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Abstract

When transferring knowledge from previously mastered
source tasks to a new target task, the similarity between the
source and target tasks can play a key role in whether such
transfer is beneficial or harmful. In this paper, we develop an
upper-bound of difference in action value function of source
and target tasks with dynamics mismatch, and use the bound
as a metric for dissimilarity between two tasks. The proposed
metric does not require additional samples and adds little ex-
tra computation to the reinforcement learning algorithm for
the target task. Also, the metric is highly portable so that it
can be integrated into a wide range of algorithms. We show-
case the effectiveness of the metric by incorporating it as a
gatekeeper in the knowledge transfer step of transfer rein-
forcement learning algorithms. Numerical results on a suite
of transfer learning scenarios demonstrate the benefits of pre-
venting negative transfer in case of severe mismatch while
accelerating learning otherwise.

Introduction
Reinforcement Learning (RL) has proven to be effective in
a variety of tasks such as video games (Mnih et al. 2015)
and robotic control (Gu et al. 2017). However, RL algo-
rithms require a large number of samples, which is costly
in case of real-world applications. Imagine that we want
to train an expensive robot in a production line where the
robot undergoes wear and tear over hundreds of thousands
of rather random trials. Transfer learning seeks to utilize
prior knowledge from tasks already tackled so as to reduce
the additional training and samples in a new task (target
task) (Taylor and Stone 2009). In this work, we focus on
the transfer learning setting where the transition dynamics
varies across source and target tasks. We further assume that
the source task has already been solved. The chosen prob-
lem setting has several possible applications in practice. For
example, knowledge about repair and replacement policies
for a machine under different degradation conditions could
be transferred to a scenario when only the degradation pat-
tern is different from those observed before. Autonomous
vehicles could reuse knowledge gained from other weather
conditions when driving in unfamiliar weather conditions.
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RL agents could be trained for modeling pandemic spread
with dynamics based on compartmental models in epidemi-
ology for well-studied diseases (Kompella et al. 2020). This
knowledge could be transferred to model pandemic spread
of different diseases or when dynamics of pandemic spread
change due to new variants of concern.

Knowledge transferred can be detrimental to learning of a
target task if the source task is significantly different (Taylor
and Stone 2009). Thus, it is essential to check task similarity
before transferring knowledge across tasks. Ideally, knowl-
edge transfer should be selective so that the learning of the
target task should be accelerated whenever possible while
avoiding negative transfer. The selective transfer requires a
metric to measure similarity between tasks, and similarity
metrics have been studied in two categories: model-based
metrics and performance-based metrics (Visús, Garcı́a, and
Fernández 2021). Model-based metrics, most notably the
bisimulation distance, have been shown to be effective for
transfer RL (Castro and Precup 2010), but they are com-
putationally expensive and require explicit modeling of the
environment. Performance-based Similarity metrics, such as
reuse gain (Fernández and Veloso 2006), can be learned on-
line in the target task and are easy to compute. However, they
do not consider the difference in components of the tasks
such as the transition dynamics or reward function which
could be utilized to more accurately measure similarity and
instead measure similarity based on target task performance.
These metrics are also more suited for multi-source task set-
ting as a means of selecting the most appropriate task given
multiple source tasks.

In this work, we focus on the development of a measure
of (dis)similarity that combines the analytical benefits of
model-based metric and lightweight nature of performance-
based metrics by finding a relatively lightweight measure
that analytically considers the difference of the components
of the MDP across the tasks (more specifically the difference
in dynamics). We define a quantity, termed as δ, to measure
the impact of difference in dynamics between a source and
a target task under a fixed policy. The defined quantity can
be learned during target task learning, adding no extra bur-
den with respect to target task samples and only minor ad-
ditional computation. We demonstrate the utility of the pro-
posed metric δ by adopting it as a gatekeeper in knowledge



transfer pipeline from a source to a target task using two
different transfer RL algorithms. The results show that the
δ-based gatekeeper successfully filters out irrelevant knowl-
edge to prevent negative transfer. The specific contribution
of this work are as follows:
• We show analytically that the quantity δ is a upper bound

of difference in action value functions of tasks with dy-
namics mismatch.

• We demonstrate the utility of δ when it is used to control
knowledge transfer by augmenting existing algorithms
with similarity information provided by δ.

• We experimentally validate that the algorithms aug-
mented with δ can avoid negative transfer while main-
taining the benefits of transfer.

• The proposed metric δ is highly portable and can be inte-
grated into a wide range of existing reinforcement learn-
ing algorithms such as dynamic potential based advice
(DPBA) method (Behboudian et al. 2020).

Related Work
Our work is closely related to literature regarding similarity
metrics between MDPs. Similarity metrics across different
MDPs could be categorized into two subsets; model-based
metrics and performance-based metrics (Visús, Garcı́a, and
Fernández 2021). Model-based metrics require modelling
of the environment to identify structural similarities across
MDPs. Bisimulation metric has been used to compute a
measure of task similarity for transfer learning (Castro and
Precup 2010). Other model-based similarity metrics include
constructing bipartite graphs of finite MDPs and using graph
similarity measures (Wang, Dong, and Shao 2019) and ag-
gregating compliance measure that calculates the probabil-
ity that observed samples from the target task are generated
by the source task (Lazaric, Restelli, and Bonarini 2008).
However, the model-based similarity metric requires explic-
itly modeling the environment and hence computationally
expensive. Our proposed metric for task similarity in the dy-
namics mismatch setting does not require explicit modelling
and hence overcomes the limitation of the above-mentioned
methods.

