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Abstract

The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based
reinforcement learning (MBRL), but its unimodal sampling strategy often leads to prema-
ture convergence in multimodal landscapes. In this work, we propose Bregman-Centroid
Guided CEM (BC-EvoCEM), a lightweight enhancement to ensemble CEM that lever-
ages Bregman centroids for principled information aggregation and diversity control. BC-
EvoCEM computes a performance-weighted Bregman centroid across CEM workers and
updates the least contributing ones by sampling within a trust region around the centroid.
Leveraging the duality between Bregman divergences and exponential family distributions,
we show that BC-EvoCEM integrates seamlessly into standard CEM pipelines with neg-
ligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task,
full MBRL pipelines, and a real-world quadruped robot demonstrate that BC-EvoCEM en-
hances both convergence and solution quality, providing a simple yet effective upgrade for
CEM.

1 Introduction

The Cross—Entropy Method (CEM) is a derivative—free stochastic optimizer that converts an optimization
problem into a sequence of rare event estimation tasks (Rubinstein & Kroese) [2004; De Boer et al.| 2005). At
each iteration, CEM samples IV candidates {z; }5\7:1 from a parametric distribution py, , selects top lowest-cost
samples as an elite set &, and updates the parameters by maximizing the log-likelihood of these elites:

0141 argmeaxg og pe(x), (1)

optionally smoothed via exponential averaging for stability. Its reliance solely on cost-based ranking instead
of gradient information has made CEM a widely adopted solver for high-dimensional, nonconvex optimization
tasks in robotics and control (Pinneri et al., |2021} [Kobilarov, 2012} [Banks et al.; |2020)).

In model-based reinforcement learning (MBRL), an agent learns a predictive model of the environment and
plans through that model to reduce costly real-world interactions (Ha & Schmidhuber} 2018;|Nagabandi et al.|
2018; [Silver et all 2017). Stochastic model predictive control (MPC) is a widely used planning strategy in
this setting (Williams et al., [2016} |Okada & Taniguchil [2020; |Chua et al.,|2018; [Zhang et al. 2022} Deisenroth
& Rasmussen, [2011)). At every decision step, MPC solves a finite-horizon trajectory optimization problem,
executes only the first action, observes the next state, and replans. The CEM is often chosen as the optimizer
within this loop due to its simplicity, reliance solely on cost function evaluations, and robustness to noisy or
nonconvex objectives.

Despite these advantages, vanilla CEM suffers from its inherent mode—seeking nature: as the elites concen-
trate, it often collapses the search into a local optimum, which significantly limits the exploration in complex
multimodal landscapes typical of RL tasks. Ensemble strategies have been proposed to mitigate this issue
by running multiple CEM workers. Centralized ensembles merge the elite sets of all workers and fit an
explicit mixture model (e.g., commonly a Gaussian mixture (Okada & Taniguchi| 2020)). Although more
expressive, they introduce additional hyperparameters (number of components, importance weights) and
increase computational cost due to joint expectation maximization (EM) steps. Decentralized ensembles
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Figure 1: Ilustration of BC-EvoCEM (only means are shown). e Active CEM workers. e Worst workers
identified due to redundancy(left) and poor quality(right). % Bregman Centroid as a geometric average of
active workers. X Potential Candidates sampled from the trust-region.

run multiple CEM instances in parallel, keep them independent, and output the best solution at termina-
tion (Zhang et all |2022)). This approach is simple and scalable but tends to duplicate exploration effort and
may reach premature consensus if poorly initialized.

Our Approach. Motivated by the trade-off between diversity preservation and computational efficiency,
we introduce Bregman-Centroid Guided CEM (BC-EvoCEM), a hybrid strategy that retains the inde-
pendent updates of decentralized ensembles yet introduces a simple information—geometric coupling across
workers. At each CEM iteration, BC-EvoCEM computes a performance—weighted Bregman centroid (Nielsen
& Nock, 2009) of all workers’ distributions. The centroid then defines both a reference point and a Breg-
man ball trust region. Any worker whose distribution lies too close to the centroid or exhibits high cost is
respawned by drawing new parameters from this trust region (see Fig. .

