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Abstract

The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based
reinforcement learning (MBRL), but its unimodal sampling strategy often leads to prema-
ture convergence in multimodal landscapes. In this work, we propose Bregman-Centroid
Guided CEM (BC-EvoCEM), a lightweight enhancement to ensemble CEM that lever-
ages Bregman centroids for principled information aggregation and diversity control. BC-
EvoCEM computes a performance-weighted Bregman centroid across CEM workers and
updates the least contributing ones by sampling within a trust region around the centroid.
Leveraging the duality between Bregman divergences and exponential family distributions,
we show that BC-EvoCEM integrates seamlessly into standard CEM pipelines with neg-
ligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task,
full MBRL pipelines, and a real-world quadruped robot demonstrate that BC-EvoCEM en-
hances both convergence and solution quality, providing a simple yet effective upgrade for
CEM.

1 Introduction

The Cross–Entropy Method (CEM) is a derivative–free stochastic optimizer that converts an optimization
problem into a sequence of rare event estimation tasks (Rubinstein & Kroese, 2004; De Boer et al., 2005). At
each iteration, CEM samples N candidates {xj}N

j=1 from a parametric distribution pθt
, selects top lowest-cost

samples as an elite set Et, and updates the parameters by maximizing the log-likelihood of these elites:

θt+1 = arg max
θ

∑
x∈Et

log pθ(x), (1)

optionally smoothed via exponential averaging for stability. Its reliance solely on cost-based ranking instead
of gradient information has made CEM a widely adopted solver for high-dimensional, nonconvex optimization
tasks in robotics and control (Pinneri et al., 2021; Kobilarov, 2012; Banks et al., 2020).

In model–based reinforcement learning (MBRL), an agent learns a predictive model of the environment and
plans through that model to reduce costly real-world interactions (Ha & Schmidhuber, 2018; Nagabandi et al.,
2018; Silver et al., 2017). Stochastic model predictive control (MPC) is a widely used planning strategy in
this setting (Williams et al., 2016; Okada & Taniguchi, 2020; Chua et al., 2018; Zhang et al., 2022; Deisenroth
& Rasmussen, 2011). At every decision step, MPC solves a finite–horizon trajectory optimization problem,
executes only the first action, observes the next state, and replans. The CEM is often chosen as the optimizer
within this loop due to its simplicity, reliance solely on cost function evaluations, and robustness to noisy or
nonconvex objectives.

Despite these advantages, vanilla CEM suffers from its inherent mode–seeking nature: as the elites concen-
trate, it often collapses the search into a local optimum, which significantly limits the exploration in complex
multimodal landscapes typical of RL tasks. Ensemble strategies have been proposed to mitigate this issue
by running multiple CEM workers. Centralized ensembles merge the elite sets of all workers and fit an
explicit mixture model (e.g., commonly a Gaussian mixture (Okada & Taniguchi, 2020)). Although more
expressive, they introduce additional hyperparameters (number of components, importance weights) and
increase computational cost due to joint expectation maximization (EM) steps. Decentralized ensembles
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Figure 1: (Revised) BC-EvoCEM working pruning and respawn (means only). Background shows the cost
field (cooler = lower cost). • Blue dots are active CEM workers; the star ⋆ is the Bregman Centroid of
these active workers; × are candidate workers proposed near the centroid. Left: a redundant worker (•)
that sits on top of another worker is removed to increase diversity. Right: a poor-quality worker (•) stuck
in a high-cost area is removed. In both cases, the freed budget is reallocated to new candidates around the
centroid, focusing search on the promising low-cost basin while keeping coverage diverse.

run multiple CEM instances in parallel, keep them independent, and output the best solution at termina-
tion (Zhang et al., 2022). This approach is simple and scalable but tends to duplicate exploration effort and
may reach premature consensus if poorly initialized.

Our Approach. Motivated by the trade-off between diversity preservation and computational efficiency,
we introduce Bregman-Centroid Guided CEM (BC-EvoCEM), a hybrid strategy that retains the inde-
pendent updates of decentralized ensembles yet introduces a simple information–geometric coupling across
workers. At each CEM iteration, BC-EvoCEM computes a performance–weighted Bregman centroid (Nielsen
& Nock, 2009) of all workers’ distributions. The centroid then defines both a reference point and a Breg-
man ball trust region. Any worker whose distribution lies too close to the centroid or exhibits high cost is
respawned by drawing new parameters from this trust region (see Fig. 1).

Contributions. 1) We formulate an information–geometric aggregation rule based on Bregman centroids
that summarizes ensemble CEM workers with negligible computation cost. 2) We provide a lightweight
integration into the MPC loop for MBRL, preserving the benefits of BC-EvoCEM with the simplicity
of a standard warm-start heuristic. 3) Through experiments on multimodal synthetic functions, cluttered
navigation tasks, and full MBRL benchmarks, we demonstrate faster convergence with improved performance
relative to the vanilla and decentralized CEM.

2 (Extended) Preliminaries

Notation We write ⟨·, ·⟩ for the Euclidean inner product on Rd and ∥ · ∥2 for the Euclidean norm. For a
strictly convex, differentiable function F : S → R on a convex set S ⊂ Rd, let F ∗ denote its convex conjugate
and ∇F its gradient.
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Bregman Divergence and its Centroid. Given F as above, the Bregman divergence is

DF (x∥y) = F (x)− F (y)− ⟨x− y,∇F (y)⟩, x, y ∈ S. (2)

Although not a metric (it is generally asymmetric and does not satisfy the triangle inequality), DF is
nonnegative and DF (x∥y) = 0 iff x = y. For the quadratic potential F (x) = 1

2∥x∥
2
2, one obtains DF (x∥y) =

1
2∥x−y∥2

2, one half of the squared Euclidean distance. Given a collection of points {xi}n
i=1 ⊂ S, the Bregman

centroid (right-sided) is the solution to the following minimization problem (Nielsen & Nock, 2009):

xc = arg min
x∈S

1
n

n∑
i=1

DF (xi∥x).

Figure 2: Illustration of the
Bregman centroid.

Its minimized value is known as the Information Radius (IR) (Csiszár
et al., 2004) (Bregman Information in (Banerjee et al., 2005)), which
characterizes the diversity of the set {xi}.

(NEW) Exponential Families and Bregman Divergences. Many
standard distributions are members of a (regular, minimal) exponential
family (EF). In canonical form,

pθ(x) = h(x) exp
{
⟨θ, T (x)⟩ −Ψ(θ)

}
, θ ∈ Θ ⊂ Rd, (3)

where θ is the natural parameter, T : X → Rd is the sufficient statistic,
h is the carrier measure, and Ψ is the convex log-partition (cumulant)
function. The mean/expectation parameter is

η := ∇Ψ(θ) = Eθ[T (X)].

For regular, minimal EFs, Θ is open and Ψ is strictly convex, so the mapping θ 7→ η is a bijec-
tion onto the mean-parameter space M := ∇Ψ(Θ). The Legendre transform yields the conjugate pair:
η = ∇Ψ(θ) and θ = ∇Ψ∗(η). (See (Barndorff-Nielsen, 2014; Rockafellar, 2015)).

A fundamental result (Theorem 3 of Banerjee et al., 2005) states that for any regular EF with cumulant Ψ,
there is a unique Bregman geometry via Ψ (equivalently via Ψ∗). In other words, a regular EF member with
a cumulant Ψ is uniquely determined by DΨ∗ in the mean parameter space (equivalently by Ψ in the natural
space). We leverage this EF–Bregman duality for principled and efficient aggregation later in the paper.

3 (NEW) Problem Statement

Cross-Entropy Method Consider black-box minimization of a possibly nonconvex, noisy objective

min
x∈X

J(x), (4)

where X ⊂ Rd and only pointwise evaluations of J are available. The Cross–Entropy Method (CEM) converts
the problem in equation 4 into a sequence of parametric rare-event estimation steps (Rubinstein & Kroese,
2004). At iteration t, CEM maintains a parametric sampling distribution pθt

over X , draws N candidates
{x(t)

j }N
j=1∼ pθt , selects an elite set Et containing the top (lowest-cost) samples, and updates the parameter

θt by maximum likelihood on Et:

θ̂t+1 ∈ arg max
θ

∑
x∈Et

log pθ(x), θt+1 ← (1− β) θt + β θ̂t+1, (5)

with smoothing factor β ∈ (0, 1]. Because the update depends only on ranks and sampling, it is derivative-
free and robust to nonconvexity, which explains its popular use in high-dimensional control and model-based
RL planning. In these applications, x denotes an action sequence. We keep our development generic.
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Ensemble CEM. To mitigate CEM’s intrinsic mode-seeking nature, ensemble methods run K CEM
instances (“workers”) in parallel, each updating according to equation 5{

θ
(k)
t , p

θ
(k)
t

}K

k=1, t = 0, 1, . . . , T.

