
Published as a conference paper at ICLR 2023

Sparse tree-based Initialization for Neural
Networks
Patrick Lutz1,∗ Ludovic Arnould2 Claire Boyer2 Erwan Scornet3
1Boston University 2LPSM, Sorbonne University 3CMAP, École Polytechnique

Abstract
Dedicated neural network (NN) architectures have been designed to han-
dle specific data types (such as CNN for images or RNN for text), which
ranks them among state-of-the-art methods for dealing with these data.
Unfortunately, no architecture has been found for dealingwith tabular data
yet, for which tree ensemble methods (tree boosting, random forests) usu-
ally show the best predictive performances. In this work, we propose a
new sparse initialization technique for (potentially deep) multilayer per-
ceptrons (MLP): we first train a tree-based procedure to detect feature in-
teractions anduse the resulting information to initialize the network, which
is subsequently trained via standard gradient descent (GD) strategies. Nu-
merical experiments on several tabular data sets show the benefits of this
new, simple and easy-to-use method, both in terms of generalization ca-
pacity and computation time, compared to default MLP initialization and
even to existing complex deep learning solutions. In fact, this wise MLP
initialization raises the performances of the resulting NN methods to that
of gradient boosting on tabular data. Besides, such initializations are able
to preserve the sparsity of weights introduced in the first layers of the net-
work throughout the training, which emphasizes that the first layers act as
a sparse feature extractor (like convolutional layers in CNN).

1 Introduction
Neural networks are now widely used in many domains of machine learning, in particular
whendealingwith very structureddata. They indeedprovide state-of-the-art performances
for applications with images or text. However, neural networks still perform poorly on
tabular inputs, for which tree ensemble methods remain the gold standards (Grinsztajn
et al., 2022). The goal of this paper is to improve the performances of the former by using
the strengths of the latter.

Tree ensemble methods Tree-based methods are widely used in the ML community, es-
pecially for processing tabular data. Twomain approaches exist depending on whether the
tree building process is parallel (e.g. Random Forest, RF, see Breiman, 2001b) or sequential
(e.g. Gradient Boosting Decision Trees, GBDT, see Friedman, 2001). In these tree ensem-
ble procedures, the final prediction relies on averaging predictions of randomized decision
trees, coding for particular partitions of the input space. The two most successful and most
widely used implementations of these methods are XGBoost and LightGBM (see Chen &
Guestrin, 2016; Ke et al., 2017) which both rely on the sequential GBDT approach.

Neural networks Neural Networks (NN) are efficient methods to unveil the patterns of
spatial or temporal data, such as images (Krizhevsky et al., 2012) or texts (Liu et al., 2016).
Their performance results notably from the fact that several architectures directly encode
relevant structures in the input: convolutional neural networks (CNN, LeCun et al., 1995)
use convolutions to detect spatially-invariant patterns in images, and recurrent neural net-
works (RNN, Rumelhart et al., 1985) use a hidden temporal state to leverage the natural or-
der of a text. However, a dedicated natural architecture has yet to be introduced to deal with

∗corresponding author: plutz@bu.edu

1

mailto:plutz09@gmail.com

Published as a conference paper at ICLR 2023

tabular data. Indeed, designing such an architecture would require to detect and leverage
the structure of the relations between variables, which ismuch easier for images or text (spa-
tial or temporal correlation) than for tabular data (unconstrained covariance structure).

NN initialization and training In the absence of a suitable architecture for handling tab-
ular data, the Multi-Layer Perceptron (MLP) architecture (Rumelhart et al., 1986) remains
the obvious choice due to its generalist nature. Apart from the large number of parameters,
one difficulty of MLP training arises from the non-convexity of the loss function (see, e.g.,
Sun, 2020). In such situations, the initialization of the network parameters (weights and
biases) are of the utmost importance, since it can influence both the optimization stability
and the quality of the minimum found. Typically, such initializations are drawn according
to independent uniform distributions with a variance decreasing w.r.t. the size of the layer
(He et al., 2015). Therefore, one may wonder how to capitalize on methods that are inher-
ently capable of recognizing patterns in tabular data (e.g., tree-based methods) to propose
a new NN architecture suitable for tabular data and an initialization procedure that leads
to faster convergence and better generalization performance.

1.1 Related works

How MLP can be used to handle tabular data remains unclear, especially since a corre-
sponding prior in the MLP architecture adapted to the correlations of the input is not obvi-
ous, to say the least. Indeed, none of the existing NN architectures can consistently match
the performance of state-of-the-art tree-based predictors on tabular data (Shwartz-Ziv &
Armon, 2022; Gorishniy et al., 2021; and in particular Table 2 in Borisov et al., 2021).

Self-attention architectures Specific NN architectures have been proposed to deal with
tabular data. For example, TabNet (Arik & Pfister, 2021) uses a sequential self-attention
structure to detect relevant features and then applies several networks for prediction.
SAINT (Somepalli et al., 2021), on the other hand, uses a two-dimensional attention struc-
ture (on both features and samples) organized in several layers to extract relevant informa-
tion which is then fed to a classical MLP. These methods typically require a large amount
of data, since the self-attention layers and the output network involve numerous MLP.

Trees and neural networks Several solutions have been proposed to leverage the corre-
spondence between tree-based methods and NN, in order to develop more efficient models
for processing tabular data. For example, TabNN (Ke et al., 2018) first trains a GBDT on the
available data, then extracts a group of features per individual tree, compresses the result-
ing groups, and uses a tailored Recursive Encoder based on the structure of these groups
(with an initialization based on the tree leaves). Therefore, TabNN employs pre-trained
tree-basedmethods to designmore efficient NN. Conversely, Sethi (1990) Brent (1991), and
later Welbl (2014), Richmond et al. (2015) and Biau et al. (2019) propose to translate deci-
sion trees into very specific MLP (made of 3 layers) and use GD training to improve upon
the original tree-based method. Such procedures can be seen as a way to relax and gener-
alize the partition geometry produced by trees and their aggregation. To our knowledge,
such translations have not been used to boost the training of general NN architectures.

1.2 Contributions

In this work, we propose a new method to initialize a potentially deep MLP for learning
tasks with tabular data. Our method consists in first training a tree-based predictor (RF,
GBDT or Deep Forest, see Section 2.1) and then using its translation into an MLP as initial-
ization for the first two layers, the deeper ones being randomly initialized. With subsequent
standard GD training, this procedure is shown to outperform the widely used uniform ini-
tialization of MLP (default initialization in Pytorch Paszke et al., 2019) as follows.

1. Improved performances. For tabular data, the predictive performances of theMLP
after training are improved compared toMLP that use a random initialization. Our
procedure also outperformsmore complex deep learning procedures based on self-
attention and is on par with classical tree-based methods (such as XGBoost).

2

Published as a conference paper at ICLR 2023

2. Faster optimization. The optimization following a tree-based initialization is
boosted in the sense that it enjoys a faster convergence towards a (better) empirical
minimum: a tree-based initialization results in faster training of the MLP.

Initializing the first few layers of theMLPwith the translation of the tree-basedmethod and
initializing randomly the deeper layers is the most successful initialization scheme that we
experimented. This supports the idea that in our method, the (first) tree-based initialized
layers act as relevant feature extractors that allow the MLP to detect correlations in the in-
puts. In this context, our approach is dedicated on improving the performance of standard
MLP models; therefore it is conceptually different from pre-existing procedures also rely-
ing on the translation of tree-based models into NN: (Biau et al., 2019) aim at fine-tuning
tree-based methods using a very specific neural network framework (made of only 3 lay-
ers). We, on the other hand, use tree-based methods to carefully initialize certain layers of
a generic MLP, which is then substantially trained using standard GD strategies.

Outline In Section 2, we introduce the predictors in play and describe how tree-based
methods can be translated into MLP. The core of our analysis is contained in Section 3,
where we describe in detail theMLP initialization process and provide extensive numerical
evaluations showing the benefits of this method.

2 Equivalence between trees and MLP
Consider the classical setting of supervised learning in which we are given a set of in-
put/output samples {(Xi, Yi)}ni=1 drawn i.i.d. from some unknown joint distribution. Our
goal is to construct a (MLP) function to predict the output from the input. To do so, we
leverage the translation of tree-based methods into MLP.

2.1 Presentation of the predictors in play

Tree-basedmethods Weconsider three different tree ensemblemethods: RandomForests
(RF), Gradient Boosting Decision Trees (GBDT) and Deep Forests (DF). They all share the
same base component: the Decision Tree (DT, for details see Breiman et al., 1984). We call
its terminal nodes leaf nodes, which correspond to the cells of the final tree partition. RF
(Breiman, 2001a) is a predictor consisting of a collection of independently trained and ran-
domized trees. Its final prediction is made by averaging the predictions of all its DT in
regression or by a majority vote in classification. GBDT (Friedman, 2001) aims at minimiz-
ing a prediction loss function by successively aggregating DT that approximate the oppo-
site gradient of that loss function (see Chen & Guestrin, 2016, for details on XGBoost). DF
(Zhou & Feng, 2019) is a hybrid learning procedure in which random forests are used as
elementary components (neurons) of a neural-network-like architecture (see Figure 5 and
Appendix A for details).

Multilayer Perceptron (MLP) The multilayer perceptron is a predictor consisting of a
composition of multiple affine functions, with (potentially different) nonlinear activation
functions between them. Standard activation functions include, for instance, the rectified
linear unit or the hyperbolic tangent. Deep MLP are a much richer class of predictors than
tree-based methods which build simple partitions of the space and output piecewise con-
stant predictions. Therefore, any of the tree-based models presented above can be approx-
imated and in fact exactly rewritten as an MLP as follows.

2.2 An exact translation of tree-based methods into MLP

From decision tree to 3-layer MLP Recall that a decision tree codes for a partition of the
input space in as many parts as there are leaf nodes in the tree. Given an input x, we can
identify the leaf where x falls by examining for each hyperplane of the partition whether x
falls on the right or left side of the hyperplane. The prediction is then made by averaging
the outputs of all the training samples falling into the leaf of x. A DT can be thus translated
into a highly sparse 3-layer MLP:

3

Published as a conference paper at ICLR 2023

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

Figure 1: (from Biau et al., 2019) Illustration of a decision tree, its induced feature space
partition and its corresponding MLP translation on a problem with 2 input variables.

1. The first layer contains a number of neurons equal to the number of hyperplanes in
the partition, each neuron encoding by ±1 whether x falls on the left or right side
of the hyperplane.

2. The second layer contains a number of neurons equal to the number of leaves in the
DT. Based on the first layer, it identifies in which leaf x falls and outputs a vector
with a single 1 at the leaf position and −1 everywhere else.

3. The last layer contains a single output neuron that returns the tree prediction. Its
weights encode the average output of all training samples for each leaf of the tree.

This procedure is explained in detail and formally in Biau et al. (2019) and in Appendix B.

From RF/GBDT to 3-layer MLP Although RF and GBDT are constructed in different
ways, they both average multiple DT predictions to give the final result. Thus, to trans-
late a RF or a GBDT into an MLP, we simply turn each tree into a 3-layer MLP as described
above, and concatenate all the obtained networks to form a wider 3-layer MLP. When con-
catenating, we set all weights between the MLP translations of the different trees to 0, since
the trees do not interact with each other in predicting the target value for a new feature
vector. The step in which the responses of the different trees are averaged can be combined
with the third layer of the individual tree translations, resulting in a final MLP translation
with a total of three layers.
FromDeep Forests to deeperMLPADeep Forest is a cascade of Random Forests. As such,
it can be translated into an MLP containing the MLP translations of the different RF in cas-
cade, resulting in a deeper and wider MLP (note that the obtained MLP has a number of
layers that is a multiple of 3).Furthermore, in the Deep Forest architecture, the input vector
is concatenated to the output of each intermediate layer. To mimic these skip connections
in the MLP, we add additional neurons to each layer, except for the last three, which en-
code an identity mapping. Appendix A gives more insights into DF and their MLP trans-
lations. In particular, perfect translation of a DF suffers from numerical instabilities due
to the replication of catastrophic cancellations (the deeper the DF, the greater their ampli-
tude, cf Appendix D). This does not impact the sequel of the study, which relies on MLP
approximations introduced in Section 2.2.

