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Abstract

Recent language models have shown impressive multilingual performance,
even when not explicitly trained for it. Despite this, there are concerns
about the quality of their outputs across different languages. In this pa-
per, we show how disparity in the treatment of different languages arises
at the tokenization stage, well before a model is even invoked. The same
text translated into different languages can have drastically different tok-
enization lengths, with differences up to 15 times in some cases. These
disparities persist even for tokenizers that are intentionally trained for mul-
tilingual support. Character-level and byte-level models also exhibit over 4
times the difference in the encoding length for some language pairs. This
induces unfair treatment for some language communities in regard to the
cost of accessing commercial language services, the processing time and la-
tency, as well as the amount of content that can be provided as context
to the models. Therefore, we make the case that we should train future
language models using multilingually fair subword tokenizers.

1 Introduction

Language models are increasingly important in natural language processing tasks, as they
can understand and generate human-like language. They have been deployed in applications
such as virtual assistants (Chen et al., 2021; Ouyang et al., 2022), chatbots (Kuhail et al.,
2023; Lee et al., 2023), machine translation (Stahlberg, 2020; Ranathunga et al., 2023), and
text summarization (Kryściński et al., 2019;Xu et al., 2020). As general-purpose technologies,
it is also projected that Large Language Models (LLMs) will have a significant impact on
the economy and the labour market (Teubner et al., 2023; Eloundou et al., 2023).
Such LLMs are often trained using large swaths of internet content regardless of language.
Hence, these models often end up being multilingual, even if not by design. ChatGPT
(OpenAI, 2022) is a prominent recent example (Bang et al., 2023; Jiao et al., 2023; Johnson,
2023). Given the economic benefits of LLMs and LLM-derived technology, it’s beneficial
that they support multiple languages. Equal access is crucial, and multilingual support is a
key component of this.
However, this multilingualism is currently treated as a curious emergent phenomenon rather
than a carefully designed, controlled and managed process. The performance of LLMs has
been shown to be generally lower in non-target languages, a problem especially pronounced
for low-resource languages (Virtanen et al., 2019;Ahuja et al., 2023). Providing access to the
same technology in different languages but moderation and safety tools only for some has
resulted in dire societal consequences before (Stecklow, 2018; Facebook, 2021; Leung, 2022).
Differing cost of access could also reinforce inequality in opportunities for economic mobility
and social participation (Lythreatis et al., 2022). Therefore, as LLM multilingualism emerges,
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we should pay attention to ensuring comparable performance and accessibility across the
supported languages, regardless of whether by design or by chance.
This work demonstrates how the unequal treatment of languages arises at the tokenization
stage,1 well before the language model sees any data at all. For instance, the tokenizer
employed by ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023) uses about 1.6 times
more tokens to encode the same text in Italian as it does in English, 2.6 times for Bulgarian
and 3 times for Arabic. For Shan —the native language of people from the Shan State in
Myanmar— that difference can be as high as 15 times. Unicode character and byte-level
tokenization also result in drastically different encoding lengths across languages: byte-level
representation of the same text is over 4 times longer for Burmese or Tibetan than Chinese.
We discuss three fairness implications of these differences in tokenization:

1. Cost: Commercial services charge users per token or Unicode character. In either
case, these discrepancies lead to users of some languages paying at least 2.5 times
more for the same task as users of English.

2. Latency: The number of tokens has a direct effect on the processing time for a
task. Some languages can require twice the time to process the same content as
English. This may be critical for real-time applications like emergency services.

3. Long context processing: Many models have a fixed-size context. Users of
languages that are more token-efficient can use these systems to process or generate
texts that may be more than an order of magnitude longer than users of other
languages. This may lead to significant discrepancies in the quality of service.

Therefore, we make the case for multilingual tokenization parity: tokenizers should produce
similar encoded lengths for the same content across languages. Hence, we advocate for
multilingually fair tokenizers for the next generation of language models.

2 Intriguing Properties of Tokenization Across Languages

Subword tokenization is currently the preferred approach for state of the art language models
(Kudo and Richardson, 2018). In this section, we show how artefacts from data collection
might result in technical terms or rare words having dedicated tokens, while more commonly
used words and non-Latin characters end up requiring multiple tokens.
Using large corpora scraped from the internet results in peculiar choices for tokens.
For instance, GPT-2 contains glitch tokens which can be usernames or concepts
from games (Rumbelow and Watkins, 2023b; Miles and Riley, 2023). As an example,
BuyableInstoreAndOnline, likely coming from an online store backend, has a dedicated
token. Another such token is rawdownloadcloneembedreportprint.

While such obscure terms get their own tokens, the frequently used Arabic word “ اذالم  ”
(meaning “why”) is broken into letters with each letter having its own token. The same
word in Bulgarian (“защо”) is not only broken down to letters, but some of the let-
ters require two tokens to be represented, resulting in 6 tokens for this 4 letter word.

5821 56434 5821 10386 8700
ا ذ ا م ل

140 115 16142 141 231 15166
з а щ о

One may argue that this is because Arabic and Bulgarian are not target languages for GPT-2.
However, glitch tokens also exist for Japanese: there are dedicated tokens for “ゼウス”, the
name of the ancient Greek god Zeus and “サ–ティワン”, the name of an ice cream chain
(Rumbelow and Watkins, 2023a). At the same time, GPT-2 requires 3 tokens to represent
the much more commonly used kanji character for “to say”:

164 101 222
言

In fact, more than half of the Japanese kanji characters require three tokens.
1We offer a summary of the relevant tokenization approaches in Appendix A.
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The existence of glitch tokens like “ゼウス” and “サ–ティワン”despite the lack of a dedicated
token for “言” shows that tokenizers are heavily influenced by the biases of the corpus source.
If one uses non-natural inputs, log files, or specialist forums, the tokenizer vocabulary would
reflect this. While cl100k_base, the tokenizer used for the newer ChatGPT and GPT-4,
may not have glitch tokens it still requires two tokens to represent some Cyrillic letters and
three tokens for more than 65% of kanji characters. Therefore, to place all languages on an
equal footing, it is important to have the tokens balanced across languages.

3 Measuring Tokenizer Parity

To demonstrate that the above examples are not anecdotal evidence, we introduce the notion
of tokenizer parity to systematically assess how fairly tokenizers treat equivalent sentences
in different languages. Parity occurs when a tokenizer exhibits similar tokenized lengths
for the same sentence in different languages. Take a sentence sA in language A and its
translation sB to language B. Then, a tokenizer t achieves parity for A with respect to B
at sA and sB if |t(sA)|/|t(sB)| ≈ 1, where t(sA) is the tokenization of the sentence sA and
|t(sA)| represents its length. The ratio |t(sA)|/|t(sB)| is the premium for A relative to B. 2

4 Tokenization Length Differences Across Languages

Languages vary significantly in the number of tokens required to encode the same content,
as demonstrated in the examples in Section 2. Hence, following Section 3, we measure the
tokenization premium of different tokenizers. To this end, we use the FLORES-200 parallel
corpus, comprising of the same 2000 sentences taken from Wikipedia and human-translated
to 200 different languages (Guzmán et al., 2019;Goyal et al., 2021; Costa-jussà et al., 2022).
We look at subword tokenization models which target English, languages other than English,
language varieties, multi-lingual tokenizers, as well as tokenizer-free (byte-level)modelling.

4.1 Parity for English-centric Models Table 1: Premiums with respect to En-
glish on FLORES-200 for several English-
centric models. The languages in the top
or bottom three for any tokenizer, as well as
the ones discussed in the text, are shown.

GPT-2
RoBERTa

ChatGPT
GPT-4 FlanT5

Bulgarian 5.51 2.64 —
Burmese 16.89 11.70 —
Chinese (Simplified) 3.21 1.91 —
Dzongkha 16.36 12.33 —
English 1.00 1.00 1.00
French 2.00 1.60 1.60
German 2.14 1.58 1.37
Italian 2.01 1.64 2.18
Japanese 3.00 2.30 —
Jingpho 2.65 2.35 3.41
Maori 2.45 2.35 3.28
Norwegian Bokmål 1.86 1.56 2.24
Odia 13.38 12.48 —
Pangasinan 1.66 1.57 2.18
Portuguese 1.94 1.48 2.21
Romanian 2.48 1.88 1.50
Santali 12.86 12.80 —
Shan 18.76 15.05 —
Spanish 1.99 1.55 2.23
Standard Arabic 4.40 3.04 —
Tumbuka 2.78 2.57 3.29
Vietnamese 4.54 2.45 —

As most models target English, we report in
Table 1 the tokenization parity for a subset of
languages in FLORES-200. The parities for
all 200 languages are in Appendix C. 3 GPT-
2 (Radford et al., 2019), RoBERTa (Liu et al.,
2019), and the r50k_base, p50k_base and
p50k_edit tokenizers (OpenAI, 2022) have
close4 tokenization lengths so we report them
together. ChatGPT and GPT-4 share the
same cl100k_base tokenizer and are also
reported together. Some models, such as
FlanT5 (Chung et al., 2022), use a special UNK
token to model unknown symbols not encoun-
tered during training. Hence, to ensure a fair
comparison, we report only languages where
no more than 10% of the input characters are
mapped to UNK tokens (marked with —).

Table 1 shows large variations in the tokenizer
parity for all tokenizers. For GPT-2 and
RoBERTa, Pangasinan, the language with
shortest tokenization, is already 66% more ex-
pensive to process than English. ChatGPT
and GPT-4 are slightly closer to parity, likely

2The concurrent work by Ahia et al. (2023) also evaluates the tokenization premiums for different
languages and reaches similar conclusions.

3An interactive table of all the languages and tokenizers is also available on the project website.
4The largest tokenizer parity difference between them is less than 0.005.

3

https://aleksandarpetrov.github.io/tokenization-fairness/


Table 2: Tokenizer premiums on the FLORES-200 dataset for
non-English centric models. The premium is computed with
respect to the target language (Modern Standard Arabic was
used for Arabic BERT and Simplified Chinese for RoCBert). The
languages that are in the top or bottom two for any tokenizer as
well as the ones discussed are shown.

Arabic
BERT

RoCBert
(Chinese)

CamemBERT
(French)

GottBERT
(German)

BERT
Japanese

PhoBERT
(Vietnamese)

Belarusian 4.74 — — 5.62 — 3.46
Bulgarian 4.30 — — 4.73 — 3.09
Catalan 2.36 2.86 1.59 1.89 1.95 1.57
Chinese (Simp.) — 1.00 — 3.95 0.82 —
Chinese (Trad.) — 0.94 — 3.82 0.84 —
Dutch 2.52 2.92 1.68 1.73 1.98 1.58
Dzongkha — — — 16.12 — —
English 1.83 2.60 1.20 1.35 1.49 1.20
French 2.42 3.10 1.00 1.99 2.03 1.66
Friulian 2.33 2.79 1.66 1.98 1.92 1.59
German 2.63 3.12 1.85 1.00 2.04 1.67
Greek 4.93 3.00 — 6.73 — 3.73
Italian 2.58 3.10 1.63 1.93 2.04 1.60
Japanese 1.85 1.34 — 4.35 1.00 —
Jingpho 3.12 3.12 2.13 2.55 2.47 1.84
Luxembourgish 2.56 2.97 1.82 1.75 1.96 1.72
N. Lev. Arabic 1.00 — — 6.52 — —
Shan — — — 16.88 — —
Standard Arabic 1.00 — — 7.03 — —
Tagalog 2.84 3.28 2.00 2.20 2.39 1.74
Tosk Albanian 2.66 2.90 2.17 2.39 — 2.02
Tsonga 3.01 3.09 2.03 2.29 2.46 1.76
Tumbuka 3.27 3.49 2.21 2.61 — 2.00
Vietnamese 2.52 2.55 — 4.12 — 1.00
Yue Chinese — 0.92 — 3.75 — —

Table 3: Tokenizer
premiums on the
FLORES-200 dataset
for the MuRIL model
focusing on 16 Indian
languages and En-
glish. The premium is
computed with respect
to English.

MuRIL
English 1.00
Nepali 1.01
Bengali 1.01
Tamil 1.06
Marathi 1.06
Kannada 1.06
Hindi 1.16
Malayalam 1.18
Gujarati 1.19
Sanskrit 1.21
Telugu 1.21
Odia 1.21
Sindhi 1.22
Assamese 1.24
Urdu 1.26
Eastern Panjabi 1.35
Kashmiri (Arabic) 1.75
Kashmiri (Devanagari) 1.75

due to their larger vocabulary size. However, the cheapest languages, Portuguese, Pangasi-
nan and German, still see a premium of 50% when compared to English. Shan has the worst
tokenizer parity for all four models. Take as an example “မ်ႂး”, one of the Shan words for
“you”. It is tokenized by ChatGPT and GPT-4 as:

25870 247 157 224 224 25870 118 25870 116
မ ◌ႂ ◌် ◌း

This word is constructed from one consonant and three diacritics. As the diacritics are
encoded separately, there are four Unicode codepoints for this Shan character, resulting in
9 tokens. The English “you” has three characters but a single token.
FlanT5 has more than 10% UNK tokens for 42% of languages (— in Table 1). It has a higher
premium than the other tokenizers for all other languages except German and Romanian.

