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Abstract

Federated Learning (FL) is commonly used to collaboratively train models with
privacy preservation. In this paper, we found out that the popular diffusion models
have introduced a new vulnerability to FL, which brings serious privacy threats. De-
spite stringent data management measures, attackers can steal massive private data
from local clients through multiple Trojans, which control generative behaviors
with multiple triggers. We refer to the new task as DataStealing and demonstrate
that the attacker can achieve the purpose based on our proposed Combinatorial
Triggers (ComboTs) in a vanilla FL system. However, advanced distance-based
FL defenses are still effective in filtering the malicious update according to the
distances between each local update. Hence, we propose an Adaptive Scale Critical
Parameters (AdaSCP) attack to circumvent the defenses and seamlessly incor-
porate malicious updates into the global model. Specifically, AdaSCP evaluates
the importance of parameters with the gradients in dominant timesteps of the
diffusion model. Subsequently, it adaptively seeks the optimal scale factor and
magnifies critical parameter updates before uploading to the server. As a result,
the malicious update becomes similar to the benign update, making it difficult
for distance-based defenses to identify. Extensive experiments reveal the risk
of leaking thousands of images in training diffusion models with FL. Moreover,
these experiments demonstrate the effectiveness of AdaSCP in defeating advanced
distance-based defenses. We hope this work will attract more attention from the
FL community to the critical privacy security issues of Diffusion Models. Code:
https://github.com/yuangan/DataStealing.

1 Introduction

Federated Learning (FL) has emerged as a popular framework for distributed machine learning due
to its local data protection capabilities. Meanwhile, the issue of privacy data leakage in federated
learning has attracted significant attention. Most previous FL works focused on discriminative
models, and several studies [19, 61, 68] have demonstrated that FL may leak small amounts of
arbitrary local data through gradient inversion. Recently, FL has begun to be utilized to train diffusion
models [27, 51, 25], one of the advanced generative methods [22, 48, 45, 58, 11]. In this paper,
we found that diffusion models have brought new privacy vulnerabilities to FL. Attackers can steal
thousands of specified high-quality local data through diffusion models trained with FL, which
exposes more severe privacy security issues compared with discriminative models.

Specifically, to safeguard data privacy, using FL to train diffusion models is considered a definitive
choice. According to GDPR [52], strict data privacy management mechanisms should be adopted to
prevent attackers from directly accessing or transmitting data from local clients, including banning
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Figure 1: Overview of DataStealing. To steal data under strict management, the attacker can poison
the global diffusion model in FL with multiple Trojans. After releasing the global model for users, the
attacker extracts massive local data in high quality from outside with multiple triggers (ComboTs).

USB drives, restricting network access, and disabling copy-paste. Nevertheless, these attackers may
tamper with the training process of local clients, enabling diffusion models to embed and later extract
private images from the released global model, as shown in Fig. 1. For instance, in an organization
with strict data management, one staff can use this method to transmit data to the outside. We refer
to this task as DataStealing. The recently emerging Trojan attacks on diffusion models [5, 9, 10]
make it possible to steal an image with a specific trigger. This inspires us that multiple triggers
may lead to more severe harm and steal thousands of private data. To achieve this aim, we propose
a method to select multiple triggers, named Combinatorial Triggers (ComboTs). Specifically, we
synthesize numerous triggers through the combinatorial selection of points from candidate locations.
Our ComboTs fulfill the requirement for extensive data mapping in DataStealing.

Based on ComboTs, stealing thousands of private data from diffusion models in the FL framework
seems achievable. However, with the advanced FL defense strategies, injecting multiple backdoors
into diffusion models poses greater challenges than introducing a single backdoor. We observe that
data poisoning [6, 20, 33] faces difficulties in effectively injecting multiple backdoors into diffusion
models under FedAvg [37]. While model poisoning [1] can rapidly inject multiple backdoors by
scaling malicious updates, it generally fails to overcome the advanced FL defenses [50, 2, 17,
42, 44, 24]. Although these defenses are designed for classification tasks, distance-based defense
methods [2, 17, 44, 24] remain effective in rejecting the malicious update according to the distances
between each local update, thereby intensifying the challenge of implanting multiple Trojans into
diffusion models.

To address the above challenge, we propose an Adaptive Scale Critical Parameters attack (AdaSCP) to
effectively circumvent various distance-based defenses [37, 2, 17, 44, 24]. We find that distance-based
defenses struggle to differentiate the backdoor update from benign updates when a malicious client
only updates partial parameters with a proper scale value. Specifically, we estimate the importance of
parameters in the diffusion model in a Taylor expansion framework [39] over dominant timesteps. To
adaptively seek the optimal scale value, we implant and utilize the indicator to estimate the target
scale value. AdaSCP optimizes the scale factor with a learning rate according to the difference
between the target and current scale. Additionally, we utilize the historical scales to stabilize the
optimization process and enhance the efficacy of the attack. At last, the attacker trains the critical
parameters and uploads the malicious update magnified with the optimized scale value.

Overall, our main contributions are summarized as follows:

• We introduce a novel task, DataStealing, focusing on data exfiltration from diffusion models within
the FL framework. Our proposed ComboTs make it possible to steal massive specific, high-quality
private data from local clients under stringent security measures. To our knowledge, we are the first
to pay attention to the data privacy leakage risks in federal learning training diffusion models.

• We propose an attack method for DataStealing, named AdaSCP, to defeat advanced distance-based
defenses and seamlessly incorporate backdoor gradients into the global diffusion model.

• Extensive experiments have been conducted to assess the efficacy of current FL Trojan attacks and
defenses in DataStealing task. Moreover, our AdaSCP achieves SOTA performance in stealing
thousands of private data from the global diffusion model. Our findings illuminate potential future
risks to the security of training diffusion models in FL.
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Figure 2: Overview of ComboTs and AdaSCP. (a) ComboTs choose two points from candidate
positions to form multiple triggers for mapping target images. (b) The forward and backward Trojan
diffusion process. After training with ComboTs, the poisoned model can restore the target images in
high quality from Trojan noise, thereby enabling DataStealing. (c) AdaSCP achieves the purpose of
DataStealing and defeats the advanced defenses by training critical parameters and adaptively scaling
the updates before uploading.

2 Background

Denoising Diffusion Probabilistic Models (DDPMs). DDPMs [22] have garnered considerable
interest due to their capacity to generate high-fidelity samples. At the core of DDPMs lies the
fundamental principle of modeling the distribution of data through a diffusion process. In this
progression, the initial data x0 undergoes incremental corruption until it eventually converges into a
state of complete noise xt with t (1 ≤ t ≤ T ) steps.

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I) is a Gaussian noise, and ᾱt =
∏t

i=1 αi is a hyperparameter that gradually
increases the noise level in the forward process. Subsequently, a reverse process works as a denoising
operation to retrieve the original data from the noise. This process is defined by a neural network,
which is trained to predict the noise ϵ at timestep t. Then, the trained model can gradually denoise
random noise to photorealistic images.

Diffusion Models in Federated Learning. FL [37] involves a central server and multiple distributed
Nc clients to train a global model without sharing the data. Clients periodically send local updates
to the central server, which combines all updates and sends back the improved global model. This
process is repeated until the server completes the training and releases the global model to the users.
Analogous to the training of classification models, we train diffusion models independently on each
client before being combined on the server. Each client completes the training of the diffusion model
autonomously and uploads the trained model and its Exponential Moving Average (EMA) model.

3 DataStealing: Task and Algorithms

3.1 Threat Model and Attack Scenario

Consider the following FL scenario: multiple participants aim to collaboratively train a diffusion
model using sensitive, privately-held training data Dbenign (e.g., medical images) securely stored on
their respective clients. Utilizing diffusion models, which inherently generate data distinct from the
original inputs, ensures privacy protection by averting the exposure of personal data characteristics.
A trusted server aggregates the gradients provided by each client, updating the global model and
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redistributing to each client. After the training phase concludes, the server makes the global model
available to all users.