2.3 Relaxing tree-based translation to allow gradient descent training

As shown in the previous section, one can construct an MLP that exactly reproduces a
tree-based predictor. However this translation involves (i) piecewise constant activation
functions (sign) and (ii) different activation functions in a same layer (sign and identity
when translating DF). These constraints can hinder the MLP training, which relies on GD
strategies (requiring differentiability), as well as efficient implementation tricks, given that
automatic differentiation libraries only support one activation function per layer. Therefore,
given a pre-trained tree-based predictor (RF, GBDT or DF), we aim at relaxing its transla-
tion into a MLP, mimicking its behavior as closely as possible but in a compatible way with
standard NN training.

From tree-basedmethods to differentiableMLP To do so,Welbl (2014); Biau et al. (2019)
consider the differentiable tanh activation, well suited for approximating both the sign and

4

Published as a conference paper at ICLR 2023

identity functions. Indeed, this can be achieved by multiplying or dividing the output of
a neuron by a large constant before applying the function tanh and rescaling the result ac-
cordingly if necessary, i.e. for large enough a, c > 0, sign(x) ≈ tanh(ax) and x ≈ c tanh

(
x
c

)
.

However, we cannot choose a arbitrarily large as this would make gradients vanish during
the network optimization (the function being flat on most of the space), and hinder train-
ing. We therefore introduce 4 hyper-parameters for the MLP encoding of any tree-based
method that regulate the degree of approximation for the activation functions after the first,
second and third layers of a decision tree translation, as well as for the identity mapping,
respectively denoted by strength01, strength12, strength23 and strength id.

Hyperparameter choice The use of the tanh activation function involves extra hyper-
parameters. We study the influence of each one, bymaking them vary in some range (keep-
ing the others fixed to 1010, resulting in an almost perfect approximation of the sign and
identity functions), see Appendix D.1 for details. Our analysis shows that increasing the
hyperparameters beyond some limit value is no longer beneficial (as the activation func-
tions are already perfectly approximated) and, across multiple data sets, these limit values
are similar. We also exhibit relevant search spaces that will allow us to find optimal HP
values for each application.

3 A new initialization method for MLP training

In this section, we study the impact of tree-based initialization methods for MLP train-
ing when dealing with tabular data. The latter empirically proves to be always prefer-
able to standard random initialization and makes MLP a competitive predictor for tab-
ular data. Our code is publically available at https://github.com/LutzPatrick/
SparseTreeBasedInit.

3.1 Our proposal

Random initialization is themost common technique for initializingMLP prior to stochastic
gradient training. It consists in setting all layer parameters to random values of small mag-
nitude centered at 0. More precisely, all parameter values of the j-th layer are uniformly
drawn in [−1/

√
dj, 1/

√
dj]where dj is the layer input dimension; this is the default behaviour

of most MLP implementations such as nn.Linear in PyTorch (Paszke et al., 2019).
We introduce newways of initializing anMLP for learning with tabular data, by leveraging
the recasting of tree-based methods in a neural network fashion:

• RF/GBDT initialization. First, a RF/GBDT is fitted to the training data and trans-
formed into a 3-layer neural network, following the procedure described in Sec-
tion 2. The first two layers of this network are used to initialize the first two layers
of the network of interest. Thus, upon initialization, these first two layers encode
the RF/GBDT partition. The parameters of the third and all subsequent layers are
randomly initialized as described above. See Figure 7 in Appendix C for an illus-
tration.

• DF initialization. Similarly as above, a Deep Forest (DF) using ℓ forest layers is first
fitted to the training data. The first 3ℓ−1 layers of theMLP are then initialized using
the first 3ℓ − 1 layers of the MLP encoding of this pre-trained DF. The parameters
of the 3ℓ-th and all subsequent layers are randomly initialized as explained above.

These tree-based initialization techniques may seem far-fetched at first glance, but they are
actually consistent with recent approaches to adapting Deep Learning models for tabular
data. The key to interpreting them is to think of the first (tree-based initialized) layers of
the MLP as a feature extractor that produces an abstract representation of the input data
(in fact, this is a vector encoding the tree-based predictor’s space partition in which the
observation lies). The subsequent randomly initialized layers, once trained, then perform
the prediction task based on this abstract representation.

5

https://github.com/LutzPatrick/SparseTreeBasedInit
https://github.com/LutzPatrick/SparseTreeBasedInit

Published as a conference paper at ICLR 2023

3.2 Experimental setup

Datasets & learning tasks We compare prediction performances on a total of 10 datasets:
3 regression datasets (Airbnb, Diamonds and Housing), 5 binary classification datasets
(Adult, Bank, Blastchar, Heloc, Higgs) and 2 multi-class classification datasets (Covertype
and Volkert). We mostly chose data sets that are used for benchmarking in relevent liter-
ature: Adult, Heloc, Housing, Higgs and Covertype are used by Borisov et al. (2021) and
Bank, Blastchar and Volkert are used by Somepalli et al. (2021). Moreover, we add Airbnb
and Diamonds to balance the different types of prediction tasks. The considered datasets
are all medium-sized (10–60k observations) except for Covertype andHiggs (approx. 500k
observations). Details about the datasets are given in Appendix E.1.

Predictors We consider the following tree-based predictors: Random Forest (RF), Deep
Forest (DF, Zhou & Feng, 2017) and XGBoost (denoted by GBDT, Chen & Guestrin, 2016).
The latter usually achieves state-of-the-art performances on tabular data sets (see, e.g.,
Shwartz-Ziv & Armon, 2022; Gorishniy et al., 2021; Borisov et al., 2021). We also consider
deep learning approaches: MLP with default uniform initialization (MLP rand. init.) or
tree-based initialization (resp. MLP RF init., MLP GBDT init. and MLP DF init.); and a
transformer architecture SAINT Somepalli et al. (2021). This complex architecture is specif-
ically designed for applications on tabular data and includes self-attention and inter-sample
attention layers that extract feature correlations that are then passed on to an MLP. For re-
gression and classification tasks, we use the mean-squared error (MSE) and cross-entropy
loss for NN training, respectively. We choose SAINT as a baseline model as it is reported
to outperform all other NN predictors on most of our data sets (all except Airbnb and Dia-
monds, see Borisov et al., 2021; Somepalli et al., 2021).

(a) Housing (b) Airbnb

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

Lo
ss

1 20 40 60 80 100
Training epochs

4000

6000

8000

10000

12000

14000

16000

M
SE

Lo
ss

(c) Adult (d) Bank

0 5 10 15 20 25 30 35 40
Training epochs

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0.0 2.5 5.0
0.20

0.22

0.24

0.26

(e) Covertype* (f) Volkert

0 5 10 15 20 25 30
Training epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 2 4
1.0

1.1

1.2

1.3

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure 2: Optimization behaviour of ran-
domly, RF and GBDT initialized MLP evalu-
ated over a 5 times repeated (stratified) 5-fold
of each data set, according to Protocol P1. The
lines and shaded areas report the mean and
standard deviation. *evaluation on a single 5-
fold cross validation.

Parameter optimization All NN are trained
using the Adam optimizer (Kingma & Ba,
2014). All hyper-parameters (HP) are deter-
mined empirically using the optuna library (Ak-
iba et al., 2019) for Bayesian optimization.
For most HP, we use the default search spaces
of Borisov et al. (2021). For all HP tuning the
tree-to-MLP translation, we have identified
relevant search spaces (see Appendix D.1).
An overview of all search spaces used for each
method and the HP selected for experimental
protocol P2 can be found in Appendix E.5.
The quantity minimized during HP tuning is
the model’s validation loss, and the smallest
validation loss that occurred during training
for MLP-based models.

3.3 A better
MLP initialization for a better optimization

In this subsection, the optimization of standard
MLP is shown to benefit from the proposed ini-
tialization technique. Experiments have been
conducted on 6 out of the 10 data sets.

Experimental protocol 1 (P1) To obtain com-
parable optimization processes, we ensure
that all MLP-related hyper-parameters (width,
depth, learning rate), are identical for all the
MLP regardless of the initialization scheme. These HP are chosen to maximize the pre-
dictive performance of the standard randomly initialized MLP. All HP related to the ini-

6

Published as a conference paper at ICLR 2023

tialization technique (HP for the tree-based predictors and their translation) are optimized
independently for each tree-based initializations.

Results Figure 2 shows that for most data sets, the use of tree-based initialization meth-
ods for MLP training provides a faster convergence towards a better minimum (in terms of
generalization) than random initialization. This is all the more remarkable since Proto-
col P1 has been calibrated in favor of random initialization. Among tree-based initializers,
GBDT initializations outperform or are on par with RF initializations in terms of the opti-
mization behavior on all regression and binary classification problems. However, for multi-
class classification problems, the advantages of tree-based initialization seem to be limited.
This is probably due to the fact that the MLP architecture at play is tailored for random
initialization, being thus too restrictive for tree-based initializers. Experiments presented
in Appendix E.3 with fixed arbitrary widths corroborate this idea: in this case, the RF ini-
tialization is beneficial for the optimization process. For the Adult, Bank, and Volkert data
sets, Figure 2 also shows the performance of each method at initialization. None of these
procedures leads to a better MLP performance at initialization (due to both the non-exact
translation from trees to MLP and to the additional randomly initialized layers), but rather
help guiding the MLP in its learning process.

3.4 A better MLP initialization for a better generalization

In this subsection, tree-based initialization methods are shown to systematically improve
the predictive power of neural networks compared to random initialization. We compare
our procedure to the predictors described in Section 3.2, but also to 3 other NN techniques:
one close to the default uniform initialization (Xavier init., see Glorot & Bengio, 2010), one
using random orthonal matrices (LUSV init., see Mishkin & Matas, 2015) and the winning
ticket lottery strategy (WT prun., see Frankle & Carbin, 2018), which is a pruning method
used during training to end up with a sparse NN. The reader may refer to Appendix E.4.1
for more details about these three techniques.

Experimental protocol 2 (P2) Each MLP is trained on 100 epochs, but with HP tuned
depending on the initialization technique. For maximum comparability, the optimization
budget is strictly the same for all methods (100 “optuna” iterations each, where one optuna
iteration consists of one hold-out validation). In particular, when using a tree-based initial-
izer, we use 25HP optimization iterations to find optimalHP for the tree-based predictor, fix
these HPs, and then use the remaining 75 iterations to determine optimal HP for the MLP.
For all NN approaches, the model with the best performance on the validation set during
training is kept (using the classical early-stopping procedure). Performances are measured
via the MSE for regression, the AUROC score (AUC) for binary classification and the accu-
racy (Acc.) for multi-class classification, averaging 5 runs of 5-fold cross-validation.

Results Table 1 shows that RF or GBDT initialization strictly outperform random initial-
ization, in terms of final generalization performance, for all data sets except Covertype (for
which performances are similar). They also systematically achieve better results than the
LUSV and Xavier init. and are better on all but 2 datasets than the WT pruning procedure
which is a more refined procedure. Additionally, the MLP using both RF and GBDT initial-
ization techniques outperform SAINT on all medium-sized data sets and fall short on large
data sets (Higgs and Covertype).
Despite its simplicity , the proposed method (based on RF or GBDT) is on par with GBDT
on half of the data sets, ranking MLP as relevant predictors for tabular data. Note that
the GBDT used for initialization of the MLP is way less powerful than the best one found
here (see details in Tables 10 and 11). This shows that our procedure produces, with a rela-
tively low initialization cost, powerfulMLP relevant for tabular data. Among the tree-based
initializers, RF is on par with or outperforms GBDT initialization on all data sets but Hous-
ing. DF initialization, for its part, cannot compete with RF and GBDT initialization, despite
showing some improvement over the random one (except for Covertype and Volkert). This
underlines that injecting prior information via tree-based methods into the first layers of a
MLP is, among all the aforementioned methods, the best way to improve its performance.