Contributions. 1) We formulate an information-geometric aggregation rule based on Bregman centroids
that summarizes ensemble CEM workers with negligible computation cost. 2) We provide a lightweight
integration into the MPC loop for MBRL, preserving the benefits of BC-EvoCEM with the simplicity
of a standard warm-start heuristic. 3) Through experiments on multimodal synthetic functions, cluttered
navigation tasks, and full MBRL benchmarks, we demonstrate faster convergence with improved performance
relative to the vanilla and decentralized CEM.

2 Bregman Divergence

We review key definitions and properties of Bregman divergences (Bregman, [1967)) used throughout this
paper. Let F' : S — R be a strictly convex, differentiable potential function on a convex set S. The Bregman
divergence between any two points x,y € S is defined as

Dr(zlly) = F(z) — F(y) — (z—y, VF(y)), (2)

where (-, ) denotes the inner product. Although D is not a metric, it retains “distance-like” and statistical
properties useful in optimization and machine learning applications (Snell et al.l [2017; |Ahn & Chewi, 2021)).
In particular, its bijective correspondence with exponential families provides a range of clustering and mixture
modeling techniques (Banerjee et al.| [2005)).
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Bregman Centroid & Information Radius. Given a collection of points {x;} , C S, the Bregman
centroid (right-sided) is the solution to the following minimization problem (Nielsen & Nockl [2009):

1
T, = argrglelgﬁz;DF(zin).
1=

The corresponding minimized value is known as the Informa-
tion Radius (IR) (Csiszar et al., [2004) (Bregman Information
in (Banerjee et al.| |2005))), which characterizes the diversity e Bregman Centroid
of the set {z;} under the geometry induced by F'. Notably, for Gaussian 1

F = ||z||?, the IR coincides with the sample variance of the set. e Gaussian 2

See (Banerjee et al., |2005; Nielsen & Nock, [2009; |Csiszar et al.|
2004)) for more details.

3 Method

We propose a statistical characterization of a set of distribu-
tions through a weighted Bregman centroid (Nielsen &
Nockl |2009)). Let a set of CEM distributions {6y, ...,60,}be
drawn from a parametric family {po}oco, each associated with
an importance weight w; that reflects its solution quality. For-
mally, the weighted Bregman centroid 6. of the set is defined

as Figure 2: Illustration of the Bregman cen-

R troid of two Gaussians.
0. = argrerélg ;wiDF(QiHH), (3)

where D is a Bregman divergence associated with a potential

F. During the CEM iterations, the weights are assigned based on the performance of py, (e.g., w;
exp(—Ep, [J(2)])). Hence, the centroid serves as a performance-weighted “geometric average” of all CEM
workers. To ensure that the ensemble remains effective in terms of both performance and diversity, we
introduce two essential definitions:

Definition 1 (Relevance Score). Let the score of a worker 6; be the weighted Bregman divergence to the
centroid:

v = Dr(6:]6.).

Definition 2 (Trust Region). For A > 0, the trust region is defined as a Bregman ball centering at 0.
with radius A:

Ba(6.) = {00 | Dr(0]0.) < A}}.

Interpretation of Relevance Scores. Intuitively, a low relevance score -y; indicates that either the
worker’s performance weight w; is low or it’s close to the centroid. Such workers contribute minimally to
both exploitation and exploration and are therefore candidates for replacement. Moreover, one can verify
that 7, is exactly 6;’s contribution to the Information Radius (IR) of the set under the probabilistic vector
w.