Summary. All four English-centric tokenizers we consider are far from tokenization parity.
Portuguese is closest to parity with English for the ChatGPT and GPT-4 tokenizer but still
requires about 50% more tokens for the same content. Shan is furthest from parity for this
tokenizer with 15 times longer encodings compared to English. FlanT5 is closer to parity
with its premium range 1.37–3.41 but it encodes only 54% of the languages, so we cannot
say that it is more multilingually fair than the other tokenizers.

4.2 Parity for Models with Other Target Languages

There are models targeting languages other than English as well. Table 2 shows six such
models based on the BERT architecture (Devlin et al., 2019): ArabicBERT (Safaya et al.,
2020), RoCBert for Chinese (Su et al., 2022), CamemBERT for French (Martin et al., 2020),
GottBERT for German (Scheible et al., 2020), BERT Japanese (Tohoku NLP Group, 2019)
and PhoBERT for Vietnamese (Nguyen and Nguyen, 2020).
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Table 4: Tokenizer premiums with respect
to English on FLORES-200 for multilingual
models. The languages that are in the top or
bottom two for any tokenizer, as well as the
ones discussed in the text, are shown.

XLM-R NLLB mT5 M2M100 BLOOM
Bulgarian 1.16 1.31 1.28 1.23 2.49
Central Kanuri 2.60 2.54 2.43 2.49 2.10
Chinese (Simp.) 0.97 1.11 0.92 1.05 0.95
Dzongkha — 1.48 4.24 — 7.36
English 1.00 1.00 1.00 1.00 1.00
Indonesian 0.94 0.93 1,08 0.98 0.96
Italian 1.19 1.25 1.34 1.25 1.62
Japanese 1.11 1.01 0.90 1.20 1.81
Kabiyè 2.98 1.56 2.83 2.71 3.34
Santali — 2.49 — — 12.71
Shan 4.43 1.94 3.28 4.63 12.06
Std. Arabic 1.18 1.40 1.35 1.29 1.14
Std. Tibetan — 1.44 3.68 — 6.66
Uyghur 1.41 1.40 2.57 3.00 3.67
Yue Chinese 0.93 1.05 0.95 1.03 0.93

Table 5: Tokenizer premiums with respect
to English on FLORES-200 for byte-level
models. The languages that are in the top
or bottom two for any tokenizer, as well as
the ones discussed in the text, are shown.

CANINE
UTF-32 bytes

ByT5
UTF-8 bytes

Bulgarian 1.04 1.89
Burmese 1.24 3.51
Chinese (Simplified) 0.34 0.93
Chinese (Traditional) 0.32 0.89
Dzongkha 1.25 3.64
English 1.00 1.00
Italian 1.18 1.19
Japanese 0.44 1.27
Shan 1.42 3.94
Standard Arabic 0.88 1.60
Standard Tibetan 1.13 3.31
Tok Pisin 1.28 1.28
Tumbuka 1.30 1.32
Yue Chinese 0.31 0.87

The English premium for GottBERT (1.35) is lower than those for Dutch (1.73) and Luxem-
bourgish (1.75), which are more linguistically similar to German. CamemBERT is similar:
English has the lowest premium (1.20), while Catalan (1.59) and Friulian (1.66) have higher
premiums. PhoBERT also has English with the lowest tokenizer premium (1.20). Thus,
even models targeting other languages exhibit a preference for English tokenization.
RoCBert and BERT Japanese differ by having the other target language as the one closest
to parity, possibly due to the partially shared script. ArabicBERT demonstrates a similar
behaviour, with Central Kanuri (1.27) and Acehnese (1.73), both written in Arabic script,
and with English at 1.82. Sharing writing systems seems to improve tokenization parity.
Across all tokenizers, the premium for English relative to the respective target language is
significantly lower than the premium of RoBERTa for that target language. This asymmetry
between English and all other languages likely stems from the extensive incorporation of
English in documents written in other languages (Zhang et al., 2022).
We also consider MuRIL, a BERT-based model trained on 16 Indian languages and English
(Khanuja et al., 2021). Despite the model’s focus on Indian languages, it remains most
token-efficient for English (see Table 3).
Unequal treatment of dialects or linguistic varieties can lead to social and economic disadvan-
tages making it important to also study the tokenization differences between the “standard”
language and its varieties. For Swiss German and the Mauritian and Haitian Creoles, there
are large differences in tokenization lengths compared respectively to High German (on Got-
tBERT) and French (on CamemBERT). English is much closer to parity for both models
than these language varieties. Therefore subword tokenizers might not be able to gener-
alize to language varieties, such as dialects and creoles. The tokenizers of ArabicBERT
and BERT Japanese, however, are close to parity across various dialects of both languages
and have lower premiums for the dialects than for English. This is likely due to the good
representation of the dialects in the dataset as well as the dialects being linguistically closer
to the respective standard languages. The detailed analysis is deferred to Appendix B.

Summary. We observed that the tokenizers targeting French, German and Vietnamese
have English as the language closest to parity, rather than more linguistically close languages.
On the other hand, tokenizers for Arabic, Chinese and Japanese have lower premiums for
languages they share a script with. Notably, despite targeting Indian languages, MuRIL still
has the shortest tokenizations for English. Finally, across all tokenizers, the premium for
English is lower than the premium for the same language for the English-centric RoBERTa.
Hence, we conclude that tokenizers for other languages give English preferential treatment.
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Figure 1: Comparison of the tokenization pre-
miums for XLM-R and RoBERTa for the sub-
set of languages that XLM-R encodes with
less than 10% to the UNK token.
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Figure 2: Average processing time and length
of the tokenized inputs of RoBERTa. Each
FLORES-200 sentence is processed for 20 in-
dependent runs. The script family designa-
tion is only for illustration purposes.

4.3 Parity for Multilingual Models

There has been a growing interest in multilingual language models, particularly for transla-
tion (Dabre et al., 2020). As these models are intended to support a variety of languages,
one would expect them to be close to tokenizer parity. We compare several such multi-
lingual models: XML-R (Conneau et al., 2020), NLLB (Costa-jussà et al., 2022), M2M100
(Fan et al., 2021) and mT5 (Xue et al., 2020). All of these models use the SentencePiece
tokenizer with upsampling for rare languages. The final model, BLOOM (Scao et al., 2022),
uses byte-level BPE instead of SentencePiece and is designed to maintain similar ratios of
tokens per word for each language as reference monolingual tokenizers.
BLOOM and NLLB encode all languages with less than 10% UNK tokens, respectively thanks
to byte-level BPE tokenization and being trained on the same 200 languages as FLORES-
200 (see Table 4). The other three models fail to encode at least one language. All five
models have languages with premiums of more than 2.5. Still, all models are better than
the English-centric models in Table 1. Figure 1 shows how XLM-R is much closer to parity
than RoBERTa (on which it is based), over all languages it can encode. However, none of
the models uniformly reaches parity across all languages. Therefore even models which are
intentionally designed to be multilingual suffer from a lack of tokenization parity.

Summary: Multilingual models can improve the tokenization parity for different lan-
guages but challenges remain in achieving tokenization parity across all languages.

4.4 Parity for Byte-level Tokenization Models

Byte-level representation is crucial for multilingual support, as it encodes any Unicode
codepoint, even if unseen during training. One can also bypass vocabulary construction and
directly employ the 256 byte values, enabling end-to-end training (byte-level tokenization).
CANINE (Clark et al., 2022) is a large model that operates at the Unicode codepoint level
rather than the byte level. The CANINE tokenizer is thus equivalent to the UTF-32 en-
coding, resulting in an implicit tokenizer with a vocabulary of 1,114,112. ByT5 (Xue et al.,
2022), on the other hand, uses the UTF-8 encoding: an implicit vocabulary of 256 tokens.5

5To be consistent, we will refer to the characters and bytes in the encoding of the CANINE and
ByT5 tokenizers as tokens as they fulfil a similar role.
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These byte-level models can represent any Unicode codepoint without an explicit tokeniza-
tion step but there are still significant tokenization disparities. For CANINE, Shan has a
premium of 4.58 relative to Yue Chinese. This can be attributed to the fact that CANINE
provides a single token for each Unicode codepoint, which results in Chinese being more
token-efficient (with a premium range 0.31–0.34 relative to English for the three Chinese
languages) as each character is treated as a single token. This encoding also puts Shan at a
disadvantage, as its encoding relies on diacritics represented as separate Unicode codepoints.
Other languages, such as Tok Pisin and Tumbuka, which use the Latin script but require
more characters than English for the same text, also face similar challenges.
Tokenization disparity is also present in the ByT5 model. The tokenization premium for
ByT5 ranges from 0.87 (for Yue Chinese) to 3.94 (for Shan). The introduction of the variable-
width UTF-8 encoding of Unicode characters in ByT5 creates another issue of unequal
treatment. ASCII characters, which are sufficient for English, require only one byte. Other
Latin script characters, as well as Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic and
Syriac, require two bytes, while Chinese, Japanese and Korean characters require three
bytes. Therefore, the tokenization of Chinese and Japanese is about three times as long
for ByT5 as it is for CANINE (Table 5). Shan’s premium of 3.94 is due to the fact that
all its consonants and diacritics require three bytes. For example, the word “မ်ႂး” is encoded
by ByT5 as 12 tokens, whereas the corresponding “you” requires 3 tokens. The situation is
similar for other languages like Dzongkha, Tibetan and Burmese.

Summary. Byte-level models also fail to achieve parity among the languages from
FLORES-200 exhibiting a premium of over 4 times for some language pairs. There are
two sources of multilingual tokenizer disparities. First, there are natural differences in the
number of characters used in different languages to communicate the same content. Second,
the UTF-8 standard uses different number of bytes to encode codepoints of different scripts.

5 Fairness Implications of Tokenization Length Differences

We showed that no matter whether one uses subword, multilingual, or byte-level tokeniza-
tion, none of the tokenizers gets close to parity for all languages in FLORES-200. This lack
of tokenization parity is not merely a curiosity: it leads to unfairness in the cost to access
language models, the latency of the service and the amount of data that can be processed.

5.1 Cost

It is increasingly common to access LLMs as paid API services. One pricing approach, em-
ployed by OpenAI at the time of writing,6 is to charge per token. Therefore, the tokenization
premiums discussed in Section 4 directly map to cost premiums. For ChatGPT and GPT-4,
the cost to process a text in German or Italian is about 50% higher than to process the
same text in English (Table 1). Using them in Dzongkha, Odia, Santali or Shan, the most
expensive languages for these services, costs more than 12 times more than in English.
Another pricing strategy is per Unicode character: the approach currently taken by the
Google Cloud Natural Language service.7 However, as we showed in Section 4.4, the same
content can have very different lengths when measured in Unicode characters. Burmese,
Dzongkha, Shan, Tok Pisin or Tumbuka require more than 4 times more characters than
Yue Chinese for the same text, resulting in a proportional cost difference. Therefore, both
the per-token and the per-character approaches result in large disparities in the cost for
users of different languages to use the exact same service.

5.2 Latency

High latency of real-time interactions for users of certain languages can result in a suboptimal
experience and communication breakdowns. For customer support or emergency services,
delays in response time can lead to miscommunication or delayed assistance.

6https://openai.com/pricing
7https://cloud.google.com/natural-language/pricing
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As some languages have significantly longer tokenized inputs, they would also experience
longer processing times. The transformer attention mechanism has a quadratic complexity
in the number of input tokens (Keles et al., 2023). However, the full model architecture
contains other submodules and therefore the overall complexity might be different.
To assess the effect of the tokenization length on the latency, in Figure 2 we plot the com-
putation time of RoBERTa against the tokenization lengths. It appears that the processing
time is linear in the tokenization length rather than quadratic, showing a strong correla-
tion between sequence length and execution time. Therefore, tokenization disparities across
languages also affect the latency and processing time for text in these languages.
As expected, English is on the left lower corner, having the shortest tokenization and one
of the fastest processing times. Shan is on the other extreme with the longest tokeniza-
tion length and execution time (almost twice that of English). We can also observe clear
trends dependent on the script used. Latin script and other Greek-derived scripts show the
shortest tokenization lengths and processing times followed by the Chinese-Japanese-Korean
(CJK) and Arabic languages. Other predominantly Asian and African scripts have longer
tokenization lengths and processing times.
The latency implications of tokenization disparity are not limited to text models. Speech
recognition models often produce a series of tokens as their output sequentially. Similarly,
speech synthesis takes as an input tokenized text (Latif et al., 2023). Therefore, differences
in tokenization affect speech models too.