7

Published as a conference paper at ICLR 2023

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MSE ↓
MSE ↓
(x103)

MSE ↓
(x10-3)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

Acc. ↑
(in %)

Acc. ↑
(in %)

Random Forest 0.263±0.009 5.39±0.13 9.80±0.35 91.6±0.3 92.8±0.3 84.5±1.2 91.3±0.6 80.4±0.1 83.6±0.1 64.2±0.3
GBDT 0.208±0.010 4.71±0.15 7.38±0.28 92.7±0.3 93.3±0.3 84.7±1.0 92.1±0.4 82.8±0.1 97.0±0.0 71.3±0.4

Deep Forest 0.225±0.008 4.68±0.16 8.23±0.29 91.8±0.3 92.9±0.2 83.7±1.2 90.3±0.5 81.2±0.0* 92.4±0.1* 66.3±0.4

MLP rand. init. 0.258±0.011 5.07±0.16 15.5±12.5 90.5±0.4 91.0±0.3 81.4±1.2 80.1±0.1 83.2±0.3 96.7±0.0 72.2±0.4
MLP Xavier init. 0.263±0.012 5.05±0.17 12.4±6.19 90.5±0.5 90.8±0.5 81.7±1.3 79.9±1.1 82.8±0.1 96.8±0.0 72.1±0.4
MLP LUSV init. 0.295±0.018 4.99±0.14 14.1±5.00 90.5±0.5 90.2±0.5 84.3±1.2 79.9±0.9 81.7±0.1 96.5±0.0 70.8±0.5
MLPWT prun. 0.248±0.011 5.26±2.11 9.83±5.07 90.6±0.4 90.9±0.5 84.4±1.2 89.6±0.7 82.9±0.1 97.0±0.0 71.5±0.4
MLP RF init. 0.222±0.009 4.66±0.16 7.93±0.22 92.1±0.3 92.4±0.4 84.4±1.2 91.7±0.4 83.6±0.1 96.7±0.0 74.1±0.4

MLP GBDT init. 0.206±0.007 4.70±0.09 8.15±0.35 92.2±0.3 92.5±0.3 84.6±1.2 91.5±0.6 83.0±0.0 96.2±0.0 73.5±0.5
MLP DF init. 0.234±0.016 4.81±0.13 8.28±0.24 91.9±0.4 92.2±0.3 84.2±1.0 91.4±0.6 83.3±0.1* 94.5±0.3* 71.3±0.5

SAINT 0.258±0.011 4.81±0.15 17.7±3.83 91.6±0.3 92.2±0.4 84.0±0.8 90.2±0.7 83.7±0.1* 96.6±0.1* 70.1±0.4

Table 1: Best scores and their standard deviations for Protocol 2. For each data set, predictors per-
forming at least as well as the best over all (resp. best DL) score up to its standard deviation are
highlighted in bold (resp. underlined). All scores are based on a 5 times repeated (stratified) 5-fold
cross validation. For each model, HP have been chosen via the “optuna” library with 100 iterations.
See Appendix E.4.2 for a comparison with literature results. *score based on a simple 5-fold cross val.

The interested reader may find a comparison of the optimization procedures of all MLP
methods and SAINT (Figure 13) and tables summarizing all HP (Tables 10 and 11) in Ap-
pendix E.5.2. We remark that tree-based initializers generally bring into play wider net-
works with similar depths (fixedwidth of 2048 and adaptive depth between 4 and 10) com-
pared to MLP with default initialization. Yet, for most data sets, the overall procedure is
computationally more efficient than state-of-the-art deep learning architectures like SAINT,
both in terms of number of parameters and training time (see Tables 6-8 in Appendix E.4).

3.5 Analyzing key elements of the new initialization methods

128 256 512 1024 2048
MLP width

0.21

0.22

0.23

0.24

0.25

0.26

M
SE

Lo
ss

MLP random init. MLP GBDT init.

Figure 3: Influence of width
on the generalization perfor-
mance for random and GBDT
initializations. Mean values
over 5 times repeated 5-fold
cross-validation on Housing.

Influence of theMLPwidth Wemainly use standard search
spaces from (Borisov et al., 2021) to determine the optimal
hyper-parameters for each model. However, the MLP width
is an exception to this. The standard search spaces used in the
literature usually involve MLP with a few hundred neurons
per layer (e.g. up to 100 neurons in Borisov et al., 2021); yet,
in this work, we consider MLP with a width up to 2048 neu-
rons. Large MLP are actually very beneficial for tree-based
initialization methods as they allow the use of more expres-
sive tree-based models in the initialization step.
Figure 3 compares the performance of an MLP with ran-
dom/GDBT initializations and various widths. There is no
gain in prediction by using wider (thus more complex) NN,
when randomly initialized. This is corroborated by the results
of Table 4: for all regression and binary classification data sets, the performance of our (po-
tentially much wider) MLP with random initialisation is consistently close to the literature
values, and only increases for multi-class classification tasks. However, an MLP initialized
with GBDT significantly benefits from enlarging the NN width (justifying a fixed width of
2048 for tree-based initialized MLP). This confirms the idea that tree-based initialization
helps revealing relevant features to the MLP, all the more as the width increases, and by
doing so, boosts the MLP performance after training.

Performance of the initializer Another interesting step in unraveling the essence of the
new initialization method is to understand which characteristics of a tree-based model are
relevant to its success as an initializer. Undoubtedly, its predictive accuracy plays an impor-
tant role, but does this aspect alone suffice to characterize the success of the new initializa-
tion method? Figure 14 compares the predictive performance of different RF/GBDT initial-
izers and the performance of the respective MLP after training. As the figure illustrates, a
better performance of the tree-based predictor used for initialization does not always lead

8

Published as a conference paper at ICLR 2023

to a better performance of the MLP after training (see Airbnb and Volkert). This obser-
vation suggests that other aspects, such as the expressiveness of the feature interactions
captured by the initializer, the structure it induces on the MLP or the weight distributions
of the initializer, must also play a significant role in the initialization method’s success.

MLP sparsity Finally, we investigate the structure that tree-based initialization induces
on the MLP after training. Figure 4 shows the weight distributions of the three first and
the last layers before and after MLP training, for random, RF and GBDT initializations on
Housing (see Appendix E.7 for more data sets). It indicates that the weight distribution
on the first two layers change significantly during training when the MLP is randomly ini-
tialized: the weights are uniformly distributed at epoch 0 but appear to be Gaussian after
training. When RF or GBDT initializers are used instead, the weights of the first two lay-
ers are sparsely distributed at epoch 0 by construction, and their distribution is preserved
during training (notice the logarithmic y-axis for these plots in Figure 4). Note that the
(uniform) distribution of the weights in other layers is also preserved through training
(third and last lines of Figure 4). This means that our initialization technique, in com-
bination with SGD optimization strategies, introduces an implicit regularization of the NN
optimization: the sparse structure of the initialisation (on first layers) is maintained. This
is very similar to the CNN architecture (constrained by design), a very successful class
of NN designed for image processing. Besides, the weight distributions are not squeezed
towards zero during learning when sparse initialization is used, preventing poor gener-
alization performances according to previous works (Neal, 2012; Blundell et al., 2015).

0.5 0.0 0.5
0

50

100

150

200

La
ye

r
1

0.5 0.0 0.5
0

100

200

300

400

10000 0
100

101

102

103

104

10000 0
100

101

102

103

104

30000 20000 10000 0
100

101

102

103

104

30000 20000 10000 0
100

101

102

103

104

0.2 0.0 0.2
0

5000

10000

15000

20000

25000

La
ye

r
2

0.2 0.0 0.2
0

25000

50000

75000

100000

125000

150000

175000

200000

0.4 0.2 0.0
100

101

102

103

104

105

106

0.4 0.2 0.0
100

101

102

103

104

105

106

10 0

101

102

103

104

105

106

10 0

101

102

103

104

105

106

0.5 0.0 0.5
0

5000

10000

15000

20000

25000

La
ye

r
3

0.5 0.0 0.5
0

100000

200000

300000

400000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

100000

0.0 0.1

before training

0

5

10

15

20

25

30

35

La
st

 L
ay

er

0.0 0.1

after training

0

100

200

300

400

500

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

100

101

102

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

101

Random init. RF init. GBDT init.

Figure 4: Histograms of the first three and
last layers’ weights before and after the MLP
training on Housing. Comparison between
random, RF and GBDT initializations.

Looking at Figure 4, one may get the impres-
sion that the weights in the first layers remain
unchanged during GD training, and that ul-
timately no learning takes place in these lay-
ers. However, numerical experiments (see Ap-
pendix E.4.3) show that the weights of all layers
are modified during learning; the first two lay-
ers actually undergo the greatest changes. As
such, training the RF/GBDT-initialized layers
via GD strategies is essential for the success of
the new initialization method.

4 Conclusion and Future work
This work builds upon the permeability that ex-
ists between tree methods and neural networks,
in particular how the former can help the latter
during training, with tabular inputs. We pro-
posed new methods for smartly initializing the
first layers of standard MLP using pre-trained
tree-based methods. The sparsity of this initialization is preserved during training, which
shows that it encodes relevant correlations between the data features. Among deep learn-
ing methods, such initializations of MLP always improve the performance compared to the
widely used random initialization, and provide an easy-to-use and more efficient alterna-
tive to SAINT (attention-based method) for tabular data. The performance of this wisely-
initialized MLP is remarkably approaching that of XGBoost, which so far reigns supreme
for learning tasks on tabular data.

Limitations & future work While our procedure is quite generic, some restrictions are
noticeable. First, our analysis only allows to initialize neural networks with tanh activation
functions; removing this limitation by considering ReLU is a good avenue for future work.
Besides, while quite reasonable, our initialization is more time-consuming than the random
(default) one. Moreover, we need to further investigate the benefits of our initialization
method on very large data sets. Finally, another interesting direction could be using the
efficient hyperparameter search in tree-based methods to automatically determine a good
default NN architecture.

9

Published as a conference paper at ICLR 2023

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Op-
tuna: A next-generation hyperparameter optimization framework. In Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6679–6687, 2021.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-
energy physics with deep learning. Nature communications, 5(1):1–9, 2014.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24. Cur-
ranAssociates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/
file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Gérard Biau, Erwan Scornet, and Johannes Welbl. Neural random forests. Sankhya A, 81
(2):347–386, 2019.

Christopher M. Bishop and foreword from Geoffrey Hinton. Neural Networks for Pat-
tern Recognition. Advanced Texts in Econometrics. Clarendon Press, Oxford University
Press, 1995. ISBN 9780198538646. URL https://books.google.fr/books?id=
T0S0BgAAQBAJ.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural network. In International conference on machine learning, pp. 1613–1622.
PMLR, 2015.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. Deep neural networks and tabular data: A survey, 2021. URL https:
//arxiv.org/abs/2110.01889.

Leo Breiman. Random forests.Machine Learning, 45(1):5–32, Oct 2001a. ISSN1573-0565. doi:
10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001b.
Leo Breiman, Jerome H Friedman, Richard Olshen, and Charles J Stone. Classification and
regression trees. 1984.

Richard P Brent. Fast training algorithms for multilayer neural nets. IEEE Transactions on
Neural Networks, 2(3):346–354, 1991.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp.
785–794, 2016.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

Wei Fan, HaixunWang, Philip S Yu, and ShengMa. Is randommodel better? on its accuracy
and efficiency. InThird IEEE International Conference onDataMining, pp. 51–58. IEEE, 2003.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, train-
able neural networks. arXiv preprint arXiv:1803.03635, 2018.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pp. 1189–1232, 2001.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249–256. JMLRWorkshop andConference Proceedings, 2010.

10

https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://books.google.fr/books?id=T0S0BgAAQBAJ
https://books.google.fr/books?id=T0S0BgAAQBAJ
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
https://doi.org/10.1023/A:1010933404324
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published as a conference paper at ICLR 2023

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learningmodels for tabular data, 2021. URL https://arxiv.org/abs/2106.11959.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on tabular data? arXiv preprint arXiv:2207.08815, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. InProceedings of the IEEE
international conference on computer vision, pp. 1026–1034, 2015.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems, 30, 2017.

Guolin Ke, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. Tabnn: A universal neural
network solution for tabular data. 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classifi-
cation with multi-task learning. arXiv preprint arXiv:1605.05101, 2016.

DmytroMishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422,
2015.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

Kelley R Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Prob-
ability Letters, 33(3):291–297, 1997. ISSN 0167-7152. doi: https://doi.org/10.
1016/S0167-7152(96)00140-X. URL https://www.sciencedirect.com/science/
article/pii/S016771529600140X.

AdamPaszke, SamGross, FranciscoMassa, AdamLerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

David L Richmond, Dagmar Kainmueller, Michael Y Yang, Eugene W Myers, and Carsten
Rother. Relating cascaded random forests to deep convolutional neural networks for se-
mantic segmentation. arXiv preprint arXiv:1507.07583, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald JWilliams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

David E Rumelhart, Geoffrey E Hinton, James L McClelland, et al. A general framework
for parallel distributed processing. Parallel distributed processing: Explorations in the mi-
crostructure of cognition, 1(45-76):26, 1986.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Ishwar Krishnan Sethi. Entropy nets: from decision trees to neural networks. Proceedings of
the IEEE, 78(10):1605–1613, 1990.

