaRs-VQA (in-domain)
and RAVEN (OOD). zero-shot means only provide the model system prompt about the
matrix reasoning task definition. CoT denotes the implementation in section The results
are averaged over three runs with three different random seeds. * of Qwen2-VCog denotes
CoT performance without finetuning.

generate reasoning process. As Qwen2-VL (Wang et al}[2024) is the best open-sourced VLM
for zero-shot inference in Table |2, we choose it as the main backbone to finetune our baseline
Qwen2-VCog with MaRs-VQA training data.

Human Baseline The human study results in Table2|are reported from previous experi-
ment results. The human subjects of RAVEN (Zhang et al.| 2019) consists of college students
from a subject pool maintained by the Department of Psychology. Only “easily perceptible”
examples were used in the investigation. The human study results of MaRs-IB (Chierchia
et al}|2019) are more rigorous. They are from 4 age groups (N = 659, aged 11-33 years). The
accuracy for younger adolescents, mid-adolescents, older adolescents, and adults solving
matrix reasoning in MaRs-IB are 61%, 68%, 73%, 81%. We use the adult result 81% in Table

Implementation For closed-source baseline models, we establish basic prompts to intro-
duce the matrix reasoning problem setting, which serve as the system prompt for zero-shot
inference. For open-source baseline models, we use the same system prompt settings across
all models. Testing is conducted using two NVIDIA H100 GPUs for all models. All ex-
periments are run with three different random seeds, and the results are averaged. We
evaluate the results based on the accuracy of single-option matrix reasoning problems
(Acc = Correct/Total), consistent with other VQA benchmarks (Lu et al., 2022; Liu et al.,
2023).

6.2 Experimental Results

For all models in Table [2, we used multiple images as the input, including a question
image and several option images, and guided the MLLMs to decompose the problem into
predefined structures before generating answers based on all available information. We
tested the latest closed-source models like Claude 3, Claude 3.5, GPT-4V, GPT-40, and
GPT-o01 for this task, as these models can generate step-by-step multi-image reasoning.
In addition, we also compare them with small size open-sourced models like Qwen2-VL,
InternVL-2.5. Our results show that even the state-of-the-art closed-source MLLMs GPT-01
perform worse than humans in all matrix reasoning tasks.

After analyzing the reasoning outputs of current MLLMs, we identified three primary issues:
(1) Limited Use of Visual Information: MLLMs struggle to directly utilize visual features
during reasoning, rendering them insensitive to non-verbal spatial details, particularly evi-
dent when interpreting positional relationships within images. For instance, distinguishing
among the options in Figure[T|is challenging for MLLMs using language alone. (2) Restricted
Visual Working Memory: MLLMs exhibit limited visual working memory, leading to rapid
loss of crucial visual information during text-based reasoning processes. (3) Integration
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Strategy Accuracy (%) T

GPT-4o+ CoT 33.96 Table 3: Ablation on few-shot sample CoT

GPT-40+ CoT + 1-shot 35.22 and multi-round CoT for GPT-40 in MaRs-

gg?ioi g‘? N g'sﬁot o VQA. GPT-o01 still outperforms GPT-40 with
-40 (o} -SNO | .

GPT-40+ multi-round CoT 4196 different CoT strategy.

GPT-40+ multi-round CoT + 1-shot 42.08

GPT-01 52.29

Challenges: Despite excelling at specific visual tasks like recognition, segmentation, and ob-
ject detection, MLLMs encounter significant difficulties integrating these skills for high-level
visual reasoning tasks. Further examples illustrating GPT-40’s failure cases and discussion
are provided in the Appendix.

To address these shortcomings, we leveraged the reasoning annotations described in Sec-
tion 5.1 to fine-tune Qwen2-VL using Low-Rank Adaptation (LoRA) as our baseline model
for MaRs-VQA. After fine-tuning on the MaRs-VQA training set, the model achieved over
70% accuracy on the MaRs-VQA test set, nearing human adult performance. Additionally,
its performance on the OOD RAVEN dataset improved from 29.27% to 31.96%. This ob-
servation shows that VLM could exploit shortcut features from matrix reasoning problem.
It tends to perform well on the in-distribution test sets while slightly improving the out-
of-distribution test performance. This indicates that there is still a major gap for current
MLLMs to learn intended features in the abstract reasoning tasks. The simple strategy
of SFT cannot entirely solve this task. This also demonstrates the value of our proposed
benchmark in examining the out-of-domain nature of abstract reasoning tasks.