This effectively extends the parametric model to the mixture family that is capable of handling complex,
multimodal cost landscapes. We broadly categorize ensemble CEM into two major groups based on the
communication between workers: centralized methods merge elites across all workers and fit {p

θ
(k)
t
} to

mixture models (e.g., Gaussian mixture Okada & Taniguchi (2020)) but add Expectation-Maximization(EM)
step overhead and require careful tuning (notably the number of components). Instead, we adopt a more
scalable decentralized approach (DecentCEM in (Zhang et al., 2022)): workers update independently via
equation 5 using disjoint, parallel samples and do not share elites or fit a mixture. The final solution is the
best candidate produced by any worker at termination. This “more workers + best-pooling” heuristic is
simple to implement and scales well for high-dimensional planning problems.

Motivation: where decentralization falls short Despite scalability and parallelism, decentralized
CEM remains vulnerable to: 1) Premature consensus. Independent workers still tend to shrink their co-
variances and converge to nearby modes under poor initializations. 2) Independent workers often duplicate
search effort, wasting rollouts on already-explored regions. 3) Pointwise learning. CEM updates use only
elite sets, so the ensemble as a whole does not learn the underlying structure; for example, what’s each
worker’s contribution to the ensemble? To address these limitations, we propose a lightweight upgrade
of the decentralized approach that aggregates and guides CEM workers in a principled way with minimal
overhead.

4 (Revised) Method

We start from the decentralized approach in which n independent CEM workers run in parallel with param-
eters {θi}n

i=1. We drop the time index for brevity and keep a potential F in DF for general development (F
is specialized only in exponential families).

Bregman Centroid: what represents the ensemble? To summarize the ensemble effectively, we
propose a weighted Bregman centroid of the workers’ parameters,

Bregman Centroid: θc = arg min
θ∈Θ

n∑
i=1

wi DF

(
θi

∥∥ θ
)
, (6)

with importance weight wi that reflects worker θi’s solution quality. Intuitively, this centroid θc is a geometric
average that pulls toward low-cost workers while still reflecting the spread of the ensemble. In Figure 3, the
star illustrates this “representative” role.

Relevance scores: who contributes to the ensemble? We define a relevance score by measuring its
Bregman divergence to the centroid, that is, the contribution to the minimized value in equation 6

Relevance score: γi = DF (θi ∥ θc). (7)

Small γi signals a low-quality worker (small wi due to poor performance) or a redundant worker (sitting
right on the consensus). By ranking workers based on relevance scores, we obtain a compact summary of
each worker’s unique contribution to the ensemble.

Trust region: where to respawn new workers? To keep the ensemble efficient, we prune it by replacing
the lowest-scoring workers with new candidates sampled inside a Bregman ball:

Trust Region: B∆(θc) = {θ : DF (θ∥θc) ≤ ∆}. (8)

New workers start near the ensemble’s belief, without collapsing to the centroid due to the diversity threshold
∆. In exponential families, this trust region has Euclidean-like structure, which keeps sampling fast and
efficient even in high dimensions (see next sections).
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Algorithm: Bregman–Centroid Guided Evolution Strategy. With these three components, we
present BC-EvoCEM, a lightweight upgrade of decentralized CEM ensembles. Each iteration has three
stages and leaves every worker’s inner CEM step unchanged. The workflow is as follows:

1. Independent update. Each of the n workers runs one CEM step with its own population and
elites, updating its parameter θi as usual (same as DecentCEM).

2. Ensemble Summary. After each update, we assign a weight wi to each worker based on its cost,
compute the Bregman centroid θc of the set {θi}n

i=1, and score each worker by its divergence from
the centroid.

3. Targeted evolution. Given a radius ∆, we replace the lowest-relevance worker(s) by sampling
candidates from a Bregman trust region B∆(θc) = {θ : DF (θ∥θc) ≤ ∆}.

The idea of BC-EvoCEM is simple (see Algorithm 1): the centroid is the ensemble’s consensus of promising
regions, the relevance score tells each CEM instance’s contribution, and the trust region tells where to add
diversity. The loop aims to prevent collapse and use computation budget where it matters most.

Algorithm 1 BC-EvoCEM (per iteration)
Require: Workers {θi}n

i=1, cost J(·), divergence D (from potential F :=Ψ), radius ∆
1: for t = 1 to T do
2: (Workers improve) {θi} ← DistributedCEM({θi}, J) ▷ Independent, vanilla per-worker CEM.
3: (Weights) wi ← PerfWeight(elites/costs of worker i) ▷ Normalize

∑
i
wi = 1.

4: (Centroid) θc ← arg minθ

∑
i
wiDF (θi∥θ)

5: (Scores) γi ← DF

(
θi ∥ θc

)
▷ Worker i’s contribution to ensemble.

6: (Targeted evolution) i⋆ ← arg mini γi ▷ Least helpful (redundant/low-quality) worker.
7: θi⋆ ← TrustRegionSample

(
θc, ∆

)
▷ Exact (proxy) sampler; see below.

8: end for
9: Return lowest-cost candidate, and summary (θc, {γi})

(main results ONLY) BC-EvoCEM in Exponential Families We show that three core operations in
BC-EvoCEM––namely, computing the centroid, scoring and sampling from the trust-region––incur negli-
gible computation overhead in the CEM. Throughout we work with regular, minimal exponential families
in their mean coordinate {ηi} with its corresponding Bregman divergence DΨ∗ (see Preliminaries). Let ηc

denote the corresponding Bregman centroid. We summarize the main results here and provide a detailed
exposition in Appendix A.

• Centroid = average of statistics. With weights {wi} and worker means {ηi}, the centroid
satisfies ηc =

∑
i wiηi and θc = (∇Ψ)−1(ηc). Because CEM already computes the sufficient-statistic

averages, the centroid comes essentially for free.

• Relevance scores = Log-likelihood evaluation. γi = DΨ∗(ηi∥ηc) can be evaluated as a
log-likelihood proxy against the aggregated statistic ηc. The computation reduces to one inner
product and one cumulant evaluation per worker.

• Efficient Trust-region sampling. Drawing new η from B∆(ηc) follows a simple, intuitive recipe:
pick a random unit direction u, start at centroid ηc, and move along u until it hits the boundary set
by ∆. We provide two samplers (see Algorithm 3 and 4 in Appendix): one is exact by root-solving
the boundary and one proxy by quadratically approximating the cumulant.

4.1 (NEW) Example: BC-EvoCEM with Gaussians

We give a concrete example of BC-EvoCEM. Consider minimizing a cost J(x) with n CEM instances whose
sampling distributions are isotropic Gaussians, pθi = N (µi, σ2I) with fixed σ. For this EF member, the mean
parameter η = µ and natural parameter θ = µ/σ2 (relevant quantities are summarized in Table 1).
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Table 1: Closed forms (constants omitted).

Quantity Closed form
Natural ↔ Mean θ = µ/σ2, η = µ

Cumulant Ψ(θ) = σ2

2 ∥θ∥
2
2

Sufficient statistic T (x) = x
Centroid (mean) µc = ηc =

∑
i wi µi

Centroid (natural) θc = (∇Ψ)−1(ηc) = µc/σ2

Distance score (worker i) γi := DΨ∗(µi∥µc) = 1
2σ2 ∥µi − µc∥2

2 = σ2

2 ∥θi − θc∥2
2

Local Hessian for sampling H = ∇2Ψ∗(ηc) = I/σ2

Trust region (mean) {µ : ∥µ− µc∥2 ≤
√

2∆ σ}
Trust region (natural) {θ : ∥θ − θc∥2 ≤

√
2∆/σ}

The workflow of BC-EvoCEM on this simple EF member is as follows:

• Step 1: Independent CEM updates. Each worker runs vanilla CEM on J(x): producing elite
set and updating (µi, σ2) (empirical mean of elites in this case). No communication.

• Step 2 : Performance weights. Compute wi from each worker’s elite cost and normalize.

• Step 3 : Centroid. In mean coordinates: µc = ηc =
∑n

i=1 wi µi. Because ∇Ψ is linear here, this
is also the weighted average in natural coordinates: θc =

∑
i wiθi = µc/σ2.

• Step 4 : Relevance scores. For isotropic Gaussians, score becomes squared Euclidean distances

γi = 1
2σ2 ∥µi − µc∥2

2, equivalently, σ2

2 ∥θi − θc∥2
2.

• Step 5 : Trust region & sampling. Because Ψ is quadratic, the trust-region is Euclidean in
both mean and natural space. Given the constant Hessian H = σ−2I, the proxy and exact samplers
coincide. Sampling becomes: draw v ∼ Unif(Sd−1), u ∼ Unif[0, 1], set r =

√
2∆ σ · u1/d, then

µnew = µc + r v, with θnew = µnew/σ2. Finally, let i⋆ = arg mini γi and replace worker i⋆.

Net add-on of BC-EvoCEM to vanilla CEM: (i) average the means, (ii) rank by squared distance to that
average, (iii) respawn the farthest inside a Euclidean ball. The entire mechanism is a few vector operations:

Centroid: O(nd) weighted mean of existing µi (already in CEM logs).
Scores: O(d) per worker one norm ∥µi − µc∥2.
Sampling: O(d) one random direction + one scalar radius.

