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Abstract

Federated Learning enables collaborative training across decentralized edge devices
while preserving data privacy. However, fine-tuning large-scale pre-trained models
in federated learning is hampered by substantial communication overhead and client
resource limitations. Parameter-efficient fine-tuning methods like Low-Rank Adap-
tation (LoRA) reduce resource demands but suffer from aggregation discrepancies
and heightened vulnerability to label noise, particularly in heterogeneous federated
settings. In this paper, we introduce RFedLR, a robust federated PEFT framework
designed to overcome these challenges. RFedLR integrates two key components:
(1) Sensitivity-aware robust tuning, which identifies and selectively updates noise-
sensitive parameters to bolster local robustness against label noise, and (2) Adaptive
federated LoRA aggregation, which dynamically weights and aggregates LoRA
updates based on their importance and stability to minimize bias and noise propaga-
tion. Comprehensive experimental validation shows RFedLR outperforms existing
methods, achieving superior accuracy and robustness in noisy federated scenarios.
Our code is available at: https://github.com/FangXiuwen/RFedLR

1 Introduction

The proliferation of edge devices generates massive siloed data volumes, whose direct aggregation
and utilization are impeded by significant privacy, regulatory, and transmission constraints [1]. To
meet the challenge, Federated Learning (FL) [2] is a distributed machine learning framework that
facilitates collaborative model training across multiple decentralized clients without sharing sensitive
private data [3–5]. In the classic FedAvg algorithm, clients train models locally on their private
datasets and transmit updated parameters to the server for weighted averaging.

Recently, large-scale Pre-Trained Models (PTMs) show impressive performance in various tasks [6].
Combining the knowledge of large models with the distributed nature of FL [7], via client-side
fine-tuning and server-side aggregation, offers improved performance and privacy guarantees [8–10].
However, applying Full Fine-Tuning (FFT) to large-scale PTMs in FL faces significant challenges [11]:
(1) the substantial communication overhead incurred by transmitting large parameter updates across
resource-constrained networks, and (2) the excessive storage and computational demands that exceed
the capabilities of typical edge devices. Consequently, to facilitate FL with large-scale models on
resource-constrained edge devices, we adopt Low-Rank Adaptation (LoRA) [12], a representative
Parameter-Efficient Fine-Tuning (PEFT) technique, as the paradigm for client-side updates. LoRA
drastically reduces trainable parameters by decomposing weight updates into low-rank matrices
(Fig. 1), making PTMs fine-tuning viable on edge devices.
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Figure 1: Illustration of federated learning with parameter-efficient fine-tuning, where clients possess noisy
datasets with different noise rate. Only a small number of trainable parameters are updated and transferred.

However, integrating LoRA into FL presents distinct challenges. Naive federated averaging of
LoRA components, such as FedLR [13] and SLoRA [14], leads to aggregation discrepancies because
the average of low-rank decompositions is not equivalent to the decomposition of the average of
full updates (Eq. 3). This can result in suboptimal global models. Attempts to mitigate this, FFA-
LoRA [15] freezes the non-zero initialized low-rank matrix and only allows the zero-initialized
low-rank matrix to be trained and aggregated. However, this rigidity may constrain the model
expressiveness. RoLoRA [16] alternately updates between matrices across communication rounds,
avoiding permanently freezing either matrix, but it still imposes a rigid update schedule. Critically,
existing methods lack sufficient flexibility, potentially leading to the neglect of valuable updates and
suboptimal performance in heterogeneous FL [1].
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(a) Accuracy of federated FFT
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(b) Accuracy of federated LoRA

Figure 2: Comparison of federated fine-tuning methods under
clean and noisy (20% pairflip noise) conditions. The average test
accuracy (%) of all clients is shown. (a) Federated FFT shows
stable performance with minor accuracy loss under noise. (b)
Federated LoRA demonstrates greater susceptibility to noise.

Existing federated PEFT methods are
based on the assumption that the clients
have clean private datasets. However,
the FL system involves numerous dis-
tributed clients whose private data qual-
ity varies significantly, often including
noisy labels. Label noise in FL can stem
from diverse sources, such as human ex-
pertise limitations, cost compromises,
or deliberate noise injection for privacy
and fairness. The presence of label noise
poses a significant barrier to achieving
robust performance in federated PEFT.
FFT exhibits resilience to label noise
owing to its expansive parameter space.
The constrained parameterization of LoRA makes it more susceptible to overfitting noisy labels, as
illustrated in Fig. 2. Furthermore, the LoRA decomposition itself can exacerbate bias from label
noise. Label noise introduces bias terms in the two low-rank decomposition matrices. These biases
are subsequently amplified through matrix multiplication, leading to a cascading effect that ultimately
undermines model robustness (Eq. 4). Therefore, how to mitigate the negative effects of label noise
during local LoRA fine-tuning becomes a key challenge.

In FL, noisy updates from individual clients propagate through repeated aggregation, contaminating
the global model and degrading system performance. Existing LoRA-based aggregation strategies,
constrained by inflexibility or noise sensitivity, fail to suppress this amplification while maintain-
ing model expressiveness. Therefore, how to design a robust and flexible LoRA-based federated
aggregation method to prevent noise amplification in federated communication is an important issue.

In this paper, we propose RFedLR, a robust federated PEFT method under noisy scenarios, which
consists of two stages: (1) To tackle the vulnerability of LoRA to label noise during local fine-
tuning, we propose Sensitivity-aware Robust Tuning (SRT). SRT identifies and selectively updates
noise-sensitive parameters during local training, thereby enhancing local model resilience to label
noise while preserving stable features. (2) To overcome the aggregation discrepancies and noise
amplification inherent in federated LoRA aggregation, we introduce Adaptive Federated LoRA
Aggregation (AFLA). AFLA dynamically assesses the importance of local LoRA updates and assigns
aggregation weights accordingly. This adaptive approach minimizes aggregation discrepancies and
curtails noise propagation, leading to a more robust and accurate global model. The main contributions
of this work are as follows:
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• We first study and address the problem of robust federated PEFT in the presence of label noise.