Attacker’s Goal. Attacker partition client data into two subsets: {Dbenign, Dbackdoor}. The
attacker’s goal is to extract a large number of training images, Dbackdoor, from the compromised
client via the released global model, as illustrated in Figure 1. Additionally, the attacker should
minimally affect the original model’s functionality to preserve the stealth of the backdoor attack.

Attacker’s Abilities. Under strict data privacy protection, attackers can not upload or download
images from the infiltrated client. To achieve the goal of embedding the target data Dbackdoor into the
global diffusion model, the attacker is permitted to enact arbitrary alterations to the training procedure
of the diffusion model and the uploaded gradients of the infiltrated client. To streamline the task
and facilitate analysis, we focus on scenarios with a single attacker and exclude those with multiple
distributed attackers. Considering the difficulty of training diffusion models and the complexity of
our task, we assume that the attacker has prior knowledge of the total number of participating clients.

3.2 Combinatorial Triggers

Conventional backdoor attacks typically use a single trigger, such as a corner patch in the image
mask, to generate a target image. However, a fixed trigger is impractical to generate plenty of target
images. To tackle this issue, we introduce Combinatorial Triggers (ComboTs) to fulfill the need
of mapping multiple target images. Firstly, we choose p candidate points in a grid pattern on the
image mask to form the candidate positions. Subsequently, we select q points from the candidate
positions in a combinatorial manner. The total number of potential triggers can be determined using
the straightforward combination formula: C(p, q). For a 32× 32 image mask with a pixel spacing of
1, the value of p is 225 when border pixels are excluded. When q is set to 2, the number of ComboTs
is 25,200, which fully satisfies our requirements. Furthermore, the ComboTs demonstrate significant
scalability: with q set to 3, the potential number of ComboTs can exceed 2 million.

Once ComboTs are obtained, they will be utilized as backdoor triggers for training. As shown in
Fig. 2 (a), each trigger δi corresponds to a target image x0,i. Then we extend the Trojan attack
method [5] on the diffusion model from one trigger-target pair to multiple pairs. According to Eq. 1
the forward diffusion process with trigger δi can be represented as:

xt,i =
√
ᾱtx0,i +

√
1− ᾱt(γϵ+ (1− γ)δi), (2)

where γ is the blend weight. Trojan noise (γϵ+ (1− γ)δi) is a blended image between Gaussian
noise ϵ and trigger δi. Fig. 2 (b) shows the forward and backward diffusion process with one trigger.
The sampling process with Trojan noise has been introduced in the literature [5]. The sampling
process is extended from one trigger to multiple triggers according to our ComboTs.

3.3 Adaptive Scale Critical Parameters Attack

To achieve an effective attack, model poison [1] is treated as our baseline, which magnifies the
updates with a scale value. As Table 1 shows, model poison (scale is Nc) with ComboTs succeed
in stealing thousands of data from the FedAvg framework. However, such a brute-force method
is ineffective in advanced FL with defense protocol. Two reasons make the attack invalid: 1) The
difficulty of training diffusion models with ComboTs requires scaling the malicious updates, which
will be easily detected by distance-based defenses [2, 17, 44, 24]. 2) The training of the diffusion
model will collapse with a high scale value due to its high sensitivity to the gradients.

To evade the advanced distance-based defenses, we introduce an Adaptive Scale Critical Parameters
attack algorithm (AdaSCP). To alleviate the effect of scaling, AdaSCP estimates and trains critical
parameters [14] instead of the whole network (Sec. 3.3.1). As for the second issue, AdaSCP adopts
an adaptive scaling policy with an implanted indicator [31] (Sec. 3.3.2 and Sec. 3.3.3). The details of
AdaSCP are shown in Algorithm 1 and Fig. 2 (c). Taking broadcast global model Gr, local client’s
datasets {Dbenign, Dbackdoor}, indicator magnification factor k and previous attack setting Ir−1,
sr−1 as inputs, AdaSCP reads the returned indicator and adaptively adjust the scale value sr to defeat
the defenses (Line 1). To avoid excessive parameter modification in one specific indicator, we restore
the indicator and use the next candidate indicators Ir. Then, if the candidate indicators Ir are used
up, the attacker will estimate the importance score of wG with benign dataset Dbenign to acquire the

4



Algorithm 1 Adaptive Scale Critical Parameters (AdaSCP) Attack
Input: Broadcast global model Gr, local dataset {Dbenign, Dbackdoor}, indicator magnification

factor k, previous candidate indicators Ir−1, previous scale sr−1

Output: Indicator-implanted backdoor model w∗
r

1: sr, Ir, wG ← AdaptiveScaleWithIndicator(sr−1, Ir−1, k) ▷ Section 3.3.3
2: if len(Ir) = 0 then
3: |ŵG|, |HG|,MG ← DiffImportanceEstimation(wG, Dbenign) ▷ Section 3.3.1
4: Ir ← FindCandidateIndicators(|ŵG|, |HG|) ▷ Section 3.3.2
5: end if
6: wr ← TrainCriticalParam(wG, Dbenign, Dbackdoor, sr,MG) ▷ Appendix C.2
7: w∗

r ← ImplantNewIndicator(wr, Ir, k) ▷ Section 3.3.2
8: return w∗

r

critical parameter mask MG and then find new candidate indicators (Lines 2-5). After that, AdaSCP
trains the critical parameters with Dbenign and Dbackdoor and scale the critical updates with sr to
acquire the scaled malicious model wr (Line 6). Finally, we implant the new indicator to get the
indicator-implanted backdoor model w∗

r , which will be uploaded to the server (Lines 7 and 8).

3.3.1 Diffusion Importance Estimation

To defeat the advanced defenses with critical parameters in diffusion models, we first adopt the
diffusion importance estimation used in the structural pruning task of diffusion model [14]. They claim
that numerous noisy and redundant timesteps make minimal contributions to the overall generation
in the diffusion process as t approaches T [36, 14]. Hence, our importance scores are estimated
with accumulated gradients in dominant timesteps under the Taylor expansion framework [39]. To
locate the critical parameters, we sort estimated importance scores and choose a proportion τ to filter
important parameters of the diffusion model. The mask MG of critical parameters is then obtained
for subsequent training. In the meantime, preparing for finding indicators, we record the absolute
value of accumulated gradients |ŵG| and the corresponding Hessian matrix |HG|, which represents
the changing direction of gradient updates [67]. More details can be found in Appendix C.1.

3.3.2 Find Candidate Indicators

Algorithm 2 Find Candidate Indicators and Im-
plant New Indicator
Input: Global model Gr, accumulated gradients
|ŵG|, Hessian matrix |HG|, indicator magnifica-
tion factor k, current scale sr, mask MG

Output: Indicator-implanted model w∗
r , candi-

date indicators Ir
1: I ′ ← {I ′i |MG(I

′
i) = False}

2: Î = {Î1, Î2, ..., Îj} ← argminÎi∈I′ θ|ŵG|,Îi
3: Ir = {I1, I2, ..., Im} ← argminIi∈Î θ|HG|,Îi
4: for each Ii ∈ Ir do MG(Ii)← True
5: wr ← TrainCriticalParam(...,MG)
6: ▷ Implant the first indicator to get w∗

r

7: θ′wr−Gr,I1
← k

sr
· θwr−Gr,I1

8: return w∗
r , Ir

Algorithm 2 illustrates the process of finding
candidate indicators. To prevent the magnifica-
tion of indicators affecting the performance of
the diffusion model, we find candidate indica-
tors in the uncritical parameters according to
MG (Line 1). Inspired by previous work [31],
we consider two necessary conditions to choose
the indicator (lines 2 and 3). Firstly, the neu-
ron’s gradient update should be smaller than
other neurons. Secondly, the neuron’s Hessian
value, the second derivative of diffusion loss,
should be close to zero. This means the change
of this neuron contributes less to the perfor-
mance [29, 63]. Besides, to mitigate the influ-
ence of the backdoor dataset and align indica-
tors with other clients, we only use the benign
dataset Dbenign to calculate gradients and cur-
vatures. To improve the efficiency of finding
candidate indicators, we only compute |HG| in the last several layers of the diffusion model as the
whole parameters bring a heavy burden on calculating the second derivative. Moreover, to avoid the
computation of |ŵG| and |HG| in every round, we select m indicators at one time to form a candidate
indicator set Ir = {I1, I2, ..., Im} for subsequent use (Line 3).