11

https://arxiv.org/abs/2106.11959
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://www.sciencedirect.com/science/article/pii/S016771529600140X

Published as a conference paper at ICLR 2023

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. In-
formation Fusion, 81:84–90, 2022. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.
2021.11.011. URL https://www.sciencedirect.com/science/article/pii/
S1566253521002360.

Gowthami Somepalli, MicahGoldblum, Avi Schwarzschild, C. Bayan Bruss, and TomGold-
stein. Saint: Improved neural networks for tabular data via row attention and contrastive
pre-training, 2021. URL https://arxiv.org/abs/2106.01342.

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research
Society of China, 8(2):249–294, 2020.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and
Isabelle Guyon. Bayesian optimization is superior to random search for machine learn-
ing hyperparameter tuning: Analysis of the black-box optimization challenge 2020, 2021.
URL https://arxiv.org/abs/2104.10201.

Johannes Welbl. Casting random forests as artificial neural networks (and profiting from
it). In German Conference on Pattern Recognition, pp. 765–771. Springer, 2014.

Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neural networks. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-
17, pp. 3553–3559, 2017. doi: 10.24963/ijcai.2017/497. URL https://doi.org/10.
24963/ijcai.2017/497.

Zhi-Hua Zhou and Ji Feng. Deep forest. National Science Review, 6(1):74–86, 2019.

12

https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://arxiv.org/abs/2106.01342
https://arxiv.org/abs/2104.10201
https://doi.org/10.24963/ijcai.2017/497
https://doi.org/10.24963/ijcai.2017/497

Published as a conference paper at ICLR 2023

A Details on Deep Forest (DF) and its translation

The layers of DF are composed of an assortment of Breiman’s Random Forests and
Completely-Random Forests (CRF, Fan et al. (2003)) and are trained one after another in a
cascade manner. At a given layer, the outputs of all forests are concatenated, together with
the raw input data. This new vector serves as input for the next DF layer. This process is
repeated for each layer and the final output is obtained by averaging the forest outputs of
the best layer (without raw data).

Figure 1: Illustration of the cascade forest structure. Sup-
pose each level of the cascade consists of two random forests
(black) and two completely-random tree forests (blue). Sup-
pose there are three classes to predict; thus, each forest will
output a three-dimensional class vector, which is then con-
catenated for re-representation of the original input.

neural networks.
We believe that in order to tackle complicated learning

tasks, it is likely that learning models have to go deep. Cur-
rent deep models, however, are always neural networks, mul-
tiple layers of parameterized differentiable nonlinear modules
that can be trained by backpropagation. It is interesting to
consider whether deep learning can be realized with other
modules, because they have their own advantages and may
exhibit great potentials if being able to go deep. This pa-
per devotes to addressing this fundamental question and il-
lustrates how to construct deep forest; this may open a door
towards alternative to deep neural networks for many tasks.

In the next sections we will introduce gcForest and report
on experiments, followed by related work and conclusion.

2 The Proposed Approach
In this section we will first introduce the cascade forest struc-
ture, and then the multi-grained scanning, followed by the
overall architecture and remarks on hyper-parameters.

2.1 Cascade Forest Structure
Representation learning in deep neural networks mostly re-
lies on the layer-by-layer processing of raw features. Inspired
by this recognition, gcForest employs a cascade structure, as
illustrated in Figure 1, where each level of cascade receives
feature information processed by its preceding level, and out-
puts its processing result to the next level.

Each level is an ensemble of decision tree forests, i.e., an
ensemble of ensembles. Here, we include different types
of forests to encourage the diversity, as it is well known
that diversity is crucial for ensemble construction [Zhou,
2012]. For simplicity, suppose that we use two completely-
random tree forests and two random forests [Breiman, 2001].
Each completely-random tree forest contains 500 completely-
random trees [Liu et al., 2008], generated by randomly select-
ing a feature for split at each node of the tree, and growing
tree until each leaf node contains only the same class of in-
stances. Similarly, each random forest contains 500 trees, by
randomly selecting

√
d number of features as candidate (d is

the number of input features) and choosing the one with the

Figure 2: Illustration of class vector generation. Different
marks in leaf nodes imply different classes.

best gini value for split. The number of trees in each forest is
a hyper-parameter, which will be discussed in Section 2.3.

Given an instance, each forest will produce an estimate
of class distribution, by counting the percentage of different
classes of training examples at the leaf node where the con-
cerned instance falls, and then averaging across all trees in the
same forest, as illustrated in Figure 2, where red color high-
lights paths along which the instance traverses to leaf nodes.

The estimated class distribution forms a class vector, which
is then concatenated with the original feature vector to be in-
put to the next level of cascade. For example, suppose there
are three classes, then each of the four forests will produce a
three-dimensional class vector; thus, the next level of cascade
will receive 12 (= 3× 4) augmented features.

To reduce the risk of overfitting, class vector produced by
each forest is generated by k-fold cross validation. In detail,
each instance will be used as training data for k − 1 times,
resulting in k − 1 class vectors, which are then averaged to
produce the final class vector as augmented features for the
next level of cascade. After expanding a new level, the perfor-
mance of the whole cascade will be estimated on validation
set, and the training procedure will terminate if there is no sig-
nificant performance gain; thus, the number of cascade levels
is automatically determined. In contrast to most deep neural
networks whose model complexity is fixed, gcForest adap-
tively decides its model complexity by terminating training
when adequate. This enables it to be applicable to different
scales of training data, not limited to large-scale ones.

2.2 Multi-Grained Scanning
Deep neural networks are powerful in handling feature rela-
tionships, e.g., convolutional neural networks are effective on
image data where spatial relationships among the raw pixels
are critical [LeCun et al., 1998; Krizhenvsky et al., 2012]; re-
current neural networks are effective on sequence data where
sequential relationships are critical [Graves et al., 2013;
Cho et al., 2014]. Inspired by this recognition, we enhance
cascade forest with a procedure of multi-grained scanning.

As Figure 3 illustrates, sliding windows are used to scan
the raw features. Suppose there are 400 raw features and a
window size of 100 features is used. For sequence data, a
100-dimensional feature vector will be generated by sliding
the window for one feature; in total 301 feature vectors are
produced. If the raw features are with spacial relationships,
such as a 20 × 20 panel of 400 image pixels, then a 10 × 10
window will produce 121 feature vectors (i.e., 121 10 × 10

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3554

Figure 5: Illustration of the Deep Forest cascade structure for a classification problem with
3 classes. Each level of the cascade consists of two Breiman RFs (black) and two completely
random forests (blue). The original input feature vector is concatenated to the output of
each intermediate layer. Figure taken from (Zhou & Feng, 2017).

Forest

First Deep Forest layerInput More Deep Forest layers

. . .

Output

Identity mapping

Figure 6: Illustration of the MLP translation of a Deep Forest. Yellow nodes use the x 7→
2.1{x>0} − 1 activation function and green nodes use the identity activation function.

B Details of the translation of a decision tree into an MLP

Recall that a decision tree codes for a partition of the input space in as many parts as there
are leaf nodes in the tree. To know in which partition cell an input feature vector x ∈ Rd

falls into, we move in the tree from the root to the corresponding leaf using simple rules:
at each m-th inner node, x is passed onto the left child node if its im-th coordinate is less
than or equal to some threshold tm, and to the right child node otherwise. The decision
rule at each inner node of the tree introduces a split of the feature space into two subsets
H−

m = {x ∈ Rd | x(im) ≤ tm} and H+
m = {x ∈ Rd | x(im) > tm}. Consistent with how the

MLP translation works, we intentionally define H−
m and H+

m such that at each inner node
m, H−

m ∪ H+
m = Rd. Let N be the number of inner nodes of the decision tree; note that

the decision tree has exactly N + 1 leaf nodes, since it is by definition a complete binary
tree, see Figure 1 for an illustration. For a leaf node ℓ ∈ {1, . . . , N + 1} of the tree, let
P−
ℓ ⊂ {1, . . . , N} (respectively P+

ℓ) be the set of all inner nodes whose left (respectively

13

Published as a conference paper at ICLR 2023

right) subtree contains ℓ, that is, P+
ℓ ∪ P−

ℓ is the set of all parent nodes of ℓ. Then, the
decision tree sorts an observation x ∈ Rd into its leafRℓ if and only if

x ∈ Rℓ =


 ⋂

m∈P−
ℓ

H−
m


 ∩


 ⋂

m∈P+
ℓ

H+
m


 . (1)

In fact, {Rℓ}ℓ∈L is the feature space partition coded by the tree, see Figure 1 for an example.
Finally, the tree returns the average response of all training samples that fall into the same
leaf as the input data; let us call aℓ the average response of all training samples in Rℓ. The
final prediction of the decision tree g can therefore be expressed as

g(x) =

N+1∑

ℓ=1

aℓ1{x∈Rℓ}.

Let us now explore how an MLP can be designed to reproduce the prediction of a decision
tree. Consider anMLP of depth 3withN neurons on the first layer. For each inner nodem ∈
{1, . . . , N}, them-th neuron of the first layer indicates on which side of the split introduced
by this inner node a given feature vector lies: it equals −1 if the feature vector lies in H−

m
and +1 if it lies in H+

m. This can be achieved applying the following affine transformation
and a sign activation function to the feature vector,

A1 : x ∈ Rd 7→ x(im) − tm and φ1 : x 7→
{−1 if x ≤ 0

1 if x > 0.

The second layer of the 3-layerMLPhasN+1 neurons. For each leaf node ℓ ∈ {1, . . . , N+1},
the ℓ-th neuron of the second layer indicates whether a given feature vector x ∈ Rd lies in
Rℓ or not: it equals+1 if x ∈ Rℓ and−1 if x /∈ Rℓ. Using equation (1), this can be achieved
by applying the following affine transformation and a sign activation function to the output
of the first layer,

A2 : x ∈ RN 7→
∑

m∈P+
ℓ

x(m) −
∑

m∈P−
ℓ

x(m) −
∣∣P+

ℓ ∪ P−
ℓ

∣∣+ 1

2
and φ2 : x 7→

{−1 if x ≤ 0

1 if x > 0.

The last layer of the MLP contains a single output neuron that returns the tree prediction.
Using the output of the second layer, this can be achieved by applying the following affine
transformation and an identity activation function,

A3 : x ∈ RN+1 7→ 1

2

(
N+1∑

ℓ=1

x(ℓ)aℓ +

N+1∑

ℓ=1

aℓ

)
and φ3 : x 7→ x (2)

where aℓ is the average response of all training samples in Rℓ. Note that {aℓ}N+1
ℓ=1 is a set

of real numbers in regression problems and a set of probability vectors representing class
distributions in classification problems. An illustration of the MLP translation of a decision
tree is shown in Figure 1. This translation procedure is explained, for example, in Biau et al.
(2019) with more details.

C Illustration of our initialisation method
Weprovide below an illustration (Figure 7) showing how thewholeMLP is initialised using
both the tree-based method for the first layers and the random initialisation for the deeper
layers.

D Detail on the MLP translation accuracy
Recasting a Deep Forest into a deep MLP using our method may suffer from numerical
instabilities altering the predictive behaviour. This is due to a phenomenon of catastrophic
cancellation, more likely to occur with deep MLP translations. This is explained in the
following section.

14

Published as a conference paper at ICLR 2023

Xi1

Xi2

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

Tree 1

Tree 2

Xi1

Xi2

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

. . .

(a) (b)

Figure 7: Illustration of the initialization technique on an MLP with 2 inputs and 1 output. In (a), a
pre-trained tree-basedmethod composed of 2 trees is represented in a NN fashion involving indicator
functions as activation functions. In (b), an MLP of arbitrary depth and involving tanh activation
functions is represented at initialization: the weights of the first two layers are initialized using the
information captured in (a) (note that all connections marked in transparent blue are initialized to
0). The weights of the subsequent layers are randomly initialized (orange).