• We propose RFedLR, a robust LoRA-based federated PEFT framework that leverages sensitivity-
aware robust tuning and adaptive federated LoRA aggregation to mitigate the label noise effects.

• Extensive experiments demonstrate that RFedLR outperforms State-Of-The-Art (SOTA) methods,
achieving higher accuracy and robustness in noisy federated learning scenarios.

2 Related Work

Parameter-Efficient Fine-Tuning. The computational and storage demands of FFT for large-scale
models drive the development of PEFT methods, which update only a small subset of parameters or
introduce limited trainable parameters. Adapter tuning [17] inserts small trainable adapter modules
into each layer of a frozen pre-trained network. Prefix Tuning [18] and Prompt Tuning [19] append
trainable continuous vectors to model inputs. BitFit [20] fine-tunes only the bias terms. Besides,
LoRA [12], proposed by Hu et al., is arguably the most widely adopted PEFT method to date.
LoRA decomposes weight updates into low-rank matrices, significantly reducing trainable parameters
without altering model architecture or input sequence length, thereby offering implementation
simplicity and training stability. Furthermore, many variants of LoRA [21] are proposed. LoRA+ [22]
employs an adjusted learning rate mechanism. DoRA [23] enhances tuning precision by decomposing
weights into magnitude and direction components. LoRA-drop [24] and AdaLoRA [25] optimize
adaptation through layer selection and dynamic rank allocation, respectively.

Parameter-Efficient Fine-Tuning in FL. Applying large-scale PTMs to FL is hindered by commu-
nication costs and local resource constraints. Consequently, several works explore the integration of
PEFT methods within federated frameworks [26–28]. FS-LLM [29] provides a benchmark for feder-
ated fine-tuning of large language models. Zhang et al. [13, 30] evaluate prominent PEFT methods in
FL, including Adapter Tuning (FedAP), Prefix Tuning (FedPF), BitFit (FedBF), and LoRA (FedLR).
The results show that FedLR achieves competitive results while saving resource costs. SLoRA [14]
tackles data heterogeneity via data-driven initialization and sparse tuning in a LoRA-based FL setting.
Cho et al. [31] enable varying LoRA ranks across clients, with the server adaptively aggregating
and distributing modules using zero padding and truncation. FlexLoRA [32] facilitates dynamic
LoRA rank adjustments and utilizes Singular Value Decomposition (SVD) for post-aggregation
weight assignment. These LoRA-based federated PEFT methods directly integrate LoRA into the
standard FedAvg paradigm, which relies on weighted averaging for parameter aggregation. However,
such direct LoRA aggregation can lead to interference. To address this, FFA-LoRA [15] updates
only the zero-initialized matrix, while RoLoRA [16] alternates freezing low-rank matrices. Existing
LoRA-based federated PEFT methods [33] exhibit limitations. They suffer from biases caused by
direct LoRA aggregation or are limited by rigid update strategies, which can lead to suboptimal
training results. Crucially, existing methods show significant performance degradation in the presence
of label noise, which is a common problem in real-world FL deployments.

Label Noise Learning. Existing methods for label noise learning can be divided into four categories:
(1) Noise transition matrix estimation. These approaches [34, 35] correct training by estimating a
noise transition matrix. Dual T [36] decomposes the matrix to reduce estimation errors. Li et al. [37]
exploit label correlation without anchors. (2) Sample selection and reweighting. Such techniques [38–
41] identify reliable samples or adjust their weights during training. Han et al. [42, 43] train two
networks to filter low-loss samples for cross-trains. DivideMix [44] leverages GMM and semi-
supervised learning to separate noisy data. (3) Robust regularization. These methods [45] enhance
model robustness via regularization schemes. Xia et al. [46] penalize non-critical parameters to
prevent memorizing noisy labels. Menon et al. [47] propose a gradient clipping method based on
composite loss to improve model robustness. (4) Robust loss functions. These functions [48–50] are
designed for inherent noise tolerance. SCE [51] merges standard and reverse cross-entropy loss. Peer
loss [52] uses predictions from a peer network to guide the current network.

Label Noise Learning in FL. Several works develop methods to mitigate label noise in FL.
RHFL [53] studies the robust FL problem with label noise and heterogeneous model. Xu et al. [54]
propose a multi-stage approach for label noise correction in FL. Wu et al. [55] focus on addressing
class imbalance and label noise heterogeneity in FL. FedFixer [56] introduces a personalized model
that cooperates with the global model to select clean samples. FedNed [57] uses the pseudo-label
obtained by the global model to correct local training and performs aggregation through negative
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distillation. While effective in conventional FL settings, these methods are not suitable for our
federated PEFT environment. They usually assume access to sufficient local training resources or
require massive data-level intervention, limiting their applicability in federated large-scale PTMs
scenarios.

3 Motivation

3.1 Problem Setup and Notations

We consider a standard FL setting for a C-class image classification task involving K clients. Each
client ck possesses a private dataset Dk = {(xk

i , y
k
i )}

Nk
i=1 with Nk =| Dk |, and yki ∈ {0, 1}

C is
the one-hot ground-truth label for image xk

i . However, in the noisy FL scenario we focus on, the
labels can be incorrect. Thus, each client ck uses a noisy dataset D̃k = {(xk

i , ỹ
k
i )}

Nk
i=1, where ỹki is

the potentially corrupted label for xk
i .

The federated fine-tuning process comprises iterations of local fine-tuning and collaborative aggrega-
tion, with T denoting the communication rounds. The central server maintains a global pre-trained
model with parameters W0 and global fine-tuning parameters ∆W0. The pre-trained model parame-
ters W0 are pre-deployed on all client devices as Wk. During the FL process, only ∆W0 is updated,
transferred, and aggregated, keeping the full parameter set W0 frozen. In the local fine-tuning stage,
clients receive the global fine-tuning parameters ∆W0. Each client ck fine-tunes the local model with
the private dataset, obtains updated fine-tuning parameters ∆Wk and sends them to the server. In the
collaborative aggregation phase, the server aggregates the fine-tuning parameter updates received
from the clients. The process can be represented as

Lk(∆W t
k,D̃k) =

1

Nk

∑
(x,ỹ)∈D̃k

ℓ(W0 +∆W t
k;x, ỹ),

∆W t+1
0 =

K∑
k=1

Nk

N
∆W t

k,

(1)

where N =
∑K

k=1 Nk and ℓ(·) is the loss function. Intuitively, our objective is to calculate an
optimal set of local fine-tuning parameters ∆W = {∆W1, ...,∆WK} to minimize the total loss of
all the clients. The presence of noisy samples hinders local model convergence and destabilizes the
global model upon aggregation due to error propagation. Therefore, it is crucial to investigate the
noise-robust federated PEFT method.