Performance-based metrics are viable alternatives to
model-based metrics. These metrics include the mean
squared error of the optimal action values after completing
target task learning (Carroll and Seppi 2005) or matching la-
tent embeddings of the action values of different tasks (Zhou
and Yang 2020), which is useful when comparing among
multiple source tasks but incapable of assessing the task
similarity in any absolute sense. In this work, we learn a
proxy of task similarity in an absolute sense so that the met-
ric can be computed between a single source and a target
task as well as used to assess relative similarity among mul-
tiple source tasks to a target task. The closest to our work is
the Target Transfer Q learning (Wang et al. 2020), in which
maximum norm of difference of optimal action value func-
tions across tasks is computed. However, the task similarity
in (Wang et al. 2020) depends on fluctuating action values.
The proposed metric δ in this study is computed using sam-
ples to estimate expectation, and hence more stable.

Preliminaries
Markov Decision Processes Each task in the transfer
learning scenario can be formulated as a Markov Decision
Process (MDP). A MDP can be defined in terms of the tuple
M = 〈S,A,R, P, γ〉, where S denotes the space containing
all possible states, A denotes the space of actions, R rep-
resents the bounded scalar reward function S × A 7→ R;
P (s′|s, a) represents the transition probability correspond-
ing to taking action a in state s resulting in a next state s′
and γ ∈ [0, 1) represents the discount factor. A policy π is
a mapping from S to a distribution over A that specifies the
behavior of the RL agent.

The objective of the agent is to find an optimal
policy that maximizes the expected return J(π) =

Eπ

[∑∞
k=0 γ

kr(sk, ak)
]
. Rather than directly comparing

J(π), most RL algorithms estimate state value function
V π(s) or action value function Qπ(s, a) that can be defined
by recursive structure based on bellman expectation equa-
tion.

By the principle of optimality, value functions of an opti-
mal policy π∗ satisfy the following relation.

V ∗(s) = max
a

Q∗(s, a) = max
a

Eπ

[
r(s, a) +γV ∗(s′); s, a

]
Q-Learning and Deep Q-Networks Q-learning is an off-
policy control algorithm that learns action values that con-
verge to optimal action values (Watkins and Dayan 1992). It
updates Q(s, a) using reward r and next state s′ information
obtained from the environment by taking action a at state s.

Q(s, a)← Q(s, a) + α(r + max
a′

Q(s′, a′)−Q(s, a)) (1)

Under the proper assumptions on learning rate α, Q(s, a)
converges to optimal action value Q∗(s, a). For better es-
timation of Q(s, a), ε-greedy policy is usually used as be-
havior policy in practice. It chooses a random action with
probability ε and otherwise chooses maxaQ(s, a).

Deep-Q Network (DQN) is the extension of Q-learning
using function approximation through a deep-neural net-
work for high-dimensional state spaces (Mnih et al. 2015).
While approximating action values as Qθ(s, a), it exploits
experience replay and fixed q-target to stabilize neural net-
works in learning action values.The useful output from DQN
is the learned Q-network that estimates Q∗(s, a).

Delta Function
Delta Function Definition
The target task and the source task are denoted as MDPs
Mtrg = 〈S,A,R, Ptrg, γ〉 and Msrc = 〈S,A,R, Psrc, γ〉,
respectively. We define a quantity δπ(s, a) as

δπ(s, a) = γ
∑
s′∈S

(ptrg(s
′|s, a)− psrc(s′|s, a))V πsrc(s

′)

where V πsrc(s) is the state value function of policy π evalu-
ated at task Msrc. Intuitively, larger δ value implies larger
dissimilarity of dynamics between the two tasks at (s, a).

The defined term δπ(s, a) allows us to infer the influence
of dynamics mismatch at (s, a) on the change in action value



functions when a policy π is deployed at target task. By def-
initions of action values and δπ(s, a), differences of action
values of π in different tasks satisfy the following relation;

Qπtrg(s, a)−Qπsrc(s, a)

= δπ(s, a) + γ
∑
s′∈S

ptrg(s
′|s, a){V πtrg(s′)− V πsrc(s′)}

These relations can lead to bounds on the difference in
action values and a detailed discussion is provided in the
Appendix.

The optimal Q values can also be bounded in terms of
δπ(s, a) as shown in Theorem 1. Because one measure of
similarity between two MDPs Msrc and Mtrg can be cap-
tured using the maximum difference in their optimal ac-
tion values (Wang et al. 2020), Theorem 1 implies that
δπ
∗
src provides an upper bound on the task (dis-)similarity

∆(Msrc,Mtrg) = maxs,a

∣∣∣∣Q∗src(s, a)−Q∗trg(s, a)

∣∣∣∣.
Theorem 1. Define π∗trg as the target optimal policy and
π∗src as the source optimal policy. Qπ(s, a) denotes the ac-
tion value of following policy π for state s and action a.
Then,

Q
π∗trg
trg (s, a)−Qπ

∗
src
src (s, a) ≤ ∆(Msrc,Mtrg)

≤ 1

1− γ
max
(s,a)

∣∣∣δπ∗src(s, a)
∣∣∣

Note that our proposed (dis-)similarity metric according
to Theorem 1 is basically an upper bound on the difference
of action value function between the source and the target
tasks. Moreover, the computation of the bound requires an
maximization of δπ

∗
src(s, a) over all combinations of s and

a.

Computing Delta Function
The most naive approach to computing δ would be to learn
the dynamics model of the source and target tasks. By us-
ing such a method, it is possible to calculate approxima-
tions p̂trg(s′|s, a) and p̂src(s′|s, a) corresponding to target
task dynamics and source task dynamics, respectively. We
seek to avoid the overhead of explicitly modeling the envi-
ronment at both the source and target task while learning δ,
thereby attempting to make the computation of δ more scal-
able. We show an alternate method to compute δ by utilizing
the definition of δ and the fact that the reward function is the
same across tasks.