D.1 On the choice of hyper-parameters

In Section 2.3, four hyper-parameters were introduced to approximate the sign and identity
functions through the layers of an elementary MLP. We address here the choice of the HPs
and propose an optimal range for these parameters in the sense that they are as small as
possible while guaranteeing a faithful MLP translation.
We focus on the analysis of deep forest translation, as the structure of all other tree-based
methods can be seen as a truncated variant of a deep forest. The deep forest is trained and
translated into an MLP on each data set (see Section 2) for different values of the HPs. To
identify the influence of each HP, we make them vary in some range while the other three
HPs are fixed to 1010, resulting in an almost perfect approximation of the respective sign
and identity functions. Figure 8 shows the predictive performance of a deep forest and its
MLP translation playing with different HPs.
Figure 8 shows in particular that

(i) increasing the HPs beyond some limit value is no longer beneficial as the activation
functions are already perfectly approximated;

(ii) across multiple data sets, these limit values are similar.

One could note that the coefficients in the first layer of a decision tree translation should be
of a larger order of magnitude than those corresponding to the other activation functions to
achieve an accurate translation. To give some insight into why this is the case, recall that the
m-th neuron of the first layer determineswhether the input vector belongs toH−

m orH+
m, and

note that its outputs can be of arbitrarily small size because the vector can be arbitrarily close
to the decision boundaries. Note also that an MLP translation would better compromise on
translation accuracy to ensure sufficient gradient flow. Based on these observations, we re-
mark that choosing theHP of the following orders allows formaximumgradient flowwhile
still providing an accurate translation: strength01 ∈ [1, 104], strength12 ∈ [10−2, 102],
strength23 ∈ [10−2, 102] and strength id ∈ [10−2, 102]. This will actually help us later
on to calibrate the search spaces when empirically tuning these HPs for each data set.

15

Published as a conference paper at ICLR 2023

100

101

102

103

104

M
SE

Lo
ss

H
ou

si
ng

MLP
Deep Forest

0.5

0.6

0.7

0.8

0.9

Au
ro

cS
co

re
Bi

na
ry

Ad
ul

t

0.5

0.6

0.7

0.8

0.9

Au
ro

cS
co

re
Bi

na
ry

Ba
nk

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Co
ve

rt
yp

e

100 101 102 103 104

strength01

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Vo
lk

er
t

10 1 100 101 102 103

strength12
10 1 100 101 102 103

strength23
10 1 100 101 102 103

strength_id

Figure 8: Comparison of the performance of a trained deep forest and its neural network
encoding. Deep forest architecture: maximal depth of 8 per tree, 8 trees per forest, 1 forests
per layer, 3 layers.

D.2 A fundamental numerical instability of the neural network encoding

The encoding of a decision tree by a neural network proposed in Section 2.3 is numerically
unstable, i.e., it does not necessarily yield the same result as the tree itself, even when using
the original, non-approximated activation functions. This is the result of a catastrophic
cancellation that occurs within the MLP translation. The term catastrophic cancellation
describes the remarkable loss of precision that occurs when two nearly equal numbers are
numerically subtracted. For example, take the numbers a = 1 and b = 10−10, and perform
the computation (a+ b)− a on a machine with limited precision, say to 8 significant digits.
The machine will return (a+ b)− a = 1− 1 = 0, although this result is clearly not correct.
This phenomenon occurs in the third layer of the MLP encoding, see equation (2). The
two sums calculated in this layer are almost equal in magnitude but have opposite signs,
resulting in a catastrophic cancellation that has a greater impact the more partitions of the
input space the decision tree uses, i.e. the deeper it is.
Figure 9 illustrates the effect of this phenomenon, comparing themean approximation error
between a simple decision tree and its neural network encoding on the airbnb data set. In
Figure 9a, the result at the output layer of the tree was replaced by the exact training mean
of the corresponding decision tree partition, compensating for the catastrophic cancellation.
No such compensation was done for Figure 9b. This shows the grave implications of this
instability: the mean error grows exponentially with the depth of an individual tree.
Although the errors introduced by this phenomenon may not be large for a given decision
tree, theymight accumulate when several such trees are composed, for example in Random
orDeep Forests. Figure 10 compares themean approximation error betweenRandom/Deep
Forests of different complexities and their corresponding neural net encoding on theAirbnb
data set. It shows that the composition of several trees in a cascade manner, as performed
by the Deep Forest, leads to a stronger amplification of their individual inaccuracies than
the parallel composition of trees, as performed by the Random Forest. This result is to be
expected because decision trees composed in parallel do not influence each other’s predic-
tions, whereas in a cascade architecture the results of the first layer of decision trees affect
the input of the subsequent layers and inaccuracies can thus develop stronger effects.

16

Published as a conference paper at ICLR 2023

(a) replacing the output layer’s result with the ex-
act training mean of the corresp. tree partition

(b) using the output layer’s result with catas-
trophic cancellation

Figure 9: Illustration of the fundamental numerical instability of the decision tree encoding.

(a) Random Forest. (b) Deep Forest

Figure 10: Effects of numerical instabilities on more complex tree-based predictors. Airbnb
data set. Random Forests are composed of trees of depth 7. Deep forest architecture: tree
depth of 7, 5 trees per forest, 1 forest per layer and a variable number of layers.

We note that this catastrophic cancellation can be easily circumvented by introducing an
additional layer. If this maps the output of the second layer from {−1, 1} to {0, 1}, the last
layer could then simplymultiply each of these outputs by the average response of a partition
set. However, Figure 10 also shows that the error introduced by the catastrophic cancella-
tion remains relatively small, except for deep forests with many layers. Therefore, we did
not immediately address this issue and planned to fall back on this analysis if the MLP
coding did not produce the expected results later in our analysis. However, this somewhat
imprecise MLP coding worked well for all our purposes.

E Supplements to numerical evaluations
E.1 Data sets

Data sets description In the sequel, we run numerical experiments on 10 real-world, het-
erogeneous, tabular data sets, all but two of which have already been used to benchmark
deep learning methods, see Borisov et al. (2021); Somepalli et al. (2021). The chosen data
sets represent a variety of different learning tasks and sample sizes. Tables 2 & 3 respec-
tively give links to the platforms storing the data sets (four of them are available on the UCI
Machine Learning Repository, Dua&Graff, 2017) and an overview of theirmain properties.
TheHousing data set containsU.S. Census household attributes and the associated learning
task is to predict the median house value for California districts (Pace & Barry, 1997). The
Airbnb data set is provided by the company itself and holds attributes on different Airbnb
listings in Berlin, such as the location of the apartment, the number of reviews, etc. The goal
is to predict the price of each listing. Similarly, the diamond data set contains characteristics
of different diamonds (e.g., carat weight or cut quality), and the goal is to predict the price
of a diamond. TheAdult data set contains Census information on adults (over 16-year olds)
and its prediction task is to determine whether a person earns over $50k a year. The Bank

17

Published as a conference paper at ICLR 2023

Data set Link
Housing Scikit-learn
Airbnb Inside Airbnb

Diamond OpenML
Adult UCI Machine Learning Repository
Bank UCI Machine Learning Repository

Blastchar Kaggle
Heloc FICO
Higgs UCI Machine Learning Repository

Covertype UCI Machine Learning Repository
Volkert AutoML

Table 2: Links to data sets.

Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert
Dataset size 20 640 119 268 53 940 32 561 45 211 7 043 9 871 550 000 581 012 58 310

Num. features 8 10 6 6 7 3 21 27 44 147
Cat. features 0 3 3 8 9 17 2 1 10 0

Task Regr. Regr. Regr. Classif. Classif. Classif. Classif. Classif. Classif. Classif.
Classes - - - 2 2 2 2 2 7 10

Table 3: Main properties of the data sets.

data set is related with direct marketing campaigns (phone calls) of a Portuguese banking
institution, the classification goal is to predict whether the client will subscribe a term de-
posit. The Blastchar data set features information on customers of a fictional company that
provides phone and internet services. The classification goal is to predict whether a cus-
tomer cancels their contract in the upcoming month. The Heloc data set contains personal
and credit record information on people that recently took on a line of credit, the classifica-
tion task being to predict whether they will repay this credit within 2 years. On the Higgs
data set (Baldi et al., 2014), the classification problem is to distinguish between signal pro-
cesses that produce Higgs bosons and background processes that do not. For this purpose,
it contains kinematic properties measured by the particle detectors in the accelerator that
have been produced using Monte Carlo simulations. The Covertype data set contains car-
tographic variables on forest cells and it’s task is to predict the forest cover type. Finally, for
the Volkert data set, different patches of the same size have been cut from images that be-
long to 10 different landscape scenes (coast, forest, mountain, plain, etc.). Each observation
contains visual descriptors of one patch, the goal of this classification problem is to find the
landscape type of the original picture.

E.2 Implementation details

RFs are implemented using sklearn’s RandomForestRegressor and
RandomForestClassifier classes with default configuration for all parameters
that are not mentioned explicitly. DFs are implemented using the ForestLayer library
(Zhou & Feng, 2017) and GBDTs are implemented using the XGBoost library (Chen &
Guestrin, 2016). MLPs are implemented and trained with pytorch, using the mean-
squared error and the cross entropy as objective function for regression and classification
problems respectively. The SAINT model is implemented using the library provided by
Somepalli et al. (2021).
All methods are trained on a 32 GB RAMmachine using 12 Intel Core i7-8700K CPUs, and
one NVIDIA GeForce RTX 2080 GPU when possible (only the GDBT and MLP implemen-
tations including SAINT use the GPU). Hyper-parameter searches are parallelized on up
to 4 of these machines.

Hyper-parameter optimization We tune all hyper-parameters using the optuna library
(Akiba et al., 2019) with a fixed number of iterations for all models. In this context, an
iteration corresponds to a set of hyper-parameters whose performance is evaluated with

18

https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
http://insideairbnb.com/get-the-data/
https://www.openml.org/search?type=data&sort=runs&id=44059
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://community.fico.com/s/explainable-machine-learning-challenge
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/covertype
https://automl.chalearn.org/data

Published as a conference paper at ICLR 2023

Covertype* Volkert

0 5 10 15 20 25 30
Training epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure 11: Optimization behaviour of randomly, RF andGBDT initializedMLP and SAINT evaluated
over a 5 times repeated (stratified) 5-fold of each data set, according to Protocol P1, but where the
MLPwidth is fixed to 2048 for all methods. The lines and shaded areas report the mean and standard
deviation. *evaluation on a single 5-fold cross validation.

respect to a given method. The optuna library uses Bayesian optimization and, in par-
ticular, the tree-structured Parzen estimator model (Bergstra et al., 2011) to determine the
parameters to be explored at each iteration of hyper-parameter optimization. This approach
has been reported to outperform random search for hyper-parameter optimization (Turner
et al., 2021).

Data pre-processing Machine learning pipelines often include pre-processing transfor-
mations of the input data before the training phase, a necessary step, especially when using
neural networks (Bishop & fromGeoffreyHinton, 1995). We follow the pre-processing that
is used in Borisov et al. (2021) and Somepalli et al. (2021). Hence, we normalize all contin-
uous input features to zero mean and unit variance. This corresponds to linearly transform
the input features as follows

x̃:j =
x:j − µ

σ

where x:j is the j-th continuous feature of either train, validation or test observations, µ
and σ are the mean and standard deviation calculated over the train set only. This way we
assure that no information from the validation or test sets is used in the normalization step.
Moreover, all categorical features are label encoded, i.e. each level of a categorical variable
is replaced with an integer in {1, . . . , # levels}.

E.3 Working with an arbitrary width in P1 (optimization behaviour)

Figure 11 shows the optimization behaviour of the randomly, RF andGBDT initializedMLP
on the multi-class classification problems. Note that in contrast to Figure 2 in this setting,
which is less restrictive for RF initialization, this method does indeed lead to a faster conver-
gence and a better minimum (in terms of generalization).
However, for these multi-class classification problems, the GBDT initialization tends to de-
teriorate the optimization compared to RF or random initialization methods. Indeed, RF
are genuinely multiclassification predictors whose splits are built using all output classes
simultaneously whereas splits in GBDT are only built following a one-vs-all strategy. This
implies that, with a fixed budget of splits (and therefore of neurons), RF are likely to be
more versatile than GBDT.

E.4 Additional material for Protocol P2 (generalization behaviour)

E.4.1 Details about additional NN training techniques
In Protocol 2, we assess the performances of generalization of the proposedmethods, of the
predictors described in Section 3.2, but also on three additional NN techniques:

19

Published as a conference paper at ICLR 2023

1. the Xavier initialization (Glorot & Bengio, 2010) corresponds to a rescaled uniform
initialization U ∼ U

[
±

√
6√

nj+1+nj

]
, where nj are the number of neurons in layer j.