5 (Revised) Bregman Centroid–Guided MPC for MBRL

In model-based reinforcement learning (MBRL), we wrap BC-EvoCEM into a standard MPC loop. At time
t, MPC plans an open-loop action sequence at:t+H−1 ∈ AH under a learned transition model f̃ ,

max
at:t+H−1

Ĵt(at:t+H−1) = Ef̃

[ t+H−1∑
τ=t

γτ−t r̃(sτ , aτ )
]

s.t. sτ+1 ∼ f̃(sτ , aτ ),

executes only the first action, and replans at t+1. We keep K CEM workers fully independent internally, but
couple them between MPC steps via a solution-weighted Bregman centroid used to warm start all workers.

Concretely, after each solve: (i) compute the centroid over worker distributions; (ii) initialize all workers
at t+1 from this centroid instead of shifting a single solution (Chua et al., 2018; Zhang et al., 2022); and
(iii) to prevent ensemble collapse, periodically respawn the lowest-relevance workers by sampling within

6



Under review as submission to TMLR

a centroid-centered Bregman trust region. This preserves every worker’s inner CEM loop (for minimal
overhead), adds only a few vector operations per control step, and balances consensus with targeted diversity,
effectively serving as a drop-in, plug-and-play MPC wrapper for any planning-based MBRL baselines (see
Algorithm 2).

Algorithm 2 Drop-in MPC Wrapper for MBRL. Add-ons operations are highlighted by Orange.
Require: K CEM workers, buffer D, horizon H, inner iterations L, respawn frequency P

1: for each training iteration do
2: // Training dynamics model on data buffer. //
3: Train dynamics model f̃ on D
4: Initialize worker params {θk}K

k=1
5: // Running MPC policy. //
6: for each control step t = 1, . . . , H do
7: // Warm-start CEMs by the centroid. //
8: Compute Bregman centroid θc ← Centroid({θk}; {wk})
9: Warm-start: θ

(0)
k ← θc

10: // Trajectory Optimization by CEM. // ▷ CEM internal unchanged
11: CEM: For each k, run L CEM iterations from θ(0) under f̃ ; obtain θk ← θ

(L)
k and Ĵbest

k

12: // Evolution strategy. //
13: Score & Replace: if t mod P = 0 then
14: Replace worst workers via the Target Evolution step in 1
15: Execute the 1st action of arg maxk Ĵbest

k

16: Append new transition to D and advance the environment
17: end for
18: end for

6 (NEW) Discussion: Why Bregman divergence and its centroid?

In this section, we justify the use of the Bregman divergence and its centroid in the CEM. We adopt the
notations introduced in the Preliminaries and repeatedly invoke the fact that CEM is a KL-projection of
the sampling distribution (elites’ law) onto the parametric family {pθ} (standard result of CEM as KL
minimization, see (Rubinstein & Kroese, 2004)).

Ensemble CEM as a KL–projection. In an ensemble CEM, n workers maintain EF members {pθi
}n

i=1
and produce nonnegative weights wi with

∑
i wi = 1 from their elite sets. A natural ensemble summary is

to approximate the mixture

pmix :=
n∑

i=1
wi pθi

by a single distribution pθ within the same parametric family. Using the “CEM as a KL-projection” fact,
one obtains the following.
Proposition 1 (Ensemble CEM as KL-projection). Let pmix =

∑
i wipθi . Then the three objectives

θc = arg min
θ

n∑
i=1

wi KL
(
pθi
∥ pθ

)
= arg min

θ
KL

(
pmix ∥ pθ

)
= arg max

θ
Epmix

[
log pθ(X)

]
are equivalent and share the same minimizer θc.

Specializing to exponential families yields the following results:
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Corollary 1 (EF: moment matching & centroid). If pθ is a regular, minimal EF with cumulant Ψ, then

Epmix [log pθ(X)] =
〈
θ, Epmix [T (X)]

〉
−Ψ(θ) + const,

so the maximizer θc of Prop. 1 satisfies the moment-matching condition

∇Ψ(θc) = Epmix [T (X)] =
n∑

i=1
wi ηi.

Equivalently, θc is the left-sided Bregman centroid in natural space, and, dually, ηc =
∑

i wiηi is the
right-sided centroid in mean space with generator Ψ∗.

These results show two crucial facts: (i) the aggregate stays inside the family (in-family closure property),
and (ii) the ensemble’s best single EF representative is the member whose sufficient-statistic mean matches
that of the mixture (KL-projection onto the family). No extra heuristic is introduced: the choice of
Bregman divergence and its centroid is a direct consequence of EF geometry and KL alignment.

Other alternative distances/divergences. Below we summarize several commonly used notions of a
central distribution within a collection and discuss why each is inadequate in the CEM setting.

• Euclidean/Mahalanobis in parameter space. Sensitive to reparameterization; does not align
with log-likelihood; no moment-matching guarantee; may push updates outside EF geometry.

• Kernel/Maximum mean discrepancy(MMD) centroids. Require careful feature selection
and large Gram matrices; the induced centroid generally lies outside the EF and lacks a simple
moment-matching form; computationally heavier than the closed-form EF centroid.

• Wasserstein barycenters. Geometry-preserving, powerful but iterative, high-dimensional costs
(e.g., Sinkhorn solve), and no EF closure in general; the objective is not the one CEM already
optimizes.

• Other f-divergences. No EF-KL identity in general; lose the clean moment-matching and the
right-sided likelihood interpretation.

Figure 3: Performance comparison for vanilla, de-
centralized, and our CEM methods. Solid/dashed
lines show the mean/best cost, shaded bands ±1 std.
Information radius (sample variance in this case) at
iter 25 is shown.

For EF aggregation inside CEM, KL (namely, Bregman
with generator Ψ∗) is unique in giving (i) in-family clo-
sure, (ii) a closed-form, moment-matching centroid, and
(iii) a principled trust region tied to likelihood via DΨ∗ .

7 Experimental Results

7.1 Multi-modal optimization

We first demonstrate our method on a multi-modal op-
timization problem with the cost function (Fig. 1 shows
the cost landscape with multiple attraction basins):

J(x) = sin(3x1) + cos(3x2) + 0.5 ∥x∥2
2.

We compare our method against (1) vanilla CEM and
(2) decentralized CEM(DecentCEM) (Zhang et al., 2022),
with the same parametric distribution pθ = N (θ, 0.52I).
Our approach (red in Fig. 3) demonstrates faster convergence in both Best and Average costs. Importantly,
the trust-region sampling maintains solution diversity, as shown by the final IR values (i.e., sample variance
in this case).
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Figure 4: Scaling with workers (20 seeds). BC-EvoCEM
needs fewer workers to hit the same best-cost.

Better worker efficiency. Our scaling study (see
Fig.4) reveals a clear log2(#workers) law: beyond
8–16 workers, DecentCEM shows sharp diminish-
ing returns. BC-EvoCEM achieves the same best-
cost and diversity asymptotics with roughly half of
the workers. It shows markedly higher worker ef-
ficiency while avoiding the quadratic rollout cost
that comes with an increasingly larger ensemble.

7.2 Navigation Task

We consider a cluttered 2D navigation task with
first-order dynamics and time-step ∆t = 0.2. A planning horizon of H = 200 yields a 2H-dimensional
action sequence. We employ 5 independent diagonal-Gaussian CEM workers with identical CEM hyper-
parameters and initialization. To sample from the trust region in this high-dimensional space, we use the
ProxySampler (see Alg. 4).

Table 2: Normalized costs and relative drop versus decentralized CEM.

Average cost Best cost
Method Norm. Drop (%) Norm. Drop (%)

Decentralized CEM 1.00 — 1.00 —
BC-evoCEM 0.18 82.4 0.55 45.3

Figure 5 (left) visualizes trajectories from a fully decentralized CEM, which disperse widely and frequently
deviate from the start–goal line. In contrast, BC-EvoCEM (right) maintains a tight cluster of trajectories
around the Bregman-centroid path (green dashed line), producing a more diverse and goal-directed planning.
Notably, the centroid itself is not guaranteed to avoid obstacles as it serves only as an information-geometric
summary of all workers. Quantitatively, BC-EvoCEM yields significant improvements in both average and
best cost without incurring noticeable computational overhead.

Figure 5: Trajectory distributions from decentralized CEM (left) and Bregman–centroid guided CEM (right)
on a point-mass navigation task. The representatives of each method (dashed line) are the average and
Bregman-centroid trajectory.
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7.3 Bregman Centroid Guided MPC in MBRL

Baselines and minimal implementation. Our study is built on the PETS framework (Chua et al.,
2018) and the DecentCEM implementation of Zhang et al. (2022). Dynamics learning, experience replay,
and per-worker CEM updates are left untouched. We wrap the optimizer with a Bregman-Centroid warm-
start (see the MPC in 2). The wrapper is drop-in and lightweight, i.e. < 50 lines of Python code. This
plug-and-play feature makes the method readily portable to any planning-based MBRL codebase.

Protocol. To isolate the impact of the trajectory optimizer, we keep the rest of PETS fixed and compare
three variants: vanilla CEM, DecentCEM, and BC-EvoCEM under two dynamics models: 1) a determin-
istic model trained by minimizing MSE, and 2) a probabilistic ensemble with trajectory sampling (Chua
et al., 2018). Full results and hyper-parameters are in Appendix D.