5.3 Long context processing

Transformers models have difficulty processing long inputs (Liu et al., 2023). Given that
the size of the input is contingent upon the tokenization process, inputs of greater length
may impose a challenge for language models to adequately reason over. Such a predicament
may result in reduced abilities or limited applicability for languages with high tokenization
premiums. For example, RoBERTa has a fixed block size of 512, GPT-2 has 768, 1024, 1280,
or 1600 Radford et al. (2019), GPT-4 comes in 8,000 and 16,000 context variants.8 These
models cannot process inputs longer than that. Therefore, one can process less than a tenth
of the content in languages like Burmese and Dzongkha than they can in English.
Alongside inconveniencing the users of these languages, this can also result in diminished
performance on automated systems, such as content moderation. Reliable content mod-
eration is crucial for tackling hate speech and diminished performance has already been
shown to fail to prevent its spread (Stecklow, 2018; Facebook, 2021). Therefore, reduced
long context capabilities for some languages could have severe real-world impacts.

6 Towards Multilingual Tokenization Fairness

Section 5 showed that high values of tokenization parity for a language lead to increased cost
and latency and decreased capacity for long context processing. In this section, we argue
that training language models from scratch with a multilingually fair subword tokenizer is
the only approach that can effectively address all these aspects of tokenization unfairness.

Subword tokenization is necessary to achieve parity. In Section 4.4, we showed that
neither character-level nor byte-level input representation can achieve tokenization parity.
Therefore, a variation of subword tokenization is necessary. For example, Chinese characters
could be individual tokens, Latin characters might be represented as tokens with an average
length of about 3 characters while pairs of Burmese characters and their diacritics being
assigned single tokens. Such an approach would account for Chinese requiring one-third the
characters English does (as shown in Table 5).

A separate tokenizer for determining the processing cost is not sufficient. An
easy patch for existing models is to use a separate tokenizer for calculating how much a
user should be charged. Using one tokenizer for computing the cost and another to process

8https://openai.com/pricing
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Figure 3: How much longer will English
language tokenization be if we dedicate
a fraction of the cl100k_base vocab-
ulary to other languages? This plot
shows how many tokens will be neces-
sary to encode the English language cor-
pus of FLORES-200 for different sub-
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the input can easily be applied to existing systems without the need to retrain the LLM
itself. However, as the tokenizer for the language model is unchanged, this approach would
still suffer from latency and inability to process long contexts. Therefore, to ensure similar
processing times and long context capabilities across languages, the language model has to
be trained with a multilingually fair tokenizer.

The tokenization needs to support all Unicode codepoints. Amongst all tokenizers
we examine in this paper, the ones which encode all FLORES-200 languages all have one
thing in common: they build their tokenization on top of Unicode representation, allowing
them them to represent all characters. Therefore, a multilingually fair tokenizer should also
start from a Unicode (or equivalent) encoding. Considering that subword tokenization is
necessary, building the vocabulary from UTF-8 would likely result in a smaller dictionary
than building it on top of UTF-32. Hence, UTF-8 is likely the more appropriate choice.

Building a multilingually fair parallel corpus. Building and evaluating multilingually
fair tokenizers requires attention to the parallel corpus used. One must ensure a balanced
representation of topics, otherwise, the resulting tokenizer might end up being multilingually
fair only for a subset of topics. The presence of named entities must also be balanced. For
example, in FLORES-200, there are many English-centric names and institutions, which
might skew the results in favour of English. Additionally, the same sentence can have
different translations with varying tokenization lengths. To account for this, a diversity of
translations could ensure tokenization fairness across languages. These limitations also hold
for the results in this paper. Hence, developing a well-curated and diverse parallel corpus is
crucial for the development and evaluation of a multilingually fair tokenizer.

Building a multilingually fair tokenizer from monolinugal tokenizers. As dis-
cussed in Section 4, byte-level, character-level and word-level tokenizers cannot achieve
tokenization parity and subword tokenization is needed. However, simply training a sub-
word tokenizer on a balanced dataset is also not sufficient as languages can share tokens. For
example, “hotel” is written the same way in English, Spanish, Italian, Portuguese, Dutch,
Danish, Hungarian, Polish, etc. Hence, languages from more numerous language families
will also witness shorter tokenization lengths while more isolated languages and scripts, e.g.
Korean, would see larger language premiums: “hotel” in Korean is “호텔” and no other
language has the same spelling as no other language uses the Korean script.
To address this issue, we suggest a two-stage process towards building a multilingually fair
tokenizer. First, train individual monolingual tokenizers for all target languages. Then,
merge them while maintaining parity. The merging can be done by starting with the 256
tokens corresponding to each value a byte can take and then repeatedly adding the most
frequently used token for the language with the highest premium.
While a multilingually fair tokenizer would lead to more tokens being needed for the dom-
inant language, this additional cost would likely be much smaller than the benefit for the
rest of the languages. The vocabulary size has diminishing returns: the additional tokens
correspond to increasingly rare (parts of)words. For example, with only a third of the vocab-
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ulary, English sequences will become just 10% longer for ChatGPT/GPT-4 (see Figure 3).
Therefore, by removing rarely used tokens of the dominant language and replacing them
with frequently used tokens in other languages, we would likely see an overall net benefit.

7 Related Works

Fairness and bias in language models. The rapid increase in the size of language
models has raised concerns regarding their biases and unfairness (Bender et al., 2021). For
example, Bolukbasi et al. (2016), May et al. (2019) and Nadeem et al. (2021) showed that
stereotypes and biases exist in language models, while Magee et al. (2021) identified the
presence of intersectional biases which may be resistant to debiasing techniques. Language
models were also shown to rely on social biases in question answering (Parrish et al., 2022).
Another challenge is the generation of toxic content which can occur even without prompting
(Gehman et al., 2020). Interestingly, Gururangan et al. (2022) point out that datasets
consider one type of English as a higher quality depending on the location of the writer
rather than on factuality or literary acclaim. Moreover, Ramesh et al. (2023) and Levy
et al. (2023) highlighted the need to consider fairness issues of languages other than English,
as they may have distinct sources of bias and solutions for English may not be applicable.

Multilingual performance. One approach towards similar multilingual performance is
to frame languages as entities as recently proposed by Choudhury and Deshpande (2021).
Another method is to separately train vocabularies for different language clusters to balance
cross-lingual and language-specific tokens (Chung et al., 2020). Still, multilingual models
struggle to deliver on the promises of deep transfer learning for lower-resourced languages
(Virtanen et al., 2019) and perform differently depending on the script and resource level of
the language (Bang et al., 2023). Ahuja et al. (2023) found that generative models perform
better on higher-resource languages and languages that use the Latin script, possibly due
to the context length restrictions for some languages. Zhang et al. (2022) show that a
balanced tokenizer corpus results in better translation performance. Separately, Hofmann
et al. (2021, 2022) show that the BPE results in suboptimal token choices even for English
and demonstrate that addressing this issue boosts performance. Similarly, Rajab (2022) and
Oladipo et al. (2022) discuss how tokenization affects performance for African languages.

Measuring tokenization lengths. Zhang et al. (2022) suggested using the ratio of the
average sentence length in tokens to the length in characters as a measure of closeness to the
character level. However, this method may not be suitable for comparing languages due to
differences in sentence length across languages. On the other hand, Ács (2019) and Scao et al.
(2022) measure the number of tokens created per word, but this method may not be effective
for comparing languages due to differences in semantic content per word and the lack of
word delineation in some languages. Rust et al. (2021) show that mBERT (Devlin et al.,
2019) breaks down English words the least, in line with our findings of English receiving
special treatment. However, to the best of our knowledge, we are the first to leverage a
parallel corpus to compare tokenization lengths across languages.

8 Conclusion

This paper highlights the significant disparities in tokenization across different languages
which can lead to unequal treatment and disadvantages for certain language communities.
The findings reveal that even tokenizers explicitly trained for multilingual support exhibit
tokenization lengths that vary by up to a factor of 13. Furthermore, character-level and
byte-level models also demonstrate encoding length discrepancies that are more than 4
times longer. These disparities have important real-world implications including increased
costs for accessing commercial language services, longer processing times and limitations on
the amount of contextual information provided to language models. To address these issues,
we propose the development of multilingually fair tokenizers for future language models
emphasizing the importance of ensuring comparable performance and accessibility across
supported languages. By achieving tokenization parity, we can mitigate inequalities and
promote fair access to language technologies across diverse linguistic communities.
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A Background on Tokenization

To enable automatic processing of language, it must first be represented in a suitable form.
The current practice is to use tokenization which is the process of turning natural language
into sequences of tokens coming from a finite and pre-determined set called vocabulary
(Webster and Kit, 1992). Each token is typically associated with an integer value. Language
models process such sequences of integers, rather than sequences of characters or words. In
this section, we offer a brief overview of the contemporary tokenization methods. For further
details, we recommend the comprehensive survey by Mielke et al. (2021).

Word tokenization. The simplest tokenization method is splitting at white spaces, where
each word is assigned its own token (Bengio et al., 2000). This approach, however, requires
that all possible words are in the vocabulary which is not possible in practice. Therefore word
tokenization often fails to handle cases like “won’t”, words spelled with accented characters
like “naïve” or “açaí”, speling mistakes and named entities like “Cottonshopeburnfoot” (Sun
et al., 2020). This makes it unsuitable for representing open vocabularies, where the words
encountered are not limited to a predetermined set. Furthermore, languages that do not use
spaces to separate words, such as Chinese, Japanese and Burmese, pose additional challenges
for this approach (Shao et al., 2018).

Subword tokenization. Hence, most current models use subword tokenization, where
complex words are broken down into multiple tokens. Subword tokenization can efficiently
handle complex terms by breaking them down into parts, e.g., “Cottonshopeburnfoot”→
“Cotton”+“shop”+“e”+“burn”+“foot”. This approach can represent novel words, including
misspelled ones, in an open vocabulary setting.
Subword vocabularies are usually data-based approaches which use large corpora to learn
which subword sequences occur frequently in practice. Schuster and Nakajima (2012) in-
troduced one of the first subword tokenizers, WordPiece, as a way to handle Japanese and
Korean. Sennrich et al. (2016) proposed using Byte-Pair Encoding (BPE) (Gage, 1994) for
learning subwords by merging the most frequently occurring pairs. BPE has since been
widely used for most of the popular tokenizers. Kudo (2018) proposed an alternative ap-
proach via gradually pruning a large vocabulary. It removes tokens that are less likely to
improve the performance of a simple unigram language model. Both methods rely on pre-
tokenization (splitting on whitespaces, when available), which is not an invertible process.
SentencePiece (Kudo and Richardson, 2018) addresses this de-tokenization ambiguity by
treating whitespace as a special symbol, including it in the vocabulary, and supports both
methods. SentencePiece with BPE is by far the most popular tokenization method for the
models considered in this paper.

Unicode support. Even if subword tokenization ensures that individual characters are in
the vocabulary, this still leaves the question of which characters are to be included. Simple
solution is to take the ASCII characters. However, this means that words in other scripts
or accented letters will fall out of it. A common workaround is to represent strings outside
the vocabulary as a special UNK token. However, if there are too many UNK tokens in an
input, the performance of the model tends to deteriorate (Pfeiffer et al., 2021). Therefore, it
is desirable that the number of UNK tokens in the input is kept as low as possible. A simple
and commonly used solution is to base the vocabulary building on Unicode.
Unicode is a computing industry standard for representing text characters (The Unicode
Consortium, 2022). Unicode supports virtually all languages (including many ancient ones,
emojis and special characters) by assigning every grapheme, modifier, punctuation mark,
control character or formatting character one of 1,114,112 integer codepoints. The codepoints
can be represented in binary as the variable-width encoding UTF-8, which encodes every
codepoint with one to four bytes, or the fixed-width UTF-32 which encodes all codepoints
with four bytes (see Figure 4).
UTF-8 can therefore represent any string in any language as a string of bytes. As each
byte can take only one out of 256 values, 256 tokens can be sufficient to encode all texts.
In practice this is usually combined with the BPE tokenizer. At first, the corpus is en-

18



Figure 4: Comparison of variable width Unicode encoding (UTF-8) and fixed width encoding
(UTF-32). Image adapted from (The Unicode Consortium, 2022).

coded as UTF-8 bytes and then BPE is ran on top of it. As most characters occur fre-
quently, BPE would assign them a dedicated token. If the model encounters a character
that didn’t exist in the training corpus (e.g., the medium skin tone waving hand ), it can
still represent it byte-by-byte (F0+9F+91+8B for the waving hand and F0+9F+8F+BD for
the skin tone modifier). This allows the vocabulary to efficiently represent frequently occur-
ring words and rare characters. For example, the sentence “I love açaí” could be tokenized
as “I ”+“love ”+“a”+C3+A7+“a”+C3+AD.

Byte-level and character-level tokenization. If we can represent any input with just
256 characters, then why bother with subword tokens? A key consideration is sequence
length. This is since transformers (Vaswani et al., 2017), the currently predominant deep
learning architecture for language models, have attention layers with a quadratic complexity
in the input length. Hence, as the number of characters is much longer than the sub-word
tokenization, working on the character level has been traditionally considered computation-
ally inefficient. However, Chung et al. (2016), Lee et al. (2017), Gao et al. (2020), Clark
et al. (2022) and Xue et al. (2022) proposed various architectures working around this issue
and operating directly on characters or UTF-8 bytes.