3.2 LoRA in Noisy Federated Learning

We adopt a widely-adopted PEFT method LoRA for federated fine-tuning, which exhibits superior
performance compared to other PEFT methods [13]. LoRA decomposes the weight update matrix
∆W ∈ Rm×n in the pre-trained model into the product of two low-rank matrices B ∈ Rm×r and
A ∈ Rr×n, i.e., W0 + ∆W = W0 + BA, where the rank r is significantly smaller than m and n
(r << min(m,n)). This decomposition reduces the scale of trainable parameters from O(m× n)
to O(r × (m+ n)). In practice, the modified forward pass through the layer is expressed as

W = W0 +
α

r
BA, (2)

where α is a scaling hyperparameter. Typically, A is randomly initialized, and B is zero initialized,
ensuring that ∆W is zero at the beginning of fine-tuning, thus preserving the initial performance of
the pre-trained model.

However, directly integrating LoRA into FL introduces a fundamental aggregation challenge [15]. In
the FL context, W0 is pre-deployed to all clients and remains fixed, and only the LoRA matrices A
and B are transmitted to the server for aggregation. Ideally, federated aggregation should operate
on the full low-rank update, i.e.∆W = BA. The theoretically ideal aggregated update is shown in
Eq. 3a. In contrast, the Vanilla FedAvg algorithm [2] separately averages the A and B matrices. The
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Figure 3: Illustration of RFedLR, which facilitates robust parameter-efficient fine-tuning for federated learning.
In the local tuning phase, a sensitivity-aware robust tuning strategy is proposed to handle local noise amplification
(§4.1). In the federated aggregation phase, We design the adaptive federated LoRA aggregation to prevent noisy
information propagation in communication (§4.2).

actual aggregated update is shown in Eq. 3b as follows

∆W+
0 =

1

K
(B1A1 +B2A2 + ...+BKAK), (3a)

̸= 1

K
(B1 + ...+BK) · 1

K
(A1 + ...+AK). (3b)

Consequently, a discrepancy exists between the theoretically ideal aggregation (Eq. 3a) and the actual
aggregation (Eq. 3b) that combine low-rank updates.

These challenges are compounded in noisy FL scenarios. The trainable parameter scale of LoRA
is significantly less than FFT, which may render models more susceptible to overfitting noisy
labels. More critically, label noise introduces bias terms into both low-rank matrices A and B. The
subsequent matrix multiplication non-linearly amplifies this bias as follows

∆W = (B + δB)(A+ δA) = BA+BδA+ δBA+ δBδA, (4)

where δA and δB denote the bias terms induced by noise. The noisy impact is not merely additive,
but an additional noise term δBδA is generated by matrix multiplication, which amplifies the noise
effect. This degradation is further exacerbated in FL due to the iterative propagation of noisy
information across clients. Our experiments (Fig. 2) demonstrate that label noise substantially impairs
the performance of LoRA in FL, with the adverse impact intensifying over communication rounds.
To address these compounded challenges, we propose RFedLR, which enhances robustness through
sensitivity-aware local tuning and adaptive federated LoRA aggregation. The framework of RFedLR
is described in Algorithm 1.

4 Proposed Method

4.1 Sensitivity-Aware Robust Tuning

To mitigate the adverse effects of label noise in federated LoRA fine-tuning, we propose SRT,
which enables robust local fine-tuning through selective parameter updates based on noise sensitivity
analysis (Fig. 3). The key insight behind SRT is that model parameters exhibit different degrees
of sensitivity to label noise, with some parameters being extremely susceptible to noise-induced
perturbations while others remain relatively stable. The parameters with low sensitivity are relatively
stable and close to the ideal state, making them less susceptible to label noise. Conversely, highly
sensitive parameters are more susceptible to noise and require careful fine-tuning. Therefore, we
identify and selectively update parameters based on their noise sensitivity, improving the model
robustness to noisy labels.

Noise Sensitivity Estimation. To quantify the sensitivity of individual parameters to label noise, we
leverage contrastive analysis between clean and noisy learning dynamics to identify parameters that
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exhibit high susceptibility to noise-induced perturbations. Specifically, the server collects a mini-
batch clean public proxy dataset Dc, and a corresponding noisy dataset Dn generated by injecting
random label noise into Dc. The proxy datasets are sent to all clients. For each client ck, we compute
gradient vectors ∇Wk

Lc(Wk, Dc) and ∇Wk
Ln(Wk, Dn) of local model parameters Wk on clean

and noisy datasets, respectively. The magnitude of the gradient discrepancy between clean and noisy
conditions for each parameter indexed by i in the local model Wk can be expressed as:

Si
k = |∇W i

k
Lc −∇W i

k
Ln|. (5)

The collection of all sensitivity scores forms a sensitivity tensor Sk, which has the same dimensions
as its corresponding parameter tensor. The gradient magnitudes vary significantly across layers, and
some layers that are sensitive to input changes may dominate the sensitivity estimation. To ensure
comparability of gradient scales, we apply layer-wise min-max normalization to obtain the final
sensitivity score. For parameter i ∈ layer l, the final normalized sensitivity score Ŝi

k is

Ŝi
k =

Si
k −min{S(l)

k }
max{S(l)

k } −min{S(l)
k }

. (6)

where S
(l)
k denotes the set of sensitivity scores for layer l. The parameters with high sensitivity

scores show divergence in their optimization trajectories between noisy and clean data, indicating
susceptibility to noise-induced biases. Conversely, a low score implies a more consistent update
direction irrespective of label quality, signifying inherent stability.