Experimental results. With no additional stochasticity in the pipeline, all performance differences stem
from the optimizer itself. BC-evoCEM delivers faster early learning and higher asymptotic return on
four of six benchmarks (see Figure 6). Its sample-efficiency advantage is quantified in Table 3, where BC-
EvoCEMM reaches 90% of its own final reward up to 4× sooner than baselines. Vanilla CEM’s covariance
collapses quickly, and DecentCEM suffers from independent worker collapse. By contrast, the Bregman
centroid keeps workers in promising regions while preserving ensemble diversity, translating into sustained
exploration and higher returns.

Table 3: Sample–efficiency boost (↑) of BC-EvoCEM over two CEM variants. Values > 1 mean BC-evoCEM
learns faster

Environment vs. DecentCEM vs. vanilla CEM

Acrobot ×2.1 ×2.6
CartPole ×3.4 ×4.0
Hopper ×1.0 ×1.1
Inverted Pendulum ×1.1 ×1.2
Reacher ×1.0 ×1.1
Pusher ×1.9 ×2.0

When both epistemic and aleatoric uncertainty are already captured via bootstrap sampling, the performance
differences among the three optimizers become statistically indistinguishable (see Appendix D.3). Here, the
model’s intrinsic stochasticity supplies sufficient trajectory dispersion, so further optimizer-level exploration
yields diminishing returns.

Uncertainties in MBRL. The controlled study highlights two distinct yet coupled sources of uncertainty
in model-based RL: model uncertainty and optimality uncertainty. Improving the dynamics model (e.g.,
probabilistic ensembles) addresses the former, whereas a diversity-informed optimizer (e.g., BC-EvoCEM)
directly addresses the latter. Once the dynamics model approaches its performance cap (or its represen-
tational capacity is bottlenecked), optimality uncertainty predominates; in this regime, geometry-informed
exploration such as BC-EvoCEM in the action space delivers a complementary boost.

7.4 Real-World Quadruped Navigation Experiments

To demonstrate that BC-EvoCEM extends beyond simulation, we deploy it on a Unitree GO2 quadruped
tasked with navigating a 4× 4 m cluttered arena (Fig. 7a). Both BC-EvoCEM and a vanilla CEM baseline
optimize a velocity policy control = [vlinear, vangular] at 20 Hz. Success is defined as reaching the goal without
collision within a given number of iterations. We report five metrics in Table 4.
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Figure 6: Training return curves across six control tasks using PETS with different CEM-based optimizers.
All methods use the deterministic dynamics model. Curves show mean performance over 3 random seeds.

Table 4: Performance metrics (lower ↓ is better).

Success Eff. ↓ Smooth ↓ Cost ↓ topt ↓
BC-evoCEM ✓ 1.158 10.90 21.16 0.462
CEM ✗ 1.079 12.92 36.96 0.400

Experimental results. Figure 7 and Table 4 demonstrate that:

• Planned Path (Fig. 7). The vanilla CEM rollout drifts into the obstacle cluster and halts ∼0.9 m
short of the goal (white circle), whereas BC-EvoCEM generates a collision-free path that reaches
the goal (yellow star). Its sample cloud (gray) remains tighter and farther from danger zones.

• Quantitative metrics (Table 4). Compared to vanilla CEM, BC-EvoCEM yields a smoother
control profile and cuts cumulative cost by 43%, with only a modest +0.062 s optimization overhead.

These results validate our central claim: BC-EvoCEM is a lightweight, drop-in upgrade to existing CEM
implementations that delivers substantially safer, smoother, and cheaper trajectories without sacrificing
real-time performance.

11
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2

1

3

4

(a) Unitree GO2 executing BC-evoCEM’s plans.

(b) Planned path — CEM.

(c) Planned path — BC-evoCEM.

Figure 7: Real-world navigation experiment. Top: sequential onboard snapshots. Bottom: top-down planned
paths from each optimizer. Quantitative metrics are reported separately in Table 4.

8 Conclusion

We introduced BC-EvoCEM, a lightweight ensemble extension of the Cross-Entropy Method that has (i)
principled information aggregation and (ii) diversity-driven exploration with near-zero computation over-
head. Across optimization problems and model-based RL benchmarks, BC-EvoCEM demonstrates faster
convergence and attains higher-quality solutions than vanilla and decentralized CEM. Its plug-and-play de-
sign enables easy integration into MPC loops while preserving the algorithmic simplicity that makes CEM
appealing in the first place.

(Extended) Limitations

Here we discuss limitations of the proposed BC-EvoCEM and provide potential directions for addressing
them in future work.

The Bregman trust region is convex. While it improves local exploration, it cannot by itself bridge distant
CEM solutions. As a result, we pair it with decentralization and restarts. A natural extension is a multi-
center variant: cluster elites and apply per-cluster Bregman balls (a mixture of trust regions), enabling
mode-wise refinement without breaking the lightweight integration.

In addition, all information-geometric arguments (closed-form centroid, ellipsoidal trust region, likelihood-
based ranking) hold only for regular, minimal exponential family distributions in mean coordinates. This
restriction limits the expressiveness of the CEM distributions. Future work will transfer these ideas to
richer models via geometric-preserving transport maps (Villani et al., 2008). In addition, while we prove the
centroid and repawned CEM workers remain inside a Bregman ball, the method still lacks global optimality
guarantees and convergence analysis. It inherits these limitations from CEM. A promising direction is to
consider the proposed BC-EvoCEM in the stochastic mirror-descent framework (Ahn & Chewi, 2021), which
potentially provides non-asymptotic convergence bounds via the primal-dual relationship.
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A (Extended) BC-evoCEM in Exponential Families

A.1 Preliminaries

We follow the notation in the main text. Let {pθ : θ ∈ Θ ⊂ Rd} be a regular, minimal exponential family

pθ(x) = h(x) exp
{
⟨θ, T (x)⟩ −Ψ(θ)

}
,

with strictly convex (Legendre-type) cumulant Ψ. The mean (expectation) parameter is

η := ∇Ψ(θ) = Eθ[T (X)].

Let Ψ∗ be the convex conjugate of Ψ. The associated Bregman divergences are

DΨ∗(η∥ η′) = Ψ∗(η)−Ψ∗(η′)−
〈
∇Ψ∗(η′), η − η′〉, DΨ(θ′ ∥ θ) = Ψ(θ′)−Ψ(θ)−

〈
∇Ψ(θ), θ′ − θ

〉
.

Under the Legendre duality η = ∇Ψ(θ) and θ = ∇Ψ∗(η),

DΨ∗(η∥ η′) = DΨ(θ′ ∥ θ) with η = ∇Ψ(θ), η′ = ∇Ψ(θ′). (9)

Moreover, for exponential families, we have the following identity with Kullback–Leibler(KL) divergence
(see (Amari, 1995))

KL(pθ ∥ pθ′) = DΨ(θ′ ∥ θ) = DΨ∗(η∥ η′). (10)

Remark 1 (Notes on the “Sidedness”). Bregman divergences are asymmetric: in general DF (x ∥ y) ̸=
DF (y∥ x). Consequently, there are two notion of Bregman centroids for points {xi} with weights {wi}:

Right–sided: arg min
c

∑
i

wi DF (xi ∥ c), solution c =
∑

i

wi xi;

Left–sided: arg min
c

∑
i

wi DF (c∥ xi), solution ∇F (c) =
∑

i

wi∇F (xi),

whenever F is Legendre-type function and ∇F is invertible (Nielsen & Nock, 2009). In this work we aggregate
EF members using the right–sided centroid in mean (η) coordinates with generator F = Ψ∗. By equation 9,
this is equivalent to the left–sided centroid in natural (θ) coordinates with generator F = Ψ. This convention
matches the EF identity in equation 10: minimizing

∑
i wi KL(pθi

∥ pθ) is exactly the left–sided Bregman
centroid in θ and, dually, the right–sided centroid in η.

A.2 Centroid in natural and mean coordinates

As the core of our method, the Bregman centroid admits a simple closed form in mean coordinates.
Proposition 2 (Bregman centroid). Given weights w = (w1, . . . , wn) with wi ≥ 0 and

∑
i wi = 1, and EF

members with parameters (θi, ηi) related by ηi = ∇Ψ(θi), the following are equivalent and admit a unique
solution:

ηc = arg min
η

n∑
i=1

wi DΨ∗(ηi ∥ η) ⇐⇒ ηc =
n∑

i=1
wi ηi, (11)

θc = arg min
θ

n∑
i=1

wi DΨ(θ∥ θi) ⇐⇒ ∇Ψ(θc) =
n∑

i=1
wi ηi. (12)

Equivalently, θc = (∇Ψ)−1(ηc).