Role of the Trust Region. The trust region Ba(6.) constrains where new workers may be introduced,
ensuring that they remain in average proximity to the active workers. Crucially, defining the trust region as
a Bregman ball aligns with the intrinsic geometry of the chosen parametric family, which offers theoretical
insights and computational advantages when employing exponential families, as further discussed in Section[d]
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Bregman Centroid Guided Evolution Strategy. Building on the above components, we propose a
simple Bregman Centroid Guided Evolution Strategy for ensemble CEM (see Alg. . At each iteration, it
begins with distributed CEM updates, continues with score evaluation, and finishes with an evolutionary
update that replaces the lowest-scoring worker with a candidate sampled from the trust region.

Algorithm 1 BC-evoCEM: Guided Evolution Strategy For CEM
Require: CEM distributions {0;};-;, cost function J(-), iterations T’
1: fort=1to T do
2 CEM update: {6;} «+ DISTRIBUTED CEM({6;}, J)
3: Performance weights: w; o< exp(—Ep,, [/ ])
4
5

Centroid: 6. < argming y . w;Dr(60:]6)

Scores: v; < Dr(6:]|6.)
6: Replace: Omin < argmin; vs; Omin < SAMPLE (BA(GC))
7: end for

8: Return centroid 6. and optimized workers {6; }7—;

4 Stochastic Optimization in Exponential Families

In this section, we leverage the relationship between regular exponential families and Bregman divergences
to gain statistical insight into our guided evolution strategy (Alg.[l)) and achieve substantial computational
savings in the CEM pipeline.

Let {ps}oco be a reqular, minimal exponential family in natural form
po(z) o exp{0 T(z)—V(0)}, 6€OCR

where T'(z) € R? represents the sufficient statistics and W is the strictly convex cumulant. The corresponding
Bregman divergence is Dy/(0]|6’) (Banerjee et al. |2005). We denote the mean parameter by n = V() =
E,,[T(X)]. Since the map V¥ : © — £ = int VI(O) is a bijection between the natural space © and the
mean space & (see (Barndorfl-Nielsen, [2014; |Amari, 1995)), we advocate representing and manipulating
distributions in the mean space.

As the core of our method, the Bregman centroid admits a simple form in mean coordinates:

Proposition 1 (Centroid in mean coordinates). Given weights w = (w1, ...,wy), w; >0, >, w; =1, and
corresponding mean parameters 1;, the weighted Bregman centroid satisfies

Ne = Zwi% 0. = (V\I])il("h)'
=1

Proof. By the mean-as-minimizer property of right-sided Bregman divergences (Banerjee et al.,|2005; Nielsen
& Nockl 2009), the optimality condition V¥(6.) = m. uniquely determines 6, via the bijection V¥: © —
E. O

Given that CEM’s likelihood evaluations (see Eq. equation already yield the empirical mean 7; =

»n

% Zjvzl T;(x), the centroid 7. is obtained for free. No extra optimization (e.g., solving equation [3)) i
required.

4.1 Scoring as Likelihood-based Ranking

Since only relative scores matter for ranking workers in Alg. [I] we may drop all terms independent of i and
rewrite the relevance score as (see Appendix [Al

%= Dalbi [ 0) o [W(6) — (B:.m)] = — 05 mo),
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where £(0;2) = (8, x) — ¥() is precisely the per-sample log-likelihood that the natural parameter 6; would
attain under some (hypothetical) dataset whose empirical average is m.. Intuitively, ranking workers by
£(0;; m.) is equivalent to asking:

How well the worker 0; explain the aggregated information collected from all workers {6;}1, ¢

This yields a cheap moment-matching ranking metric that requires only inner products and evaluations of
v,

4.2 Efficient Trust-Region Sampling

Given the centroid 7., we sample candidates from the trust region Ba(0.) by working with its dual charac-
terization S := {n € £ : Dy~ (N || n) < A}, where ¥* is the convex conjugate of W.

Definition 3 (Radial Bregman Divergence). For v € S9! (the unit sphere) define the radial Bregman
divergence with respect to a fixed n € £
90(p) =Duw-(n || n+pv),  p=0.

Theorem 1. The TURST-REGION SAMPLER (see Alg. @) produces Npew ~ Unif(S) and Opew € Ba(0.). If
U is quadratic (e.g., fixred-¥ Gaussian), Onew s uniformly distributed in Ba(6.).