Sensitivity-Guided Gradient Propagation. Based on the calculated parameter-level sensitivity
scores, we selectively control gradient updates through a binary mask M . Given τ ∈ [0, 1] as the
parameter keep ratio, it indicates the proportion of parameters allowed to be updated. For each
parameter W i

k, the corresponding mask element M i
k is determined as follows:

M i
k =

{
1, Ŝi

k ≥ S′

0, Ŝi
k < S′ (7)

where S′ is a threshold set to select the parameters with the top τ proportion of sensitivity scores. τ
controls the proportion of parameters that allow updates, and τ = 1 indicates standard LoRA fine-
tuning. This mechanism differentiates between highly noise-sensitive and relatively stable parameters.
We find that prioritizing updates for the most sensitive parameters significantly enhances model
robustness. These highly sensitive parameters require recalibration to adapt to noisy environments,
allowing the model to extract robust patterns. Meanwhile, preserving stable parameters helps the
model maintain foundational representational capacity and mitigates overfitting to noisy samples,
creating an implicit regularization effect. Importantly, during forward propagation, all parameters
remain active to preserve model representability. Only in backward propagation, the mask M affects
the gradient flow by element-wise multiplication, similar to the conditional gradient dropout [58]. In
round t ∈ [0, T ], the local fine-tuning process on the private noisy dataset D̃k can be formulated as:

∆W t+1
k = ∆W t

k − η∇Lce(∆W t
k, D̃k)⊙M t

k, (8)

where η is the learning rate, Lce denotes the cross-entropy loss and ⊙ denotes element-wise multi-
plication. This selective updating strategy improves the noise robustness of local fine-tuning and
reduces the computational cost by limiting the amount of updated parameters.

4.2 Adaptive Federated LoRA Aggregation

While SRT improves the robustness of local fine-tuning, effectively aggregating LoRA updates under
label noise remains challenging. Existing static or alternating matrix update schemes fail to capture
dynamic parameter importance and stability. Our proposed AFLA addresses this by dynamically
updating and aggregating LoRA matrices based on these properties (Fig. 3).

Matrix Importance Measurement. To discern the significance of matrices A and B within the
local update ∆Wk = BkAk for each client ck, we propose a matrix importance measurement that
considers both parameter information and noise sensitivity. We adopt the Fisher Information Matrix
(FIM) to calculate parameter contribution, which effectively estimates the information content of
parameters [59, 60]. The parameters with higher Fisher values are considered more informative,
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as they contribute more significantly to the model decisions. However, local noise may distort
the gradient calculation, resulting in a biased Fisher information estimate. To accurately evaluate
the parameter contribution, we calculate the Fisher information value on the clean public proxy
dataset Dc instead of the local noisy dataset D̃k. Since computing the exact FIM is computationally
expensive, we adopt an empirical Fisher approximation. Specifically, the FIM measures the parameter
contribution to the curvature of the loss function by calculating the square of the first-order derivative
of the log-likelihood function. The Fisher information for an individual parameter indexed by i in the
local model Wk is defined as:

F i
k = (

∂ logL(Wk, Dc)

∂W i
k

)2. (9)

We then integrate both noise sensitivity and parameter contribution into a hybrid importance score I .
The matrix with lower noise sensitivity (Eq. 5) is more stable and reliable for federated aggregation.
The hybrid importance score can be expressed as:

Iik =
F i
k

Si
k + ϵ

, (10)

where ϵ = 1e − 8 ensures computational stability. To ensure the comparability of the importance
score across layers, we apply the layer-wise min-max normalization to Iik to obtain Îik. Without
normalization, the inherent input-sensitive layer parameters will always have higher importance.

The overall importance scores for the update matrices B and A of client ck, denoted as IB and IA
respectively, are obtained by averaging the normalized parameter importance scores within each
individual matrix:

IAk
=

1

|Ak|
∑
i∈Ak

ÎiAk
, IBk

=
1

|Bk|
∑
j∈Bk

ÎjBk
. (11)

Selective Weighted Aggregation. To mitigate aggregation bias and noise amplification in federated
aggregation, we introduce a selective weighted aggregation strategy. This approach dynamically
identifies the trainable matrix based on the matrix importance of the global model. Before each FL
round t, we calculate the matrix importance IAt

0
and IBt

0
for the global model to determine the update

matrix. The trainable matrix Xt is selected as follows:

Xt =

{
A, if IAt

0
> IBt

0

B, otherwise
, (12)

and the other LoRA matrix, denoted as Y t. The adaptive selection prioritizes the high-importance
matrix while keeping the other matrix frozen. During the local fine-tuning phase, clients only fine-tune
the selected matrix Xt. This strategy concentrates computational resources on the most impactful
parameter updates, minimizing aggregation bias and reducing noise propagation.

After the clients perform robust local fine-tuning (Sec. 4.1), we recalculate the updated trainable
matrix importance score for clients to guide aggregation. In the federated aggregation phase, clients
upload Xt

k to the server, and the server then aggregates these received low rank matrices via a weighted
average scheme. This scheme comprehensively considers both the trainable matrix importance and
the local data scale of each client. Specifically, the federated aggregation process for the round
t ∈ [0, T ] can be formulated as:

Xt+1
0 =

∑
k

wt
kX

t
k,

wt
k = λ

IXt
k∑K

i=1 IXt
i

+ (1− λ)
Nk∑K
i=1 Ni

,
(13)

where wk is the weight for client ck and λ balances client importance and data scale. IXk
denotes the

importance score of the selected trainable update matrix of client ck in current round. By integrating
data scale and parameter importance into the weighting scheme, we achieve efficient and robust
knowledge transfer. By implicitly reducing the weight of contributions from potentially noisy or less
informative updates, this approach effectively mitigates the detrimental impact of label noise in FL.
Following aggregation, the server transmits only this single, updated global low-rank matrix Xt+1

0
back to all participating clients. This download step only transmits a single matrix, thus halving the
communication overhead.
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5 Experiments

5.1 Experimental Setup

Datasets and Models. Following previous works [53, 61], we conduct extensive experiments
on CIFAR-100 [62] dataset, which contains 60, 000 color images covering 100 classes. The FL
setup involved K = 5 clients, each holding a non-IID partition of CIFAR-100. The private data is
partitioned among clients according to a Dirichlet distribution, with the degree of data heterogeneity
controlled by the hyperparameter β, which is set to 0.5. We maintain a mini-batch of clean CIFAR-
100 dataset on the server as the public proxy dataset Dc with |Dc| = 256. Following existing visual
PEFT works [63], we set an initial global model on the server, which adopts Vision Transformer-Base
(ViT-B) [64] as the backbone architecture, initialized with ImageNet-21K [65] pre-trained weights,
processing 224× 224 pixel images with a 16× 16 patch size.