6.3 Ablation Study

In this subsection, we conduct ablation experiments to analyze how to improve the zero-shot
performance of MLLMs on the matrix reasoning problem.

Effect of CoT Strategy for Closed-source MLLMs Table 3| compares the different CoT
strategy: raw step-by-step CoT with hint, CoT reasoning with few-shot sample and multi-
round CoT reasoning. Few-shot samples are a small number of question-answer examples
alongside the CoT system prompt. Multi-round reasoning employs the advanced multi-
round CoT strategy (step by step option elimination). After each round, the model will
reflect on the correctness of the answer and run the reasoning steps again if the answer
is wrong. The results show that incorporating 1-shot and 3-shot samples gradually in-
creases the accuracy of GPT-40 on MaRs-VQA from 34% to 36%. However, extending the
number of examples to 5 does not yield further improvement. These findings suggest that
while few-shot in-context learning helps the model better understand the matrix reasoning
problem, it does not significantly enhance the MLLM'’s visual reasoning capabilities for
these tasks. Additionally, using a multi-round elimination strategy improves accuracy from
approximately 34% to 42%, but it is considerably slower than single-round CoT, and still
cannot surpass GPT-ol (52.29%) and human adults (81.00%).

Effect of Reasoning Strings in SFT To more precisely quantify the impact of explicit
step-by-step reasoning supervision in Supervised Fine-Tuning (SFT), we conducted an
ablation study in which the reasoning strings were omitted from the MaRs-VQA training
data. As reported in Table {4, the absence of these structured cognitive annotations led
to a dramatic decrease in accuracy for Qwen2-VCog on both MaRs-VQA and RAVEN.
Specifically, performance on MaRs-VQA dropped by nearly 18 percentage points, while
the accuracy on RAVEN also decreased, albeit to a lesser extent. This result highlights that
detailed reasoning guidance is not merely auxiliary, but instead serves as a crucial signal
for the model to acquire transferable visual cognitive skills. Without such supervision,
the model tends to rely on shallow pattern matching or spurious correlations, failing
to generalize robustly even within the same task domain. These findings underscore
the necessity of incorporating high-quality, stepwise annotations for training MLLMs to
approach human-like reasoning on complex visual cognition benchmarks.
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Model MaRs-VQA (%) T  RAVEN (%) 1
Qwen2-VCog (with reasoning) 72.71 31.96
Qwen2-VCog (w/o reasoning) 54.82 29.30

Table 4: Effect of reasoning strings in SFT.

Vision vs. Language Bottleneck We further investigated whether the primary limitation
of current MLLMs in matrix reasoning tasks arises from their visual perception modules
or from downstream language-based reasoning. To disentangle these factors, we designed
three input conditions: (1) providing only the question image and selecting options via CLIP
similarity, (2) providing both the question and all option images (the standard VQA setting),
and (3) supplementing the images with perfect human-annotated textual descriptions for
both the question and options. As shown in Table[5} both GPT-40 and Qwen2-VCog perform
at near chance level when deprived of option images, indicating a failure to extract the
underlying visual rules from the question image alone. When option images are provided,
accuracy increases substantially, especially for Qwen2-VCog, which demonstrates strong
visual pattern matching. Notably, the addition of ideal textual descriptions yields only a
marginal further improvement, suggesting that the language reasoning component is not
the main bottleneck once high-quality visual features are available. These results collectively
point to visual pattern extraction—rather than linguistic inference—as the principal limiting
factor for MLLMs on abstract visual reasoning tasks, emphasizing the need for stronger
visual encoders and better integration of visual working memory.

Input Setting GPT-40 (%) T  Qwen2-VCog (%) 1
Question image only 24.58 26.32
Question image + Option images 33.96 72.71
Question image + Option images + Option Description 36.46 71.43

Table 5: Vision vs. Language Bottleneck Analysis.