This random initialization is very close to the one used by default in this paper and
simply denoted “random init”;

2. the layer-sequential unit-variance orthogonal initialization (LSUV) (Mishkin &
Matas, 2015) consists in a simple initialization that combines elements of (Glorot
& Bengio, 2010) and (Saxe et al., 2013). In a first step, the weights of each layer are
initialized as random orthogonal matrices. Then, the variance in the outputs on
each layer on the training data is scaled close to 1 by repeatedly dividing the layer’s
weights by the empirically determined standard deviation. Although targeted to
Computer Vision applications, this approach seems easily adaptable for our case;

3. the winning ticket network pruning (Frankle & Carbin, 2018) is more a simplifi-
cation approach of the NN architecture during training than an initialization tech-
nique. That being said, it remains interesting to compare this strategy to the one
developed in the paper, as the winning ticket network pruning enforces NN spar-
sity during training. This can be indeed put in parallel to the sparsity of the first
layers introduced by the proposed initialization andpreservedduring training. The
principle is to train a randomly initialized network, pruning it to obtain a sparseNN
with similar performance and then re-train the sparse network a second time using
the same instance of random initialization as before. These steps are repeated a
certain number of times. The winning ticket network pruning is therefore compu-
tationally very intense and has to the best of our knowledge only been studied on
medium-sized data sets. We thus use a slightly different procedure than (Frankle
& Carbin, 2018) to determine winning tickets. First of all, we allocate at most N
training epochs to determining a winning ticket where N is the number of epochs
during the final model training itself. This fixed number of training epochs is then
distributed among n pruning rounds, each of which consists in training the model
(for N/n epochs), pruning it, and resetting all non-pruned weights to their initial
(random) coefficients. This approach takes the same time as one-shot pruning but
proves to be more efficient.

E.4.2 Extension of Table 1 (best performances)
Table 4 provides a comparison of the performances obtained by ourselves and the literature
(where available) for each model. Notice that our results are broadly consistent with those
in the literature, with two exceptions. First, our random initialized MLP tends to perform
better than in the literature, which can be explained by the fact that we use a much larger
search space than usual for theMLPwidth (see Section 3.5 for a discussion on this). Second,
our performance onHiggs is significantly lower than in the literature. This can be explained
by the fact that we only include 5% of the original data set’s observations in our analysis
due to hardware limitations that do not allow us to train large MLP on 11M samples.

E.4.3 Benefits of training the feature extractor via gradient descent
In Section 3, we demonstrated ways in which our initialization method can be beneficial for
MLP training, resulting in faster convergence towards better minima (in the sens of gen-
eralization). A natural question that might arise in this context is whether translating the
tree-based method into a MLP framework is actually beneficial. After all, one could be
tempted to directly use the tree-based method as a feature pre-processing (without trans-
lating it into an MLP) and feed the resulting features into an MLP. In this case, the MLP
would be trained via gradient descent without the feature extraction. However, it turns out
that (i) the weights on the sparse feature extraction layer are indeedmodified during gradi-
ent descent optimization and (ii) training the feature extractor via gradient descent largely
contributes to the competitive generalization performance of our initialization method.
Figure 12 shows the histograms of the differences between all MLP parameters at initial-
ization (RF strategy) and after training. As the histograms indicate, the weights in all layer

20

Published as a conference paper at ICLR 2023

Model
Data set

Housing (†) Airbnb Diamonds Covertype (†) Volkert (§)

MSE ↓ MSE ↓ ×103 MSE ↓ ×10−3 Accuracy ↑ in % Accuracy ↑ in %
perf. in
literature

our
results

our
results

our
results

perf. in
literature

our
results

perf. in
literature

our
results

Random Forest 0.272±0.006 0.263±0.009 5.39±0.13 9.80±0.35 78.1±0.1 83.6±0.1 66.3±1.3 64.2±0.3
GBDT 0.206±0.005 0.208±0.010 4.71±0.15 7.38±0.28 97.3±0.0 97.0±0.0 69.0±0.5 71.3±0.4

Deep Forest - 0.225±0.008 4.68±0.16 8.23±0.29 - 92.4±0.1* - 66.3±0.4
MLP rand. init. 0.263±0.008 0.258±0.011 5.07±0.16 15.5±12.5 91.0±0.4 96.7±0.0 63.0±1.56 72.2±0.4
MLP RF init. - 0.222±0.009 4.66±0.16 7.93±0.22 - 96.7±0.0 - 74.1±0.4

MLP GBDT init. - 0.206±0.007 4.70±0.09 8.15±0.35 - 96.2±0.0 - 73.5±0.5
MLP DF init. - 0.234±0.016 4.81±0.13 8.28±0.24 - 94.5±0.3* - 71.3±0.5

SAINT 0.226±0.004 0.258±0.011 4.81±0.15 17.7±3.83 96.3±0.1 96.6±0.1* 70.1±0.6 70.1±0.4

Model
Data set

Adult (†) Bank (§) Blastchar (§) Heloc (†) Higgs (†)

AUC ↑ in % AUC ↑ in % AUC ↑ in % AUC ↑ in % AUC ↑ in %
perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

Random Forest 91.7±0.2 91.6±0.3 89.1±0.3 92.8±0.3 80.6±0.7 84.5±1.2 90.0±0.2 91.3±0.6 79.7±0.0 80.4±0.1
GBDT 92.8±0.1 92.7±0.3 93.0±0.2 93.3±0.3 81.8±0.3 84.7±1.0 92.2±0.0 92.1±0.4 85.9±0.0 82.8±0.1

Deep Forest - 91.8±0.3 - 92.9±0.2 - 83.7±1.2 - 90.3±0.5 - 81.2±0.0*
MLP rand. init. 90.3±0.2 90.5±0.4 91.5±0.2 91.0±0.3 59.6±0.3 81.4±1.2 80.3±0.1 80.1±0.1 85.6±0.0 83.2±0.3
MLP RF init - 92.1±0.3 - 92.4±0.4 - 84.4±1.2 - 91.7±0.4 - 83.6±0.1

MLP GBDT init. - 92.2±0.3 - 92.5±0.3 - 84.6±1.2 - 91.5±0.6 - 83.0±0.0
MLP DF init. - 91.9±0.4 - 92.2±0.3 - 84.2±1.0 - 91.4±0.6 - 83.3±0.1*

SAINT 91.6±0.4 91.6±0.3 93.3±0.1 92.2±0.4 84.7±0.3 84.0±0.8 90.7±0.2 90.2±0.7 88.3±0.0 83.7±0.1*

Table 4: Best scores for Protocol P2. For each data set, our best overall score is highlighted in bold
and our best Deep Learning score is underlined. Our scores are based on 5 times repeated (stratified)
5-fold cross validation. For each of our models, HP were selected via the optuna library (100 itera-
tions). Sources for literature values: Borisov et al. (2021) (†) and Somepalli et al. (2021) (§). *score
based on a single 5-fold cross validation.

5 0 5
1e 2

101

103

D
ia

m
on

ds

5 0 5
1e 2

101

103

105

5 0 5
1e 2

101

103

105

5 0 5
1e 2

100

101

102

1 0 1
1e 2

101

103

Ba
nk

1 0 1
1e 2

101

103

105

1 0 1
1e 2

102

104

106

1 0 1
1e 2

102

104

106

1 0 1
1e 2

100

101

102

1 0 1

Layer 1
1e 1

101

103

Co
ve

rt
yp

e

1 0 1

Layer 2
1e 1

102

104

106

1 0 1

Layer 3
1e 1

102

104

106

1 0 1

Layer 4
1e 1

102

104

106

1 0 1

Layer 5
1e 1

101

103

105

1 0 1

Layer 6
1e 1

101

103

105

1 0 1

Layer 7
1e 1

101

103

Figure 12: Histograms of the difference between all MLP parameters at initialization (RF
strategy) and after training. Three data sets have been chosen for illustrative proposes. The
behaviour in the light of our analysis (see E.4.3) is similar on the 7 other data sets.

throughout theMLP aremodified during training. In particular, the weights of the first two
(RF initialized) layers are not stationary but change to a large extent.
Table 5 shows the generalization performance of MLP initialized with the RF strategy, and
compares the two scenarios in which the parameters of the first two layers (that is, the
feature extraction layers built using the RF) are modified or frozen during MLP training.
These results show that training the feature extraction layers is essential for the success of
our initialization method.

21

Published as a conference paper at ICLR 2023

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MSE ↓
MSE ↓
(x103)

MSE ↓
(x10-3)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

Acc. ↑
(in %)

Acc. ↑
(in %)

MLP rand. init. 0.258±0.011 5.07±0.16 15.5±12.5 90.5±0.4 91.0±0.3 81.4±1.2 80.1±0.1 83.2±0.3 96.7±0.0 72.2±0.4
MLP RF init. frozen 0.262±0.018 14.5±2.71 13.7±1.48 91.1±0.3 90.9±0.5 84.4±0.9 91.0±0.6 75.9±0.2 92.2±0.2 69.4±0.5

MLP RF init. 0.222±0.009 4.66±0.16 7.93±0.22 92.1±0.3 92.4±0.4 84.4±1.2 91.7±0.4 83.6±0.1 96.7±0.0 74.1±0.4

Table 5: Best scores for Protocol 2. The scores are based on 5 times repeated (stratified) 5-fold cross
validation. MLP RF init. frozen refers to the MLP RF init. model where the parameters of the first two
layers (that are initialized using the Random Forest) are frozen during training, that is, they are kept
at their initial values.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 2.47M 1.86M 363k 1.09M 52.4K 13.1M 11.3M 11.6M 1.14M 9.03M
MLP RF init. 33.6M 12.6M 8.42M 29.4M 8.43M 25.2M 16.8M 4.26M 21.1M 17.1M

MLP GBDT init. 8.41M 12.6M 12.6M 33.6M 8.43M 16.8M 25.2M 8.46M 4.32M 21.3M
MLP DF init. 88.1M 34.0M 59.3M 42.0M 46.2M 34.36M 25.8M 43.2M 57.6M 34.1M

SAINT 56.8M 27.0M 53.1M 7.20M 6.12M 322M 98.2M 43.2M 6.44M 169M

Table 6: Comparison of the number of parameters for each model.

E.4.4 Number of parameters of best neural networks

In Table 6, we compare the number of parameters of each NN method. Although the tree-
based initialised MLP contain more parameters than the randomly initialized ones, the for-
mer are mostly sparse and the execution times are close (see Table 7). Finally note that
the number of parameters of the RF/GBDT init. MLP is globally on par with that of SAINT
(sometimes more, sometimes less) but for a smaller execution times (Table 7) and mostly
better performances (Table 4).

E.4.5 Comparison of the execution times of the best neural networks

Table 7 presents a comparison of the execution times of the training of different NN meth-
ods using the hyper-parameters determined by the protocol P2. For each model, the total
training time (initialization + gradient descent optimization) is given, measured up to the
point where the best validation loss is reached (“early stopping”). It shows that RF/GBDT
initialized MLP train faster than SAINT and a bit slower than randomly initialized MLP.
For completeness, Table 8 gives the execution time for the initialization and training step
separately.

E.4.6 Optimization behaviour

For completeness, Figure 13 shows the optimization behaviour of the randomly, RF and
GBDT initialized MLP as well as SAINT under the Protocol P2.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 5.96 (32) 91.9 (98) 13.3 (31) 11.8 (37) 21.6 (62) 6.78 (34) 14.3 (60) 467 (32) 312 (69) 12.3 (31)
MLP RF init. 37.8 (29) 131 (44) 26.8 (25) 17.2 (19) 21.5 (23) 8.58 (18) 6.61 (15) 253(39) 2040 (91) 28.3 (25)

MLP GBDT init. 22.9 (49) 280 (95) 53.6 (37) 34.5 (31) 7.47 (3) 7.76 (7) 8.54 (8) 63.0 (5) 437 (66) 52.8 (37)
MLP DF init. 233 (72) 360 (48) 182 (31) 99.4 (54) 105 (26) 29.0 (52) 14.7 (19) 3280 (76) 5580 (95) 181 (31)

SAINT 81.9 (37) 640 (83) 394 (84) 15.6 (11) 52.7 (32) 7.23 (2) 51.0 (31) 2310 (19) 6580 (97) 394 (84)

Table 7: Comparison of the execution time in seconds for model initialization and training until the
best validation lost is reached. The number of training epochs is indicated in parentheses.