Proof. See Appendix [C] O
Algorithm 2 TRUST-REGION SAMPLER Algorithm 3 PROXY SAMPLER

Require: centroid 7., radius A Require: centroid 7., radius A

Require: radial divergence g,(p) Require: Hessian H = V>¥*(n,)

1: Draw v ~ Unif(S¢™1)

2: Root-solve gy (pmax) = A

3: Sample u ~ Unif[0, 1]

4: Return npew < nc + ut/? Pmax(v) v

: Draw v~ Unif(S¢™1)

. Set Pmax(v) < 1/2A/(vTHo)

: Sample t ~ Unif[—pmax, Pmax)

N

: Return npew < nc +tv

Local Proxy Sampling & Gaussian Case. While Alg. [2] is general and exact, every draw incurs a
root—solving g, (pmax) = A, which is expensive for high-dimensional parameterization (e.g., action sequences

in MBRL). In practice, we locally approximate g,(p) =~ %p%THv at the centroid n. up to second order,

where H = V2W*(n,). This yields an ellipsoidal trust region S with a closed-form maximal radius

S={n: (n—n) Hn—n.) <20} = Prmax(v) = /2A/(vTHo),
which requires only one dot product and a square root (See the PROXY SAMPLER in Alg. .

For diagonal Gaussian action-sequence planner (common in MBRL (Chua et al., |2018; |Zhang et al., 2022;
Deisenroth & Rasmussen| [2011))), the Hessian H = diag(hq,. .., hq) itself is diagonal and the resulting trust
region becomes axis-aligned with principal radii /2A/h;. In such cases, sampling further reduces to simple
coordinate-wise operations (see Appendix [B|for details).

Table 1: Major operations in the CEM loop. Here n is the number of workers, d the parameter dimension, and
m the (typically small) number of iterations in the root solver of Alg.[2l All cost are worst-case. Quantities
marked { are already computed in CEM.

Operation Cost Comment

Centroid O(nd) Weighted average of 7]

Relevance score (7;) O(d) per worker One inner product + ¥(6;) (closed form)
Exact sampler (d<100)  O(d + m) Root solve for pmax (e.g., secant method)
Proxy sampler (d>>100) O(d) Closed-form pmax
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Summary. By operating with the mean parameterization of the exponential family, BC-EvoCEM’s add-
on operations incur negligible overhead. The empirical means required for the Bregman centroid are available
from the CEM log-likelihood computation. All subsequent steps (see Table[l)) scale linearly with the parame-
ter dimension and remain trivial compared to environment roll-outs. Moreover, the geometric interpretation
of our method is remarkably intuitive and Fuclidean-like: the Bregman centroid coincides with a weighted
arithmetic mean, and the proxy trust region resembles an ellipsoidal neighbourhood under a natural affine
transformation.

5 Bregman Centroid Guided MPC for MBRL

The proposed BC-EvoCEM integrates elegantly into the MPC pipeline for MBRL, where the trajectory
optimization is performed iteratively in a receding horizon fashion. Instead of warm starting CEM optimizer
at time ¢ + 1 by shifting the previous solution (Chua et all 2018]) or restarting from scratch, we use the
performance-weighted Bregman centroid of the K independent CEM solutions to initialize the next itera-
tion. To prevent ensemble collapse (i.e., IR — 0), we periodically replace the least-contributing workers by
candidates sampled from the trust region.

Algorithm 4 (schematic) Drop-in MPC Wrapper for MBRL.

Require: K CEM workers, buffer D
1: for each training iteration do

2 Train dynamics model f on D

3 Initialize Bregman Centroid

4 for each control stept=1,...,H do

5: Warm start CEM workers by BC

6: Rollouts by f & Update CEM workers
7 Compute Bregman Centroid

8 (periodic) Score & Replace

9 Execute the best worker’s 1st action

10: Add transitions to D
11: end for
12: end for

Building on the stochastic optimization techniques in Sec. [d we implement this strategy as a drop-in MPC
wrapper for MBRL (see Alg. |4) that

1. preserves the internal CEM update unchanged,
2. enforces performance—diversity control via the Bregman centroid,

3. and incurs only a few additional vector operations per control step.