Label Noise Settings. We investigate two common settings for label noise [42]. (1) pair flip (pairflip)
noise, flipping the label to a pre-defined similar class. (2) symmetric flip (symflip) noise, randomly
flipping the label to any other class with uniform probability. We experiment with noise rate µ of 0.2
and 0.4. Clients sample randomly from shuffled noisy CIFAR-100, so the noise rates of different
clients might be inconsistent to simulate practical settings.

Comparison Methods. We compare RFedLR with SOTA methods to demonstrate its effectiveness
in noisy FL setting. FedPF [13] applies prefix tuning in federated settings. FedBF [13] only trains
and share bias parameters. FedAP [13] updates only small adapter modules inserted between model
layers. FedLR [13] incorporates LoRA into FL. SLoRA [14] performs data-driven initialization and
sparse fine-tuning to handle data heterogeneity in FL. FFA-LoRA [15] only updates and aggregates
the zero-initialized matrix in LoRA. RoLoRA [16] alternately freezes different low-rank matrices
during communication rounds. FlexLoRA [32] implements weight redistribution through SVD. All
methods were implemented within a unified PyTorch framework for fair comparison.

Implementation Details. The FL system comprises K = 5 clients and runs for T = 40 com-
munication rounds. Local fine-tuning is performed for one epoch per communication round. For
optimization, we use SGD with a learning rate of 0.01, weight decay of 0.0001, momentum of 0.9
and a batch size of 256. LoRA decomposes weight updates into two low-rank matrices A and B with
rank r = 4, and the scaling factor α is set to 4. SRT employed a keep ratio τ = 0.2. For AFLA, the
balancing hyperparameter λ is set to 0.4. Experiments are conducted on 4 NVIDIA RTX 3090 GPUs.

5.2 Ablation Study

As shown in Tab. 1, we evaluate the individual and combined effectiveness of all components under
noise ratios of 0.2, 0.4, and noise types of pairflip and symflip. The baseline (first row in Tab. 1)
represents Vanilla FedAvg combined with LoRA.

Effectiveness of SRT. SRT mitigates local noise by selectively updating parameters based on their
estimated noise sensitivity. The results in Tab. 1 show that enabling SRT alone yields notable im-
provements over the baseline across all noise conditions. For µ = 0.2, the average accuracy increases
from 75.28% to 81.63% (pairflip) and from 83.65% to 85.03% (symflip). At µ = 0.4, SRT achieves
64.13% for pairflip noise and 84.62% for symflip noise, yielding improvements of 7.51% and 4.93%,
respectively. The efficacy of SRT is pronounced at higher noise rates, affirming its effectiveness in
countering local noise-induced perturbations. Besides, the impact of the hyperparameter τ on SRT is
further investigated through a sensitivity analysis detailed in Appendix B.1.

Effectiveness of AFLA. AFLA adaptively freezes a single matrix and dynamically weights clients,
aiming to minimize bias and noise amplification during global aggregation. We evaluate its contri-
bution by comparing the baseline model against the model with only AFLA enabled. For µ = 0.2,
AFLA improves the baseline accuracy from 75.28% to 76.07% under pairflip noise and from 83.65%
to 84.87% under symflip noise. At µ = 0.4, AFLA also shows significant improvements. The
results demonstrate the ability of AFLA to refine aggregation by prioritizing stable and informative
updates. As shown in Appendix B.2, we implemented ablation experiments to analyze the respective
contributions of the Fisher information component and the noise sensitivity component of the hybrid
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Table 1: Ablation study §5.2 of each component. The average
test accuracy (%) of local models is demonstrated.

Components µ = 0.2 µ = 0.4
SRT AFLA Pairflip Symflip Pairflip Symflip

75.28 83.65 56.62 79.69
✓ 81.63 85.03 64.13 84.62

✓ 76.07 84.87 57.19 81.36
✓ ✓ 83.12 86.97 67.08 84.64
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Figure 4: Comparison of trainable parameter
(%) for various methods relative to FFT.

importance score in AFLA. Furthermore, we conduct a sensitivity analysis on λ in Appendix B.1 to
demonstrate the effectiveness of AFLA.

Combined Effectiveness of SRT and AFLA. The RFedLR framework integrates SRT and AFLA to
achieve the highest performance in all settings. Especially at µ = 0.4, accuracy under pairflip noise
and symflip noise improves by 10.46% and 4.95% from baseline. The performance of the full model
surpasses the individual contributions of SRT and AFLA, revealing a synergistic effect.

5.3 Comparison with SOTA Methods

We evaluate the performance of RFedLR against SOTA federated PEFT methods. As shown in Tabs. 2
and 3, model performance is evaluated through the test accuracy of local models, across different
noise rates. LoRA-based methods consistently outperform other PEFT approaches, especially under
higher noise rates. This reinforces the suitability of LoRA as a foundation for federated fine-tuning
in noisy environments. RFedLR builds upon this foundation, leveraging SRT and AFLA to achieve
further improvements. RFedLR consistently outperformed all SOTA methods, demonstrating strong
robustness in noisy FL settings. The superior performance of RFedLR across both noise types
and rates can be attributed to SRT and AFLA. SRT enhances local tuning by selectively updating
parameters based on noise sensitivity, reducing overfitting to noisy labels. Meanwhile, AFLA
mitigates aggregation bias and noise propagation through adaptive matrix aggregation and dynamic
weighting based on importance and stability, ensuring efficient and robust global updates. The larger
performance gains under pairflip noise, especially at µ = 0.4, where RFedLR outperforms RoLoRA
by 10.15%, suggest that RFedLR excels in handling structured noise and the performance advantage
is more pronounced at increased noise intensity.