22

Published as a conference paper at ICLR 2023

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 0.00/5.96 (32) 0.00/91.9 (98) 0.00/13.3 (31) 0.00/11.8 (37) 0.00/21.6 (62) 0.00/6.78 (34) 0.00/14.3 (60) 0.00/467 (32) 0.00/312 (69) 0.00/12.3 (31)
MLP RF init. 2.21/35.6 (29) 1.87/129 (44) 2.20/24.6 (25) 1.16/16.0 (19) 1.89/19.6 (23) 2.81/5.77 (18) 1.78/4.83 (15) 6.31/247 (39) 3.67/2040 (91) 3.70/24.6 (25)

MLP GBDT init. 5.35/17.5 (49) 4.19/276 (95) 4.65/48.9 (37) 2.32/32.2 (31) 4.27/3.20 (3) 6.07/1.69 (7) 4.65/3.89 (8) 4.18/58.8 (5) 2.30/435 (66) 3.88/48.9 (37)
MLP DF init. 15.1/218 (72) 5.31/355 (48) 7.19/175 (31) 8.36/91 (54) 9.25/96 (26) 6.64/22.3 (52) 5.64/9.04 (19) 18.9/3260 (76) 11.2/5570 (95) 5.87/175 (31)

Table 8: Comparison of the execution time in seconds for MLP initialization/training until the best
validation lost is reached. The number of training epochs is indicated in parentheses. A value of 0.00
indicates running times smaller than 5× 10−3 seconds.

Housing Airbnb Diamonds Adult

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
SE

Lo
ss

0 20 40 60 80
Training epochs

5000

10000

15000

20000

25000

30000

35000

40000

M
SE

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

Lo
ss

0 10 20 30 40 50 60
Training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10
0.28

0.30

0.32

0.34

Bank Blastchar Heloc Higgs*

0 5 10 15 20 25 30 35 40
Training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10

0.20

0.25

0 5 10 15 20 25 30
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

Covertype* Volkert

0 20 40 60 80 100
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

MLP rand. init.
MLP RF init.

MLP GBDT init.
SAINT

Train set
Test set

Figure 13: Optimization behaviour of randomly, RF andGBDT initializedMLP and SAINT evaluated
over a 5 times repeated (statisfied) 5-fold of each data set, according to Protocol P2. The lines and
shaded areas report the mean and standard deviation. *evaluation on a single 5-fold cross validation.

23

Published as a conference paper at ICLR 2023

Housing
0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Lo
ss

Airbnb

4000

5000

6000

7000

8000

Adult
0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

Au
ro

cS
co

re
Bi

na
ry

Bank

0.910

0.915

0.920

0.925

0.930

0.935

0.940

Covertype
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Volkert

0.55

0.60

0.65

0.70

0.75

0.80

RF init.
GBDT init.

Tree-model used for init.
MLP after training

Figure 14: Comparison of the performance of the RF and GBDT models used for initialization and
the final performance of the corresponding MLPs.

E.5 Hyper-parameter setting

E.5.1 Search spaces

Table 9 shows the HP search spaces that were used to determine an optimal HP setting.
The same search spaces were used for the experimental protocols P1 and P2. Note that, in
Table 9, n classes corresponds to the number of classes for classification problems and is
1 for regression problems. Furthermore, the different search spaces given for SAINT were
used for smaller/larger data sets, where a data set qualifies as smaller if it has less that 50
explanatory variables.

E.5.2 Experimental protocol P2

Tables 10 and 11 show the HP setting used for the experimental protocol P2. For the search
spaces and descriptions of the function of each HP see Table 9.

E.6 Performances of tree-based methods used for initialisation of MLP

Figure 14 compares the performance of RF and GBDTmodels and the performance of opti-
mizedMLP, initialized with RF and GBDT respectively. We can notice that the difference in
performance between GBDT and RF does not systematically turn into the same difference
in performance for the corresponding trained networks. This suggests that beyond their
respective performances, the very structures of RF and GBDT predictors play an important
role in the final MLP performances.

24

Published as a conference paper at ICLR 2023

Method Parameter Search space Function

Random Forests
max depth {1, . . . , 12}

see heren estimators {1000}
max features [0, 1]

GBDT

max depth {1,. . . ,12}

see here
n estimators {1000}
reg alpha [10−8, 1]
reg lambda [10−8, 1]
learning rate [0.01, 0.3]

Deep Forest

forest depth {1, 2, 3} Number of Deep Forest layers
n forests {1} Number of forests per Deep Forest layer

n estimators {1000}
RF parameters, see heremax depth {1, . . . , 12}

max features [0, 1]

MLP random init.

learning rate [10−6, 10−1] learning rate of SGD training
depth {1, . . . , 10} number of layer
width {1, . . . , 2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training

MLP RF init.

max depth {1, . . . , 11}
Parameters of the RF initializer, see heren estimators 2048/2max depth

max features [0, 1]
learning rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training
strength01 [1, 104] MLP translation parameters, see Section 2.3strength12 [0.01, 100]

MLP GBDT init.

max depth {1,. . . ,11}

Parameters of the GBDT initializer, see here
n estimators 2048/(n classes · 2max depth)
reg alpha [10−8, 1]
reg lambda [10−8, 1]

learning rate GBDT [0.01, 0.3]
learning rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training
strength01 [1, 104] MLP translation parameters, see Section 2.3strength12 [0.01, 100]

MLP DF init.

forest depth {1, 2, 3} Number of Deep Forest layers
n forests {1} Number of forests per Deep Forest layer

n estimators 2048/2max depth

RF parameters, see heremax depth {1, . . . , 12}
max features [0, 1]
learning rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training
strength01 [1, 104]

MLP translation parameters, see Section 2.3strength12 [0.01, 100]
strength23 [0.01, 100]
strength id [0.01, 100]

SAINT

epochs {100} number of SGD training epochs
batch size {256}/{64} batch size of SGD training

dim [32, 64, 128]/[8, 16] number of neurons per layer in attention block
depth {1, 2, 3} number of layers in each attention block
heads {2, 4, 8} number of head in each attention layer

dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} dropout used during SGD training

Table 9: Hyper-parameter search spaces used for numerical evaluations.

25

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Published as a conference paper at ICLR 2023

Method Parameter Housing Airbnb Adult Bank Covertype Volkert

Random Forests
max depth 12 12 11 12 12 12
n estimators 1000 1000 1000 1000 1000 1000
max features 0.437 0.623 0.596 0.943 0.811 0.688

GBDT

max depth 12 9 6 7 11 10
n estimators 1000 1000 1000 1000 1000 1000
reg alpha 0.305 4.60×10−6 2.39×10−5 1.52×10−4 0.728 4.47×10−6

reg lambda 1.13×10−2 1.75×10−8 1.35×10−6 1.07×10−3 6.51×10−4 1.71×10−6

learning rate 3.82×10−2 0.238 1.08×10−2 1.34×10−2 0.181 0.107

Deep Forest

forest depth 4 9 2 2 9 3
n forests 1 1 1 1 1 1

n estimators 1000 1000 1000 1000 1000 1000
max depth 5 12 11 9 12 12
max features 0.361 0.410 0.166 0.206 0.218 0.134

MLP random init.

learning rate 9.01×10−4 4.21×10−4 2.07×10−4 1.1×10−4 1.15×10−4 2.29×10−4

depth 4 4 4 4 4 6
width 1100 959 1175 856 738 1482
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256

MLP RF init.

max depth 8 10 8 8 10 8
n estimators 8 2 8 8 2 8
max features 0.442 0.321 0.613 0.650 0.897 0.825
learning rate 1.04×10−4 1.72×10−4 1.55×10−5 1.01×10−4 1.04×10−5 1.45×10−4

depth 10 5 5 4 7 6
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256
strength01 1090 668 537 71.4 13.7 1.02
strength12 0.0749 1.09 62.7 34.5 1.05×10−2 5.53×10−2

MLP GBDT init.

max depth 3 4 4 4 8 4
n estimators 256 128 128 128 1 12
reg alpha 1.30×10−7 1.10×10−2 1.26×10−8 0.413 1.33×10−2 6.76×10−6

reg lambda 1.57×10−7 9.52×10−4 7.85×10−4 7.48×10−3 0.643 1.99 ×10−7

learning rate GBDT 0.211 0.297 0.202 0.285 0.112 0.272
learning rate 1.11×10−5 1.97×10−5 4.77×10−5 6.22×10−4 6.19×10−5 1.63×10−4

depth 4 5 6 4 3 7
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256
strength01 575 7830 132 20.5 7280 4.08
strength12 5.60 0.461 66.0 5.52 93.4 7.11×10−2

MLP DF init.

forest depth 6 3 3 2 3 2
n forests 1 1 1 1 1 1

n estimators 16 2 64 32 2 8
max depth 7 10 5 6 10 8
max features 0.350 0.598 0.992 0.322 0.633 0.342
learning rate 1.04×10−5 6.67×10−5 1.54×10−5 3.08×10−5 1.58×10−5 2.31×10−4

depth 23 10 9 13 15 9
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256
strength01 515 36.6 41.0 15.5 51.6 1.41
strength12 0.162 0.242 10.6 0.213 0.124 0.154
strength23 1.94 10.4 47.8 1.94 4.26×10−2 0.149
strength id 3.63×10−2 6.34×10−2 7.44 2.75×10−2 5.09×10−2 3.69

SAINT

epochs 100 100 100 100 100 100
batch size 256 256 256 256 64 256

dim 128 64 32 32 8 16
depth 3 2 2 1 2 2
heads 2 8 2 8 4 8

dropout 0.2 0 0.4 0.8 0.5 0.8

Table 10: Hyper-parameters used for the experimental protocol P2.

26

Published as a conference paper at ICLR 2023

Method Parameter Diamonds Blastchar Heloc Higgs

Random Forests
max depth 12 6 9 12
n estimators 1000 1000 1000 1000
max features 0.967 0.547 0.607 0.577

GBDT

max depth 7 1 1 11
n estimators 1000 1000 1000 1000
reg alpha 0.341 7.15×10−7 0.123 2.29×10−8

reg lambda 5.15×10−4 1.59×10−7 1.44×10−2 0.391
learning rate 9.17×10−2 1.48×10−2 0.282 2.46×10−2

Deep Forest

forest depth 4 7 10 3
n forests 1 1 1 1

n estimators 1000 1000 1000 1000
max depth 12 2 4 12
max features 0.454 0.641 0.196 0.163

MLP random init.

learning rate 2.35×10−4 1.05×10−4 1.14×10−6 2.26×10−5

depth 9 8 8 9
width 1011 1475 1369 1284
epochs 100 100 100 100

batch size 256 256 256 256

MLP RF init.

max depth 10 5 7 9
n estimators 2 64 16 4
max features 0.904 0.425 0.728 0.670
learning rate 6.67×10−5 5.07×10−6 7.33×10−6 2.17×10−5

depth 4 8 6 3
width 2048 2048 2048 2048
epochs 100 100 100 100

batch size 256 256 256 256
strength01 19.8 4500 331 1.43
strength12 0.420 42.9 1.06 0.329

MLP GBDT init.

max depth 3 1 3 5
n estimators 256 1024 256 64
reg alpha 4.56×10−2 1.63×10−5 6.21×10−7 2.58×10−6

reg lambda 6.17×10−4 2.19×10−4 3.03×10−4 3.20×10−6

learning rate GBDT 0.214 4.72×10−2 8.42×10−2 0.290
learning rate 8.94×10−5 5.60×10−6 4.54×10−4 1.36×10−4

depth 5 6 8 4
width 2048 2048 2048 2048
epochs 100 100 100 100

batch size 256 256 256 256
strength01 3870 4690 6550 4780
strength12 56.6 21.0 31.8 0.423

MLP DF init.

forest depth 3 2 2 3
n forests 1 1 1 1

n estimators 4 128 64 8
max depth 9 4 5 8
max features 0.695 0.516 0.280 0.572
learning rate 2.04×10−5 2.00×10−6 1.91×10−5 9.33×10−6

depth 16 10 8 12
width 2048 2048 2048 2048
epochs 100 100 100 100

batch size 256 256 256 256
strength01 21.0 93.0 97.8 1.12
strength12 0.119 20.0 0.987 9.22×10−2

strength23 5.34×10−2 0.283 27.1 0.207
strength id 0.358 0.475 9.70 0.152

SAINT

epochs 100 100 100 100
batch size 256 256 256 64

dim 64 128 64 16
depth 3 3 3 2
heads 4 8 2 8

dropout 0.2 0.5 0.8 0.8

Table 11: Hyper-parameters used for the experimental protocol P2.