By the definition of δ, for the transfer learning scenario
with dynamics mismatch we have

δπ(s, a) = γ
∑
s′∈S

(ptrg(s
′|s, a)− psrc(s′|s, a))V πsrc(s

′)

= r(s, a) + γ
∑
s′∈S

ptrg(s
′|s, a)V πsrc(s

′)− r(s, a)

− γ
∑
s′∈S

psrc(s
′|s, a)V πsrc(s

′)

= Es′∼Ptrg [r(s, a) + γV πsrc(s
′); s, a]−Qπsrc(s, a)

Since δ can be written as an expectation in terms of target
task transition dynamics, it can be estimated via stochastic
approximation in an off-policy manner with target task sam-
ples used for training the baseline RL algorithm. The follow-
ing update rule can be used to estimate δ

δπ(s, a)← δπ(s, a) + αdβδ (2)

where

βδ = {r(s, a) + γV πsrc(s
′)−Qπsrc(s, a)− δπ(s, a)}

and αd is learning rate for estimating δπ(s, a).
We utilize δ as it provides several advantages for trans-

fer RL algorithms in dynamics mismatch setting. First, task
similarity ∆(Msrc,Mtrg) defined with the differences of
optimal action values in each task cannot be measured be-
fore knowing an optimal policy at the target environment.
Using estimates of ∆(Msrc,Mtrg) as such could lead to in-
stability due to fluctuating Q values during learning which is
mitigated when using δ, since δ simply uses target samples
to compute the expectation. δπ

∗
src defined with source opti-

mal policy gives an upper bound on task similarity that does
not require knowledge of target optimal policy (Theorem 1).
Hence, we use δπ

∗
src as an indicator of task similarity while

learning policy at target environment. Second, to measure
task similarity between source and target tasks, we can not
avoid collecting transition samples at target task but there
is an inherent requirement to minimize the need for addi-
tional samples required for task similarity estimation. Be-
cause δ can be computed with transition samples collected
for learning target policy, we do not need extra interactions
with target environment to identify task similarity. Estima-
tion of δ can be added to any transfer RL algorithm without
additional sampling costs to determine task similarity. Third,
computation of δ doesn’t require any explicit modelling of
the environment unlike model-based similarity metrics.

Delta Function in Transfer RL with Dynamics
Mismatch

We provide two simple yet effective use cases of δ in the
single source task transfer setting. It is more critical in sin-
gle source task setting than multi source transfer to judge
whether source knowledge is beneficial. In multi-source
transfer, we can selectively choose the best source with the
expectation of having beneficial knowledge among multi-
ple sources. Although δ can be used in multi source transfer
setting, we restrict to a single source transfer where source
knowledge is not guaranteed to be beneficial and avoiding
negative transfer is more crucial. We use δπ

∗
src as an indica-

tor of task similarity to identify whether to transfer source
knowledge. The first method uses δπ

∗
src to decide whether to

reuse source policy directly in target task. Starting from the
initial prior that source and target task are similar, we esti-
mate δπ

∗
src value to monitor the efficiency of policy reuse.

The second method is controlling the effects of action ad-
vice based on δπ

∗
src while source knowledge is used in ac-

tion selection. These methods aim to prevent negative trans-
fer while keeping positive bias from source knowledge. We
slightly abuse notation and use δ and δπ

∗
src interchangeably.



Delta as Criteria for Policy Reuse
The simplest way of transferring source knowledge is di-
rectly deploying a source policy at target environment. Sup-
pose we have set up a target task and decide to transfer
source policy for this task. This setup usually begins with the
prior belief that the source policy will perform well at target
because those two tasks are similar. Direct transfer could be
a sufficiently effective transfer method unless source and tar-
get tasks are quite dissimilar. Hence, a more important ques-
tion here is how to prevent negative transfer if the source
policy unexpectedly performs poorly.

Algorithm 1: Q-learning with δπ
∗
src as a measure of task sim-

ilarity

1: Input γ, Tmax, Q∗src, ε, ∆, learning rates α, αd
2: Initialize Qtrg(s, a) = 0, δπ

∗
src(s, a) = 0 ∀s ∈ S, a ∈

A, and set initial state s0
3: for t ≤ Tmax do
4: if max(s,a)

∣∣δπ∗src(s, a)
∣∣ ≤ ∆ then

5: at = arg maxaQ
∗
src(s, a)

6: else
7: at = ε-greedy policy corresponding to Qtrg
8: end if
9: Execute at and observe reward r and next state st+1

10: Update δπ
∗
src(st, at) according to equation 2

11: Update Qtrg(st, at) according to equation 1
12: t← t+ 1
13: end for

Algorithm 1 shows how we can add a mechanism to pre-
vent negative transfer using δπ

∗
src while directly using source

policy at target environment. By simply adding a criterion
of comparing a threshold value ∆ to max(s,a)

∣∣δπ∗src∣∣, we
choose whether to follow source policy or current target
policy. Note that this criterion more conservatively follows
source policy than using the same threshold value on the
task similarity at the convergence according to Theorem 1.
Starting with the prior belief that source and target tasks are
equal (δπ

∗
src(s, a) = 0), we update this belief with newly

collected target transition samples. Then, task similarity is
more clearly identified as the δπ

∗
src converges. Compared to

directly reusing source optimal policy in the target task, Al-
gorithm 1 prevents negative effects of following source pol-
icy obtained from a dissimilar task while also taking advan-
tage of source optimal policy if tasks are found to be similar.