To implant the indicator, AdaSCP treats the indicators as critical parameters and magnifies its updates
(Lines 4 - 7). After training and scaling the critical parameters, we can get the scaled backdoor model
wr. Then AdaSCP chooses the first indicator I1 in candidate queue Ir and re-scale the corresponding
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Algorithm 3 Adaptive Scale with Indicator
Input: Indicator magnification factor k, previous attack setting sr−1, Ir−1 , uploaded indicator

update θ′wr−1−Gr−1,I1
, returned indicator update θGr−Gr−1,I1 , learning setting hisacc, hisrej , η, d

Output: Current scale sr, candidate indicators Ir
1: f ← θGr−Gr−1,I1

1
k ·θ′

wr−1−Gr−1,I1

▷ Theorem 1 and 2 in Appendix D

2: tars ←
{

k−1
f−1 if k−1

f−1 ∈ (0, 2 ·Nc]
0 otherwise

▷ “Accepted" or “Rejected" by the server

3: sr ← OptimizeScale(sr−1, tars, η, d, hisacc, hisrej) ▷ Appendix C.3
4: Ir ← RestoreAndDequeueIndicator(k, θ′wr−1−Gr−1,I1

, Ir−1) ▷ Appendix C.4
5: return sr, Ir

update θwr−Gr,I1 with the magnification factor k and current scale value sr. The rescaled update
θ′wr−Gr,I1

will be merged to form the indicator-implanted backdoor model w∗
r of this round (Line 7).

3.3.3 Adaptive Scale with Indicator

Although the implanted indicator can help us judge whether the malicious model is accepted by
the FL server or not, the potential of the indicator has not yet been fully tapped. We observe that
although the black-box server can ensure that a malicious client is unaware of its weight in the
aggregation process, the returned indicator update implies this information. This inspires us to
control the weighted average results by adjusting the scale value sr. The optimal scaling factor
enables the attacker to circumvent distance-based defenses and seamlessly incorporate backdoor
gradients into the global model, bolstering the efficiency and effectiveness of attacking with multiple
Trojans. Hence, we design an adaptive algorithm to optimize the scaling factor sr.

Algorithm 3 illustrates the procedure of our adaptive scale algorithm. According to the global model
Gr, we can get the returned indicator update θGr−Gr−1,I1 in the (r− 1)-th round. At first, we need to
define the target scale value tars according to the returned indicator update. Given nc local updates
participating in averaging and the weights λi for each client, the optimal value of tars should be∑nc

i=1 λi/λadv for poisoning the global updates with the adversary updates. When λi = 1, tars
equals the number of selected clients nc, which is the optimal scale value used in model poison [1].
But when the indicator-implanted model is rejected by the server, the scale value should approach
zero to defeat the defenses. As shown in Line 1 and 2, we can derive tars with the uploaded and
returned indicator updates. We leave the derivation in Appendix D.

A natural way is to replace sr with tars when “Accepted" by the server. However, this is not practical.
The derivation of tars is based on the assumption that the trained updates at the position of indicator
θwi−Gr,I1 are similar across all clients due to the very small gradients. This assumption is not always
valid, especially when training with non-IID or backdoor datasets. To reduce the impact of deviation
caused by training, we treat (tars − ss−1) as an optimization direction toward the optimal scale
value. Hence, we define a learning rate η to optimize the scale value sr. The adaptive scale can
defeat some defenses and implant multiple backdoors stealthily. However, some defenses [2] are
effective in detecting the scaled malicious updates or diluting them by averaging. This will lead to an
unstable training process, where sr fluctuates between 0 and tars. To stabilize sr and improve the
attack effectiveness, we record history scale values in hisacc and hisrej . They further help determine
the optimal value of tars and sr (Line 3). Additionally, we design a weight decay d for decreasing
the learning rate η according to the accepted state in the previous and current rounds. Finally, we
restore the indicator value and dequeue the first index I1 in candidate indicators to prepare for the
subsequent operation in the current round (Line 4). More details are provided in Appendix C.3.

4 Experiments

Datasets and Diffusion Models. We conduct our experiments on three widely-used datasets in
generation tasks: CIFAR10 (32 × 32) [30], CelebA (64 × 64)) [34] and LSUN Bedroom (256 ×
256) [62]. We concentrate on Denoising Diffusion Probability Models (DDPMs) [22]. We follow
the model replacement attack [1], injecting backdoor data as training approaches convergence. To
simulate the attack process efficiently, we train the diffusion models under the FL framework for
CIFAR10 and CelebA. Then we use the pre-trained model for subsequent backdoor experiments. The
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Table 1: DataStealing in Non-IID Datasets. Performance of AdaSCP compared to the SOTA attack
methods with various advanced defenses in non-IID distribution. "↓": lower is better. Red: the 1st
score. Blue: the 2nd score. (∗: averaging by ignoring the collapsed result.)

Dataset Attacks
Defenses FedAvg [37] Krum [2] Multi-Krum [2] Foolsgold [17] RFA [44] Multi-metrics [24] Mean

FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓
C

IF
A

R
10

Data Poison [20] 6.87/0.1226 10.09/0.1480 6.20/0.1427 7.70/0.1238 6.72/0.1241 7.09/0.1213 7.45/0.1304
Model Poison [1] 12.86/0.0069 8.29/0.1454 6.23/0.1426 459.64/0.3124 6.12/0.1194 70.98/0.1685 94.02/0.1492
PGD Poison [53] 6.86/0.1232 19.98/0.1239 6.93/0.1221 7.45/0.1243 6.85/0.1231 6.78/0.1228 9.14/0.1232
BC Layer Sub. [69] 5.75/0.1382 132.02/0.1719 6.03/0.1433 6.67/0.1388 5.64/0.1488 6.69/0.1233 27.13/0.1441
AdaSCP (Ours) 12.93/0.0117 30.68/0.0861 8.23/0.1271 24.21/0.0129 8.22/0.1233 15.04/0.0328 16.55/0.0657

C
el

eb
A

Data Poison [20] 5.91/0.1304 7.64/0.1520 6.13/0.1506 6.22/0.1441 5.74/0.1212 6.65/0.0922 6.38/0.1317
Model Poison [1] 16.05/0.0465 7.95/0.1524 6.16/0.1504 446.81/0.3161 5.49/0.0858 N/A 96.49/0.1502∗

PGD Poison [53] 8.16/0.1516 7.01/0.0462 8.04/0.1435 6.49/0.1636 8.02/0.1263 7.44/0.1362 7.53/0.1279
BC Layer Sub. [69] 12.29/0.1328 76.49/0.0536 15.63/0.1204 10.40/0.1417 18.36/0.1159 17.08/0.1177 25.04/0.1137
AdaSCP (Ours) 7.00/0.0082 13.66/0.0367 4.55/0.1312 7.36/0.0103 6.20/0.1029 7.62/0.0104 7.73/0.0499

L
SU

N
B

ed
ro

om

Data Poison [20] 23.50/0.0969 12.28/0.2512 25.31/0.1169 23.47/0.1321 23.45/0.0947 22.44/0.0862 21.74/0.1297
Model Poison [1] 33.20/0.0723 11.97/0.2557 13.31/0.2539 404.92/0.2529 21.80/0.0894 174.83/0.3135 110.00/0.2063
PGD Poison [53] 23.49/0.0976 11.95/0.2546 39.93/0.1476 16.31/0.1282 23.68/0.0959 21.27/0.0966 22.77/0.1368
BC Layer Sub. [69] 10.84/0.1392 45.77/0.1157 12.29/0.1391 15.41/0.1361 13.90/0.1313 13.05/0.1354 18.54/0.1328
AdaSCP (Ours) 22.30/0.0544 51.15/0.1634 25.81/0.1131 28.50/0.0554 24.36/0.1162 22.28/0.0623 29.07/0.0941
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N/AModel Poison

AdaSCP

PGD Poison

Data Poison
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Figure 3: Qualitative Comparison. The generated image with the lowest MSE in one trigger-target
pair is presented under every attack and defense method. More visual results are in Appendix A.10.

pre-training round number is 2,000 for CIFAR10 and 1,200 for CelebA. As for LSUN Bedroom, we
use the pre-trained weight from DDPMs [22].