Proof. The right–sided identity equation 11 is the mean-as-minimizer property of Bregman divergences with
generator Ψ∗ (Banerjee et al., 2005). The equivalence with equation 12 follows from the duality in equation 9
and the invertibility of ∇Ψ for Legendre-type function Ψ (Nielsen & Nock, 2009; Rockafellar, 2015).
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CEM’s likelihood evaluations (see equation 1) naturally yield empirical sufficient-statistic means for each
member,

η̂i = 1
N

N∑
j=1

T
(
xi,j

)
,

so the centroid in mean space is obtained for free as ηc =
∑n

i=1 wi η̂i, and the corresponding natural param-
eter is θc = (∇Ψ)−1(ηc), with no extra optimization (e.g., solving a separate weighted-centroid problem).

A.3 Relevance score: log-likelihood evaluation

Log-likelihood and Bregman Divergence. In this subsection, we ignore the base measure h(x) in pθ(x),
since it does not depend on θ. Write t for as a sufficient-statistic value or an empirical mean (e.g., η̂). The
parametric log-likelihood of an EF member then given by

ℓ(θ; t) = ⟨θ, t⟩ −Ψ(θ). (13)

Using Ψ∗(η) = ⟨η, θ⟩ −Ψ(θ) and the definition of DΨ∗ , we have

ℓ(θ; t) = ⟨θ, t⟩ −Ψ(θ)

= Ψ∗(t)−
(

Ψ∗(t)− ⟨θ, t⟩+ Ψ(θ)
)

= Ψ∗(t) − DΨ∗
(
t ∥ η

)
. (14)

Thus, up to the constant Ψ∗(t), maximizing log-likelihood is equivalent to minimizing the Bregman divergence
DΨ∗(t∥η).

Relevance score. Let ηc =
∑

i wi η̂i be the centroid in the mean space and θc = ∇Ψ∗(ηc) its natural
parameter. For a worker i with empirical mean η̂i, evaluate the centroid at t = η̂i:

ℓ(θc; η̂i) = Ψ∗(η̂i)−DΨ∗
(
η̂i ∥ ηc

)
. (15)

If θ⋆
i denotes the worker-specific MLE (so ∇Ψ(θ⋆

i ) = η̂i), then

ℓ(θc; η̂i)− ℓ(θ⋆
i ; η̂i)︸ ︷︷ ︸

log-likelihood drop of centroid on worker i

= − DΨ∗
(
η̂i ∥ ηc

)
(16)

This motivates our definition of relevance score of worker i with respect to the centroid:

γi := −
(
ℓ(θc; η̂i)− ℓ(θ⋆

i ; η̂i)
)

= DΨ∗
(
η̂i ∥ ηc

)
, (17)

which measures the negative log-likelihood(NLL) gap as a discrepancy score.

Practical considerations. In most cases, we work with an EF member (e.g., Gaussians) with a known
conjugate Ψ∗. Even when Ψ∗ is not available in closed form, equation 15 and equation 17 can be computed
using only the cumulant Ψ and (θc, ηc):

DΨ∗
(
η̂i ∥ ηc

)
= Ψ∗(η̂i)−Ψ∗(ηc)−

〈
∇Ψ∗(ηc), η̂i − ηc

〉
= Ψ∗(η̂i) −

〈
θc, η̂i

〉
+ Ψ(θc), (18)

since ∇Ψ∗(ηc) = θc and Ψ∗(ηc) = ⟨ηc, θc⟩ −Ψ(θc). Consequently,

ℓ(θc; η̂i) =
〈
θc, η̂i

〉
−Ψ(θc) = Ψ∗(η̂i)−DΨ∗

(
η̂i ∥ ηc

)
,

and the relevance score equation 17 follows immediately.
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A.4 Trust–region sampling

We sample inside the Bregman ball trust-region in mean space,

S∆(ηc) :=
{

η ∈ E : DΨ∗(η ∥ ηc) ≤ ∆
}

,

which is star-shaped about ηc along every Euclidean ray (see Lemma 1 below). We follow the standard
ray-shooting recipe for sampling in convex bodies (Schneider, 2013): draw a random direction v, find the
boundary distance ρmax(v) along v, then sample the radius with the appropriate volume correction.

Algorithm 3 TrustRegionSampler (Exact)
Require: Centroid ηc, radius ∆, Bregman divergence DΨ∗ ▷ Ψ∗ is the convex conjugate.
1: Draw direction v ∼ Unif(Sd−1) ▷ Random ray from the unit sphere.
2: Find ρmax s.t. DΨ∗ ( ηc + ρmaxv ∥ηc ) = ∆ ▷ 1D root solve for the boundary.
3: Sample u ∼ Unif[0, 1]; set ηnew ← ηc + u1/d ρmax v ▷ Volume correction for uniform law.
4: return ηnew, optional θnew ← (∇Ψ)−1(ηnew)

Theorem 1. Let ρmax(v) be the unique solution of DΨ∗(ηc + ρv ∥ηc) = ∆. Algorithm 3 returns ηnew ∼
Unif

(
S∆(ηc)

)
. Under the dual map θ = ∇Ψ∗(η), the image set is the left-sided natural-parameter ball

B∆(θc) :=
{

θ ∈ Θ : DΨ( θc ∥ θ ) ≤ ∆
}

,

and θnew ∈ B∆(θc). If Ψ is quadratic (so ∇2Ψ is constant), then θnew is uniform on B∆(θc) with respect to
Lebesgue measure.

Algorithm 4 TrustRegionSampler (Proxy; ellipsoidal approximation)
Require: Centroid ηc, radius ∆, H ← ∇2Ψ∗(ηc) ▷ Local metric (cheap and closed-form).

1: Draw v ∼ Unif(Sd−1)
2: ρ̂max ←

√
2∆/(v⊤Hv) ▷ Boundary along direction v.

3: Sample u ∼ Unif[0, 1]; set ηnew ← ηc + u1/d ρ̂max v ▷ Volume correction for uniform law.
4: return ηnew, optional θnew ← (∇Ψ)−1(ηnew

)
Proxy Sampler. To avoid per–direction root solving in Algorithm 3, we locally approximate the trust
region

S∆(ηc) :=
{

η ∈ E : DΨ∗
(
η ∥ηc

)
≤ ∆

}
.

Fix the direction v ∈ Sd−1 and define the radial function

gv(ρ) := DΨ∗
(
ηc + ρv ∥ηc

)
, ρ ≥ 0.

Then gv(0) = 0 and g′
v(0) = ⟨∇Ψ∗(ηc)−∇Ψ∗(ηc), v⟩ = 0. A Taylor expansion about ρ = 0 gives

gv(ρ) = 1
2 ρ2 v⊤∇2Ψ∗(ηc)︸ ︷︷ ︸

=: H

v + O(ρ3) ≈ 1
2 ρ2 v⊤H v, (19)

with
H = ∇2Ψ∗(ηc) =

[
∇2Ψ(θc)

]−1
.

Substituting equation 19 into the trust-region constraint gv(ρ) ≤ ∆ yields the directional bound

1
2 ρ2 v⊤H v ≤ ∆ =⇒ ρ ≤ ρ̂max(v) :=

√
2∆

v⊤H v
.

Hence the proxy trust region in mean space is the Mahalanobis (ellipsoidal) ball

Ŝ =
{

η ∈ E : (η − ηc)⊤H (η − ηc) ≤ 2∆
}

.

17



Under review as submission to TMLR

Diagonal Gaussian case (fixed variances). For p(x) = N (µ, diag(σ2)) with fixed diagonal variances,
the natural parameter is θ = diag(σ−2) µ and

Ψ(θ) = 1
2

d∑
i=1

σ2
i θ2

i + const, η = ∇Ψ(θ) = µ, Ψ∗(η) = 1
2

d∑
i=1

η2
i

σ2
i

+ const.

Therefore
H = ∇2Ψ∗(η) = diag

(
σ−2

1 , . . . , σ−2
d

)
,

and the proxy ball Ŝ is axis-aligned:

Ŝ =
{

η :
d∑

i=1

(ηi − (ηc)i)2

σ2
i

≤ 2∆
}

.

In particular, along any coordinate axis ei the directional radius is ρ̂max(ei) =
√

2∆ σi, so the extremal
coordinates are (ηc)i ±

√
2∆ σi.

Practical considerations. During CEM update of full diagonal Gaussians, the empirical covariance often
collapses, becoming low–rank or even singular; in other words, the mean component µ quickly dominates
the search directions. A practical trick here is to freeze the diagonal variance vector σ2 after a few iterations
(or to enforce a fixed lower bound). In practice, we perform such fix-variance trick during the trust region
sampling step for high-dimensional planning tasks, including the MPC implementation for MBRL in Sec. 7.3.
Because the Hessian matrix is block–diagonal (a diagonal sub-block for the mean and a sub-block for the
variances), we can safely use the approximation to perform such coordinate-wise updates exclusively on
the mean block. This also avoids numerical issues from near-singular covariances.
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B (NEW) BC-evoCEM in MBRL

B.1 Background: Model-based Reinforcement Learning

We model the control task as a finite-horizon Markov decision process (MDP) M = (S,A, p, r, γ, H) with
state s ∈ S, action a ∈ A, transition kernel p(· | s, a), reward r(s, a), discount γ ∈ [0, 1), and planning horizon
H. A policy π(a | s) seeks to maximize the expected return E

[∑H−1
t=0 γtr(st, at)

]
where st+1 ∼ p(· | st, at)

and at ∼ π(· | st).