B Parity for Linguistic Varieties

A language can vary according to factors such as geography, history, social class and culture.
As a result, different dialects, pidgin and creole language variations emerge, each with its
own distinct set of grammar, vocabulary and pronunciation rules.9 Unequal treatment of
certain dialects or languages can lead to social and economic disadvantages for those who
speak them. Therefore, it is important to also study the tokenization differences between the
“standard” language and its varieties.10 Unfortunately, parallel corpora for dialects, pidgin
and creole language variations are far and few in between. In this section, however, we show
results on regional Swiss German varieties, Arabic and Japanese dialects, as well as Haitian
and Mauritian creoles.

Swiss German dialects. Swiss German is a dialect continuum which significantly differs
from the formal High German. German-speaking Switzerland is diglossic:11 High German
is used alongside regional dialects (Hogg et al., 1984). In contrast to other dialects, the use
of Swiss dialects is increasing (Sieber and Sitta, 1987) especially online (Lüdi, 2007). Swiss
German dialects are often considered unintelligible to High German speakers and sometimes
even speakers of different dialects may find difficulty understanding each other (Russ, 1990).
Therefore, ensuring that German-targeting NLP applications can process Swiss German
dialects is important.
To this end, we compare the tokenization parity relative to High German of GottBERT
(Scheible et al., 2020) on the regional dialects of Aargau, Bern, Basel, Graubünden, Luzern,

9While no standard definitions exist, dialects are usually considered to be regional variations
of a language, whereas pidgin and creole languages are contact languages that emerge from the
interaction of speakers of different languages (Muysken and Smith, 1994).

10We refer to the language that the datasets label as “standard”, “official” or “dominant”without
necessarily endorsing this designation.

11Diglossia is the situation of two dialects or languages being used by a single language commu-
nity (Kaye, 2001).
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Table 6: GottBERT tokenizer premiums on the SwissDial dataset for Swiss German
dialects. The premium is computed with respect to High German.

Region GottBERT parity
High German 1.00
Zürich 1.38
St. Gallen 1.40
Basel 1.41
Graubünden 1.44
Luzern 1.52
Aargau 1.53
Wallis 1.58
Bern 1.59

Table 7: ArabicBERT tokenizer premiums on the MADAR dataset for Arabic dialects.
The premium is computed relative to Standard Arabic.

City ArabicBERT City ArabicBERT
Jeddah 0.91 Sanaa 1.01
Doha 0.92 Beirut 1.02
Riyadh 0.92 Benghazi 1.02
Muscat 0.94 Cairo 1.03
Basra 0.95 Sfax 1.03
Salt 0.95 Tripoli 1.05
Baghdad 0.96 Aswan 1.06
Damascus 0.97 Alexandria 1.06
Aleppo 0.97 Tunis 1.06
Jerusalem 0.97 Algiers 1.07
Khartoum 0.98 Mosul 1.10
Amman 0.99 Fes 1.11
Std. Arabic 1.00 Rabat 1.17

St. Gallen, Wallis and Zürich. We use SwissDial, a parallel multidialectal corpus, as the
basis of comparison (Dogan-Schönberger et al., 2021). It is worth noting, that the dialect
of each city and its corresponding region may differ significantly. Therefore there might be
large variations within regions as well.
The results in Table 6 show a disparity between the tokenization lengths for High Ger-
man and the Swiss dialects with a premium ranging from 1.38 for the Zürich dialect, or
Züritüütsch, to 1.59 for the Bernese Bärndütsch. In fact, English has a lower premium than
any Swiss dialect (1.35 on FLORES-200, Table 2) and the premium for Bernese German is
close to the linguistically further Swedish (1.64) and Norwegian Bokmål (1.65). The follow-
ing example from SwissDial shows how the sentence “Like he’s waiting for something” has
almost twice as long tokenization in Bernese German compared to High German:

963 15628 63 18 145 4
Als warte er auf etwas .

1134 8808 226 751 2912 13621 288 361 67 11769 4
Aus wür der uf ö p is war tä .

The fact that the GottBERT tokenizer results in better parity for English, Swedish and
Norwegian Bokmål than for Swiss German dialects highlights that it does not likely pick
out stable linguistic constructs.

Arabic dialects. Similarly to Swiss German, Arabic is usually spoken in diglossic speech
communities, where Modern Standard Arabic is spoken alongside at least one prestigious
vernacular particular to the country or region (Bassiouney, 2009). As both Standard Arabic
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Table 8: BERT Japanese tokenizer premiums on the CPJD dataset for Japanese dialects.
The premium is computed with respect to Standard Japanese. The CPJD dataset consists
of two parallel corpora with the dialects split across the two. Hence, we have also indicated
the corpus for each dialect. Nara-ben has two entries as the dataset has transcriptions for
two separate speakers. The suffix “-ben” (弁)means “speech” or “dialect”.

Dialect Corpus Parity Dialect Corpus Parity
Akita-ben 2 1.09 Miyazaki-ben 1 1.05
Awa-ben 2 1.09 Morokata-ben 1 1.15
Fukui-ben 2 1.04 Nara-ben 2 1.09
Fukuoka-ben 1 1.03 Nara-ben 2 1.03
Hiroshima-ben 1 1.02 Okayama-ben 1 1.15
Hokkaido-ben 2 1.06 Oosaka-ben 2 1.03
Iwaki-ben 2 1.08 Saitama-ben 1 1.01
Iyo-ben 1 1.05 Tosa-ben 1 1.03
Izumo-ben 1 1.10 Toshu-ben 1 1.06
Kanazawa-ben 2 1.11 Tsugaru-ben 1 1.09
Kyokotoba 2 1.07

and its dialects are commonly used in written communication, it is vital that tokenizers
handle them equally well.
To assess the performance of Arabic tokenizers, we compare the tokenization lengths of
ArabicBERT (Safaya et al., 2020) across 25 Arabic dialects. To this end, we use the MADAR
parallel corpus of Arabic dialects (Bouamor et al., 2018).
Table 7 shows the premiums relative to Standard Modern Arabic. The premium varies
from 0.91 for the Jeddah dialect to 1.17 for the Rabat dialect. This is significantly lower
than the premium for English (1.83 on FLORES-200 Table 2). The range is also much
smaller than for the Swiss German dialects and approximately half of the considered dialects
have a lower premium than Standard Modern Arabic. Therefore, one could say that the
tokenizer of ArabicBERT achieves tokenization parity for these 25 Arabic vernaculars. This
is likely because the corpus and vocabulary set on which ArabicBERT was trained contained
dialectical Arabic. It is also possible that Arabic dialects are closer to Modern Standard
Arabic and more mutually intelligible than Swiss German dialects are to High German
(Čéplö et al., 2016; Trentman and Shiri, 2020). Still, this difference between the parity for
Swiss and Arabic dialects indicates that including a broader set of vernaculars and dialects
in the corpus results in improved tokenization parity.

Japanese dialects. Japanese also has a number of regional dialects (Hattori, 1973). We
compare the tokenization parity of BERT Japanese (Tohoku NLP Group, 2019) across them.
We employ the CPJD dataset by Takamichi and Saruwatari (2018) which contains transcrip-
tions of the voice recordings of 250 sentences across 20 dialects.
The results in Table 8 show that the premium compared to Standard Japanese (Tokyo
dialect) ranges from 1.01 (for Saitama prefecture, neighbouring Tokyo) to 1.15 (for Morokata-
ben and Okayama-ben). These all are significantly lower than the premium for English (1.49,
as shown in Table 2). Therefore, similarly to ArabicBERT, this is an example of the tokenizer
being relatively well-aligned with the dialects. This is likely because Japanese dialects are
more closely related (and intelligible (Yamagiwa, 1967) to Standard Japanese speakers) than
the Swiss dialects are to High German speakers.

Mauritian and Haitian Creoles. While creoles often have some similarities with a high-
resource language (usually English or French), the differences are significant to necessitate
special attention to their support (Lent et al., 2021, 2022). This is especially critical for
emergency services and disaster management (Munro, 2010).
Mauritian Creole is based on French as well as the languages of slaves imported from Mada-
gascar and East Africa. As the British gained control of Mauritius, they brought indentured
labourers from India who further had an effect on the formation of the modern Mauritian
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Creole (Seuren, 1995). Similarly, Haitian Creole (Kreyòl) emerged from the interaction of
French and the various Niger-Congo languages spoken by the Africans brought as slaves
(DeGraff, 2007).
Considering that both languages have their basis in French, one would expect that tok-
enizers targeting French would have low tokenization parities for Mauritian and Haitian
Creoles. However, taking the tokenizer of CamemBERT (Martin et al., 2020), the premium
for Mauritian Creole is 1.20 using the MorisienMT parallel corpus (Dabre and Sukhoo, 2022).
The premium for Haitian Creole is 1.64 when using the QEDv2 corpus (Tiedemann, 2012;
Abdelali et al., 2014). Haitian Creole is also represented in the FLORES-200 dataset where
the premium relative to French is 1.58. This is significantly larger than linguistically further
languages such as English (1.20), Pangasinan (1.49) and Nigerian Fulfulde (1.54). Therefore,
CamemBERT is not well-placed to tokenize French-related creoles despite the model being
trained for French.