Delta as Advice Control Factor
Policy invariant explicit shaping (PIES) (Behboudian et al.
2020) has been proposed to utilize arbitrary advice while
keeping policy invariant property by explicitly shaping the
action selection instead of modifying the reward function.
The action selection is modified to include a bias based on
the potential function φ†(s, a) such that the selected action
is given by

a = arg max
a

Q(s, a)− κtΦ†(s, a) (3)

where κt denotes the relative importance given to the ad-
vice.Because PIES preserves policy optimality and could be
extended to function approximation setting, this method pro-
vides a good baseline framework to incorporate δπ

∗
src for

continuous state space environments. For using δ in contin-
uous state space tasks, we parameterize δ as neural network
and estimate it by minimizing the loss function:

Lδ = Eτ∼D

(
r+γmax

b
Q∗src(s

′, b)−Q∗src(s, a)−δ(s, a)

)2

(4)
Although the PIES framework provides a mechanism on
how to reuse arbitrary information, there is also the neces-
sity of a mechanism to decide when to reuse such infor-
mation without detrimental effects for the transfer learning
setting. We utilize δπ

∗
src to control the effects of action ad-

vice Φ†(s, a) based on a proxy for task similarity, by adding
an additional factor to control the relative importance of the
bias term, as follows:

a = arg max
a

Q(s, a)− κt exp
(
−max

a
|δ(s, a)|

)
Φ†(s, a)

(5)
The term κt, where t denotes the number of training steps

completed, is decayed to zero using a constant C, starting
with κ0 = 1 as follows (Behboudian et al. 2020)

κt = max(0, κt−1 − C) (6)

The additional factor exp
(
−maxa

∣∣δπ∗src(s, a)
∣∣) is used

since a smaller value of maxa
∣∣δπ∗src(s, a)

∣∣ corresponds to
tasks being more similar. This particular action selection
mechanism reduces the effects of bias term Φ†(s, a) based
on source knowledge on action selection substantially if
maxa

∣∣δπ∗src(s, a)
∣∣ is large. This particular usage of δπ

∗
src ,

where the maximum value is taken over the actions only
for the particular state, is a local and contextual approxima-
tion used to ensure scalability. This factor is empirically ob-
served to work well, providing useful action advice in case
of using similar source task and preventing negative trans-
fer in case of large dynamics discrepancy setting. The entire
description of the algorithm is provided in Algorithm 2.

Unlike the base algorithm of PIES, we use static potential
functions as advice rather than learning a separate secondary
action value as it requires on-policy samples. The type of
information reused from the source task as advice can di-
rectly affect the performance of the target task agent. For
the scenario of transfer learning, it can be beneficial to bias
the different actions differently. The source optimal advan-
tage function is chosen such that φ†(s, a) = −A∗src(s, a)
because it expects to provide a bias of scale similar to the
action value function that distinguishes the actions subopti-
mal for the source task when compared to using the source
policy.

Experiments
In this section, we provide experiments that test our hy-
pothesis that δ can be used as a proxy for task similarity.
We mainly validate the utility of δ as a similarity metric by



Algorithm 2: DQN with Similarity based Explicit Shaping

1: Input γ, Tmax, Q∗src, ε, learning rate αd
2: Initialize Neural network parameters θδ , θQ, and replay

buffer D
3: for t ≤ Tmax do
4: at = ε-greedy with respect to action selection mecha-

nism in equation 5
5: Decay κt based on decay rule in equation 6
6: Execute at and observe reward r and next state st+1

7: Store (st, at, rt, st+1) in D
8: Update θδ to minimize loss in equation 4 using gradi-

ent descent: θδ ← θδ − αd∇θδLδ
9: Sample minibatch B of (s, a, r, s′) from D

10: Update θQ based on DQN algorithm with random
minibatch B

11: t← t+ 1
12: end for

showing that algorithms augmented with such a task similar-
ity can selectively avoid negative transfer while maintaining
the positive biases otherwise. We validate the hypothesis us-
ing the two different algorithms that showcase the utility of
δ using tasks with discrete (2 different tasks with 2 transfer
learning scenarios each) as well as continuous state spaces (4
different tasks with 2 transfer learning scenarios each) where
dynamics varies across source and target task. In particular,
we focus on answering the following questions through our
experiments:
1. Does using δ help capture the similarity or differences

across the source and target task?
2. Can augmenting the two different algorithms with δ se-

lectively incorporate source knowledge by considering
when to transfer?

The source task is solved till convergence using baseline
RL algorithms of Q-Learning and DQN for discrete and con-
tinuous state spaces respectively and the resultant action val-
ues are utilized to compute necessary source task knowl-
edge.

In order to measure the relative improvement in perfor-
mance of the transfer learning algorithms, we utilize the
transfer ratio (Taylor and Stone 2009). Given the area under
the learning curve (AUC) with transfer,At and AUC without
transfer, Aw, transfer ratio tr can be calculated as 1

tr =
At −Aw
|Aw|

A positive value of tr implies that the transfer learning im-
proved learning compared to not using transfer whereas a
negative value of tr implies that transfer learning harms tar-
get task learning and indicates negative transfer.

Delta as Criteria for Policy Reuse
For the first use case of δ in Algorithm 1, we focus on
two discrete state-action space benchmark tasks, one be-

1Deviating from the original definition, we used absolute value
in the denominator to preserve interpretation of relative improve-
ment when Aw is negative.

Figure 1: Evaluation of delta as a measure of similarity

ing a modified version of Windy Gridworld (Sutton and
Barto 2018) and the other being a supply chain management
(SCM) task (Kemmer et al. 2018). A full description of the
tasks and transfer learning scenarios is mentioned in the Ap-
pendix.