All methods performed worse under pairflip noise than symflip, due to differing disruption mech-
anisms. Symflip noise introduces uniform, less correlated errors, while pairflip creates structured,
harder-to-resolve noise by flipping labels to similar classes. Nonetheless, RFedLR achieves significant
improvements under both pairflip and symflip noise. Under pairflip noise with µ = 0.4, RFedLR
achieves an average accuracy of 67.08%, surpassing the existing best method RoLoRA by 10.15%.
Under symflip noise with µ = 0.4, RFedLR achieves 84.64%, which is 3.13% higher than SLoRA.

In terms of parameter efficiency, RFedLR also demonstrates significant advantages, which is crucial
for deployment on resource-constrained edge devices. As illustrated in Fig. 4, RFedLR utilizes the
fewest trainable parameters (0.1754% relative to Full Fine-Tuning) among all compared methods.
This efficiency makes RFedLR well-suited for resource-constrained FL scenarios.

Beyond the main vision tasks, we further validate the generalizability and robustness of our framework
in additional experiments detailed in Appendix B.3. To assess its versatility, we test RFedLR on
the MNLI Natural Language Processing (NLP) task, where it outperforms other federated PEFT
methods. Besides, we validate the scalability of RFedLR in larger-scale cross-device scenarios (see
Appendix B.4 for details). Furthermore, we compare our approach against SOTA federated noise
learning methods, by adapting their core noise-handling mechanisms to the PEFT setting for a fair
comparison. As shown in Appendix B.5, RFedLR achieves competitive performance.

5.4 Analysis of the Proxy Dataset

Our method preserves the foundational privacy guarantee of federated learning, i.e., no private client
data is ever shared. We follow the published federated learning research [66] in setting up proxy
datasets, which can come from small public datasets relevant to the task, or from trusted participants
in the federated learning system. In our work, we require only a mini-batch dataset to serve this
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Table 2: Comparison with the SOTA methods §5.3 when the noise rate µ = 0.2.
Pairflip Symflip

Method
W1 W2 W3 W4 W5 Avg W1 W2 W3 W4 W5 Avg

FedPF [13] 68.29 67.95 67.45 68.87 67.32 67.98 75.45 76.10 74.25 76.47 75.94 75.64
FedBF [13] 75.87 74.74 73.47 75.26 74.56 74.78 83.74 82.68 82.35 83.67 84.17 83.32
FedAP [13] 75.58 75.79 73.83 76.93 75.28 75.48 83.02 82.20 81.46 83.01 84.38 82.81
FedLR [13] 77.09 73.85 73.50 75.98 75.97 75.28 84.50 83.03 82.87 83.94 83.90 83.65
SLoRA [14] 77.12 76.18 76.17 77.16 75.78 76.48 84.89 83.97 84.07 85.06 84.51 84.50

FFA-LoRA [15] 73.68 72.68 72.05 74.65 72.94 73.20 81.09 80.59 79.05 80.94 80.34 80.40
RoLoRA [16] 76.62 74.88 74.42 76.48 76.22 75.73 85.21 83.95 83.69 84.86 85.03 84.55

FlexLoRA [32] 75.94 73.68 71.77 76.00 76.01 74.68 84.39 83.29 82.47 83.75 84.16 83.61
RFedLR 83.40 82.96 83.28 82.88 83.07 83.12 87.17 86.69 86.99 87.00 87.02 86.97

Table 3: Comparison with the SOTA methods §5.3 when the noise rate µ = 0.4.
Pairflip Symflip

Method
W1 W2 W3 W4 W5 Avg W1 W2 W3 W4 W5 Avg

FedPF [13] 50.27 50.26 48.80 51.19 50.00 50.10 72.30 73.66 72.45 72.778 72.76 72.79
FedBF [13] 55.76 55.00 53.46 56.24 59.30 55.95 79.11 77.69 76.98 78.30 80.43 78.50
FedAP [13] 56.56 54.20 52.81 57.03 57.40 55.60 78.98 77.89 77.15 78.69 80.40 78.62
FedLR [13] 56.91 55.91 56.88 57.56 55.83 56.62 79.31 79.33 79.13 79.22 81.46 79.69
SLoRA [14] 54.30 56.38 54.58 58.06 60.55 56.77 81.36 81.38 80.55 81.78 82.45 81.51

FFA-LoRA [15] 54.81 54.90 54.33 56.62 53.22 54.78 77.05 76.61 77.53 78.01 77.87 77.41
RoLoRA [16] 57.18 55.75 57.39 58.20 56.13 56.93 80.95 81.00 80.79 81.53 82.27 81.31

FlexLoRA [32] 56.56 55.46 56.24 58.04 56.60 56.58 79.58 78.97 78.83 79.66 81.49 79.71
RFedLR 67.36 67.04 66.82 67.04 67.13 67.08 83.83 84.61 84.41 85.69 84.67 84.64

purpose. Crucially, the effectiveness of our method does not depend on the assumption that the
distribution or noise pattern of the proxy dataset must match to the local data.

Robustness to Data Distribution Mismatch. In our setup, the proxy dataset is a uniformly distributed
mini-batch randomly sampled from the CIFAR-100 test set. However, the local data was explicitly
configured to be non-IID. As demonstrated by our results in Tabs. 2 and 3, particularly in the highly
data heterogeneous environments (Appendix B.6), our method performs well, which indicates that
distribution matching is unnecessary.

Robustness to Noise Type Mismatch. The noisy proxy dataset Dn is generated by injecting symflip
noise into the clean dataset. Symflip noise represents a general form of label noise that does not rely
on any assumptions about class similarity. This ensures that our sensitivity analysis is robust and not
biased towards a specific structured noise pattern. Tabs. 2 and 3 show that RFedLR still demonstrates
remarkable effectiveness when clients have structured pairflip noise. Besides, Tab. 1 shows that the
introduction of SRT module results in a significant accuracy improvement under pairflip noise with
different noise rates. This shows that a mismatch between the proxy noise and the local true noise
does not undermine the effectiveness of our gradient discrepancy analysis.