C Extended Tables of Tokenization Premiums

In addition to the models presented in the main text, these extended tables also include
LLAMA (Touvron et al., 2023), MBart50 (Liu et al., 2020; Tang et al., 2020), SeamlessM4T
(Barrault et al., 2023) and Qwen-VL (Bai et al., 2023).
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Acehnese (Arabic script) 4.00 4.78 4.78 4.78 4.78 3.78 4.78 4.95 — — — 1.94 1.89
Acehnese (Latin script) 1.89 2.16 2.16 2.16 2.16 1.98 2.16 1.56 1.55 1.37 1.10 1.57 1.47
Mesopotamian Arabic 3.34 4.27 4.27 4.27 4.27 2.99 4.27 5.10 — — — 1.16 1.27
Ta’izzi-Adeni Arabic 3.38 4.34 4.34 4.34 4.34 3.01 4.34 5.16 — — — 1.17 1.28
Tunisian Arabic 3.31 4.20 4.20 4.20 4.20 2.93 4.20 5.03 — — — 1.20 1.29
Afrikaans 1.55 1.94 1.94 1.94 1.94 1.69 1.94 1.25 1.38 1.26 1.06 1.20 1.22
South Levantine Arabic 3.20 4.02 4.02 4.02 4.02 2.84 4.02 4.84 — — — 1.12 1.22
Akan 2.20 2.80 2.80 2.80 2.80 2.68 2.80 1.90 1.64 1.45 — 1.98 1.83
Tosk Albanian 2.26 2.65 2.65 2.65 2.65 2.25 2.65 1.77 1.82 1.69 1.12 1.32 1.36
Amharic 7.32 7.79 7.79 7.79 7.79 7.68 7.79 5.19 — — — 1.34 1.42
North Levantine Arabic 3.19 4.04 4.04 4.04 4.04 2.83 4.04 4.83 — — — 1.15 1.24
Standard Arabic 3.42 4.40 4.40 4.40 4.40 3.04 4.40 5.21 — — — 1.18 1.29
Standard Arabic (Romanized) 2.31 2.51 2.51 2.51 2.51 2.45 2.51 1.76 1.72 1.55 1.19 1.94 1.83
Najdi Arabic 3.43 4.41 4.41 4.41 4.41 3.04 4.41 5.22 — — — 1.18 1.30
Moroccan Arabic 3.35 4.21 4.21 4.21 4.21 2.96 4.21 5.08 — — — 1.25 1.33
Egyptian Arabic 3.36 4.23 4.23 4.23 4.23 2.96 4.23 5.10 — — — 1.17 1.27
Assamese 6.14 9.79 9.79 9.78 9.78 6.20 9.79 8.32 — — — 1.90 2.24
Asturian 1.48 1.89 1.89 1.89 1.89 1.58 1.89 1.33 1.31 1.24 1.04 1.27 1.15
Awadhi 4.53 7.19 7.19 7.19 7.19 4.78 7.19 8.19 — — — 1.37 1.47
Central Aymara 2.03 2.32 2.32 2.32 2.32 2.17 2.32 1.62 1.62 1.47 1.09 1.70 1.64
South Azerbaijani 3.76 5.16 5.16 5.16 5.16 3.34 5.16 5.32 — — — 1.43 1.50
North Azerbaijani 2.61 3.47 3.47 3.47 3.47 2.64 3.47 2.31 — 1.90 — 1.15 1.26
Bashkir 2.91 6.01 6.01 6.01 6.01 4.28 6.01 3.97 — — — 2.06 1.23
Bambara 1.99 2.66 2.66 2.66 2.66 2.57 2.66 1.84 1.54 1.40 — 1.82 1.72
Balinese 1.77 1.97 1.97 1.97 1.97 1.80 1.97 1.39 1.43 1.28 1.14 1.32 1.29
Belarusian 2.38 6.56 6.56 6.56 6.56 3.55 6.56 4.17 — 2.88 — 1.46 1.56
Bemba 2.15 2.46 2.46 2.46 2.46 2.23 2.46 1.69 1.68 1.53 1.26 1.76 1.67
Bengali 5.38 9.65 9.65 9.65 9.65 5.84 9.65 8.54 — — — 1.38 1.55
Bhojpuri 4.52 7.18 7.18 7.18 7.18 4.69 7.18 8.08 — — — 1.47 1.54
Banjar (Arabic script) 4.22 5.03 5.03 5.03 5.03 3.80 5.03 5.53 — — — 1.92 1.93
Banjar (Latin script) 1.75 1.98 1.98 1.98 1.98 1.71 1.98 1.38 1.35 1.21 1.08 1.21 1.16
Standard Tibetan 6.67 14.93 14.93 14.93 14.93 11.27 14.93 10.87 — — — — —
Bosnian 1.69 2.19 2.19 2.19 2.19 1.87 2.19 1.47 1.46 1.35 1.02 1.12 1.17
Buginese 1.87 2.20 2.20 2.20 2.20 1.98 2.20 1.49 1.45 1.35 1.10 1.51 1.49
Bulgarian 1.78 5.51 5.51 5.51 5.51 2.64 5.51 3.51 — 2.57 — 1.16 1.23
Catalan 1.51 1.92 1.92 1.92 1.92 1.71 1.92 1.40 1.33 1.31 1.10 1.26 1.26
Cebuano 1.96 2.24 2.24 2.24 2.24 1.93 2.24 1.57 1.59 1.41 1.20 1.52 1.38
Czech 1.69 2.62 2.62 2.62 2.62 2.11 2.62 1.73 — 1.48 0.99 1.17 1.23
Chokwe 1.91 2.16 2.16 2.16 2.16 1.98 2.16 1.51 1.49 1.32 1.10 1.55 1.47
Central Kurdish 4.43 6.49 6.49 6.49 6.49 4.80 6.49 5.82 — — — 2.30 2.48
Crimean Tatar 2.13 2.49 2.49 2.49 2.49 2.12 2.49 1.67 1.68 1.54 — 1.38 1.37
Welsh 2.09 2.34 2.34 2.34 2.34 2.12 2.34 1.66 1.68 1.53 1.06 1.43 1.44
Danish 1.54 1.90 1.90 1.90 1.90 1.62 1.90 1.26 1.39 1.29 1.04 1.09 1.12
German 1.41 2.14 2.14 2.14 2.14 1.58 2.14 0.74 1.55 1.40 1.20 1.17 1.24
Southwestern Dinka 1.88 2.48 2.48 2.48 2.48 2.25 2.48 1.60 1.43 1.32 0.75 1.68 1.55
Dyula 1.88 2.20 2.20 2.20 2.20 2.05 2.20 1.54 1.43 1.30 0.98 1.65 1.53
Dzongkha 7.42 16.36 16.36 16.36 16.36 12.33 16.36 11.95 — — — — —
Greek 4.99 6.54 6.54 6.54 6.54 5.15 6.54 4.99 — 3.11 1.15 1.45 1.58
English 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Esperanto 1.67 2.03 2.03 2.03 2.03 1.87 2.03 1.37 1.35 1.26 1.01 1.20 1.38
Estonian 1.76 2.11 2.11 2.11 2.11 1.87 2.11 1.39 1.42 1.33 1.03 1.12 1.20
Basque 1.79 2.10 2.10 2.10 2.10 1.88 2.10 1.39 1.44 1.33 1.11 1.16 1.23
Ewe 2.28 2.90 2.90 2.90 2.90 2.75 2.90 1.97 1.69 1.46 — 2.01 1.86
Faroese 1.92 2.38 2.38 2.38 2.38 2.07 2.38 1.66 1.64 1.46 — 1.44 1.41
Fijian 2.02 2.30 2.30 2.30 2.30 2.15 2.30 1.67 1.52 1.39 1.13 1.72 1.62
Finnish 1.91 2.28 2.28 2.28 2.28 1.99 2.28 1.46 1.56 1.47 1.13 1.14 1.23
Fon 2.83 4.08 4.08 4.08 4.08 3.67 4.08 2.75 — — — 2.51 2.31
French 1.47 2.00 2.00 2.00 2.00 1.60 2.00 1.47 0.84 1.38 1.20 1.30 1.33
Friulian 1.70 2.07 2.07 2.07 2.07 1.85 2.07 1.47 1.38 1.33 1.07 1.56 1.47
Nigerian Fulfulde 1.72 1.99 1.99 1.99 1.99 1.85 1.99 1.37 1.29 1.16 0.86 1.46 1.27
West Central Oromo 2.22 2.53 2.53 2.53 2.53 2.32 2.53 1.72 1.73 1.61 1.24 1.78 1.49
Scottish Gaelic 2.33 2.70 2.70 2.70 2.70 2.42 2.70 1.86 1.80 1.61 1.24 1.75 1.61
Irish 2.17 2.56 2.56 2.56 2.56 2.33 2.56 1.76 1.75 1.55 1.15 1.50 1.50
Galician 1.48 1.91 1.91 1.91 1.91 1.56 1.91 1.39 1.36 1.30 1.11 1.13 1.14
Guarani 1.99 2.46 2.46 2.46 2.46 2.17 2.46 1.68 1.55 1.45 1.05 1.72 1.63
Gujarati 9.98 12.27 12.27 12.27 12.27 7.69 12.27 8.17 — — — 1.42 1.58
Haitian Creole 1.58 1.90 1.90 1.90 1.90 1.74 1.90 1.35 1.32 1.15 0.89 1.39 1.16
Hausa 1.89 2.15 2.15 2.15 2.15 2.00 2.15 1.49 1.47 1.26 1.02 1.40 1.29
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Acehnese (Arabic script) 1.94 1.79 — 1.51 0.85 2.65 — — 0.85 — 1.89 1.89 2.66
Acehnese (Latin script) 1.57 1.44 2.55 1.09 1.07 1.74 1.44 2.02 1.07 1.41 1.24 1.24 1.95
Mesopotamian Arabic 1.16 1.28 — 1.56 0.86 1.15 0.55 1.93 0.86 — 1.37 1.37 1.63
Ta’izzi-Adeni Arabic 1.17 1.32 — 1.58 0.87 1.15 0.55 1.94 0.87 — 1.39 1.39 1.63
Tunisian Arabic 1.20 1.29 — 1.54 0.85 1.19 0.57 1.90 0.85 — 1.39 1.39 1.66
Afrikaans 1.20 1.20 2.15 1.07 1.06 1.69 1.33 1.84 1.06 1.27 1.22 1.22 1.67
South Levantine Arabic 1.12 1.24 — 1.49 0.83 1.12 0.55 1.82 0.83 — 1.31 1.31 1.55
Akan 1.98 1.82 2.96 1.10 1.00 2.05 — — 1.00 1.45 1.40 1.40 2.28
Tosk Albanian 1.32 1.48 3.09 1.20 1.12 2.17 1.46 2.52 1.12 — 1.35 1.35 2.23
Amharic 1.34 1.73 — 1.72 0.67 5.07 — — 0.67 — 1.32 1.32 4.16
North Levantine Arabic 1.15 1.23 — 1.48 0.82 1.13 0.55 1.83 0.82 — 1.33 1.33 1.58
Standard Arabic 1.18 1.35 — 1.60 0.88 1.14 0.55 1.97 0.88 — 1.40 1.40 1.63
Standard Arabic (Romanized) 1.94 1.73 2.94 1.17 1.17 2.15 1.60 2.28 1.17 1.64 1.86 1.86 2.42
Najdi Arabic 1.18 1.35 — 1.60 0.88 1.15 0.55 1.97 0.88 — 1.40 1.40 1.63
Moroccan Arabic 1.25 1.29 — 1.56 0.86 1.26 0.63 1.91 0.86 — 1.39 1.39 1.70
Egyptian Arabic 1.17 1.28 — 1.56 0.86 1.16 0.57 1.89 0.86 — 1.36 1.36 1.64
Assamese 1.90 1.94 — 2.54 0.96 1.41 — 1.24 0.96 — 1.39 1.39 5.46
Asturian 1.27 1.28 2.07 1.07 1.03 1.31 1.24 1.81 1.03 1.26 1.17 1.17 1.56
Awadhi 1.37 1.62 — 2.50 0.98 1.43 — 1.29 0.98 — 1.22 1.22 4.36
Central Aymara 1.70 1.57 2.71 1.07 1.05 1.94 1.44 1.98 1.05 1.45 1.32 1.32 2.15
South Azerbaijani 1.43 1.42 — 1.63 0.89 1.81 1.11 1.72 0.89 — 1.37 1.37 2.62
North Azerbaijani 1.15 1.35 — 1.26 1.09 2.30 1.74 — 1.09 — 1.33 1.33 2.49
Bashkir 2.06 1.60 — 1.85 1.01 3.57 — — 1.01 — 1.22 1.22 3.14
Bambara 1.82 1.65 2.70 1.04 0.96 1.89 — — 0.96 1.34 1.27 1.27 2.14
Balinese 1.32 1.29 2.37 1.11 1.11 1.46 1.40 1.83 1.11 1.35 1.08 1.08 1.79
Belarusian 1.46 1.59 — 2.06 1.13 3.24 2.60 — 1.13 — 1.72 1.72 3.00
Bemba 1.76 1.57 3.01 1.23 1.23 1.92 1.65 2.17 1.23 1.64 1.39 1.39 2.20
Bengali 1.38 1.58 — 2.61 0.98 1.17 — 1.01 0.98 — 1.28 1.28 5.09
Bhojpuri 1.47 1.63 — 2.47 0.97 1.53 — 1.39 0.97 — 1.28 1.28 4.33