Here, the Bregman centroid encapsulates the CEM ensemble’s consensus on promising action-sequences while
implicitly encoding optimality-related uncertainties in the warm start. The trust-region based replacement
then reinjects diversity in regions where the model is confident. Therefore, this implementation delivers the
benefits of guided evolution with the simplicity of a standard warm-start heuristic.
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CEM Comparison: Performance & Diversity
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Figure 3: Performance comparison for vanilla, decentralized, and our CEM methods. Solid/dashed lines
show the mean/best cost, shaded bands £1 std. Information radius (IR) at iter 25 is shown.

6 Experimental Results

6.1 Multi-modal optimization

We first demonstrate our method on a multi-modal optimization problem with the cost function (Fig.
shows the cost landscape with multiple attraction basins):

J(x) = sin(3z1) + cos(3x2) 4 0.5 ||z||3.

We compare our method against (1) vanilla CEM and (2) decentralized CEM(DecentCEM) (Zhang et al.l
2022), with the same parametric distribution py = N(6,0.5%). Our approach (red in Fig. [3) demonstrates
faster convergence in both Best and Average costs. Importantly, the trust-region sampling maintains solution
diversity, as shown by the final IR, values (i.e., sample variance in this case).

Better worker efficiency. Our scaling study (see
Fig reveals a clear logy( #WORKERS) law: beyond

8-16 workers, DecentCEM shows sharp diminish- o8 Best Cost Diversity(IR) —

ing returns. BC-EvoCEM achieves the same best- —t- Decent |35 pai

cost and diversity asymptotics with roughly half of o % 8c 10 /,}’

the workers. It shows markedly higher worker ef- -1.2 ‘+ 05 ¥ —f- Decent

ficiency while avoiding the quadratic rollout cost 14 Y 0.0 BC

that comes with an increasingly larger ensemble. 2 2 2 2 2 e
NUM of Workers NUM of Workers

6.2 Navigation Task

Figure 4: Scaling with workers (20 SEEDS). BC-EvoCEM
We consider a cluttered 2D navigation task with needs fewer workers to hit the same best-cost.
first-order dynamics and time-step At = 0.2.
A planning horizon of H = 200 yields a 2H-
dimensional action sequence. We employ 5 independent diagonal-Gaussian CEM workers with identical
CEM hyperparameters and initialization. To sample from the trust region in this high-dimensional space,
we use the PROXYSAMPLER (Alg. [3).

Figure [5| (left) visualizes trajectories from a fully decentralized CEM, which disperse widely and frequently
deviate from the start—goal line. In contrast, BC-EvoCEM (right) maintains a tight cluster of trajectories
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Figure 5: Trajectory distributions from decentralized CEM (left) and Bregman—centroid guided CEM (right)
on a point-mass navigation task. The representatives of each method (dashed line) are the average and
Bregman-centroid trajectory.

around the Bregman-centroid path (green dashed line), producing a more diverse and goal-directed planning.
Notably, the centroid itself is not guaranteed to avoid obstacles as it serves only as an information-geometric
summary of all workers. Quantitatively, BC-EvoCEM yields significant improvements in both average and
best cost without incurring noticeable computational overhead.

Table 2: Normalized costs and relative drop versus decentralized CEM.

Average cost Best cost
Method Norm. Drop (%) Norm. Drop (%)
Decentralized CEM 1.00 — 1.00 —
BC-evoCEM 0.18 82.4 0.55 45.3

6.3 Bregman Centroid Guided MPC in MBRL

Baselines and minimal implementation. Our study is built on the PETS framework (Chua et al.,
2018) and the DECENTCEM implementation of |Zhang et al.| (2022)). Dynamics learning, experience replay,
and per-worker CEM updates are left untouched. We wrap the optimizer with a Bregman-Centroid warm-
start (see the MPC in . The wrapper is drop-in and lightweight, i.e. <50 lines of Python code. This
plug-and-play feature makes the method readily portable to any planning-based MBRL codebase.