In model-based reinforcement learning (MBRL), we learn a dynamics model f̃ (and optionally a reward
model r̃) from collected data D, and then use f̃ either to (i) train a parameterized policy/value function
entirely or partially in imagination (“world-model branch”), or (ii) plan action sequences online at decision
time (“pure planning branch”) (Ha & Schmidhuber, 2018; Chua et al., 2018; Janner et al., 2019). In this
work, we focus on the pure planning branch with receding-horizon model predictive control (MPC) solved
by a sampling-based optimizer.

B.2 MBRL with an MPC policy

Let f̃ denote a learned (possibly stochastic) dynamics model and r̃ a learned or known reward. At each
control step t, model predictive control (MPC) solves a finite-horizon open-loop planning problem over an
action sequence at:t+H−1= (at, . . . , at+H−1) ∈ AH , executes only the first action, and replans at t+1. The
optimization writes

max
at:t+H−1∈AH

Ĵt(at:t+H−1) := Ef̃

[
t+H−1∑

τ=t

γ τ−t r̃(sτ , aτ )
]

s.t. sτ+1 ∼ f̃( · | sτ , aτ ). (20)

Here γ ∈ [0, 1] is a discount factor and the expectation is taken over the model rollout randomness (e.g.,
process noise and/or sampling across an ensemble). The receding-horizon replanning provides closed-loop
feedback and naturally accommodates constraints (e.g., aτ ∈A) via sampling within bounds, projection, or
penalty terms. In modern MBRL, equation 20 is commonly solved by randomized trajectory optimization
methods such as random shooting, the cross-entropy method (CEM), and information-theoretic MPPI (Chua
et al., 2018; Nagabandi et al., 2018; Williams et al., 2016).

CEM for trajectory optimization. CEM maintains a parametric sampling distribution qθ over length-H
action sequences and iteratively concentrates “action samples” on high-return regions. A standard parame-
terization in continuous control is a time-indexed diagonal Gaussian,

qθ(at:t+H−1) =
H−1∏
ℓ=0
N

(
at+ℓ ; µℓ, diag(σ2

ℓ )
)
, θ = {µℓ, σ2

ℓ}H−1
ℓ=0 . (21)

Starting from θ(0), each CEM iteration l = 0, . . . , L−1 proceeds as follows:

1. Sampling. Draw N candidate sequences {a i}N
i=1∼ qθ(l) , clipping or projecting to A if needed.

2. Evaluation. Estimate model-predicted return Ĵt(a i) by rolling out each sequence under f̃ for H
steps. With ensembles or particles, average across samples.

3. Elite selection. Keep the top-M elites E(l) = arg topMi Ĵt(a i) (often M = ⌈ρN⌉ with elite ratio
ρ ∈ [0.05, 0.2]).

4. Distribution update. Compute empirical moments from elites and optionally exponentially
smooth:

µ̃
(l+1)
ℓ = 1

M

∑
a∈E(l)

at+ℓ, σ̃
2 (l+1)
ℓ = 1

M

∑
a∈E(l)

(
at+ℓ − µ̃

(l+1)
ℓ

)⊙2
, (22)

µ
(l+1)
ℓ = α µ̃

(l+1)
ℓ + (1−α) µ

(l)
ℓ , σ

2 (l+1)
ℓ = β σ̃

2 (l+1)
ℓ + (1−β) σ

2 (l)
ℓ , (23)
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with smoothing coefficients α, β ∈ [0, 1] and elementwise square, denoted by ⊙2. In practice one often
clamps variances, σ

2 (l+1)
ℓ ← clip

(
σ

2 (l+1)
ℓ , σ2

min, σ2
max

)
, to prevent premature collapse or excessive

exploration.

After L iterations, MPC executes the first action of the best sampled sequence and warm-starts the next
control step by shifting the mean trajectory forward and appending a default tail, e.g.,

µwarm
ℓ ←

{
µℓ+1, ℓ = 0, . . . , H−2,

atail, ℓ = H−1,
σ2,warm

ℓ ←

{
σ2

ℓ+1, ℓ = 0, . . . , H−2,

σ2
0 , ℓ = H−1,

where atail (e.g., zero or the last mean action) and σ2
0 control exploration at the horizon boundary (see (Chua

et al., 2018)). This pure-planning pipeline is simple and effective but can be sensitive to initialization and
may lose diversity if qθ collapses too quickly.

B.3 Bregman Centroid–Guided MPC for MBRL

We wrap BC-EvoCEM around a standard MPC loop without modifying any worker’s internal CEM iter-
ations. At each control step t, K workers run CEM independently (different random seeds and, optionally,
different hyperparameters, as the Decentralized CEM (Zhang et al., 2022)). After they finish, we compute a
solution-weighted Bregman centroid across their trajectory distributions and use this centroid to warm-start
all workers at time t+1. This replaces the usual warm-start that shifts the single best sequence (Chua et al.,
2018). To avoid consensus collapse, we periodically respawn low-relevance workers inside a centroid-centered
Bregman trust region.

• What we DO NOT change. Within each worker, CEM proceeds exactly as usual (sampling, elite
selection, exponential smoothing, variance clamping, etc.). We never enter the worker’s inner loop.

• What we DO change. Across workers and between MPC steps, we (i) aggregate the final worker
distributions into a Bregman centroid; (ii) warm-start all workers at t+1 from the shifted centroid;
and (iii) optionally respawn a subset of workers inside a centroid-centered Bregman trust region to
preserve diversity.

B.3.1 Bregman centroid for diagonal Gaussians

Let {qθk
}K

k=1 be the K worker distributions at the end of control step t. We form weights wk ≥ 0 with∑
k wk = 1 from the workers’ scores (e.g., softmax of best returns). For each time index ℓ and each action

dimension, the centroid q⋆
θc

is diagonal Gaussian with parameters

µ⋆
ℓ =

K∑
k=1

wk µk,ℓ, (24)

σ⋆ 2
ℓ =

K∑
k=1

wk

(
σ2

k,ℓ + µk,ℓ ⊙ µk,ℓ

)
− µ⋆

ℓ ⊙ µ⋆
ℓ , (25)

where ⊙ is the elementwise product. Equivalently, we have the following interpretation

σ⋆ 2
ℓ =

∑
k

wkσ2
k,ℓ︸ ︷︷ ︸

within-worker variance

+
∑

k

wk(µk,ℓ − µ⋆
ℓ )⊙ (µk,ℓ − µ⋆

ℓ )︸ ︷︷ ︸
between-worker dispersion

.

The centroid mean in equation 24 is the weighted average of worker means. The centroid variance equation 25
is the sum of (i) the average within-worker exploration scale and (ii) the between-worker disagreement.
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B.3.2 Centroid-guided warm start across MPC steps

At the end of step t, compute θc via equation 24–equation 25. To warm-start all workers at t+1, shift the
centroid forward by one stage (receding horizon) and append a default tail:

µwarm
ℓ ←

{
µ⋆

ℓ+1, ℓ = 0, . . . , H−2,

atail, ℓ = H−1,
σwarm 2

ℓ ←

{
max

(
σ⋆ 2

ℓ+1, σ2
min

)
, ℓ = 0, . . . , H−2,

σ2
tail, ℓ = H−1,

(26)

where atail is a default terminal action (e.g., zeros or the last centroid mean) and σ2
min ensures a variance

floor. The same (µwarm
ℓ , σwarm 2

ℓ ) is given to every worker as θ
(0)
k at the next step. Practically, the variance

is reset to the initial value to encourage per-worker exploration (Chua et al., 2018). Workers then run their
internal CEM loops as usual from this common initialization,

B.3.3 Weighted aggregation

We compute worker weights wk from the best sequence return Ĵbest
k . A robust choice is a tempered softmax:

wk =
exp

(
(Ĵbest

k −maxj Ĵbest
j )/τ

)∑K
j=1 exp

(
(Ĵbest

j −maxi Ĵbest
i )/τ

) , τ > 0, (27)

where smaller τ increases concentration (faster consensus), larger τ preserves diversity.

B.3.4 Respawn via trust–region sampling

We respawn low–relevance workers inside the right-sided Bregman ball in mean space centered at the
warm-shifted centroid (µwarm, σwarm 2):

Ŝ∆ :=
{

µ : DΨ∗
(
µ ∥ µwarm)

≤ ∆
}

.

For the diagonal Gaussian parameterization equation 21 with fixed variances, the mean-space generator is
quadratic and

DΨ∗
(
µ ∥ µwarm)

= 1
2

H−1∑
ℓ=0

∥∥µℓ − µwarm
ℓ

∥∥2
diag(σwarm −2

ℓ
) (28)

= 1
2 (µ− µwarm)⊤H (µ− µwarm), where H := diag

(
σwarm −2)

, (29)

so Ŝ∆ is the ellipsoid
Ŝ∆ =

{
µ : (µ− µwarm)⊤H(µ− µwarm) ≤ 2∆

}
.