Backdoor Attacks. Due to the considerable cost of training diffusion models, we simulated five
local clients and selected one as the adversarial client. Based on the pre-trained model, we fine-tune
300 rounds for CIFAR10 and 150 rounds for CelebA and LSUN Bedroom in every client. We train
10,000 images per round per client for CIFAR-10 and CelebA, and 1,000 images for LSUN Bedroom.
The patch size of ComboTs is 3×3 for CIFAR10, 5×5 for CelebA, and 25×25 for LSUN Bedroom.
The backdoor and benign datasets are mixed in one batch with a 50/50 ratio. For the attack algorithm,
we select the common and latest attack methods as our baselines: Data Poison [20], Model Poison [1],
PGD Poison [53], and Backdoor-Critical (BC) layer substitution [69]. We set the scale value of model
poison as the total number of clients (Nc = 5). We train about 80% parameters in our AdaSCP and
layers in the BC layer substation for fair comparison. More details can be found in Appendix B.

Defenses. To verify the effectiveness of DataStealing methods under defense strategies, we conduct
experiments with various distance-based defense methods: FedAvg [37], Krum [2], Multi-Krum [2],
Foolsgold [17], RFA [44], Multi-metrics [24]. We observe that clipping and adding noise, commonly
used in the differential privacy method [13, 42, 50], will undermine the training of diffusion models.
Therefore, we do not consider these defenses in our experiments.

Evaluation. We leverage two metrics for evaluating the performance of diffusion models and the
efficacy of DataStealing: 1) the Frechet Inception Distance (FID) [21]. 2) Mean Square Error (MSE)
between the generated backdoor images and the ground truth images. A lower FID score indicates that
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Table 2: DataStealing in IID Dataset. Performance of our approach and the SOTA attack methods
with various advanced defenses in IID distribution.

Dataset Attacks
Defenses FedAvg [37] Multi-Krum [2] Foolsgold [17] RFA [44] Multi-metrics [24] Mean

FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓

C
IF

A
R

10

Data Poison [20] 6.38/0.1242 5.50/0.1435 6.39/0.1246 6.34/0.1250 5.87/0.1242 6.10/0.1283
Model Poison [1] 8.40/0.0063 5.52/0.1432 456.00/0.3109 5.88/0.1212 10.55/0.0047 97.27/0.1173
PGD Poison [53] 6.37/0.1248 6.17/0.1241 6.38/0.1252 6.35/0.1247 5.89/0.1248 6.23/0.1247
BC Layer Sub. [69] 5.29/0.1362 5.56/0.1340 5.25/0.1262 5.61/0.1308 5.38/0.1305 5.42/0.1315
AdaSCP (Ours) 8.59/0.0088 7.09/0.1273 12.84/0.0645 7.03/0.1285 8.75/0.0203 8.86/0.0699

the generated images better match the distribution of real images, implying higher quality. A lower
MSE means the restored images are more similar to the private images, indicating better performance
in DataStealing. To calculate FID, we generate 50,000 images for every model with CIFAR10 and
CelebA and 10,000 images for LSUN Bedroom. As for MSE, we synthesize 20 images with different
noise inputs for every combinatorial trigger. All images are generated with 50-timestep DDIM [48].

4.1 DataStealing under Advanced FL Defenses

To evaluate AdaSCP and attack baselines in DataStealing, we conduct experiments on CIFAR10 [30],
CelebA [34] and LSUN Bedroom [62]. The target image count is 1,000 for the CIFAR10 dataset,
500 for the CelebA dataset, and 50 for LSUN Bedroom.

Figure 4: Ablation Study on Trigger Number.

Comparisons with Non-IID Datasets. We
first consider the challenging non-IID distribu-
tion. Both datasets are sampled with Dirichlet
distribution of hyperparameter 0.7. As shown
in Table 1, our AdaSCP achieves the best at-
tack performance according to MSE. The crit-
ical parameters and adaptive scale factor en-
able AdaSCP to evade the detection of most
distance-based defenses. Additionally, the adap-
tive scale prevents the inclusion of backdoor up-
dates from devastating the overall training of the
diffusion models. Although Model Poison [1]
can achieve the aim of DataStealing under Fe-
dAvg (12.86/0.0069), a large and fixed scale
value makes it hard to defeat the advanced de-
fenses or causes the training of diffusion model
collapse, as shown in Fig. 3. Our adaptive scale solves these problems with an acceptable and
proper scale value. PGD Poison [53] can overcome all defenses in CIFAR10 by constraining the
updates within a limited range. However, the efficiency of this attack remains a significant con-
cern. AdaSCP achieves the balance between stealthiness and efficiency. The results of BC Layer
Substitution [69] show that it is not a good choice for poisoning the diffusion model. The layer
substitution process leads to training collapse in the diffusion model, especially under the defense
of Krum (132.02/0.1719). This demonstrates that training critical parameters is more effective than
layer substitution in attacking the diffusion model.

Compared to CIFAR10, AdaSCP is more effective than other attacks in CelebA. We observe that the
optimal tars is 3.60 in CelebA under FedAvg, which is smaller than the corresponding value of 4.54
in CIFAR10 and the total number of local clients. The difference means the data proportion in the
infiltrated client is more unbalanced in CelebA than in CIFAR10, which can affect the performance of
attacking methods. Moreover, experiments on the LSUN Bedroom dataset demonstrate that AdaSCP
can achieve the best attack performance on high-resolution images (256× 256). This indicates that
AdaSCP is more robust and effective with imbalanced and diverse data.

In summary, Data Poison and PGD Poison encounter difficulties in effectively implanting multiple
backdoors. Model Poison fails to bypass advanced FL defenses due to improper scale values. BC
Layer Substitution is unsuitable for training diffusion models and may lead to training collapse.
AdaSCP outperforms other methods by utilizing critical parameters with adaptive scale factors,
balancing stealth and efficiency while preventing training collapse in diffusion models.
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Table 3: Ablation Study of AdaSCP. Incremental components are added in every row to evaluate
their function. Each component contributes to the overall performance.

Attacks
Defenses FedAvg [37] Krum [2] Multi-Krum [2] Foolsgold [17] RFA [44] Multi-metrics [24] Mean

FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓ FID ↓ / MSE ↓
Baseline [20] 12.86/0.0069 8.29/0.1454 6.23/0.1426 459.64/0.3124 6.12/0.1194 70.98/0.1685 94.02/0.1492
+ Critical Parameters 12.56/0.0123 8.65/0.1459 6.21/0.1424 461.81/0.3133 6.47/0.1249 30.59/0.0422 87.72/0.1302
+ Target Scale tars 12.97/0.0157 31.80/0.0803 7.17/0.1398 38.22/0.0273 10.37/0.1237 11.31/0.0554 18.64/0.0737
+ Learning Rate η 12.75/0.0144 31.77/0.0864 7.16/0.1389 20.68/0.0077 7.23/0.1254 12.01/0.0602 15.27/0.0722
+ History scales 12.93/0.0117 30.68/0.0861 8.23/0.1271 24.21/0.0129 8.22/0.1233 15.04/0.0328 16.55/0.0657

Comparisons with IID Dataset. Table 2 shows the results of DataStealing on CIFAR10 in IID
distribution. In this scenario, the attacker is easier to defeat the defenses. Model Poison [1] success
in circumventing the defense of Multi-metrics [24] (10.55/0.0047) and exceed the PGD Poison on
average. Our AdaSCP is still superior in attacking on average (8.86/0.0699). It is because the adaptive
scale can bypass defenses that other attack methods fail.