Banjar (Arabic script) 1.92 1.76 — 1.69 0.93 2.47 1.04 — 0.93 — 1.88 1.88 2.63
Banjar (Latin script) 1.21 1.16 2.20 1.05 1.05 1.30 1.32 1.71 1.05 1.29 1.08 1.08 1.70
Standard Tibetan — 3.68 — 3.31 1.13 6.66 — — 1.13 — 1.44 1.44 7.33
Bosnian 1.12 1.33 2.48 1.03 1.01 1.84 1.39 — 1.01 1.30 1.19 1.19 1.86
Buginese 1.51 1.44 2.51 1.09 1.06 1.71 1.45 1.96 1.06 1.39 1.30 1.30 1.96
Bulgarian 1.16 1.28 — 1.89 1.04 2.49 2.35 — 1.04 — 1.31 1.31 2.20
Catalan 1.26 1.36 2.14 1.12 1.10 1.18 1.29 1.90 1.10 1.30 1.25 1.25 1.69
Cebuano 1.52 1.42 2.86 1.20 1.20 1.78 1.51 2.10 1.20 1.53 1.29 1.29 1.91
Czech 1.17 1.27 2.72 1.08 0.97 2.03 1.31 — 0.97 — 1.26 1.26 2.07
Chokwe 1.55 1.41 2.66 1.07 1.07 1.72 1.47 1.94 1.07 1.42 1.34 1.34 1.94
Central Kurdish 2.30 1.75 — 1.78 0.97 3.21 1.65 — 0.97 — 1.30 1.30 3.46
Crimean Tatar 1.38 1.32 2.80 1.13 1.03 2.07 1.45 — 1.03 — 1.25 1.25 1.95
Welsh 1.43 1.70 3.12 1.07 1.07 2.09 1.55 2.32 1.07 1.47 1.38 1.38 2.09
Danish 1.09 1.14 2.26 1.05 1.03 1.67 1.28 1.83 1.03 — 1.11 1.11 1.61
German 1.17 1.19 1.37 1.18 1.17 1.68 1.44 2.02 1.17 1.37 1.29 1.29 1.55
Southwestern Dinka 1.68 1.58 — 0.96 0.86 1.82 — — 0.86 — 1.25 1.25 2.01
Dyula 1.65 1.55 2.68 1.07 1.01 1.80 1.30 2.06 1.01 1.39 1.44 1.44 1.96
Dzongkha — 4.24 — 3.64 1.25 7.36 — — 1.25 — 1.48 1.48 8.19
Greek 1.45 1.65 — 2.17 1.20 3.81 2.70 — 1.20 — 1.65 1.65 4.95
English 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Esperanto 1.20 1.19 2.19 1.02 1.00 1.65 1.24 — 1.00 — 1.23 1.23 1.80
Estonian 1.12 1.12 2.43 1.01 0.98 1.77 1.28 1.71 0.98 — 1.16 1.16 1.85
Basque 1.16 1.22 2.33 1.07 1.06 1.14 1.41 1.90 1.06 1.35 1.27 1.27 1.87
Ewe 2.01 1.82 2.85 1.07 0.97 2.11 — — 0.97 — 1.27 1.27 2.36
Faroese 1.44 1.40 2.73 1.09 1.02 1.95 1.41 — 1.02 — 1.31 1.31 2.04
Fijian 1.72 1.59 3.02 1.17 1.17 1.99 1.65 2.01 1.17 1.53 1.32 1.32 2.13
Finnish 1.14 1.16 2.61 1.11 1.07 1.89 1.42 2.05 1.07 1.45 1.21 1.21 1.97
Fon 2.51 2.36 — 1.26 1.02 2.21 — — 1.02 — 1.59 1.59 2.87
French 1.30 1.40 1.60 1.24 1.19 1.20 1.33 1.96 1.19 1.36 1.35 1.35 1.57
Friulian 1.56 1.52 2.30 1.13 1.10 1.70 1.28 1.94 1.10 1.29 1.37 1.37 1.83
Nigerian Fulfulde 1.46 1.32 2.14 0.96 0.93 1.66 1.16 1.54 0.93 1.21 1.24 1.24 1.75
West Central Oromo 1.78 1.69 3.16 1.20 1.19 2.19 1.63 2.17 1.19 1.63 1.42 1.42 2.29
Scottish Gaelic 1.75 1.85 3.24 1.28 1.24 2.25 1.57 2.27 1.24 1.49 1.56 1.56 2.38
Irish 1.50 1.67 3.14 1.23 1.16 2.15 1.45 2.46 1.16 1.51 1.42 1.42 2.28
Galician 1.13 1.31 2.18 1.13 1.11 1.27 1.30 1.91 1.11 1.32 1.16 1.16 1.54
Guarani 1.72 1.62 2.57 1.09 1.01 1.87 1.40 1.99 1.01 — 1.34 1.34 2.09
Gujarati 1.42 1.73 — 2.50 0.96 1.35 — 1.19 0.96 — 1.35 1.35 6.78
Haitian Creole 1.39 1.22 2.32 0.95 0.92 1.56 1.18 1.68 0.92 1.19 1.11 1.11 1.72
Hausa 1.40 1.37 2.61 1.08 1.07 1.78 1.34 1.78 1.07 1.35 1.18 1.18 1.95
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Hebrew 3.29 4.39 4.39 4.39 4.39 3.66 4.39 4.52 — — — 1.12 1.22
Hindi 4.60 7.46 7.46 7.46 7.46 4.79 7.46 8.34 — — — 1.25 1.36
Chhattisgarhi 4.44 7.21 7.21 7.21 7.21 4.69 7.21 8.05 — — — 1.41 1.51
Croatian 1.67 2.15 2.15 2.15 2.15 1.85 2.15 1.46 1.43 1.33 1.00 1.10 1.15
Hungarian 1.79 2.66 2.66 2.66 2.66 2.15 2.66 1.79 1.78 1.57 1.09 1.18 1.28
Armenian 5.11 10.01 10.01 10.01 10.01 9.98 10.01 6.67 — — — 1.38 1.50
Igbo 2.32 3.42 3.42 3.42 3.42 2.44 3.42 2.33 1.77 1.48 0.99 2.12 1.47
Ilocano 2.01 2.26 2.26 2.26 2.26 2.05 2.26 1.59 1.61 1.41 1.21 1.61 1.33
Indonesian 1.76 1.98 1.98 1.98 1.98 1.55 1.98 1.37 1.40 1.25 1.12 0.94 0.98
Icelandic 1.98 2.43 2.43 2.43 2.43 2.15 2.43 1.72 — 1.50 — 1.23 1.29
Italian 1.46 2.01 2.01 2.01 2.01 1.64 2.01 1.43 1.36 1.33 1.19 1.19 1.25
Javanese 1.72 1.93 1.93 1.93 1.93 1.73 1.93 1.36 1.39 1.21 1.06 1.15 1.10
Japanese 2.24 3.00 3.00 3.00 3.00 2.30 3.00 3.23 — — 0.52 1.11 1.20
Kabyle 2.00 2.50 2.50 2.50 2.50 2.47 2.50 1.74 1.59 1.43 0.90 1.84 1.71
Jingpho 2.27 2.65 2.65 2.65 2.65 2.35 2.65 1.89 1.78 1.54 1.20 1.94 1.78
Kamba 1.91 2.32 2.32 2.32 2.32 2.17 2.32 1.62 1.48 1.30 0.98 1.62 1.52
Kannada 10.83 13.69 13.69 13.68 13.68 8.90 13.69 9.27 — — — 1.36 1.53
Kashmiri (Arabic script) 4.43 6.19 6.19 6.19 6.19 4.62 6.19 5.63 — — — 1.93 1.93
Kashmiri (Devanagari script) 4.44 7.03 7.03 7.03 7.03 4.69 7.03 7.76 — — — 1.82 1.86
Georgian 4.87 13.85 13.85 13.85 13.85 9.85 13.85 9.22 — — — 1.34 1.56
Kazakh 2.51 5.92 5.92 5.92 5.92 3.79 5.92 3.91 — 2.66 — 1.15 1.28
Kabiye 3.48 4.87 4.87 4.87 4.87 4.74 4.87 3.28 — — — 2.98 2.71
Kabuverdianu 1.58 1.93 1.93 1.93 1.93 1.72 1.93 1.32 1.30 1.21 0.98 1.35 1.30
Halh Mongolian 2.76 6.42 6.42 6.42 6.42 3.77 6.42 4.24 — 2.72 — 1.21 1.34
Khmer 10.26 15.33 15.33 15.33 15.33 8.88 15.33 10.22 — — — 1.62 1.87
Kikuyu 2.52 3.44 3.44 3.44 3.44 3.29 3.44 2.36 — 1.66 1.18 2.31 2.17
Kinyarwanda 2.04 2.37 2.37 2.37 2.37 2.14 2.37 1.61 1.59 1.47 1.15 1.72 1.63
Kyrgyz 2.44 5.74 5.74 5.74 5.74 3.51 5.74 3.79 — 2.67 — 1.16 1.66
Kimbundu 2.02 2.33 2.33 2.33 2.33 2.13 2.33 1.64 1.58 1.43 1.12 1.64 1.54
Northern Kurdish 2.05 2.45 2.45 2.45 2.45 2.20 2.45 1.66 1.65 1.40 0.99 1.38 1.66
Central Kanuri (Arabic script) 3.82 4.74 4.74 4.74 4.74 3.63 4.74 5.20 — — — 2.60 2.49
Central Kanuri (Latin script) 2.15 2.57 2.57 2.57 2.57 2.37 2.57 1.78 1.60 1.44 — 1.74 1.65
Kikongo 1.93 2.17 2.17 2.17 2.17 1.99 2.17 1.61 1.44 1.37 1.12 1.58 1.48
Korean 3.18 5.07 5.07 5.07 5.07 2.38 5.07 3.86 — — 0.99 1.16 1.21
Lao 11.47 13.19 13.19 13.19 13.19 9.62 13.19 8.79 — — — 1.39 1.61
Ligurian 1.84 2.29 2.29 2.29 2.29 1.98 2.29 1.57 1.50 1.43 1.09 1.65 1.59
Limburgish 1.64 2.05 2.05 2.05 2.05 1.80 2.05 1.34 1.39 1.32 1.04 1.45 1.38
Lingala 1.79 2.03 2.03 2.03 2.03 1.86 2.03 1.47 1.37 1.26 1.08 1.52 1.26
Lithuanian 1.89 2.45 2.45 2.45 2.45 2.21 2.45 1.63 1.53 1.42 1.04 1.17 1.25
Lombard 1.85 2.37 2.37 2.37 2.37 2.04 2.37 1.58 1.52 1.41 1.04 1.71 1.56
Latgalian 1.99 2.39 2.39 2.39 2.39 2.20 2.39 1.67 1.62 1.48 1.02 1.57 1.51
Luxembourgish 1.80 2.25 2.25 2.25 2.25 1.99 2.25 1.30 1.52 1.43 1.15 1.64 1.32
Luba-Kasai 1.89 2.13 2.13 2.13 2.13 1.94 2.13 1.50 1.44 1.31 1.09 1.54 1.43
Ganda 1.90 2.17 2.17 2.17 2.17 1.96 2.17 1.48 1.47 1.36 1.07 1.55 1.38
Luo 1.76 2.04 2.04 2.04 2.04 1.82 2.04 1.40 1.39 1.27 1.03 1.52 1.43
Mizo 1.86 2.09 2.09 2.09 2.09 1.96 2.09 1.53 1.52 1.29 1.06 1.65 1.54
Standard Latvian 2.10 2.54 2.54 2.54 2.54 2.35 2.54 1.76 1.68 1.56 1.05 1.23 1.29
Magahi 4.49 7.22 7.22 7.22 7.22 4.70 7.22 8.07 — — — 1.41 1.50
Maithili 4.63 7.43 7.43 7.43 7.43 4.90 7.43 8.27 — — — 1.58 1.64
Malayalam 5.54 15.24 15.24 15.24 15.24 9.00 15.24 10.16 — — — 1.38 1.59
Marathi 4.58 7.87 7.87 7.87 7.87 5.07 7.87 8.76 — — — 1.22 1.38
Minangkabau (Arabic script) 4.32 5.25 5.25 5.25 5.25 3.97 5.25 5.71 — — — 2.02 1.99
Minangkabau (Latin script) 1.77 1.97 1.97 1.97 1.97 1.77 1.97 1.40 1.39 1.25 1.09 1.31 1.25
Macedonian 1.84 5.46 5.46 5.46 5.46 2.77 5.46 3.48 — 2.58 — 1.17 1.24
Maltese 2.16 2.69 2.69 2.69 2.69 2.41 2.69 1.80 1.72 1.57 1.03 1.96 1.87
Meitei (Bengali script) 5.84 10.22 10.22 10.22 10.22 6.71 10.22 9.06 — — — 2.56 2.59
Mossi 2.12 2.54 2.54 2.54 2.54 2.32 2.54 1.74 1.51 1.38 0.85 1.78 1.66
Maori 2.18 2.45 2.45 2.45 2.45 2.35 2.45 1.77 1.69 1.47 1.05 1.86 1.74
Burmese 8.37 16.89 16.89 16.89 16.89 11.70 16.89 11.26 — — — 1.72 2.21
Dutch 1.46 1.97 1.97 1.97 1.97 1.59 1.97 1.28 1.40 1.32 1.13 1.14 1.18
Norwegian Nynorsk 1.54 1.93 1.93 1.93 1.93 1.64 1.93 1.25 1.40 1.29 1.02 1.17 1.17
Norwegian Bokmål 1.50 1.86 1.86 1.86 1.86 1.56 1.86 1.23 1.37 1.27 1.01 1.07 1.10
Nepali 4.49 7.59 7.59 7.59 7.59 4.79 7.59 8.37 — — — 1.13 1.28