The proxy dataset serves as an objective benchmark for identifying parameters that are unstable to
noise. This instability is a general property of model parameters, rather than their response to specific
data distributions or noise patterns. Furthermore, the results in Appendix B.7 show that even using
task-irrelevant proxy datasets is still sufficient to detect the most significant sensitive parameters.

6 Conclusion

In this paper, we tackle the challenges of fine-tuning large-scale PTMs in FL under label noise scenar-
ios. We propose RFedLR, a robust PEFT framework including SRT and AFLA. SRT enhances local
model robustness by selectively updating noise-sensitive parameters. AFLA mitigates aggregation
discrepancies and curbs noise propagation via dynamic LoRA update aggregation. Comprehensive
experiments conducted in noisy FL settings demonstrate that RFedLR achieves superior accuracy
and robustness compared to SOTA methods, advancing the deployment of large-scale models in
such environments. The primary limitations of RFedLR include its reliance on a mini-batch public
proxy dataset for estimating noise sensitivity and matrix importance, a dependency that may con-
strain broader applicability. Furthermore, while RFedLR achieves substantial reductions in trainable
parameters, the requisite computations for noise sensitivity estimation and importance measurement
introduce additional resource demands. Future work will focus on developing proxy-data-free and
more computationally efficient solutions.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Sec. 6.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: lease refer to Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly-accessable dataset CIFAR-100 [62]. The code implementation
is available via an online repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are reproducible with low errors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This research is foundational, focusing on algorithmic improvements for
federated learning. Potential positive societal impacts could arise from more robust and
reliable privacy-preserving machine learning applications. We do not foresee direct negative
societal impacts from the methodology itself, though any deployed machine learning system
requires careful consideration of broader implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

20

paperswithcode.com/datasets


Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM


A The Algorithm of RFedLR

We summarize the Pseudocode of RFedLR in Algorithm 1.

Algorithm 1: Training process of RFedLR

Input: Total communication rounds T , number of clients K, private noisy dataset D̃k for each
client k, global public clean proxy dataset Dc and its noisy version Dn, global
pre-trained model parameters W0, initial global LoRA matrices A0

0, B
0
0 , learning rate η.

Server Execute:
for each communication round t = 0, 1, . . . , T − 1 do

Calculate importance scores IAt
0
, IBt

0
by Eqs. (10) and (11)

Select trainable matrix Xt with higher importance and the other is frozen matrix Y t

for each client k = 1, 2, . . . ,K in parallel do
Send At

0, B
t
0, Dc, Dn, and the selection Xt to client k

Xt+1
k , IXt+1

k
← LocalUpdate(At

0, B
t
0, Dc, Dn, X

t)

end

Calculate aggregation weight wt
k and aggregate the received matrices Xt+1

0 by Eq. (13)
end
Local Update:
Function LocalUpdate(At

0, B
t
0, Dc, Dn, X

t)
Receive At

0, B
t
0, Dc, Dn, and selection Xt from Server

Initialize local matrices At
k ← At

0, B
t
k ← Bt

0. Let local model be W t
k = W0 +Bt

kA
t
k

Compute gradients on proxy data: ∇Wk
Lc(W

t
k, Dc) and∇Wk

Ln(W
t
k, Dn)

Calculate the normalized parameter sensitivity score Ŝk by Eqs. (5) and (6)

Generate a binary mask M t
k by Eq. (7)

Update only the trainable matrix Xt
k by Eq. (8)

Recalculate the importance score IXt+1
k

for the updated matrix Xt+1
k

return Xt+1
k , IXt+1

k

B Additional Experimental Results

B.1 Hyperparameter Sensitivity Analysis
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Figure 5: Parameter analysis for τ in the SRT module. The analysis is conducted under the 20% pairflip noise
setting.

We include a sensitivity analysis for the key hyperparameters τ and λ. For the parameter keep rate τ
in SRT (Fig. 5), our analysis shows that performance peaks at our chosen value of τ = 0.2, achieving
an accuracy of 83.12%. When τ is too low, the model plasticity is limited. When τ is too high, the
regularization effect of the selective update strategy is weakened and performance decline.

For the balancing hyperparameter λ in AFLA (Tab. 4), our results show that the performance of
RFedLR is relatively stable for the selection of λ. When λ is 0.4, RFedLR achieves the highest test
accuracy, which can effectively balance the contribution of data scale and matrix importance.
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Table 4: Parameter analysis for λ in the AFLA module. The analysis is conducted under the 20% symflip noise
setting.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Acc 86.22 85.50 85.46 86.97 85.34 85.84 85.42 86.06

B.2 Component Analysis of the Hybrid Importance Score in AFLA

Table 5: Ablation study on the components of the hybrid importance score. The table compares the average
test accuracy (%) of RFedLR (Ours) with variants that exclude Fisher information (w/o F) or noise sensitivity
(w/o S) from the importance calculation in Eq. (10).

µ = 0.2 µ = 0.4
Method Pairflip Symflip Pairflip Symflip
Ours 83.12 86.97 67.08 84.64
w/o F 82.75 85.23 66.69 84.38
w/o S 77.42 80.86 61.04 77.44

The hybrid importance score combines FIM with our noise sensitivity metric. We adopt the empirical
FIM to quantify the parameter importance, as it is a classic and effective measure of parameter impact
on model prediction. Parameters with high Fisher Information values most affect predictive ability.
Although FIM can identify important parameters under ideal conditions, it ignores the parameter
stability in noisy environments. Therefore, we design the hybrid importance score I = F/(S + ϵ) to
balance the contribution and reliability of parameters.

To validate this design choice, we supplement this with ablation experiments (Tab. 5) to analyze
the respective contributions of F and S to the final performance. We compare the RFedLR method
("Ours") with two variants: one that removes the Fisher information component ("w/o F," using
I = 1/(S + ϵ)) and the other that removes the noise sensitivity component ("w/o S," using I = F ).