We first empirically evaluate how max(s,a)

∣∣δπ∗src∣∣ indi-
cates if direct transfer is useful or not thus acting as a proxy
of how (dis)similar the tasks are. This evaluation is carried
out in the Windy Gridworld environment by choosing var-
ious pairs of (Msrc,Mtrg) and directly reusing the source
optimal policy π∗src in the target task. In Figure 1, we plot
the performance of reusing π∗src as measured by the trans-
fer ratio tr. As max(s,a)

∣∣δπ∗src∣∣ increases, it can be seen that
reusing π∗src performs poorer indicating that the tasks are
more different. It can be inferred from this performance that
using a proxy based on δ captures the (dis)similarities across
source and target task based on the intuition that if target task
and source task are more similar directly reusing π∗src results
in better target task performance.

Figure 2: Average evaluation performance computed using
greedy policy. The shaded area represents 95% Confidence
Interval of the results for 5 different trials

Based on the validation that max(s,a)

∣∣δπ∗src∣∣ can deter-
mine if π∗src is useful or not, we evaluate the performance
of Algorithm 1. The results for the two different transfer
scenarios are shown in Figure 2. It can be observed that
for cases where positive gains from transfer are possible,
like Windy Gridworld scenario 1, the algorithm learns to



Table 1: Average AUC score over five different random seeds and transfer ratio tr calculated based on average in percentage.
Parentheses indicate standard deviation.

DQN ES δ based ES

Environment (Factor) AUC tr(%) AUC tr(%) AUC tr(%)

CartPole (5) 139.4 (11.7) 0 157.0 (11.1) 12.9 163.8 (14.1) 17.8
CartPole (7) 131.8 (10.9) 0 127.6 (14.2) -2.9 158.6 (2.4) 21.0
Acrobot (1.5) -172.7 (26.9) 0 -161.3 (14.4) 6 -150.1 (5.0) 13.0
Acrobot (2) -228.6 (12.0) 0 -233.0 (20.4) -1.9 -228.4 (15.6) 0.1
LunarLander (1.1) 178.3 (13.8) 0 171.1 (7.8) -4 181.5 (7.4) 1.7
LunarLander (0.75) 223.5 (6.8) 0 219.8 (11.0) -1.63 228.0 (5.0) 3.70
Reacher (0.75) -5.96 (0.1) 0 -5.71 (0.1) 3.9 -5.66 (0.08) 4.8
Reacher (1) -6.38 (0.28) 0 -6.17 (0.09) 3.3 -6.09 (0.22) 4.4

directly reuse π∗src very quickly. On the other hand, for
cases like Windy Gridworld scenario 2, where π∗src would
perform poorly, the algorithm learn to conservatively select
the current target policy and avoid the reuse of π∗src. For
both scenarios for SCM environment, the algorithm learns
to achieve an initial jumpstart by learning about task similar-
ity thus showcasing the benefits of transfer. The algorithm,
in general, improves over both the“no-transfer” condition
(Q-learning) and probabilistic policy reuse (Fernández and
Veloso 2006) which probabilistically (“random” source se-
lection) decides whether to use the source optimal policy,
compared to the similarity-aware Algorithm 1

Delta as Advice Control Factor
The proposed method of using δ as advice control factor
is tested using different classic control benchmarks pro-
vided by OpenAI gym (Brockman et al. 2016) namely Cart-
Pole, Acrobot and LunarLander. Additionally, a contin-
uous control robotics system, Reacher is used with a dis-
cretized action space (Barreto et al. 2017). The default Ope-
nAI gym environments act as source tasks and target tasks
are defined by changing the transition dynamics through en-
vironment specific parameters, the details of which are ex-
plained in the appendix. We study two transfer learning sce-
narios for each environment and compare DQN, DQN with
transfer learning based PIES, referred henceforth as ES, and
also with the proposed modification of using δ to decide how
to shape action selection based on task similarity, referred to
as δ-based ES. The hyperparameters used for the different
experiments are provided in the Appendix. The algorithms
are compared based on the transfer ratio for the AUC score
obtained by evaluating the greedy policy at fixed intervals
during the learning process and the result is tabulated in Ta-
ble 1. where Factor indicates by how much the environment
specific parameters have been changed to form the target
task

It can be observed that adding the δ-based term maintains
or improves performance of explicit shaping with respect to
tr on average. In cases where negative transfer is possible
like Acrobot with link mass twice as the source task, the ad-
dition of δ prevents the negative transfer and performs sim-

ilarly to the DQN baseline whereas the explicit shaping al-
gorithm results in negative transfer. For Acrobot with link
mass 1.5 times that of the source task, the δ based algorithm
improves slightly on the benfits that transfer provides. Sim-
ilarly, for CartPole, the proposed modifications maintain the
benefits when it is useful to transfer, namely the transfer sce-
nario where target task gravity is 5 times that of the source
task. A positive transfer is maintained by the algorithm aug-
mented with δ when the source information is slightly detri-
mental too, namely the transfer scenario where target task
gravity is 7 times that of the source task, whereas the ex-
plicit shaping algorithm results in negative transfer. For Lu-
narLander, the explicit shaping mechanism fails partially in
both the transfer learning scenarios, whereas there is still
some positive gains due to using the additional factor based
on δ. For the discretized version of Reacher, the algorithm
augmented with δ maintains the positive bias from transfer
for both transfer learning scenarios.