Protocol. To isolate the impact of the trajectory optimizer, we keep the rest of PETS fixed and compare
three variants: vanilla CEM, Decent CEM, and BC-evoCEM under two dynamics models: 1) a deterministic
model trained by minimizing MSE, and 2) a probabilistic ensemble with trajectory sampling (Chua et al.,

2018)). Full results and hyper-parameters are in [Appendix D,

Experimental results. With no additional stochasticity in the pipeline, all performance differences stem
from the optimizer itself. BC-evoCEM delivers faster early learning and higher asymptotic return
on four of six benchmarks (see . Its sample-efficiency advantage is quantified in where
BC-evoCEM reaches 90% of its own final reward up to 4x sooner than baselines. Vanilla CEM’s covariance
collapses quickly, and DECENTCEM suffers from independent worker collapse. By contrast, the Bregman
centroid keeps workers in promising regions while preserving ensemble diversity, translating into sustained
exploration and higher returns.
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Figure 6: Training return curves across six control tasks using PETS with different CEM-based optimizers.
All methods use the deterministic dynamics model. Curves show mean performance over 3 random seeds.

Table 3: Sample—efficiency boost (1) of BC-EVOCEM over two CEM variants. Values > 1 mean BC-evoCEM
learns faster

Environment vs. DecentCEM  vs. vanilla CEM
Acrobot x2.1 x2.6
CartPole x3.4 x4.0
Hopper x1.0 x1.1
Inverted Pendulum x1.1 x1.2
Reacher x1.0 x1.1
Pusher x1.9 x2.0

When both epistemic and aleatoric uncertainty are already captured via bootstrap sampling, the performance
differences among the three optimizers become statistically indistinguishable (see Appendix. Here, the
model’s intrinsic stochasticity supplies sufficient trajectory dispersion, so further optimizer-level exploration
yields diminishing returns.

Uncertainties in MBRL. The controlled study highlights two distinct yet coupled sources of uncertainty
in model-based RL: model uncertainty and optimality uncertainty. Improving the dynamics model (e.g.,
probabilistic ensembles) addresses the former, whereas a diversity-informed optimizer (e.g., BC-EvoCEM)
directly addresses the latter. Once the dynamics model approaches its performance cap (or its represen-
tational capacity is bottlenecked), optimality uncertainty predominates; in this regime, geometry-informed
exploration such as BC-EvoCEM in the action space delivers a complementary boost.
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6.4 Real-World Quadruped Navigation Experiments

To demonstrate that BC-evoCEM extends beyond simulation, we deploy it on a UNITREE GO2 quadruped
tasked with navigating a 4 x 4 m cluttered arena (Fig. Eh) Both BC-evoCEM and a vanilla CEM baseline
optimize a velocity policy control = [Vlinear; Vangular] at 20 Hz. Success is defined as reaching the goal without
collision within a given number of iterations. We report five metrics in Table [4

Table 4: Performance metrics (lower | is better).

Success Eff.| Smooth| Cost] toped

BC-evoCEM v 1.158 10.90 21.16 0.462
CEM X 1.079 12.92 36.96 0.400

Experimental results. Figure [7] and Table [4 demonstrate that:

 Planned Path (Fig.[7). The vanilla CEM rollout drifts into the obstacle cluster and halts ~0.9m
short of the goal (white circle), whereas BC-evoCEM generates a collision-free path that reaches the
goal (yellow star). Its sample cloud (gray) remains tighter and farther from danger zones.

¢ Quantitative metrics (Table E[) Compared to vanilla CEM, BC-evoCEM yields a smoother
control profile and cuts cumulative cost by 43%, with only a modest +0.062 s optimization overhead.