This is exactly the ellipsoidal trust region from Sec. 4, and here the proxy sampler is exact for the mean
block (quadratic Ψ in µ).

Given the centroid at time t (before shift) with parameters (µ⋆, σ⋆ 2), compute each worker’s score (Sec. B.3.1)

γk = DΨ∗
(
µk ∥ µ⋆

)
= 1

2

H−1∑
ℓ=0

∥∥µk,ℓ − µ⋆
ℓ

∥∥2
diag(σ⋆ −2

ℓ
).

Select a respawn set R as the top-r fraction by γk.

Sampling inside the ellipsoid. Let D := H×da be the total mean dimension. Define the diagonal
whitening scales s := σwarm stacked over all times/dimensions and S := diag(s). Uniform sampling in the
ellipsoid is obtained by drawing uniformly in the Euclidean ball and mapping back:

y ∼ Unif
{

y : ∥y∥2 ≤
√

2∆
}

, µnew = µwarm + S y,
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since (µnew − µwarm)⊤H(µnew − µwarm) = ∥y∥2
2 ≤ 2∆. A convenient implementation is y = r v with

v ∼ Unif(SD−1) and r =
√

2∆ u1/D, u ∼ Unif[0, 1].

Algorithm 5 RespawnDiagonalGaussian (centroid trust–region sampling)
Require: Warm centroid (µwarm, σwarm 2), radius ∆, respawn set R, action set A (box)

1: s← vec(σwarm); S ← diag(s); D ← H × da

2: for k ∈ R do
3: Draw v ∼ Unif(SD−1), u ∼ Unif[0, 1], r ←

√
2∆ u1/D

4: µ
(0)
k ← µwarm + S (r v) ▷ Uniform in {µ : DΨ∗ (µ∥µwarm) ≤ ∆}

5: Project each time step to A: µ
(0)
k,ℓ ← ΠA

(
µ

(0)
k,ℓ

)
6: Set variance: σ

2,(0)
k ← max

(
σwarm 2, σ2

min
)

▷ Clamp elementwise
7: end for
8: return {(µ(0)

k , σ
2,(0)
k )}k∈R

Practical considerations. (i) With diagonal, fixed variances, the mean-space generator is quadratic, so
Algorithm 5 is exact. (ii) A practical calibration for choosing ∆ is to estimate the information radius; set
and adjust ∆ based on the variance of the relevance scores, which captures the between-worker spread. (iii)
Sampling complexity. O(D) per respawned worker with one random direction and one diagonal scale.

B.3.5 Computational overhead and algorithmic advantage

The net extra cost versus vanilla MPC+CEM is negligible: computing equation 24–equation 25 is O(KHda)
elementwise arithmetic, with no additional model rollouts. The method is a drop-in wrapper that leaves
inner-loop CEM vectorization intact and is equally compatible with random shooting or MPPI, e.g., simply
replace each worker’s optimizer, and only the cross-worker centroid/warm-start remains.
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C (Extended) Technical details

C.1 Proof of Proposition 1

Proof. By linearity of expectation,∑
i

wi KL(pθi∥pθ) =
∑

i

wi Epθi
[log pθi ]− Epmix [log pθ] = KL(pmix∥pθ) + const,

where const =
∑

i wi Epθi
[log pθi

] − Epmix [log pmix] is constant in θ. The second equality follows from
KL(pmix∥pθ) = −Epmix [log pθ] + const.

C.2 Proof of Corollary 1

Proof. Following the Proposition 1, we have

Epmix [log pθ(X)] =
〈
θ, µ

〉
−Ψ(θ) + const, where µ := Epmix [T (X)] =

∑
i

wiηi.

Maximizing a strictly concave function gives the unique θc with ∇Ψ(θc) = µ. Using KL-Bregman identity
KL(pθi

∥pθ) = DΨ(θ∥θi) (Eq. equation 10), the first-order condition of minθ

∑
i wiDΨ(θ∥θi) is the same, so

θc is the left-sided Bregman centroid in θ. By Legendre duality, ηc is the right-sided centroid in η with
generator Ψ∗, and θc = (∇Ψ)−1(ηc) (see Proposition 2 and Remark 1).

C.3 Proof of Theorem 1

C.3.1 Facts

Throughout we work on Θ, E ⊂ Rd equipped with Lebesgue measure λd. We write σd−1 for the surface
measure on the unit sphere Sd−1 := {v ∈ Rd | ∥v∥2 = 1}. The following facts are used (see Villani et al.
(2008); Schneider (2013)).
Fact 1 (Polar coordinates). Under the polar map (ρ, v) 7→ η = ηc+ρv with ρ ≥ 0, v∈Sd−1, the d-dimensional
Lebesgue volume element factorizes as dη = ρd−1 dρ dσd−1(v).
Fact 2 (Uniform distribution). Let ρmax : Sd−1→(0,∞) be measurable and define

S :=
{

ηc + ρv : v ∈ Sd−1, 0 ≤ ρ ≤ ρmax(v)
}

.

Then
Vol(S) = 1

d

∫
Sd−1

ρmax(v)d dσd−1(v), and fS(ρ | v) = d ρd−1

ρmax(v)d
, 0 ≤ ρ ≤ ρmax(v).

Fact 3 (Change of variables). For Ψ ∈ C2(Θ) strictly convex, the gradient map ∇Ψ : Θ → E is a C1

diffeomorphism with Jacobian det∇2Ψ(θ). For any nonnegative φ,∫
Θ

φ(θ) dθ =
∫

E
φ

(
∇Ψ−1(η)

)∣∣∣det∇2Ψ
(
∇Ψ−1(η)

)∣∣∣−1
dη.

Equivalently, if fη is a density on E then the pull-back density on Θ is

fθ(θ) = fη

(
∇Ψ(θ)

) ∣∣∣det∇2Ψ(θ)
∣∣∣.

C.3.2 Auxiliary lemma

We first show the radial Bregman divergence is strictly increasing in the (right-sided) radius.
Lemma 1 (Monotonicity). Let Ψ∗ be strictly convex and twice differentiable. For fixed η0 and v ∈ Sd−1

define
gv(ρ) := DΨ∗

(
η0 + ρv ∥ η0

)
, ρ ≥ 0.

Then gv is strictly increasing on (0,∞).
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Proof. Differentiating yields
g′

v(ρ) =
〈
∇Ψ∗(η0 + ρv)−∇Ψ∗(η0), v

〉
.

Strict convexity implies strict monotonicity of ∇Ψ∗. Since η0 + ρv ̸= η0 for ρ > 0, we have g′
v(ρ) > 0.

C.3.3 Main proof

Theorem 1 (Restatement). Algorithm 3 produces ηnew ∼ Unif
(
S∆(ηc)

)
and θnew ∈ B∆(θc). If Ψ is

quadratic, θnew is uniformly distributed in B∆(θc).

Proof. Let gv be defined as above and set ρmax(v) by gv

(
ρmax(v)

)
= ∆.

Step 1. Boundary existence & uniqueness. By Lemma 1, gv is strictly increasing, so gv(ρ) = ∆ has
a unique root ρmax(v) > 0 for each v.

Step 2. Feasibility. Algorithm 3 draws V ∼ Unif(Sd−1) and U ∼ Unif[0, 1], sets ρ = ρmax(V ) U1/d and
ηnew = ηc + ρV . Because gV (ρ)≤gV (ρmax(V )) = ∆, ηnew ∈ S∆(ηc) and, by duality,

DΨ
(
θc ∥ θnew

)
= DΨ∗

(
ηnew ∥ηc

)
≤ ∆,

so θnew ∈ B∆(θc).

Step 3. Uniformity in mean space. Conditioned on V = v, ρ has density d ρd−1/ρmax(v)d on [0, ρmax(v)]
by construction, which matches Fact 2; integrating over v yields ηnew ∼ Unif(S∆(ηc)).

Step 4. Pull-back to Θ. By Fact 3, fθ(θ) = fS∆

(
∇Ψ(θ)

) ∣∣det∇2Ψ(θ)
∣∣. For general Ψ, det∇2Ψ(θ) varies

with θ, so fθ need not be constant. If Ψ is quadratic, ∇2Ψ is constant; hence fθ is constant on B∆(θc), i.e.
θnew is uniform.
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D Full experimentawl results

D.1 Benchmark Environment Setup

We follow the evaluation protocol of Zhang et al. (2022) to assess both our method and the baseline algorithms
on the suite of robotic benchmarks introduced by Wang et al. (2019); Chua et al. (2018), including classical
robotic control problems and high-dimensional locomotion and manipulation problems. Key environment
parameters are summarized in Table 5. We refer the interested readers to Zhang et al. (2022) for more
details, such as reward function settings, termination conditions, and other implementation specifics. For
each case study, all algorithms are trained on three random seeds and evaluated on one unseen seed.