Northern Sotho 2.02 2.32 2.32 2.32 2.32 2.18 2.32 1.63 1.58 1.48 1.12 1.75 1.52
Nuer 2.83 4.23 4.23 4.23 4.23 4.00 4.23 2.79 — — — 2.62 2.44
Nyanja 2.02 2.26 2.26 2.26 2.26 2.08 2.26 1.57 1.55 1.42 1.17 1.59 1.55
Occitan 1.66 2.07 2.07 2.07 2.07 1.83 2.07 1.47 1.40 1.38 1.14 1.50 1.31
Odia 11.59 13.38 13.38 13.38 13.38 12.48 13.38 8.94 — — — 1.45 1.56
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Hebrew 1.12 1.22 — 1.39 0.78 2.92 1.72 — 0.78 — 1.24 1.24 1.48
Hindi 1.25 1.59 — 2.55 1.00 1.28 — 1.16 1.00 — 1.22 1.22 4.47
Chhattisgarhi 1.41 1.60 — 2.46 0.97 1.44 — 1.34 0.97 — 1.26 1.26 4.26
Croatian 1.10 1.30 2.43 1.01 0.98 1.80 1.36 — 0.98 1.27 1.17 1.17 1.83
Hungarian 1.18 1.26 2.99 1.16 1.05 2.07 1.40 2.31 1.05 — 1.27 1.27 2.12
Armenian 1.38 1.58 — 2.04 1.11 4.31 — — 1.11 — 1.51 1.51 5.34
Igbo 2.12 1.79 3.17 1.21 1.02 1.72 1.50 — 1.02 — 1.32 1.32 2.37
Ilocano 1.61 1.61 2.82 1.21 1.21 1.90 1.55 2.01 1.21 1.55 1.33 1.33 2.03
Indonesian 0.94 1.08 2.24 1.08 1.08 0.96 1.35 1.74 1.08 1.33 0.93 0.93 1.54
Icelandic 1.23 1.32 2.81 1.09 0.99 1.99 1.34 — 0.99 — 1.29 1.29 2.11
Italian 1.19 1.34 2.18 1.19 1.18 1.62 1.41 1.92 1.18 1.37 1.25 1.25 1.62
Javanese 1.15 1.21 2.21 1.04 1.04 1.40 1.36 1.74 1.04 1.29 1.03 1.03 1.72
Japanese 1.11 0.90 — 1.27 0.44 1.81 1.01 — 0.44 0.67 1.01 1.01 1.46
Kabyle 1.84 1.82 2.83 1.06 0.99 2.02 1.29 — 0.99 — 1.56 1.56 2.14
Jingpho 1.94 1.79 3.41 1.27 1.28 2.14 1.71 2.32 1.28 1.65 1.47 1.47 2.32
Kamba 1.62 1.52 2.69 1.01 0.98 1.77 1.33 — 0.98 — 1.28 1.28 1.99
Kannada 1.36 1.44 — 2.83 1.05 1.31 — 1.06 1.05 — 1.37 1.37 6.98
Kashmiri (Arabic script) 1.93 2.00 — 1.72 0.96 2.32 1.26 1.75 0.96 — 1.81 1.81 3.48
Kashmiri (Devanagari script) 1.82 1.79 — 2.40 0.96 1.85 — 1.75 0.96 — 1.69 1.69 4.41
Georgian 1.34 1.55 — 2.95 1.10 4.98 — — 1.10 — 1.61 1.61 5.25
Kazakh 1.15 1.20 — 1.89 1.03 3.23 — — 1.03 — 1.18 1.18 3.02
Kabiye 2.98 2.83 — 1.37 1.09 3.34 — — 1.09 — 1.56 1.56 3.35
Kabuverdianu 1.35 1.28 2.21 1.02 0.99 1.51 1.25 1.81 0.99 1.29 1.28 1.28 1.70
Halh Mongolian 1.21 1.48 — 1.91 1.04 3.38 — — 1.04 — 1.36 1.36 3.10
Khmer 1.62 1.43 — 3.33 1.18 6.40 — — 1.18 — 1.80 1.80 6.61
Kikuyu 2.31 2.18 — 1.30 1.17 2.48 1.56 — 1.17 — 1.52 1.52 2.66
Kinyarwanda 1.72 1.51 2.76 1.13 1.11 1.58 1.54 2.15 1.11 1.50 1.30 1.30 2.12
Kyrgyz 1.16 1.32 — 1.88 1.02 3.02 — — 1.02 — 1.25 1.25 2.74
Kimbundu 1.64 1.48 2.91 1.11 1.11 1.81 1.55 1.99 1.11 1.52 1.35 1.35 2.10
Northern Kurdish 1.38 1.42 2.74 1.10 1.00 2.03 1.29 — 1.00 — 1.44 1.44 2.16
Central Kanuri (Arabic script) 2.60 2.43 — 1.60 0.88 2.10 — 2.37 0.88 — 2.54 2.54 3.15
Central Kanuri (Latin script) 1.74 1.58 2.82 1.11 1.05 2.00 — — 1.05 — 1.55 1.55 2.16
Kikongo 1.58 1.46 3.01 1.14 1.14 1.75 1.59 1.97 1.14 1.54 1.21 1.21 1.98
Korean 1.16 1.27 — 1.20 0.51 2.79 1.30 — 0.51 — 1.03 1.03 1.64
Lao 1.39 1.27 — 2.73 0.99 8.70 — — 0.99 — 1.47 1.47 5.79
Ligurian 1.65 1.69 2.54 1.17 1.10 1.81 1.38 2.05 1.10 — 1.60 1.60 1.95
Limburgish 1.45 1.38 2.25 1.07 1.04 1.75 1.32 1.92 1.04 1.28 1.44 1.44 1.78
Lingala 1.52 1.38 2.73 1.08 1.08 1.65 1.47 1.90 1.08 1.41 1.12 1.12 1.85
Lithuanian 1.17 1.23 2.58 1.06 1.00 1.94 1.33 — 1.00 — 1.18 1.18 2.06
Lombard 1.71 1.70 2.58 1.16 1.07 1.84 1.29 1.96 1.07 — 1.61 1.61 2.00
Latgalian 1.57 1.46 2.70 1.05 0.99 1.99 1.36 — 0.99 — 1.42 1.42 2.14
Luxembourgish 1.64 1.46 2.24 1.15 1.12 1.89 1.40 2.17 1.12 1.31 1.44 1.44 1.96
Luba-Kasai 1.54 1.37 2.48 1.08 1.08 1.68 1.44 1.89 1.08 1.41 1.21 1.21 1.92
Ganda 1.55 1.40 2.65 1.03 1.02 1.67 1.46 1.94 1.02 1.41 1.26 1.26 1.94
Luo 1.52 1.41 2.55 1.05 1.05 1.68 1.35 1.87 1.05 1.35 1.24 1.24 1.81
Mizo 1.65 1.57 2.76 1.10 1.10 1.83 1.43 1.92 1.10 1.37 1.31 1.31 1.94
Standard Latvian 1.23 1.30 2.78 1.11 1.02 2.08 1.35 — 1.02 — 1.20 1.20 2.29
Magahi 1.41 1.61 — 2.46 0.96 1.45 — 1.34 0.96 — 1.23 1.23 4.23
Maithili 1.58 1.74 — 2.53 0.98 1.56 — 1.50 0.98 — 1.24 1.24 4.42
Malayalam 1.38 1.35 — 3.10 1.13 1.38 — 1.18 1.13 — 1.49 1.49 7.31
Marathi 1.22 1.52 — 2.67 1.01 1.21 — 1.06 1.01 — 1.26 1.26 4.65
Minangkabau (Arabic script) 2.02 1.84 — 1.74 0.96 2.58 1.13 — 0.96 — 1.97 1.97 2.79
Minangkabau (Latin script) 1.31 1.25 2.35 1.07 1.07 1.44 1.36 1.77 1.07 1.32 1.15 1.15 1.75
Macedonian 1.17 1.29 — 1.89 1.04 2.50 — — 1.04 — 1.24 1.24 2.26
Maltese 1.96 1.69 2.94 1.16 1.11 2.25 1.44 — 1.11 — 1.46 1.46 2.24
Meitei (Bengali script) 2.56 2.21 — 2.77 1.03 2.35 — 2.34 1.03 — 1.73 1.73 5.64
Mossi 1.78 1.80 2.90 1.03 0.96 1.99 1.19 — 0.96 — 1.36 1.36 2.06
Maori 1.86 1.69 3.28 1.16 1.11 2.12 1.49 2.12 1.11 1.45 1.38 1.38 2.33
Burmese 1.72 1.56 — 3.51 1.24 10.05 — — 1.24 — 1.59 1.59 8.99
Dutch 1.14 1.17 2.19 1.11 1.11 1.71 1.38 1.91 1.11 1.33 1.19 1.19 1.58
Norwegian Nynorsk 1.17 1.18 2.29 1.04 1.01 1.65 1.28 1.82 1.01 1.22 1.16 1.16 1.63
Norwegian Bokmål 1.07 1.12 2.24 1.03 1.01 1.62 1.26 1.79 1.01 1.18 1.10 1.10 1.55
Nepali 1.13 1.47 — 2.56 0.96 1.17 — 1.01 0.96 — 1.18 1.18 4.45
Northern Sotho 1.75 1.57 2.81 1.17 1.15 1.94 1.48 2.18 1.15 1.48 1.35 1.35 2.17
Nuer 2.62 2.42 — 1.32 1.08 2.79 — — 1.08 — 1.89 1.89 3.39
Nyanja 1.59 1.35 2.71 1.12 1.12 1.78 1.52 2.02 1.12 1.44 1.15 1.15 2.06
Occitan 1.50 1.48 2.26 1.17 1.14 1.49 1.33 1.93 1.14 1.33 1.40 1.40 1.81
Odia 1.45 3.11 — 2.73 1.03 1.36 — 1.21 1.03 — 1.38 1.38 9.79
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Pangasinan 1.50 1.66 1.66 1.66 1.66 1.57 1.66 1.27 1.25 1.11 1.00 1.29 1.23
Eastern Panjabi 9.44 7.90 7.90 7.90 7.90 7.87 7.90 8.47 — — — 1.57 1.68
Papiamento 1.65 1.98 1.98 1.98 1.98 1.75 1.98 1.33 1.37 1.25 1.03 1.37 1.32
Southern Pashto 4.27 5.39 5.39 5.39 5.39 3.83 5.39 5.37 — — — 1.38 1.40
Western Persian 3.98 5.32 5.32 5.32 5.32 3.28 5.32 5.47 — — — 1.10 1.17
Plateau Malagasy 2.12 2.58 2.58 2.58 2.58 2.26 2.58 1.74 1.69 1.49 1.26 1.57 1.49
Polish 1.70 2.69 2.69 2.69 2.69 1.91 2.69 1.79 1.71 1.58 1.00 1.19 1.26
Portuguese 1.42 1.94 1.94 1.94 1.94 1.48 1.94 1.38 1.36 1.30 1.09 1.11 1.14
Dari 3.88 5.11 5.11 5.11 5.11 3.16 5.11 5.31 — — — 1.09 1.15
Ayacucho Quechua 1.96 2.20 2.20 2.20 2.20 2.08 2.20 1.61 1.54 1.40 1.14 1.59 1.54
Romanian 1.70 2.48 2.48 2.48 2.48 1.88 2.48 1.69 1.54 1.46 1.13 1.24 1.29
Rundi 2.05 2.33 2.33 2.33 2.33 2.13 2.33 1.63 1.59 1.47 1.15 1.71 1.63
Russian 1.64 5.74 5.74 5.74 5.74 2.49 5.74 3.67 — 2.71 1.03 1.17 1.22
Sango 1.95 2.23 2.23 2.23 2.23 2.08 2.23 1.54 1.50 1.32 1.02 1.66 1.53
Sanskrit 4.59 7.94 7.94 7.94 7.94 5.00 7.94 8.60 — — — 1.43 1.69
Santali 11.92 12.86 12.86 12.86 12.86 12.80 12.86 8.56 — — — — —
Sicilian 1.81 2.27 2.27 2.27 2.27 2.01 2.27 1.57 1.43 1.37 1.06 1.58 1.53
Shan 11.85 18.76 18.76 18.76 18.76 15.05 18.76 12.51 — — — 4.43 4.63
Sinhala 7.86 12.86 12.86 12.86 12.86 8.83 12.86 8.59 — — — 1.35 1.53
Slovak 1.82 2.52 2.52 2.52 2.52 2.14 2.52 1.65 1.60 1.46 1.02 1.18 1.24
Slovenian 1.67 2.11 2.11 2.11 2.11 1.88 2.11 1.46 1.44 1.32 1.01 1.13 1.19
Samoan 2.14 2.57 2.57 2.57 2.57 2.29 2.57 1.69 1.63 1.50 1.09 1.92 1.80
Shona 2.01 2.29 2.29 2.29 2.29 2.13 2.29 1.58 1.58 1.44 1.18 1.63 1.58
Sindhi 4.20 5.00 5.00 5.00 5.00 4.00 5.00 5.22 — — — 1.28 1.30
Somali 2.14 2.36 2.36 2.36 2.36 2.18 2.36 1.66 1.69 1.48 1.16 1.39 1.37
Southern Sotho 2.07 2.34 2.34 2.34 2.34 2.21 2.34 1.64 1.63 1.48 1.18 1.78 1.60
Spanish 1.45 1.99 1.99 1.99 1.99 1.55 1.99 1.45 1.44 1.36 1.19 1.20 1.21
Sardinian 1.82 2.26 2.26 2.26 2.26 1.99 2.26 1.53 1.48 1.40 1.16 1.61 1.51
Serbian 1.73 5.34 5.34 5.34 5.34 2.92 5.34 3.41 — 2.45 — 1.18 1.26
Swati 2.03 2.31 2.31 2.31 2.31 2.16 2.31 1.59 1.60 1.45 1.21 1.61 1.44
Sundanese 1.76 2.02 2.02 2.02 2.02 1.82 2.02 1.39 1.39 1.24 1.07 1.22 1.10