Conclusions
In this work, we utilized an easy-to-compute quantity, δ, to
capture the difference in dynamics across tasks and showed
it to be a proxy for task similarity between source and tar-
get tasks for transfer learning with dynamics mismatch. We
augment existing algorithms - Algorithm 1 using the pol-
icy re-use and Algorithm 2 using the explicit reward shap-
ing - with task similarity based on the quantity δ to better
understand when the relevant source task information can
be incorporated into the learning process and to address the
question of “when to transfer”. We would highlight that the
proposed metric can be adopted by a wide range of existing
algorithms.

Experiments on a range of tasks and transfer learning sce-
narios show that utilizing δ helps maintain positive bias from
source information in cases where it is beneficial to trans-
fer and selectively avoids source information when it can
be detrimental. Even though δ can be used as a proxy for
task similarity, it only takes into consideration the difference
in one-step transition dynamics. Also, overcoming the com-
putational intractability of taking a maximum over δ would
give a better opportunity for a role of δ in other transfer RL



algorithms beyond its natural application in discrete action-
space domains. In future work, we aim to utilize δ to decide
the most appropriate source task given a library of multiple
available source tasks. The task differences based on δ could
also be used to ground the source task to more closely match
the target task by minimizing task differences (Desai et al.
2020) and avoiding the explicit computation of the transition
models for source or target task.

Limitations and Future Work Transfer learning for RL,
especially transfer learning with dynamics mismatch, must
be used with utmost caution as it can be used to transfer
knowledge from simulators to real-world systems. When
doing so, exploration can be risky in terms of damage to
the real-world system or damage to its surroundings which
could include humans. Hence, proper precautions must be
taken to ensure safe deployment, especially in safety-critical
settings like autonomous vehicles or healthcare.
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Appendix
A Proofs

In order to prove the theorems, we assume that the source
task and target task differ only with respect to the transi-
tion dynamics. The source task can be denoted as the MDP
defined by the tuple Msrc = 〈S,A,R, Psrc, γ〉 and the
target task can be denoted as Mtrg = 〈S,A,R, Ptrg, γ〉.

Let ∆(Msrc,Mtrg) = maxs,a

∣∣∣∣Q∗src(s, a) − Q∗trg(s, a)

∣∣∣∣
where Q∗(s, a) represents the optimal action value function
for state-action pair (s, a) and following optimal policy π∗
thereafter.



Theorem 2. Define π∗trg as optimal policy for target task
and π∗src as optimal policy in source task. Qπ(s, a) denotes
the action value of following policy π for state s and action
a. Then

Q
π∗trg
trg (s, a)−Qπ

∗
src
src (s, a) ≤∆(Msrc,Mtrg)

≤ 1

1− γ
max
(s,a)

∣∣∣δπ∗src(s, a)
∣∣∣

Proof. The proof is analogous to Lemma 1 in (Barreto
et al. 2017)
Let max(s,a)

∣∣∣Qπ∗trgtrg (s, a)−Qπ
∗
src
src (s, a)

∣∣∣ = ∆.∣∣∣Qπ∗trgtrg (s, a)−Qπ
∗
src
src (s, a)

∣∣∣ is nothing but the difference
between action values of the two MDPs.∣∣∣Qπ∗trgtrg (s, a)−Qπ

∗
src
src (s, a)

∣∣∣
=

∣∣∣∣∣r(s, a) + γ
∑
s′∈S

ptrg(s
′|s, a) max

b
Q
π∗trg
trg (s′, b)

− r(s, a)− γ
∑
s′∈S

psrc(s
′|s, a) max

b
Q
π∗src
src (s′, b)

∣∣∣∣∣
=

∣∣∣∣∣γ∑
s′∈S

[{ptrg(s′|s, a)− psrc(s′|s, a)}max
b
Q
π∗src
src (s′, b)

+ ptrg(s
′|s, a){max

b
Q
π∗trg
trg (s′, b)−max

b
Q
π∗src
src (s′, b)}]

∣∣∣∣∣
=

∣∣∣∣∣γ∑
s′∈S

ptrg(s
′|s, a){max

b
Q
π∗trg
trg (s′, b)−max

b
Q
π∗src
src (s′, b)}

+ δπ
∗
src(s, a)

∣∣∣∣∣
≤ γ

∑
s′∈S

ptrg(s
′|s, a)

∣∣∣∣max
b
Q
π∗trg
trg (s′, b)−max

b
Q
π∗src
src (s′, b)

∣∣∣∣
+
∣∣∣δπ∗src(s, a)

∣∣∣
≤ γ

∑
s′∈S

ptrg(s
′|s, a) max

b

∣∣∣Qπ∗trgtrg (s′, b)−Qπ
∗
src
src (s′, b)

∣∣∣
+
∣∣∣δπ∗src(s, a)

∣∣∣
≤
∣∣∣δπ∗src(s, a)

∣∣∣+ γ∆ (7)

Inequality 7 holds even when we take max operator over
(s, a) in both sides.

Therefore replacing LHS of inequality 7 with ∆ we get,

∆ ≤ max
(s,a)

∣∣∣δπ∗src(s, a)
∣∣∣+ γ∆

∆ ≤ 1

1− γ
max
(s,a)

∣∣∣δπ∗src(s, a)
∣∣∣ (8)

The following relation leads to bounds on action value
differences which could be computed without deploying π
at target task. This can be a different use case of δ where
policies can be evaluated at target task without deploying
them. This could be useful in settings such as safety-critical
systems where rolling out the policy may be catastrophic.
Theorem 3. Bounds on differences of action values for the
same π evaluated in different tasks can be represented with
δ for the current time step and maximum (minimum) of δ.