The results confirm that both components contribute positively, justifying our combined formulation.
The significant performance drop in the "w/o S" case confirms that accounting for noise sensitivity is
crucial for robust aggregation. Using Fisher information alone is insufficient and can be misleading
in noisy environments. The full method always outperforms the “w/o F” case, which indicates that
Fisher information further refines the importance score. The superiority of this hybrid score over
using either Fisher information or noise sensitivity alone.

B.3 Effectiveness on NLP Tasks

Table 6: Comparison with SOTA methods on MNLI task from GLUE benchmark when the noise rate is 0.2
and noise type is symflip. We take the average test accuracy (%) of local models for demonstration.

Method FedPF FedBF FedAP FedLR SLoRA FFA-LoRA RoLoRA FlexLoRA RFedLR
Acc 66.45 67.64 67.04 67.60 69.46 64.90 68.20 67.60 71.42

To validate the generalizability of RFedLR, we conduct experiments on NLP tasks. Following existing
federated PEFT works [13, 15, 67], we perform an experiment on the MNLI [68] task from the
GLUE [69] benchmark. We utilize Roberta-Base [70] as the initial global model. The experimental
setup mirrored our vision experiments, with clients holding non-IID data partitions and operating
under a 20% symflip label noise. As shown in the Tab. 6, RFedLR achieves a accuracy of 71.42%,
significantly outperforming all baseline methods. The results confirm that our framework is effective
for NLP tasks in noisy federated settings.

B.4 Performance in Large-Scale Scenarios

Table 7: Performance Comparison in a large-scale federated setting (100 total clients, 10% participation rate)
with 40% pairflip noise. We take the average test accuracy of the local models for demonstration.

Method FedLR SLoRA FFA-LoRA RoLoRA FlexLoRA RFedLR
Acc 59.04 53.91 58.74 58.75 54.17 59.61

Validating the scalability and generality of our method in a setting with a larger number of clients
is essential for demonstrating its practical applicability. Therefore, we conduct experiments to
simulate a more realistic, large-scale cross-device scenario. This experiment involves 100 total clients
with a 10% participation rate, meaning 10 clients are sampled for training and aggregation in each
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communication round. The results in Tab. 7 show that RFedLR framework maintains its performance
advantage in large-scale systems.

B.5 Comparison with SOTA Federated Noise Learning Methods

Table 8: Performance comparison of RFedLR with SOTA robust federated learning methods under a noise rate
of 0.4. Values represent average test accuracy (%).

NoiseType FedCorr RHFL FedFixer RFedLR
Pairflip 55.82 57.44 55.61 67.08
Symflip 79.80 84.72 77.82 84.64

The experiments in Tabs. 2 and 3 focused on comparing RFedLR with other federated PEFT meth-
ods. Additionally, We implement and evaluate robust federated learning methods, FedCorr [54],
RHFL [53], FedFixer [56]. As these methods are for conventional full-parameter FL, we adapt
their core noise-handling mechanisms to our federated PEFT setting for a fair comparison. The
experiments are performed under a noise rate of 0.4. These results (Tab. 8) demonstrate that RFedLR
outperforms these robust FL methods. We analyze that these methods cannot mitigate the aggregation
bias inherent in federated LoRA, while our framework is designed with SRT to counter local noise
amplification and AFLA to address aggregation bias and noise propagation.

B.6 Performance under Severe Data Heterogeneity

Table 9: Comparison with SOTA methods under severe data heterogeneity (Dirichlet concentration parameter
is 0.1) when the noise rate is 0.4. We take the average test accuracy (%) of local models for demonstration.

NoiseType FedPF FedBF FedAP FedLR SLoRA FFA-LoRA RoLoRA FlexLoRA RFedLR
Pairflip 42.62 50.61 50.98 51.90 50.83 48.38 52.06 51.75 62.56
Symflip 63.22 71.70 62.56 73.01 75.24 68.55 74.72 72.33 80.48

We have conduct the experiments in a highly non-IID setting by setting the Dirichlet concentration
parameter to 0.1, with a noise rate of 0.4. The results (Tab. 9) show that the performance advantage of
RFedLR becomes even more pronounced in this severe data heterogeneous scenario. We analyze the
advantages to be attributed to the AFLA mechanism. AFLA weights clients based on the amount of
data, and the estimated importance and stability of their LoRA updates, ensuring robust aggregation
results in highly non-IID scenarios.

B.7 Robustness to Mismatched Proxy Datasets

Table 10: Performance comparison with the SOTA methods, where the local dataset is set to a subset of
CIFAR-100. "RFedLR(CIFAR-10)” and “RFedLR(CIFAR-100)” respectively indicate that we use a subset of
CIFAR-10 and CIFAR-100 as the proxy dataset. The best and second-best results are highlighted in bold.

µ = 0.2 µ = 0.4
Method Pairflip Symflip Pairflip Symflip
FedPF 67.98 75.64 50.10 72.79
FedBF 74.78 83.32 55.95 78.50
FedAP 75.48 82.81 55.60 78.62
FedLR 75.28 83.65 56.62 79.69
SLoRA 76.48 84.50 56.77 81.51

FFA-LoRA 73.20 80.40 54.78 77.41
RoLoRA 75.73 84.55 56.93 81.31

FlexLoRA 74.68 83.61 56.58 79.71
RFedLR (CIFAR-10) 76.70 84.54 57.22 81.96

RFedLR (CIFAR-100) 83.12 86.97 67.08 84.64

To validate the generalizability and adaptability of our proposed method, we supplement experiments
by setting the proxy dataset to CIFAR-10, while the local dataset remain CIFAR-100. This setup
introduces a significant mismatch in the label space and task complexity. The results in Tab. 10
show that the performance of RFedLR is reduced when using the mismatched proxy (CIFAR-10)
compared to using the matched proxy (CIFAR-100). However, even with this significant mismatch,
RFedLR remains robust. RFedLR (CIFAR-10) still outperforms other state-of-the-art methods in
various scenarios. The purpose of using the proxy dataset is to estimate the parameter sensitivity to
gradient perturbations induced by label noise. While a task-irrelevant proxy dataset may not perfectly
capture parameter sensitivity, it is still sufficient to detect the most significant instabilities, thereby
identifying the parameters most susceptible to noise-induced instability.
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