Table 5: Details of Benchmark Environments

Parameter Acrobot CartPole Hopper Pendulum Reacher Pusher
Train Iterations 50 50 50 50 100 100
Task Horizon 200 200 1000 100 50 150
Train Seeds {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}
Test Seeds {0} {0} {0} {0} {0} {0}
Epochs per Test 3 3 3 3 3 3

D.2 Algorithms Setup

The key parameters for the proposed BC-EvoCEM algorithm and all baseline methods are listed in Table 6.
The dynamic model for each benchmark is parameterized as a fully connected neural network: four hidden
layers with 200 units each, except for the Pusher task, which uses three hidden layers. All algorithms share
identical training settings for learning the dynamics model; further details on model learning can be found
in Chua et al. (2018) and Zhang et al. (2022).

Table 6: Details of Algorithms (DE and PE)

Parameter PETS-evoCEM PETS-DecentCEM PETS-CEM
CEM Type BC-EvoCEM DecentCEM CEM
CEM Ensemble Size 3 3 1
CEM Population Size 100 100 100
CEM Proportion of Elites 10 % 10 % 10 %
CEM Initial Variance 0.1 0.1 0.1
CEM Internal Iterations 5 5 5
Model Learning Rate 0.001 0.001 0.001
Warm-up Episodes 1 1 1
Planning Horizon 30 30 30
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D.3 Stochastic models with trajectory sampling

We adopt the probabilistic ensemble with trajectory sampling of Chua et al. (2018), which captures both
epistemic and aleatoric uncertainty. Under this setting, the learning curves of all three optimizers overlap
within statistical error (Fig. 8 and Fig. 9). No significant performance gaps emerge. We conjecture that
the model’s intrinsic stochasticity already supplies enough trajectory dispersion, so additional exploration
at the optimizer level offers little incremental benefit. Moreover, the benchmark continuous-control tasks
have largely unimodal return landscapes, which leaves less room for diversity-seeking mechanisms to improve
performance beyond what stochastic trajectory sampling already provides.

Figure 8: Training return curves across 3 control tasks using PETS with different CEM-based optimizers.
All methods use the probabilistic ensemble dynamics model with trajectory sampling (Chua et al., 2018).
Curves show mean performance over 3 random seeds.

Figure 9: Testing return curves across 3 control tasks using PETS with different CEM-based optimizers. All
methods use the probabilistic ensemble dynamics model with trajectory sampling Chua et al. (2018). Curves
show mean performance over 3 random seeds.
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D.4 (NEW) Additional experiments on a public, modular MBRL Library

We perform cross-validation in MBRL-Lib (Pineda et al., 2021), a public, modular PyTorch codebase for
model-based RL that exposes interchangeable components for dynamics, planning, and optimizers. This lets
us hold the PETS-style pipeline (Chua et al., 2018) fixed while exchanging only the trajectory optimizer,
ensuring an apples-to-apples comparison without confounding changes to data handling, rollout code, or
evaluation.

D.4.1 Implementations: vanilla CEM, decentralized CEM, and BC-guided CEM

We evaluate three optimizers behind the same MPC/planning interface:

1. Vanilla CEM (library default): we use the built-in CEM optimizer as-is.

2. Decentralized CEM (DecentCEM): a light wrapper of the built-in CEM that decentralizes the
parameter updates.

3. BC-guided warm-start (ours): warm-starts DecentCEM with Bremgman Centroid of previous
solutions and periodically refresh the ensemble of CEM workers (see Appdendix B.3 for details).

In all cases, we use the same planer (TrajectoryOptimizerAgent in the codebase), reward/termination
functions, replay buffer, and evaluation protocol provided by the library. Only the optimizer update rule
and initialization are changed.

D.4.2 Dynamics model setups and hyperparameters

We compare two standard dynamics configurations in PETS-style pipeline:

Single Gaussian model (no epistemic). A single probabilistic MLP with a diagonal-Gaussian head is
trained by negative log-likelihood (NLL) on delta transitions,

∆st := st+1 − st, pθ(∆st | st, at) = N
(
µθ(st, at), diag σ2

θ(st, at)
)
.

The training objective is minθ −
∑

t log pθ(∆st | st, at). At planning time we propagate the predic-
tive mean only,

st+1 = st + µθ(st, at),

thereby removing model sampling effects and isolating optimizer behavior.

Bootstrapped ensemble with TS1 propagation. An ensemble of M = 5 MLPs, each trained on a
bootstrap resample with the same Gaussian head and NLL objective. During planning we use PETS-
style “TS1” rollouts (Chua et al., 2018): for each candidate trajectory, sample a single ensemble
member and roll it out over the horizon, which provides epistemic exploration.

Unless otherwise stated, all models share the same backbone: three hidden layers with 200 units each and
SiLU activations. All remaining training and environment hyperparameters follow the MBRL-Lib defaults.
See (Pineda et al., 2021) for environment-specific details (e.g., reward overrides, termination conditions, and
preprocessing).

D.4.3 Environments and return reference ranges

We validate on three environments that have PETS baselines reported in the MBRL-Lib paper, namely,
Inverted Pendulum, HalfCheetah, and a continuous version of CartPole. For sanity checks, we compare our
absolute returns to the PETS ranges reported for these tasks in the MBRL-Lib paper (Pineda et al., 2021).
When using the ensemble+TS1 regime, our absolute returns fall within the reported bands (within seed
variance), while the deterministic Single-Gaussian regime yields lower absolute returns as expected.
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Figure 10: Training return curves across 3 control tasks using PETS with different CEM-based optimizers.
All methods use a single Gaussian MLP dynamics model. Curves represent the mean performance across
three random seeds.

Figure 11: Training return curves across 3 control tasks using PETS with different CEM-based optimizers.
All methods use a probabilistic ensemble model with Gaussian heads and the TS1 sampling strategy. Curves
represent the mean performance across three random seeds.

D.4.4 Results

Figures 10 and 11 report learning curves for three PETS planners under two dynamics regimes: a single
Gaussian MLP model and an ensemble with TS1 uncertainty propagations. Across tasks, the qualitative
trends are consistent with prior observations: optimizer-level exploration and explicit uncertainty-handling
are complementary when model capacity is limited, whereas stronger epistemic modeling reduces optimizer-
level differences.

Single-model dynamics (Gaussian MLP). When planning with a single MLP dynamics model (Fig. 10,
our BC variant attains faster learning and higher or comparable asymptotic returns on the low-dimensional
tasks (Inverted Pendulum, Cartpole), with noticeably tighter confidence bands than the baselines. In this
regime, optimizer-induced diversity acts as a surrogate for missing epistemic coverage when epistemic uncer-
tainty is not represented by the model itself. In contrast, DecentCEM tends to underperform given a fixed
population budget: partitioning the population across workers reduces per-worker effective coverage of the
high-variance trajectory objective, and the “best-worker” selection rule amplifies the model bias, leading to
premature convergence or high variance.

Ensemble dynamics with TS1 sampling. With an uncertainty-aware dynamics ensemble and TS1
rollouts (Fig. 11), the performance gap among planners narrows on Pendulum and Cartpole. Because each
rollout is conditioned on a different model draw, the planning process already injects structured exploration
over epistemic hypotheses. Consequently, optimizer design plays a less dominant role. Nonetheless, our BC-
variant remains competitive while exhibiting lower inter-seed variance relative to DecentCEM, indicating
that the trust region suppresses the large “modeling–stochasticity” interactions that arise when different
ensemble members extrapolate optimistically.

High-dimensional task (HalfCheetah). The relative advantage of our method is reduced on the
HalfCheetah task. We hypothesize that this is largely a trust-region scaling issue: our experiments used
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a single, fixed trust-region budget across tasks. For high-dimensional action sequences and long horizons, a
constant trajectory-level constraint can be overly conservative, effectively shrinking the per-dimension step
size. A principled remedy is to scale the trust-region radius with problem/task size (e.g., proportional to√

H, da, where H is the planning horizon and da the action dimension), or to impose per-time-step con-
straints.

Observations on pure decentralization. Pure decentralization (DecentCEM) under a fixed global sam-
pling budget generally underperforms in both dynamics regimes. Without coupling mechanisms such as warm
starts from a learned policy prior (see the policy initialization strategy in (Zhang et al., 2022)), independent
workers explore largely disjoint regions with limited elite exchange. This reduces the statistical reliabil-
ity of elite estimates within each subpopulation and, combined with best-worker selection, amplifies the
model bias. The effect is most pronounced with a single-model dynamics, where optimizer noise and model
misspecification interact adversely.

In summary, these findings are consistent with prior experimental results and provide additional insights

• Under model capacity limitations, optimizer-level uncertainty handling (BC and its induced trust-
region) and exploration mechanisms provide gains in sample efficiency and stability. When epistemic
uncertainty is represented explicitly by an ensemble with TS1 sampling, the planners’ performance
is marginal (still, trust-region methods reduce return variance).

• For high-dimensional tasks, trust-region budgets must scale with horizon and dimensionality. Oth-
erwise, conservative updates can mask the benefits of uncertainty-aware planning.

• Decentralization should be paired with lightweight coupling or warming strategies. Otherwise, split-
ting a fixed sampling budget across workers is statistically inefficient and prone to myopic selection.

These findings explain the observed patterns across Figures 10–11 and point to concrete design choices such
as budget scaling, mild coupling between workers, and model–optimizer co-design.
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