δπ(s, a) +
γ

1− γ
min
(s,a)

δπ(s, a) ≤ Qπtrg(s, a)−Qπsrc(s, a)

≤ δπ(s, a) +
γ

1− γ
max
(s,a)

δπ(s, a)

Proof. By the definition of δ, the state-action values and δ
satisfy the following relation,

Qπtrg(s, a)−Qπsrc(s, a) =

δπ(s, a) + γEπ,Ptrg

[ ∞∑
l=1

γl−1δπ(sk+l, ak+l); sk = s, ak = a
]

≤ δπ(s, a) + γEπ,Ptrg

[ ∞∑
l=1

γl−1 max
(s,a)

δπ(s, a)
]

= δπ(s, a) +
γ

1− γ
max
(s,a)

δπ(s, a)

Similarly,

Qπtrg(s, a)−Qπsrc(s, a)

≥ δπ(s, a) + γEπ,Ptrg

[ ∞∑
l=1

γl−1 min
(s,a)

δπ(s, a)
]

= δπ(s, a) +
γ

1− γ
min
(s,a)

δπ(s, a)

B Environment Details and Design of
Transfer Learning Scenarios

Delta as Criteria for Policy Reuse
Windy GridWorld The Windy GridWorld environment is
a 20 by 20 gridworld with prespecified start and goal states.
The four possible actions are {up, down, left, right}. The
actions move the agent by one cell in the corresponding di-
rection with a probability of 0.75, otherwise the agent moves
in a random direction. Additionally the agent movements are
modified due to the presence of ”wind” causing the move-
ments to be shifted upwards based on the strength of the
”wind” mentioned under each column in Figure 3a. If a wall
is encountered based on the chosen action, the agent stays
in the cell next to the wall. The agent incurs a penalty of
−1 for each step till it reaches the goal state thereby enforc-
ing the goal of reaching the goal state in least number of
steps. The target task for different transfer learning scenar-
ios corresponding to Windy Gridworld scenarios 1 and 2 are
depicted in Figure 3b and 3c respectively

In order to empirically evaluate if max(s,a)

∣∣δπ∗src∣∣ can de-
termine if directly reusing source policy works well,based



(a) (b) (c)

Figure 3: Depiction of the Windy Gridworld environment used in the experiments with numbers under each column denoting
the strength of the wind in the upward direction for each column (a) Source Task (b) Small Changes in Wind leading to target
task for Scenario 1 (c) Target task corresponding to the wind direction being reversed compared to the source task which is
used in Scenario 2

on Figure 1 in the manuscript , two additional target tasks
are utilized and in total 5 different target tasks are used in-
cluding the ones in Figures 3a,3b,3c. The additional target
tasks used are tabulated in Table 2. The source task used
for all cases is the one shown in Figure 3a. For each source
task, target task pair, the source optimal policy is directly de-
ployed and the performance is compared with Q Learning,
trained for 5000 episodes with hyperparameters as given in
Table 4, based on the transfer ratio tr

Supply Chain Management The Supply Chain Manage-
ment (SCM) environment consists of a factory and a ware-
house (Kemmer et al. 2018; Gimelfarb, Sanner, and Lee
2020). The agent’s goal is to meet the demand for a par-
ticular good by deciding how much to produce at the fac-
tory and how much should be shipped to the warehouse. The
agent is rewarded based on revenue generated, using a price
per unit of 0.5 and penalized based on per unit production
cost of 0.1, per unit storage cost of 0.02, per unit penalty
cost of 0.1 when the stock level in warehouse is less than
0, and transportation cost based on number of trucks with
each truck having a capacity of 5 and costing 0.1. Initially, a
quantity of 10 goods are assumed to be available in the fac-
tory and the warehouse is empty. The factory and warehouse
have a storage limit of 50. The transportation limits are set
to 10 for each period and unsatisfied demand is not logged
for later but assumed to be lost. The demand is assumed to
follow a Poisson distribution with λ = 2.5 for the source
task and λ = 2, λ = 5 for transfer learning scenarios 1 and
2 respectively.

Delta as Advice Control Factor
The proposed method of using δ as advice control factor
is tested using different classic control benchmarks pro-

vided by OpenAI gym (Brockman et al. 2016) namely Cart-
Pole, Acrobot and LunarLander.Additionally, a continu-
ous control robotics system, Reacher is used with a dis-
cretized action space (Barreto et al. 2017) where there are
3 possible actions for each joint corresponding to (maxi-
mum positive torque, zero torque and maximum torque in
the negative direction). The default OpenAI gym environ-
ments act as source tasks and target tasks are defined by
changing the transition dynamics through environment spe-
cific parameters mentioned in Table 3. Each parameter is
multiplied by dynamics factors in Table 3 for defining tar-
get tasks except for Reacher where the values indicate the
absolute magnitude of the force along the y-axis which is ab-
sent in the source task (y-axis force in source task is 0). We
study two transfer learning scenarios for each environment
and the parameter used for each of the scenarios is provided
in a comma separated manner in Table 3

C Algorithm Details
Delta as Criteria for Policy Reuse
For the discrete state space environments of Windy Grid-
world and Supply Chain Management, Q-Learning was used
as the base RL algorithm. The hyperparameters for Q Learn-
ing are shown in Table 4 where t is a counter for episodes.
For probabilistic policy reuse (Fernández and Veloso 2006),
the probability of selecting the source optimal policy, ψ was
decayed every episode till it reached 0. This was achieved
based on the update rule ψ ← ψν where ν was set to be
the same value as the discount factor γ after sweeping over
values of ν ∈ [0.99, 0.9, 0.8, 0.7].The additional hyperpa-
rameters that are required to use δ as a criteria for direct
transfer are mentioned in Table 5. The source task is solved
till convergence based on same values of hyperparameters