27

Published as a conference paper at ICLR 2023

Airbnb Diamonds

2 0
0

50

100

150

200

250

300

La
ye

r
1

2 0
0

200

400

600

800

1000

1200

1400

1600

75000 50000 25000 0
100

101

102

103

104

75000 50000 25000 0
100

101

102

103

104

1.0 0.5 0.0
1e6

100

101

102

103

104

1.0 0.5 0.0
1e6

100

101

102

103

104

0.5 0.0 0.5
0

2500

5000

7500

10000

12500

15000

17500

La
ye

r
2

0.5 0.0 0.5
0

20000

40000

60000

80000

100000

120000

140000

160000

10 5 0
100

101

102

103

104

105

106

10 5 0
100

101

102

103

104

105

106

1 0
100

101

102

103

104

105

106

1 0
100

101

102

103

104

105

106

0.5 0.0 0.5
0

2500

5000

7500

10000

12500

15000

17500

La
ye

r
3

0.5 0.0 0.5
0

20000

40000

60000

80000

100000

120000

140000

0.2 0.0 0.2
0

10000

20000

30000

40000

50000

60000

70000

80000

0.2 0.0 0.2
0

100000

200000

300000

400000

500000

600000

700000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

25000

50000

75000

100000

125000

150000

175000

200000

1 0 1

before training

0

5

10

15

20

25

30

35

La
st

 L
ay

er

1 0 1

after training

0

10

20

30

40

50

60

70

0.2 0.0 0.2

before training

0

10

20

30

40

50

0.2 0.0 0.2

after training

100

101

102

0.2 0.0 0.2

before training

0

10

20

30

40

50

0.2 0.0 0.2

after training

102

0.5 0.0 0.5
0

20

40

60

80

100

La
ye

r
1

0.5 0.0 0.5
0

20

40

60

80

100

120

140

100 0
100

101

102

103

104

100 0
100

101

102

103

104

40000 20000 0 20000
100

101

102

103

104

40000 20000 0 20000
100

101

102

103

104

0.2 0.0 0.2
0

500

1000

1500

2000

2500

3000

3500

La
ye

r
2

0.2 0.0 0.2
0

5000

10000

15000

20000

25000

4 2 0
100

101

102

103

104

105

106

4 2 0
100

101

102

103

104

105

106

100 0
101

102

103

104

105

106

100 0
101

102

103

104

105

106

0.0 0.5
0

500

1000

1500

2000

2500

3000

3500

La
ye

r
3

0.0 0.5
0

5000

10000

15000

20000

25000

30000

35000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

0.05 0.00 0.05

before training

0

2

4

6

8

10

12

14

16

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

2

4

6

8

10

12

14

16

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

0.02 0.00 0.02

after training

101

2 × 101

3 × 101

4 × 101

6 × 101

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

101

102

Adult Bank

0.25 0.00 0.25
0

50

100

150

200

250

300

350

400

La
ye

r
1

0.25 0.00 0.25
0

100

200

300

400

500

20000 10000 0
100

101

102

103

104

20000 10000 0
100

101

102

103

104

4000 2000 0
100

101

102

103

104

4000 2000 0
100

101

102

103

104

0.1 0.0 0.1
0

5000

10000

15000

20000

25000

La
ye

r
2

0.1 0.0 0.1
0

20000

40000

60000

80000

100000

120000

400 200 0
100

101

102

103

104

105

106

400 200 0
100

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

La
ye

r
3

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

100000

120000

0.05 0.00 0.05

before training

0

10

20

30

40

50

60

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

20

40

60

80

100

120

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

100

101

102

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

101

102

0.25 0.00 0.25
0

50

100

150

200

250

300

350

La
ye

r
1

0.25 0.00 0.25
0

100

200

300

400

500

1000 500 0
100

101

102

103

104

1000 500 0
100

101

102

103

104

200 100 0
100

101

102

103

104

200 100 0
100

101

102

103

104

0.1 0.0 0.1
0

2000

4000

6000

8000

10000

12000

14000

La
ye

r
2

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

200 100 0
100

101

102

103

104

105

106

200 100 0
100

101

102

103

104

105

106

20 10 0
100

101

102

103

104

105

106

20 10 0
100

101

102

103

104

105

106

0.1 0.0 0.1
0

2000

4000

6000

8000

10000

12000

14000

La
ye

r
3

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.0 0.1
0

50000

100000

150000

200000

250000

300000

350000

0.05 0.00 0.05

before training

0

10

20

30

40

50

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

10

20

30

40

50

60

70

80

0.025 0.000 0.025

before training

0

20

40

60

80

100

0.025 0.000 0.025

after training

100

101

102

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

100

101

102

Blastchar

0.2 0.0 0.2
0

100

200

300

400

500

600

700

La
ye

r
1

0.2 0.0 0.2
0

200

400

600

800

3 2 1 0
1e7

100

101

102

103

104

3 2 1 0
1e7

100

101

102

103

104

3 2 1 0
1e7

101

102

103

104

3 2 1 0
1e7

101

102

103

104

0.05 0.00 0.05
0

10000

20000

30000

40000

La
ye

r
2

0.05 0.00 0.05
0

20000

40000

60000

80000

100000

120000

200 100 0

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

20 0 20
103

104

105

106

20 0 20
103

104

105

106

0.025 0.000 0.025
0

10000

20000

30000

40000

La
ye

r
3

0.025 0.000 0.025
0

10000

20000

30000

40000

50000

60000

70000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.02 0.00 0.02

after training

0

10

20

30

40

50

60

70

80

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

5 × 101

6 × 101

7 × 101

8 × 101

9 × 101

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

7 × 101

8 × 101

9 × 101

Figure 15: Histograms of the first three first and the last layers’ weights before and after the
MLP training on the Airbnb, Diamonds, Adult, Bank and Blastchar data sets. Comparison
between random, RF and GBDT initializations.

E.7 Additional Figures to Section 3.5 (Analyzing key elements of the new
initialization methods)

Figures 15 and 16 show the same histograms as Figure 4 evaluated on the other data set con-
sidered in protocol P2. Note the logarithmic y-axis for the first two RF and GBDT initialized
layers.

28

Published as a conference paper at ICLR 2023

Heloc Higgs

0.2 0.0 0.2
0

100

200

300

400

500

600

700

La
ye

r
1

0.2 0.0 0.2
0

100

200

300

400

500

600

700

2000 1000 0 1000
100

101

102

103

104

2000 1000 0 1000
100

101

102

103

104

50000 25000 0 25000
100

101

102

103

104

50000 25000 0 25000
100

101

102

103

104

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
2

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

40000

5.0 2.5 0.0
100

101

102

103

104

105

106

5.0 2.5 0.0
100

101

102

103

104

105

106

50 0

102

103

104

105

106

50 0

102

103

104

105

106

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
3

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

40000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

300000

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.02 0.00 0.02

after training

0

10

20

30

40

50

60

70

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

4 × 101

6 × 101

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

101

102

0.2 0.0 0.2
0

100

200

300

400

500

600

700

800

La
ye

r
1

0.2 0.0 0.2
0

200

400

600

800

20 10 0
100

101

102

103

104

20 10 0
100

101

102

103

104

20000 0
100

101

102

103

104

20000 0
100

101

102

103

104

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

30000

La
ye

r
2

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
3

0.05 0.00 0.05
0

20000

40000

60000

80000

0.1 0.0 0.1
0

20

40

60

80

100

0.1 0.0 0.1
0

50

100

150

200

250

300

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

100000

200000

300000

400000

0.025 0.000 0.025

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.025 0.000 0.025

after training

0

20

40

60

80

0.1 0.0 0.1

before training

0

20

40

60

80

100

0.1 0.0 0.1

after training

100

101

102

0.025 0.000 0.025

before training

0

20

40

60

80

100

0.025 0.000 0.025

after training

100

101

102

Covertype Volkert

0.5 0.0 0.5
0

200

400

600

800

La
ye

r
1

0.5 0.0 0.5
0

500

1000

1500

2000

2500

3000

50 0 50
100

101

102

103

104

105

50 0 50
100

101

102

103

104

105

20000 0 20000
100

101

102

103

104

105

20000 0 20000
100

101

102

103

104

105

0.5 0.0 0.5
0

2000

4000

6000

8000

10000

La
ye

r
2

0.5 0.0 0.5
0

10000

20000

30000

40000

50000

60000

70000

0.10 0.05 0.00

101

102

103

104

105

106

0.10 0.05 0.00
100

101

102

103

104

105

106

500 250 0
100

101

102

103

104

105

106

500 250 0
100

101

102

103

104

105

106

0.25 0.00 0.25
0

2000

4000

6000

8000

10000

La
ye

r
3

0.25 0.00 0.25
0

10000

20000

30000

40000

50000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.5 0.0 0.5
0

50

100

150

200

250

300

0.5 0.0 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

0.5 0.0 0.5

before training

0

20

40

60

80

100

120

La
st

 L
ay

er

0.5 0.0 0.5

after training

0

100

200

300

400

0.1 0.0 0.1

before training

0

50

100

150

200

250

300

0.1 0.0 0.1

after training

100

101

102

103

0.5 0.0 0.5

before training

0

50

100

150

200

250

300

0.5 0.0 0.5

after training

100

101

102

103

0.2 0.0 0.2
0

1000

2000

3000

4000

La
ye

r
1

0.2 0.0 0.2
0

2000

4000

6000

8000

10000

20 10 0
100

101

102

103

104

105

20 10 0
100

101

102

103

104

105

40 20 0
100

101

102

103

104

105

40 20 0
100

101

102

103

104

105

0.1 0.0 0.1
0

10000

20000

30000

40000

La
ye

r
2

0.1 0.0 0.1
0

25000

50000

75000

100000

125000

150000

175000

200000

0.4 0.2 0.0

101

102

103

104

105

106

0.4 0.2 0.0
100

101

102

103

104

105

106

0.2 0.0
101

102

103

104

105

106

0.2 0.0
100

101

102

103

104

105

106

0.1 0.0 0.1
0

10000

20000

30000

40000

La
ye

r
3

0.1 0.0 0.1
0

50000

100000

150000

200000

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

50000

100000

150000

200000

250000

300000

350000

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

100000

200000

300000

400000

0.1 0.0 0.1

before training

0

50

100

150

200

250

300

350

La
st

 L
ay

er

0.1 0.0 0.1

after training

0

100

200

300

400

500

600

700

0.05 0.00 0.05

before training

0

100

200

300

400

0.05 0.00 0.05

after training

100

101

102

103

0.05 0.00 0.05

before training

0

100

200

300

400

0.05 0.00 0.05

after training

100

101

102

103

Figure 16: Histograms of the first three first and the last layers’ weights before and after the
MLP training on the Heloc, Higgs, Covertype and Volkert data sets. Comparison between
random, RF and GBDT initializations.

29

Published as a conference paper at ICLR 2023

30

	Introduction
	Related works
	Contributions

	Equivalence between trees and MLP
	Presentation of the predictors in play
	An exact translation of tree-based methods into MLP
	Relaxing tree-based translation to allow gradient descent training

	A new initialization method for MLP training
	Our proposal
	Experimental setup
	A better MLP initialization for a better optimization
	A better MLP initialization for a better generalization
	Analyzing key elements of the new initialization methods

	Conclusion and Future work
	Details on Deep Forest (DF) and its translation
	Details of the translation of a decision tree into an MLP
	Illustration of our initialisation method
	Detail on the MLP translation accuracy
	On the choice of hyper-parameters
	A fundamental numerical instability of the neural network encoding

	Supplements to numerical evaluations
	Data sets
	Implementation details
	Working with an arbitrary width in P1 (optimization behaviour)
	Additional material for Protocol P2 (generalization behaviour)
	Details about additional NN training techniques
	Extension of Table 1 (best performances)
	Benefits of training the feature extractor via gradient descent
	Number of parameters of best neural networks
	Comparison of the execution times of the best neural networks
	Optimization behaviour

	Hyper-parameter setting
	Search spaces
	Experimental protocol P2

	Performances of tree-based methods used for initialisation of MLP
	Additional Figures to Section 3.5 (Analyzing key elements of the new initialization methods)