Generalizability To ensure that the improvements observed from SFT on MaRs-VQA
do not come at the expense of general visual-language understanding, we systematically
evaluated both Qwen2-VCog and the original Qwen2-VL on a suite of standard multimodal
benchmarks, including MME (Fu et al.|[2024a), HallusionBench (Guan et al., 2024), POPE (Li
et al}[2023), VQAv2 (validation set) (Goyal et al.,2017), SQA_Image (Lu et al.,2022), and
SeedBench (Li et al., [2024). As summarized in Table |6 the two models exhibit nearly
identical performance across all tasks, with only negligible fluctuations that are well within
the range of experimental noise. This demonstrates that reasoning-focused finetuning on
MaRs-VQA does not degrade the model’s ability to perform generic vision-language tasks,
nor does it induce catastrophic forgetting. Consequently, it is feasible to endow MLLMs with
enhanced visual reasoning skills via SFT on MaRs-VQA, without sacrificing their broader
applicability or real-world utility.

Model MME 1  Hallusion_Bencht POPET VQAv2 Valt SQA_Image! SeedBench 1
Qwen2-VL-7B 1666 53.83 88.84 79.88 83.73 69.16
Qwen2-VCog-7B 1680 55.73 88.71 79.45 83.29 68.87

Table 6: General VLM Benchmarks: SFT does not degrade generic ability.

6.4 Visualization

We also analyze the relationship between matrix reasoning accuracy and model scale
in Figure[d The figure illustrates the significant gap between MLLM’s matrix reasoning
performance and that of humans. This gap is substantial and suggests that simply increasing
model size according to scaling laws will not be sufficient to bridge it.
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Figure 4: There is still a substantial gap between MLLM’s (zero-shot CoT or SFT training)
matrix reasoning capability and human’s (zero-shot). Bubble size corresponds to the model
size. As we don’t know the exact size of closed-source MLLMSs, we set all of them to the
largest value by default. The model size of human refers to the number of neurons (86B) in
human’s brain (Voytek) 2013).

7 Discussion

In this work, we emphasize that zero-shot matrix reasoning is a crucial testbed for human-
level intelligence, even though the developmental origins of this ability in children remain
unclear. Remarkably, children as young as four can solve matrix reasoning problems without
explicit training, highlighting the unique strengths of human visual cognition. Our long-
term goals are twofold: (1) to rigorously evaluate how close MLLMs are to human-like
cognitive abilities, as posed by [Chollet|(2019); and (2) to develop MLLM-powered agents
capable of human-level zero-shot matrix reasoning, which could in turn generate novel
assessment tools to help psychologists and pediatricians understand neurodevelopment.

Our findings reveal a persistent visual cognition gap between current MLLMs and humans,
even as model scale increases. Detailed ablation and analysis suggest that the primary
bottleneck lies in visual pattern extraction and working memory, rather than language
reasoning. This gap has concrete implications for real-world applications: it limits the
reliability of Al in dynamic or safety-critical environments (e.g., robotics, scientific discovery,
education), where robust abstract visual reasoning and generalization are essential. Bridging
this gap will require advances in both data and architecture, particularly in strengthening
the visual encoders and multimodal integration of MLLMs. Our benchmark and insights lay
the groundwork for future research toward more human-like, generalizable visual cognition
in Al systems.

8 Conclusion

We introduce MaRs-VQA, a publicly available matrix reasoning Visual Question Answering
(VQA) dataset specifically designed to evaluate the visual cognitive capabilities of Multi-
modal Large Language Models (MLLMs) and compare them with humans. Our findings
indicate that state-of-the-art MLLMs, such as GPT-40, Qwen2-VL, and InternVL-2.5, demon-
strate foundational competence in matrix reasoning but continue to struggle with more
complex or abstract scenarios, performing substantially below human levels. Supervised
fine-tuning (SFT) with cognitively designed step-by-step reasoning annotations from MaRs-
VQA can significantly boost in-domain accuracy, yet these models still fall short of human
performance and generalize poorly to out-of-domains (OOD). Notably, humans achieve
strong performance without any task-specific training, underscoring the inherent gap in
visual cognition between humans and MLLMs. Our ablations further show that explicit
reasoning supervision is crucial, and that vision—not language—remains the dominant
bottleneck. Bridging this gap will require continued research and innovation in both model
architecture and multimodal learning paradigms, ultimately advancing the visual cognitive
abilities of future MLLMs.
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