4.2 Ablation Study

Ablation on Each Component of AdaSCP. To verify our proposed AdaSCP, including the critical
parameter training and adaptive scaling, we conduct an ablation study on each component. We adopt
the model poison as our baseline and set the initial scale value as Nc. As Table. 3 shows, training with
critical parameters helps the model defeat the Multi-metrics defense (30.59/0.0422) with a sacrifice of
attack performance in FedAvg and RFA. It is reasonable as only about 80% parameters are included
in the training. Furthermore, based on training critical parameters, we evaluate the effect of tars
by replacing sr with tars directly. It shows that the estimated target scale tars plays a critical role
in defeating many defenses, which proves the effectiveness of our design. However, the deviation
of training affects the accuracy of tars and results in a decline in FedAvg (12.97/0.0157). Then
we use tars to optimize sr with a learning rate η that can alleviate the problem and can achieve
slightly better performance. With the stabilization of history scales, we make progress in defeating
Multi-Krum (8.23/0.1271) and achieve the best performance on average. Moreover, the decrease in
MSE for Multi-Krum and RFA implies that they can be attacked by AdaSCP in a longer training.

Ablation on Different Trigger Number. To assess the impact of trigger quantity on DataStealing,
we undertook ablation studies with incremental numbers of triggers with AdaSCP. Fig. 4 shows that
reducing the number of target images increases the success of attacking. And it is increasingly hard
to steal more data. Following a successful theft, the FID tends to remain at a relatively high level.
This represents one of the limitations of DataStealing. More experiments are listed in Appendix A.

5 Discussion on Defense Mechanisms

To safeguard the training of diffusion models in FL, this section discusses potential defensive mecha-
nisms for future research. First, Multi-Krum has shown strong performance in detecting and diluting
malicious updates, preventing attacks from quickly degrading the global model’s accuracy. However,
as shown in Appendix A.1, its effectiveness diminishes over long-term training, suggesting future
enhancements like adaptive thresholds [26] or combining it with other methods [55]. Second, differ-
ential privacy methods can invalidate indicators by adding noise or norm clipping while sacrificing
generative performance, as discussed in Appendix F. Since AdaSCP requires specific indicators with
a large magnification factor, identifying candidate indicators and filtering outliers through comparison
could enhance efficiency and effectiveness in defending against DataStealing. Third, the durability
experiment in Appendix A.2 demonstrates that backdoors diminish after 100 rounds of continued
training with clean data, suggesting a potential mitigation strategy for future work [65, 12]. Finally,
as the triggers are embedded in the input noise, releasing only the generated outputs without exposing
the global model could serve as an additional defensive strategy.

6 Related Work

Trojan Attacks on Diffusion Model. Trojan attacks [5, 9, 10, 49] on diffusion models have been
proposed recently. BadDiffusion [9] and TrojDiff [5] attack DDPMs [22] with an additional trigger
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term in the forward/backward process. Struppek et al. [49] attacks the text-to-image diffusion models
by adding triggers to the text inputs. VillanDiffusion [10] attacks various diffusion models and
samplers with image or caption triggers in a unified backdoor framework. In this paper, we show that
diffusion models in FL can also be subject to multiple Trojans with combinatorial triggers.

More methods [57, 35, 64, 12, 31] focus on backdoor poison with multiple distributed attackers or
optimizing the triggers. 3DFed [31] proposes three modules: constraint loss, noise masks, and decoy
models. They adjust hyper-parameters of these modules with the acceptance status ("Accepted",
"Clipped" or "Rejected") based on the feedback of indicators. However, their indicators and decoy
models require collaboration among multiple attackers, which does not align with our task that
involves only a single malicious client. We leave DataStealing with multiple distributed attackers for
future work.

Trojan Attacks on Federated Learning. Since Bagdasaryan et al. [1] point out that the widely-
used FL algorithm FedAvg [37] is vulnerable to model replacement attack, plenty of backdoor attack
methods [57, 35, 53, 65, 12, 31, 41, 15, 7, 64, 69] have subsequently emerged. Data poison [6, 20,
33, 9] attacks the global model by replacing the local training data with a mixture of benign and
backdoor datasets. Model poison [1] replaces the global updates with scaled malicious updates. PGD
poison [53] projects the local gradients into a sphere surrounding the global model. Backdoor-critical
layer substitution [69] inserts the critical malicious layers to the benign models to balance the attack
effectiveness and stealthiness. The above attack methods are applied to the classification task. We
are the pioneers in investigating the issue of stealing massive private data under stringent security
measures in FL. Furthermore, we propose AdaSCP to defeat the advanced distance-based defenses.

More Related Works. Various studies are related to our work. A more detailed discussion of
related research is provided in the Appendix E.

7 Conclusion

In this paper, we explored the vulnerabilities of diffusion models within the FL framework, highlight-
ing new avenues for privacy threats through our proposed DataStealing task. Even under rigorous
local data protection, substantial private data can be exfiltrated from local clients by employing our
ComboTs. Furthermore, we introduce AdaSCP, an adaptive attack method, designed to circumvent
advanced distance-based defenses. Our method adaptively seeks the optimal scale value with the
indicators. It then trains and magnifies critical parameters, allowing for the seamless integration of
backdoor gradients into the global model. Our extensive experiments not only confirm the efficacy
of existing FL Trojan attacks and defenses but also highlight the superior performance of AdaSCP
in circumventing advanced distance-based defenses. This work serves as a critical reminder of
the vulnerabilities in FL and underscores the necessity for continuous advancement in defensive
strategies to safeguard against evolving threats in the realm of generative models. We hope our
findings will catalyze further research and prompt the FL community to prioritize the development
of robust mechanisms to protect privacy in the increasingly complex landscape of machine learning
models [38, 59].

8 Limitations and Ethical Statements

Due to the limited page number, we discuss them in Appendix F
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A Additional Experiments

We conduct more experiments on CIFAR10 to evaluate the performance of AdaSCP with different
settings and hyperparameters.

A.1 Attacking in Extended Training

We conducted an experiment to demonstrate that existing defense mechanisms struggle to prevent
successful attacks by adversaries over extended training periods. While AdaSCP fails to succeed
within 300 rounds on CIFAR-10 under the defense of Multi-Krum in Table 1, the outcome changes
when the duration is extended to 1500 rounds. As shown in Fig. 5, AdaSCP can successfully defeat
Multi-Krum defenses given more training time. Furthermore, a longer stable attack is more stealthy
and has fewer side effects on the performance of the diffusion model, which is 8.55/0.0088 in round
1,500 compared to the similar result of attacking Foolsgold 24.21/0.0129 in Table 1.

Target image:

Figure 5: Attacking in an Extended Training. Given more time, AdaSCP can attack successfully
under the defense of Multi-Krum in the Non-IID distribution of CIFAR10.

A.2 Durability of AdaSCP Attack

The durability of a backdoor measures the time span an inserted backdoor continues to be effective
after the attacker withdraws. To assess the durability of our AdaSCP attack, we continue training an
attacked model (AdaSCP-FedAvg) with benign data and FedAvg protocol. As shown in Fig. 6, the
backdoors implanted by AdaSCP remain effective for approximately 100 rounds. After 100 rounds,
the backdoors become almost ineffective as the MSE is higher than 0.1. Moreover, the FID decreases
with further training. This suggests a defense strategy for DataStealing: continuing to train with
benign data after the initial training can effectively mitigate the impact of multiple backdoors.

Figure 6: Durability of AdaSCP Attack. The attacked model (AdaSCP-FedAvg) is trained with
benign data and clients in FedAvg. The changes in MSE and FID reflect the disappearance of the
implanted backdoors.
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A.3 Analysis on Defending against Malicious Updates

To better understand the defense process, we analyze the distance between malicious and mean
benign updates under Krum and Multi-Krum defense across different training rounds. Compared to
other defense algorithms, Krum and Multi-Krum display more pronounced variations in distance.
The results in Fig. 7 show that the initial scale value is substantially higher than the optimal value.
This discrepancy causes the initial distance of the malicious updates to be approximately 6.7 times
greater than that of the benign updates. As AdaSCP progressively optimizes the scale value, malicious
updates gradually align with those benign updates, approaching the optimal relative distance necessary
for the attack to bypass the defenses.
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Figure 7: Relative Distance. Ratio of malicious updates distance to mean benign updates distance
when attacking with AdaSCP on CIFAR10 in the first 100 rounds.