Swedish 1.44 1.95 1.95 1.95 1.95 1.58 1.95 1.22 1.41 1.31 1.02 1.07 1.10
Swahili 1.86 2.13 2.13 2.13 2.13 1.95 2.13 1.49 1.42 1.32 1.06 1.16 1.20
Silesian 1.95 2.60 2.60 2.60 2.60 2.18 2.60 1.74 1.70 1.59 0.99 1.65 1.59
Tamil 5.87 15.58 15.58 15.58 15.58 7.65 15.58 10.38 — — — 1.35 1.55
Tamasheq (Latin script) 1.93 2.39 2.39 2.39 2.39 2.22 2.39 1.62 1.50 1.29 — 1.71 1.57
Tamasheq (Tifinagh script) 8.42 10.43 10.43 10.43 10.43 10.13 10.43 6.95 — — — — —
Tatar 2.53 5.82 5.82 5.82 5.82 3.75 5.82 3.84 — — — 1.81 1.54
Telugu 10.71 13.09 13.09 13.09 13.09 8.34 13.09 8.73 — — — 1.33 —
Tajik 2.70 6.09 6.09 6.09 6.09 3.64 6.09 4.00 — 2.82 — 2.14 2.06
Tagalog 2.00 2.28 2.28 2.28 2.28 2.06 2.28 1.63 1.67 1.45 1.27 1.43 1.43
Thai 4.35 9.05 9.05 9.05 9.05 4.39 9.05 6.59 — 2.83 — 1.08 1.27
Tigrinya 7.47 7.88 7.88 7.88 7.88 7.80 7.88 5.25 — — — 1.97 1.91
Tok Pisin 1.95 2.21 2.21 2.21 2.21 2.04 2.21 1.55 1.66 1.45 1.25 1.73 1.65
Tswana 2.12 2.39 2.39 2.39 2.39 2.28 2.39 1.68 1.67 1.55 1.21 1.85 1.68
Tsonga 2.16 2.45 2.45 2.45 2.45 2.26 2.45 1.70 1.70 1.46 1.19 1.79 1.69
Turkmen 2.23 2.82 2.82 2.82 2.82 2.40 2.82 1.76 1.78 1.62 1.11 1.78 1.71
Tumbuka 2.46 2.78 2.78 2.78 2.78 2.57 2.78 1.93 1.85 1.67 1.34 1.92 1.88
Turkish 2.09 2.43 2.43 2.43 2.43 1.91 2.43 1.61 1.65 1.51 — 1.04 1.15
Twi 2.01 2.62 2.62 2.62 2.62 2.51 2.62 1.80 1.57 1.38 — 1.88 1.74
Central Atlas Tamazight 8.86 10.39 10.39 10.39 10.39 10.04 10.39 6.92 — — — — —
Uyghur 4.89 7.16 7.16 7.16 7.16 5.19 7.16 6.44 — — — 1.41 3.00
Ukrainian 1.72 5.75 5.75 5.75 5.75 3.00 5.75 3.69 — 2.58 — 1.21 1.28
Umbundu 1.89 2.24 2.24 2.24 2.24 2.01 2.24 1.53 1.48 1.36 1.05 1.57 1.49
Urdu 4.37 6.30 6.30 6.30 6.30 4.39 6.30 5.74 — — — 1.23 1.30
Northern Uzbek 2.03 2.30 2.30 2.30 2.30 2.17 2.30 1.63 1.59 1.48 1.19 1.33 1.37
Venetian 1.56 2.00 2.00 2.00 2.00 1.70 2.00 1.38 1.34 1.23 — 1.36 1.31
Vietnamese 2.92 4.54 4.54 4.54 4.54 2.45 4.54 3.06 — 0.83 0.98 1.18 1.15
Waray 2.02 2.38 2.38 2.38 2.38 1.95 2.38 1.61 1.66 1.42 1.25 1.55 1.45
Wolof 1.80 2.14 2.14 2.14 2.14 1.92 2.14 1.49 1.43 1.28 0.93 1.60 1.40
Xhosa 1.97 2.26 2.26 2.26 2.26 2.06 2.26 1.57 1.57 1.40 1.13 1.50 1.37
Eastern Yiddish 4.57 6.63 6.63 6.63 6.63 5.57 6.63 6.34 — — — 1.58 1.61
Yoruba 2.70 3.89 3.89 3.89 3.89 2.96 3.89 2.63 — 1.66 0.88 2.27 1.74
Yue Chinese 2.11 3.09 3.09 3.09 3.09 2.12 3.09 2.78 — — 0.36 0.93 1.03
Chinese (Simplified) 2.00 3.21 3.21 3.21 3.21 1.91 3.21 2.93 — — 0.39 0.97 1.05
Chinese (Traditional) 2.16 3.16 3.16 3.16 3.16 2.18 3.16 2.83 — — 0.36 0.96 1.06
Standard Malay 1.83 2.05 2.05 2.05 2.05 1.62 2.05 1.42 1.45 1.28 1.15 0.95 1.00
Zulu 2.09 2.41 2.41 2.41 2.41 2.20 2.41 1.65 1.64 1.47 1.20 1.55 1.35
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Pangasinan 1.29 1.22 2.18 1.00 1.00 1.45 1.24 1.54 1.00 1.21 1.11 1.11 1.56
Eastern Panjabi 1.57 2.11 — 2.59 1.01 1.43 — 1.35 1.01 — 1.50 1.50 7.30
Papiamento 1.37 1.36 2.28 1.08 1.05 1.54 1.25 1.80 1.05 1.30 1.27 1.27 1.73
Southern Pashto 1.38 1.64 — 1.66 0.95 2.55 — — 0.95 — 1.45 1.45 2.87
Western Persian 1.10 1.34 — 1.70 0.94 1.78 1.11 1.62 0.94 — 1.13 1.13 2.60
Plateau Malagasy 1.57 1.59 3.00 1.26 1.22 2.07 1.64 2.33 1.22 1.59 1.39 1.39 2.23
Polish 1.19 1.31 2.82 1.13 1.06 2.14 1.52 — 1.06 — 1.37 1.37 1.76
Portuguese 1.11 1.29 2.21 1.12 1.09 1.12 1.30 1.88 1.09 1.24 1.17 1.17 1.45
Dari 1.09 1.31 — 1.63 0.92 1.64 1.09 1.58 0.92 — 1.11 1.11 2.50
Ayacucho Quechua 1.59 1.42 2.59 1.08 1.07 1.83 1.47 1.95 1.07 1.42 1.28 1.28 2.06
Romanian 1.24 1.37 1.50 1.19 1.13 1.91 1.33 — 1.13 — 1.35 1.35 1.86
Rundi 1.71 1.52 2.78 1.12 1.12 1.64 1.54 2.13 1.12 1.50 1.33 1.33 2.11
Russian 1.17 1.27 — 1.98 1.09 2.48 2.50 — 1.09 — 1.34 1.34 1.75
Sango 1.66 1.63 3.14 1.12 1.09 1.80 1.45 2.05 1.09 1.49 1.39 1.39 2.04
Sanskrit 1.43 1.65 — 2.63 0.98 1.63 — 1.21 0.98 — 1.40 1.40 4.58
Santali — — — 2.79 1.06 12.71 — — 1.06 — 2.49 2.49 8.99
Sicilian 1.58 1.53 2.46 1.11 1.05 1.80 1.41 1.84 1.05 — 1.44 1.44 1.95
Shan 4.43 3.28 — 3.94 1.42 12.06 — — 1.42 — 1.94 1.94 10.51
Sinhala 1.35 1.66 — 2.64 1.00 8.21 — — 1.00 — 1.68 1.68 7.02
Slovak 1.18 1.30 2.74 1.09 1.00 2.01 1.35 — 1.00 — 1.21 1.21 2.08
Slovenian 1.13 1.20 2.42 1.02 1.00 1.81 1.37 — 1.00 1.30 1.17 1.17 1.87
Samoan 1.92 1.92 3.09 1.22 1.16 2.13 1.57 2.22 1.16 1.55 1.60 1.60 2.26
Shona 1.63 1.35 2.79 1.12 1.12 1.80 1.55 2.06 1.12 1.48 1.23 1.23 2.11
Sindhi 1.28 1.74 — 1.60 0.91 2.51 — 1.22 0.91 — 1.33 1.33 2.87
Somali 1.39 1.48 3.06 1.14 1.14 2.03 1.52 2.05 1.14 1.52 1.39 1.39 2.16
Southern Sotho 1.78 1.59 2.92 1.21 1.20 1.96 1.61 2.16 1.20 1.54 1.39 1.39 2.19
Spanish 1.20 1.31 2.23 1.21 1.19 1.21 1.38 1.98 1.19 1.41 1.24 1.24 1.52
Sardinian 1.61 1.57 2.46 1.19 1.16 1.73 1.38 1.98 1.16 1.36 1.44 1.44 1.97
Serbian 1.18 1.30 — 1.80 0.99 2.57 — — 0.99 — 1.24 1.24 2.34
Swati 1.61 1.41 2.80 1.12 1.13 1.83 1.55 2.09 1.13 1.52 1.28 1.28 2.14
Sundanese 1.22 1.22 2.32 1.05 1.04 1.48 1.33 1.80 1.04 1.31 1.04 1.04 1.80
Swedish 1.07 1.11 2.22 1.04 1.01 1.65 1.21 1.90 1.01 1.20 1.13 1.13 1.57
Swahili 1.16 1.25 2.66 1.05 1.05 1.24 1.45 1.86 1.05 1.43 1.13 1.13 1.93
Silesian 1.65 1.57 2.87 1.10 1.04 2.16 1.52 — 1.04 — 1.52 1.52 2.09
Tamil 1.35 1.26 — 3.17 1.17 1.27 — 1.06 1.17 — 1.42 1.42 6.15
Tamasheq (Latin script) 1.71 1.64 2.55 1.01 0.95 1.90 — — 0.95 — 1.52 1.52 1.99
Tamasheq (Tifinagh script) — 3.59 — 2.29 0.94 7.74 — — 0.94 — 2.43 2.43 5.37
Tatar 1.81 1.41 — 1.85 1.01 3.15 — — 1.01 — 1.21 1.21 2.88
Telugu 1.33 1.42 — 2.68 1.01 1.33 — 1.21 1.01 — 1.34 1.34 7.06
Tajik 2.14 1.62 — 2.01 1.11 3.29 2.39 — 1.11 — 1.57 1.57 2.90
Tagalog 1.43 1.46 2.85 1.26 1.26 1.85 1.56 2.08 1.26 1.60 1.34 1.34 2.04
Thai 1.08 0.99 — 2.75 0.96 4.63 — — 0.96 — 1.52 1.52 2.59
Tigrinya 1.97 2.03 — 1.75 0.69 5.16 — — 0.69 — 1.44 1.44 4.24
Tok Pisin 1.73 1.65 2.76 1.28 1.28 1.92 1.61 2.10 1.28 1.57 1.39 1.39 2.02
Tswana 1.85 1.68 3.01 1.25 1.25 2.02 1.62 2.25 1.25 1.57 1.45 1.45 2.26
Tsonga 1.79 1.61 3.13 1.20 1.20 2.01 1.65 2.19 1.20 1.64 1.30 1.30 2.23
Turkmen 1.78 1.68 2.87 1.17 1.06 2.19 1.44 — 1.06 — 1.36 1.36 2.20
Tumbuka 1.92 1.61 3.29 1.32 1.30 2.19 1.79 — 1.30 — 1.43 1.43 2.51
Turkish 1.04 1.12 2.67 1.12 1.03 1.96 1.45 — 1.03 — 1.14 1.14 1.61
Twi 1.88 1.71 2.85 1.05 0.98 1.81 — — 0.98 1.40 1.25 1.25 2.15
Central Atlas Tamazight — 3.48 — 2.28 0.89 7.69 — — 0.89 — 2.06 2.06 5.09
Uyghur 1.41 2.57 — 1.97 1.07 3.67 — — 1.07 — 1.40 1.40 3.74
Ukrainian 1.21 1.33 — 1.86 1.02 2.75 2.35 — 1.02 — 1.28 1.28 2.51
Umbundu 1.57 1.47 2.72 1.05 1.01 1.74 1.46 1.94 1.01 1.33 1.29 1.29 1.97
Urdu 1.23 1.52 — 1.76 0.99 1.36 1.45 1.26 0.99 — 1.30 1.30 3.19
Northern Uzbek 1.33 1.38 2.80 1.13 1.13 1.98 1.58 2.12 1.13 1.53 1.32 1.32 2.15
Venetian 1.36 1.36 2.21 1.06 1.01 1.57 1.24 1.84 1.01 1.23 1.29 1.29 1.68
Vietnamese 1.18 1.95 — 1.39 1.05 1.27 1.38 — 1.05 — 1.18 1.18 1.41
Waray 1.55 1.45 2.66 1.25 1.25 1.80 1.60 2.15 1.25 1.52 1.36 1.36 1.93
Wolof 1.60 1.44 2.62 1.00 0.96 1.68 1.28 1.93 0.96 1.26 1.31 1.31 1.89
Xhosa 1.50 1.35 2.73 1.06 1.06 1.67 1.52 2.05 1.06 1.45 1.21 1.21 2.04
Eastern Yiddish 1.58 1.66 — 1.94 1.08 4.42 2.41 — 1.08 — 1.69 1.69 2.77
Yoruba 2.27 2.06 — 1.28 0.97 1.64 1.24 — 0.97 — 1.52 1.52 2.69
Yue Chinese 0.93 0.95 — 0.87 0.31 0.93 — — 0.31 0.55 1.05 1.05 1.17
Chinese (Simplified) 0.97 0.92 — 0.93 0.34 0.95 — — 0.34 0.55 1.11 1.11 1.07
Chinese (Traditional) 0.96 0.98 — 0.89 0.32 0.97 — — 0.32 0.57 1.08 1.08 1.21
Standard Malay 0.95 1.11 2.32 1.12 1.11 1.07 1.39 1.80 1.11 1.36 0.96 0.96 1.61
Zulu 1.55 1.40 2.84 1.12 1.12 1.76 1.62 2.15 1.12 1.54 1.24 1.24 2.18
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