Table 2: Wind Magnitudes in the upward direction for each column for the different target tasks

Transfer Scenario Wind Vector
Small changes in wind [0, 0, -1, 1, 1, 1, 2, 2, 1, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 0]
Wind Direction Reversed [0, 0, 0, -1, -1, -1, -2, -2, -1, 0, 0, 0, 0, -1, -1, -1, -2, -2, -1, 0]
Additional Transfer Scenario 1 [0, 1, 1, 1, 2, 1, -1, 1, -1, 0, 0, 1, 1, 1, 2, 1, -1, 1, -1, 0]
Additional Transfer Scenario 2 [0, 1, -1, 1, 1, 1, -2, 2, 1, 0, 0, 1, -1, 1, 1, 1, -2, 2, 1, 0]

Table 3: Environment Modifications to Design Transfer
Learning Scenarios

Environment Parameter Target Dynamics factor
CartPole Gravity 5.0, 7.0
Acrobot Link Mass 1.5, 2.0

LunarLander Lander Mass 1.1, 1.5
Reacher Y-Axis Force 0.75, 1

mentioned in Table 4. The learning rates was swept over
α ∈ [0.5, 0.1, 0.05, 0.01] and the results are reported for the
best hyperparameter from source task, averaged over 5 dif-
ferent random seeds, based on area under the learning curve.
The tuned values of learning rate work well across different
transfer learning scenarios.

Delta as Advice Control Factor
For tasks like CartPole, Acrobot and LunarLander, Deep
Q Networks (DQN) was used as the base Reinforcement
Learning algorithm to allow explicit shaping to directly af-
fect the action selection mechanism. The DQN algorithm
was implemented using PyTorch and the weights for the
neural networks were initialized using Xavier initialization
provided by PyTorch. The Adam optimizer (Kingma and
Ba 2014) was used to train all neural networks. Explo-
ration is performed using ε-greedy mechanism where ε is
decay according to an exponential schedule. The hyperpa-
rameters used for DQN are shown in Table 6. The addi-
tional hyperparameters that are required to use δ as ad-
vice control factor are mentioned in Table 7. The source
task is assumed to be solved till convergence based on
same values of hyperparameters mentioned in Table 6. The
learning rates for state-action values were swept over α ∈
[0.0001, 0.0005, 0.005, 0.001] and the results are reported
for the best hyperparameter found in the source task, aver-
aged over 5 different random seeds, based on area under the
evaluation curve found using Tune package from Ray (Liaw
et al. 2018). The algorithm is evaluated using the greedy pol-
icy after every 100 episodes of learning by averaging over
performance from 50 episodes. The tuned values of learning
rate work well across different transfer learning scenarios.
The decay factor κt is updated for every training step based
on the decay constant C. The decay constant value C is set
to be such that the advice is utilized for 25 percent of the to-
tal timesteps and it was the best from among the choices of
25 percent, 50 percent and 100 percent based on area under
the evaluation curve. An example of the variation of perfor-

Figure 4: Comparison of different rates of advice decay con-
stantC with error bars representing standard deviation of the
results for 5 different trials.

mance as C varies is provided in Figure 4 based on results
from Cartpole where the gravity in the target task is 5 times
that of the source task. Here, the different bars correspond
to decay constants C such that the bias from advice is used
for 25%, 50% and 100% of total timesteps during training. It
can be seen that average performance of delta-based explicit
shaping is similar across different values of C while the ex-
plicit shaping algorithm is relatively more sensitive to C and
has higher variances across different runs. It must be noted
that setting C = 0 such that κt = 1 throughout learning will
affect the policy-invariance property.



Table 4: Hyperparameters for Q Learning

Parameters Windy Gridworld Supply Chain Management
Number of Episodes 5000 1000

Discount Factor 0.99 0.99
Learning Rate α 0.5 0.5

Initial Exploration Probability ε0 0.1 0.1
Exploration Schedule εt max(εt−1 − 5× 10−4, 0) max(εt−1 − 5× 10−4, 0)

Table 5: Additional Hyperparameters for using Delta as Criteria for Policy Reuse

Parameters Windy Gridworld Supply Chain Management
Learning Rate α 0.5 0.5

Threshold value ∆ 10 5
Delta Learning Rate αd 0.05 0.1

Table 6: Hyperparameters for DQN

Parameters CartPole Acrobot LunarLander Reacher

Number of Episodes 4000 2000 3000 3000
Discount Factor 0.99 0.99 0.99 0.99
Number of Hidden Layers 2 2 2 2
Layer Size 64 256 256 256
Hidden Layer Activation ReLU ReLU ReLU ReLU
Maximum Value for Gradient Clipping 10 10 10 10
Target Update Frequency (in terms of steps) 2000 1000 1000 1000
Replay Buffer Capacity 10000 10000 10000 10000
Batch Size 64 128 128 128
Learning Rate 0.0001 0.0001 0.0001 0.0001
Initial Exploration Probability ε0 1 1 1 1
Final Exploration Probability εT 0.01 0.01 0.01 0.01
Exploration Probability Decay εd 500 500 500 500

Table 7: Additional Hyperparameters when using DQN with Explicit Shaping

Parameters CartPole Acrobot LunarLander Reacher

Number of Hidden Layers for δ 2 2 2 2
Layer Size for δ 64 256 256 256
Hidden Layer Activation for δ ReLU ReLU ReLU ReLU
Maximum Value for Gradient Clipping for δ 10 10 10 10
Learning Rate for δ 0.0005 0.0005 0.0005 0.0005