A.4 AdaSCP Stability Assessment

To evaluate the stability of AdaSCP, we conducted experiments with two additional seeds, resulting
in three distinct Non-IID data distributions. Our results are presented as mean ± standard deviation,
as shown in Table 4. The values in the “Mean” row represent the overall mean and standard deviation
of the averaged values obtained from the three different seeds. The “Mean” values in Table 4 show a
tolerable deviation from the previously reported results, indicating the robustness of our method to
variations in Non-IID data distributions.

Table 4: Repeating Experiment of AdaSCP in CIFAR10 and CelebA with Non-IID Distribution.

Defenses
Dataset CIFAR10 CelebA

FID MSE FID MSE

FedAvg 10.46±1.75 0.0118±0.0004 6.94±0.23 0.0092±0.0014
Krum 20.31±7.69 0.0856±0.0208 11.90±1.35 0.0611±0.0294
Multi-Krum 8.07±0.22 0.1284±0.0012 4.74±0.22 0.1507±0.0141
Foolsgold 15.21±6.36 0.0144±0.0035 8.55±0.91 0.0179±0.0103
RFA 8.37±0.22 0.1176±0.0131 7.46±0.89 0.1360±0.0234
Multi-metrics 11.17±2.74 0.0365±0.0150 7.47±0.18 0.0195±0.0067

Mean 12.26±3.05 0.0657±0.0086 7.84±0.25 0.0657±0.0115

A.5 Ablation on Proportion of Critical Parameters

To assess the impact of the proportion τ in selecting critical parameters, we conducted an ablation
study presented in Table 5. The results indicate that more critical parameters lead to better attack
performance. However, the performance with τ = 0.99 is as effective as with τ = 0.8, suggesting
that some parameters are redundant in attacking. Consequently, we selected τ = 0.4 in other
experiments to achieve a trade-off between performance and the critical parameter count, which
contains approximately 80% of the parameters. To ensure a fair comparison, we maintain the same
percentage of parameters in the BC Layer substitution.
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Table 5: Ablation Study on the Proportion of Critical Parameters.

Proportion τ 0.2 0.4 0.6 0.8 0.99

AdaSCP-FedAvg 11.29/0.1217 12.93/0.0117 12.41/0.0081 12.49/0.0077 12.25/0.0077

A.6 Ablation on Learning Rate in Optimizing Scale

To investigate the impact of different learning rates η on the performance of AdaSCP under the
defense of FedAvg and Multi-Krum, we conducted an ablation study in Table 6. It shows that at
relatively lower learning rates, the training process is more stable and effective. When η = 0.2,
AdaSCP achieves better performance while minimizing side effects on the FID of generated data.
Hence, we adopt η = 0.2 in our paper.

Table 6: Ablation Study on the Learning Rate of Optimizing Scale.

Learning rate η 0.0 0.2 0.4 0.6 0.8 1.0

AdaSCP-FedAvg 12.94/0.0108 12.93/0.0117 15.38/0.0119 12.87/0.0130 13.06/0.0115 12.82/0.0144
AdaSCP-MultiKrum 6.23/0.1424 8.23/0.1271 10.20/0.1266 7.83/0.1297 7.96/0.1290 8.19/0.1259

Mean 9.58/0.0766 10.58/0.0694 12.79/0.0692 10.35/0.0713 10.51/0.0702 10.50/0.0701

A.7 Ablation on Patch Size of ComboTs.

To verify the impact of different patch sizes in ComboTs in DataStealing, we conducted an ablation
study with various patch sizes. Table 7 shows that for CIFAR10 images (32× 32), a 3× 3 patch is the
minimum size capable of successfully executing the attack. Although larger patches can also succeed
in attacking, they would harm both FID and MSE. Smaller patches are insufficient to distinguish the
triggers from the noise, while larger patches obscure the image and degrade performance. Therefore,
we set the patch size to 3× 3 in CIFAR10. For CelebA, we increased the patch size to 5× 5 because
the images in CelebA are preprocessed to (64× 64), which is twice the resolution of CIFAR-10. As
for LSUN Bedroom, we choose 25× 25 patch size for attacking (256× 256) images.

Table 7: Ablation Study on the Patch Size of ComboTs.

Patch Size AdaSCP-FedAvg

1× 1 13.69/0.1287
3× 3 12.93/0.0117
5× 5 12.51/0.0133
7× 7 12.25/0.0204
9× 9 13.25/0.0263
11× 11 12.54/0.0298
13× 13 13.29/0.0364
15× 15 14.17/0.0396

A.8 Ablation on Total Number of Clients.

To verify the effectiveness of our method across varying numbers of clients, we conducted experiments
by increasing the total number of clients from 5 to 10. The results in Table 8 demonstrate that AdaSCP
remains effective in executing attacks across different client numbers, confirming its robustness.

A.9 Complexity and Computational Analysis

The complexity of ComboTs depends on the time required to select triggers from potential positions,
as defined in Section 3.2. The efficiency of AdaSCP is influenced by the batch size and a hyperparam-
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Table 8: Ablation on Total Number of Clients.

Num of Clients 5 8 10

AdaSCP-FedAvg 12.93/0.0117 10.79/0.0182 10.35/0.0177

eter T (threshold), demonstrated in Appendix C.1 and Algorithm 4. The primary source of complexity
is the process of searching for critical parameters and identifying candidate indicators. The runtime
of AdaSCP varies based on different hyperparameters and model complexity. For example, when
finetuning with the LSUN bedroom dataset at a resolution of 256× 256, with a batch size of 3 and a
hyperparameter T set to 0.05, the runtime for finding critical parameters and candidate indicators is 2
minutes and 29 seconds. This process is performed after all candidate indicators are exhausted, as
demonstrated in Algorithm 1. In our experiments, we set the number of candidate indicators to 10.
Increasing the number of candidate indicators can enhance the efficiency of our method.

A.10 More Visual Comparison

Further visual comparisons are presented in Fig. 8 and Fig. 10. The diversity of content in these
targets suggests that our method is applicable across various image types and can achieve superior
performance. Moreover, the results indicate that the training of the diffusion model within the FL
system reveals greater privacy security vulnerabilities than those observed in discriminative models.

B Backdoor Attacks Implementation

Dataset and Implementation Details. We implement all experiments on four 48G NVIDIA A40
GPUs. When estimating the importance score, we adopt a batch size of 64 for CIFAR10 and CelebA,
and 3 for LSUN Bedroom. The Non-IID distribution of CIFAR10 and CelebA used in Table 1 are
shown in Table 9. The first client is chosen for attack. The FID/MSE of the pretrained model is
6.24/0.1428 in CIFAR10, 6.00/0.1507 in CelebA, and 9.84/0.2594 in LSUN Bedroom. It needs to be
noted that we preprocess the CelebA with the pre-processing code from StyleGAN [28] repository2.
The batch size is 128 for CIFAR10, 64 for CelebA and 8 for LSUN Bedroom.

PGD Poison. Projected Gradient Descent (PGD) attack [53] guarantees that the malicious model
sent by the attacker would not be rejected by the norm-based defenses when the norm of updates is
less than a radius. We note that the original radius is too small to attack the diffusion model. Hence,
we set the radius as 8 to achieve a tradeoff between the effectiveness and stealthiness of the PGD
attack.

BC Layer Substitution. To defeat the advanced defenses in classification tasks, critical layers [69]
are effective. However, DataStealing poses two challenges in estimating the critical layers: 1) There
is no such efficient metric as Backdoor Success Rate (BSR) to justify the importance of every layer.
The low sampling efficiency of diffusion models makes such a method impractical. 2) The diffusion
model exhibits a substantially increased layer number relative to previously employed architectures
like ResNet18, which further increases the difficulty in finding critical layers. Hence, for the BC
layer substitution attack, we adopt the momentum-based importance score [46, 15] to identify the
critical layers.

2https://github.com/NVlabs/stylegan/blob/master/dataset_tool.py#L484-L499
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Figure 8: More Visual Results of CIFAR10 in Non-IID Distribution.
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Figure 9: More Visual Results of CelebA in Non-IID Distribution.
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Figure 10: Visual Results of LSUN Bedroom in Non-IID Distribution.
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Figure 11: Sampled Images with Different Noise. We visualize the sampled images in CIFAR10
and CelebA attacked by our AdaSCP under FedAvg. These images are generated with the same
trigger and different Gaussian noise.
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C More Algorithms of AdaSCP

C.1 Diffusion Importance Estimation

Algorithm 4 demonstrates the process of estimating the parameter importance with accumulated
gradients in dominant timesteps under the Taylor expansion framework, as described in the liter-
ature [14]. The timesteps used to estimate the importance score have higher loss values than the
others. Hence, we refer to these timesteps as dominant timesteps (Line 7). After estimating the
importance score of the diffusion model, we create a mask of critical parameters MG with the top τ
structural elements from all scores (Line 15). While estimating the importance score, we record the
accumulated gradients |ŵG| and their Hessian matrix |HG| to subsequently find indicators (Lines
11-12 and 16-18).

Algorithm 4 Diffusion Importance Estimation

Input: Indicator-restored global model wG and its parameter θ, parameters for finding indicators θ̂,
benign datasets Dbenign, a threshold T , a proportion τ
Output: Accumulated gradients |ŵG|, Hessian matrix |HG|, critical parameter mask MG

1: Lmax ← 0
2: x0 ∼ Dbenign, ϵ ∼ N (0, 1)
3: for t in [0, 1, 2, . . . , T ] do
4: xt ←

√
αtx0 +

√
1− αtϵ

5: Lt ← ∥ϵ− ϵθ(xt, t)∥2 ▷ Loss of diffusion model
6: Lmax ← max(Lmax,Lt)
7: if Lt/Lmax ≤ T then ▷ Consider dominant timesteps in diffusion model
8: break
9: end if

10: ∇θijLt(θ, x0)← back-propagation(Lt(θ, x0)) ▷ Taylor expansion
11: Gradθ̂,t ← autograd(θ̂) ▷ Gradient for finding indicators
12: Hessθ̂,t ← autograd(Gradθ̂,t) ▷ Hessian matrix for finding indicators
13: end for
14: I(θi, x)←

∑
j |θij ·

∑t
s=0∇θijLs(θ, x0)| ▷ Structural importance score

15: MG ← Select top τ of structural elements in I(θi, x) ▷ Create critical parameter mask
16: |ŵG| ← |

∑t
s=0 Gradθ̂,s| ▷ Absolute value of accumulated gradients

17: |HG| ← |
∑t

s=0 Hessθ̂,s| ▷ Absolute value of accumulated Hessian matrix
18: return |ŵG|, |HG|,MG

Algorithm 5 Train Critical Parameters
Input: Indicator-restored global model wG, datasets Dbenign, Dbackdoor, current scale sr, critical

parameter mask MG, blend weight γ
Output: The scaled malicious model wr

1: repeat
2: x0 ∼ Dbenign, (x̂0, δi) ∼ Dbackdoor

3: t, t̂ ∼ Uniform({1, . . . , T})
4: xt ←

√
αtx0 +

√
1− αtϵ ▷ Benign noise

5: x̂t,i ←
√
αtx̂0,i +

√
1− αt(γϵ̂+ (1− γ)δi) ▷ Trojan noise

6: ẍt ← [xt, x̂t,i], ẗ := [t, t̂], ϵ̈ := [ϵ, ϵ̂]
7: ∆θ ← Take the gradient step on∇θ∥ϵ̈− ϵθ(ẍt, ẗ)∥2 ▷ θ is the trainable parameters
8: ∆θ′ ← {∆θi |MG(i) = True}
9: θ ← θ +∆θ′ ▷ Only update critical parameters

10: until reach the sample limits in one round
11: wr ← wG + sr ·

∑
∆θ′ ▷ Scale the updates of critical parameters

12: return wr
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C.2 Train Critical Parameters

Algorithm 5 illustrates the process of training the critical parameters with benign dataset and backdoor
dataset. We train benign and backdoor data in one batch (Line 2-7). With Eq. 1 and Eq. 2, we add
benign noise and Trojan noise into the corresponding data. After training the diffusion model, we only
update the critical parameters with the mask MG (Line 8 and 9). Finally, we scale the accumulated
malicious updates with sr and return the scaled model wr.

C.3 Optimize Scale

Algorithm 6 illustrates the process of optimizing the scale value according to the estimated target scale
value and history scale values. According to the purpose of tars, demonstrated in Eq. 5, the scale
value is better to be close to tars. Hence, when “Accepted" by the server, the previous scale value
sr−1 can defeat the defense and should move toward tars to achieve better attacking performance
(Line 1-5). To prevent tars from greatly exceeding the previously rejected scale, the 20th percentile
value of the sorted hisrej is used as the upper boundary for tars, as illustrated in Algorithm 7. Then
we optimize the scale value with the current optimal target tar∗s (Line 4) and set the flag of the
previous accepted state Acceptpre to True.

When “Rejected" by the server, tars will be set to 0 and the scale value should be decreased to defeat
the defenses (Line 7-11). To avoid the optimized scale s′r being significantly lower than the accepted
scales, we find the optimal scale with Algorithm 8. Specifically, the medium value of the sorted
hisacc is adopted as the lower bound for sr. If a malicious update was previously “Accepted” but
is now “Rejected”, we reduce the learning rate by multiplying it with a weight decay factor. This
adjustment is made based on the value of the flag Acceptpre. Finally, we set the flag of the flag
Acceptpre to False.

Algorithm 6 Optimize Scale
Input: Target scale tars, previous scale sr−1, scale learning rate η, scale weight decay d
Output: Current scale sr
1: if tars ∈ (0, 2 ·Nc] then ▷ “Accepted" then move toward tars
2: Append sr−1 to hisacc then sort hisacc ascending
3: tar∗s ← FindOptimalTargets(tars, hisrej) ▷ Refer to Algorithm 7
4: sr ← sr−1 + (tar∗s − sr−1) · η
5: Acceptpre ← True
6: else ▷ “Rejected" then decrease the scale
7: Append sr−1 to hisrej then sort hisrej ascending
8: s′r ← sr−1 + (tars − sr−1) · η
9: sr ← FindOptimalScale(s′r, hisacc) ▷ Refer to Algorithm 8

10: ifAcceptpre then η ← η · d ▷ Learning rate decay
11: Acceptpre ← False
12: end if
13: return sr

Algorithm 7 Find Optimal Targets
Input: Target value tars, history rejected scale

values hisrej
Output: Current optimal target value tar∗s
1: if len(hisrej) > 10 then
2: medrej ← hisrej [len(hisrej)//5]
3: tar∗s ← min(tars,medrej)
4: else
5: tar∗s ← tars
6: end if
7: return tar∗s

Algorithm 8 Find Optimal Scale Value
Input: Optimised scale value s′r, history ac-

cepted scale values hisacc
Output: Current optimal scale value sr
1: if len(hisacc) > 10 then
2: medacc ← hisacc[len(hisacc)//2]
3: sr ← max(s′r,medacc)
4: else
5: sr ← s′r
6: end if
7: return sr
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C.4 Restore and Dequeue Candidate Indicators

Algorithm 9 illustrates the process of restoring and dequeuing the candidate indicators. Specifically,
we set the indicator update into the value before magnifying. To alleviate the impact of magnifying
the indicator update, we remove the used indicator and use the other indicators. Hence, we dequeue
the front element in the queue of candidate indicators and prepare for implanting the new indicator in
the round.

Algorithm 9 Restore and Dequeue Candidate Indicators
Input: Indicator magnification factor k, uploaded indicator θ′wr−1−Gr−1,I1

, previous candidate
indicators Ir−1

Output: Current candidate indicators Ir, indicator-restored global model wG

1: θwr−1−Gr−1,I1 ← 1
k · θ

′
wr−1−Gr−1,I1

▷ Restore the indicator to get wG

2: Ir ← Ir−1.dequeue() ▷ Remove the front element
3: return wG, Ir

D Mathematical Derivation of the Optimal Scale

Theorem 1:
∑nc

i=1 λi/λadv is the optimal scale value of the adversary client to replace the updates
with the malicious update.

Proof of Theorem 1: According to the aggregation process of FL [37, 50], the server updates the
global model with the updates from clients. To simplify the analysis, we assume the learning rate of
the server is 1. Given nc clients participating in the aggregation, we can get the server’s updating
equation:

Gr = Gr−1 +

∑nc

i λiθWi,r−1−Gr−1∑nc

i=1 λi
(3)

where Wi represents the trained local model in the i-th client, and λi is the weight for averaging. To
simplify the notation, let ∆θi denote the update of the local model θWi,r−1−Gr−1 . Then the updating
of the server can be represented as:

Gr −Gr−1 =

∑nc

i λi∆θi∑nc

i=1 λi
(4)

To proof that
∑nc

i=1 λi/λadv is the optimal scale value, we scale the adversary updates to∑nc
i=1 λi

λadv
∆θadv . Then we can get:

Gr −Gr−1 = ∆θadv +

∑nc

i=2 λi∆θi∑nc

i=1 λi
(5)

When training converges, ∆θi is approaching zero and the global updates can be replaced by the
malicious updates ∆θadv .

Theorem 2: Since the gradient and curvature are approaching zero, we assume that the training
update at indicator I1 is similar in every client. Under the assumption, the target scale value∑nc

i=1 λi/λadv = k−1
f−1 , where f =

θGr−Gr−1,I1
1
k ·θ′

wr−1−Gr−1,I1

, when the indicator-implanted malicious model

is “Accepted" by the server.

Proof of Theorem 2: We will derive the target scale value
∑nc

i=1 λi/λadv according to the implanted
indicator. Given the indicator I1, we can get the returned indicator update θGr−Gr−1,I1 . Let ∆θG,I1
represent θGr−Gr−1,I1 and ∆θ′adv,I1 denote the uploaded indicator update θ′wr−1−Gr−1,I1

. We can
get the following equation:

∆θG,I1 =
λadv∆θ′adv,I1 +

∑nc

i=2 λi∆θi,I1∑nc

i=1 λi
(6)

=
λadvk∆θadv,I1 +

∑nc

i=2 λi∆θi,I1∑nc

i=1 λi
, (7)
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where ∆θ′adv,I1 = k∆θadv,I1 as the training update at I1 is magnified by k to form the implanted
indicator. Since the gradient and curvature are approaching zero at position I1, we assume the training
update ∆θi,I1 between each client is similar. Then Eq. 7 can be re-written as:

∆θG,I1 ≈
λadv(k − 1)∆θadv,I1 +

∑nc

i=1 λi∆θadv,I1∑nc

i=1 λi
(8)

By rearranging Eq. 8, the target scale value
∑nc

i=1 λi/λadv can be derived:∑nc

i=1 λi

λadv
=

(k − 1)∆θadv,I1
∆θG,I1 −∆θadv,I1

(9)

=
k − 1

∆θG,I1

θadv,I1
− 1

(10)

=
k − 1

f − 1
, (11)

where f =
∆θG,I1

θadv,I1
=

θGr−Gr−1,I1
1
k ·θ′

wr−1−Gr−1,I1

, which is used in the Algorithm 3 Line 1. In our experiments,

k is set to 50. When “Rejected” by the server, ∆θG,I1 is nearly equal to θi,I1 and f is close to 1 under
our assumption. Considering the deviation introduced by training, the result of Eq. 11 is either a
negative or a very large number. Hence, we set the “Accepted" range to (0, 2 ·Nc]. Then the equation
of target scale value tars is:

tars ←
{

k−1
f−1 if k−1

f−1 ∈ (0, 2 ·Nc]
0 otherwise

(12)

The equation is used in the Algorithm 3 Line 2. As illustrated in Sec. 3.3, we will optimize the scale
value according to the results of tars.

Table 9: The non-IID distribution with five clients used in our experiments.

Client 1 Client 2 Client 3 Client 4 Client 5 Total

CIFAR10 [30] 11,020 10,873 6,743 5,744 15,620 50,000
CelebA [34] 56,324 60,342 45,587 4,713 35,633 202,599

E More Related Works

Defenses Against Trojan Attacks. Recently, the defense methods against Trojan attacks have
achieved great progress. These methods can be broadly categorized into two types according to their
algorithms. The first type is distance-based defenses [2, 60, 17, 44, 24, 26]. They try to distinguish
the malicious updates from uploaded gradients according to distance or scores and then aggregate
updates that have undergone filtering. The second type of defenses [43, 42, 50] is based on differential
privacy algorithm [13], which use clipping and adding noise to defense backdoor attacks. However,
we notice that these techniques will lead to the diffusion model collapsing or failing to converge.
Hence, we utilize several advanced distance-based methods [2, 17, 44, 24] as the defense strategies
in this paper.

Data Reconstruction Attack. Despite only sending updates in FL, prior works have demonstrated
that attackers can still obtain information about private training data through various techniques [8, 40,
47, 56, 4, 19, 61, 68, 3, 16, 66]. Membership inference attacks [8, 40, 47, 56, 4] involve determining
whether a specific data sample was part of the model’s training dataset by analyzing the model’s
outputs. However, they require a large amount of model output data for training and the original
data for analysis. A more common and potentially more dangerous methods are the gradient-based
reconstruction approaches. Gradient Inversion attacks [19, 61, 68, 23] in FL involve reconstructing
the original training data from the gradient updates shared between clients and the server. Linear
Layer Leakage (LLL) attacks [3, 16, 66] exploit the gradients of fully connected layers to infer
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and reconstruct the input data. Gradient-based attack methods, which rely entirely on the gradient
information, are explored on deterministic models and suffer from low data recovery quality. Unlike
these attack methods, our work focuses on diffusion models and can accurately and efficiently
reconstruct large amounts of specified training data through numerous Trojans.

F Limitations and Ethical Statements

Although AdaSCP can defeat many distance-based defenses, there are still some limitations. After a
successful multiple backdoor attack, the FID slightly increases, which is +10.31 in CIFAR10 and
+1.73 in CelebA. Designing better triggers may reduce the impact of the multi-backdoor attack on the
FID, making the attack more covert. Some defense mechanisms, such as norm clipping or differential
privacy methods, can render our indicator-based attacks ineffective. These methods compromise the
indicators’ effectiveness. However, such approaches are not suitable for training diffusion models, as
they can easily lead to non-convergence or model collapse. When pre-training the diffusion model
with norm clipping in FL, the FID of the pre-trained model is 80.82, which is 6.24 without the norm
clipping. We leave these limitations for future research.

While our framework aims to enhance the robustness of diffusion models in FL, we recognize the
potential for misuse of our findings in more computer vision tasks [18, 32, 54, 38, 59]. Nonetheless,
raising awareness about this issue can lead to the adoption of stricter security standards in the design
and implementation of training diffusion models with FL, thereby minimizing the risks of data
breaches and misuse. We hope our red-teaming effort can draw more attention from the federated
learning (FL) community to the critical privacy security issues associated with diffusion models.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We proof the Theorem 1 and 2 in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included the details of our algorithms in Sec. 3.3 and Appendix C. The
code will be released upon the publication of our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29



Answer: [Yes]

Justification: The code is released in: https://github.com/yuangan/DataStealing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Sec. 4 and Appendix B for experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted repeated experiments with various data distributions, and the
error bars are provided in Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix B for the GPU type used in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We acknowledge the Code of Ethics and obey them in our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The ethical statements can be found in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper is based on publicly available datasets and models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the datasets and codes used in our paper. All datasets and codes used
in our paper are publicly available.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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