These results validate our central claim: BC-evoCEM is a lightweight, drop-in upgrade to existing CEM
implementations that delivers substantially safer, smoother, and cheaper trajectories without sacrificing
real-time performance.

.

Start
Goal
Final Pos
Samples

0 1 2 3

m Start

% Goal
o Final Pos

—————— Samples

0 1 2 3

(c) Planned path — BC-evoCEM.

(a) UNITREE GO2 executing BC-evoCEM’s plans.

Figure 7: Real-world navigation experiment. Top: sequential onboard snapshots. Bottom: top-down planned
paths from each optimizer. Quantitative metrics are reported separately in Table E}

10
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7 Conclusion

We introduced BC-EvoCEM, a lightweight ensemble extension of the Cross-Entropy Method that has (i)
principled information aggregation and (ii) diversity-driven exploration with near-zero computation over-
head. Across optimization problems and model-based RL benchmarks, BC-EvoCEM demonstrates faster
convergence and attains higher-quality solutions than vanilla and decentralized CEM. Its plug-and-play de-
sign enables easy integration into MPC loops while preserving the algorithmic simplicity that makes CEM
appealing in the first place.

Limitations In this subsection, we outline several limitations of the proposed BC-EvoCEM and provide
potential directions for addressing them in future work.

All information-geometric arguments (closed-form centroid, ellipsoidal trust region, likelihood-based rank-
ing) hold only for regular exponential-family distributions in mean coordinates. This restriction limits the
expressiveness of the CEM distributions. Future work will transfer these ideas to richer models via geometric-
preserving transport maps (Villani et al., [2008). In addition, while we prove the centroid and repawned
CEM workers remain inside a Bregman ball, the method still lacks global optimality guarantees and conver-
gence analysis. It inherits these limitations from CEM. A promising direction is to consider the proposed
BC-EvoCEM in the stochastic mirror-descent framework (Ahn & Chewi, 2021)), which may provide non-
asymptotic convergence bounds via the primal-dual relationship.
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A Relevance Score as Likelihood Evaluation

Recall that the Bregman divergence induced by ¥ is
Dy (0 ] 8.) = W(60) — W(8,) — (VU(B,), 0 — 6,).
Let # = 0; and denote the dual centroid n. = V¥(0,). Expand
v =Dy (0; || 0.)
=U(4;) — . — <nc, 0; — OC>
=(0;) —V(0:) — (N, 0i) + (ne, Oc).

Since ¥(6.) and (7., 6.) are independent of i, they are constant across workers and can be dropped when
ranking. Then, we have

%o W) — (ne 6) = — (0 me) — W(6)].
Define the per—sample log-likelihood of the exponential family in canonical form by
00;x) = (0,z) —V(6).
Therefore,
vi o< —L£(0;3mc).

B Local Proxy Sampling & Gaussian Case

To address the curse of dimensionality in the root solving step in Algorithm [2] we consider a local approxi-
mation of the (dual) trust region
S:={ne&:Dwneln <A},

where ¥* is the convex conjugate of . By the definition of the radial Bregman Divergence (see Def7 we
have g,(0) = 0 and V,g,(0) = 0 at .. A Taylor expansion about p = 0 gives

1 1
w(p) = 50*0" ViDaue(nen)],_, v + O(p") ~ 5 p*v Ho, (4)

=H

where .
H = V2 Dy (nelln)], _, = V2" (ne) = [V2U(6,)] .

Substituting this quadratic approximation equation [4] into the trust region constraint g,(p) < A yields

L5 7 ~ 2A
ip v Hv < A = p < pmax(v) = \/E

Hence the proxy trust region in mean space is the Mahalanobis ball
S={n: (n—m) H(n—n) <24}

Diagonal Gaussian Case. Consider the family ps(z) = N| (,u,diag(oz)) with natural parameters 6,; =
i/ cr? , O = f%ai_ 2. Tts cumulant function is given by
u(0) z[ 0% L log(—265) + < log (2 )}
= - -3 —202;) + 5 )|,
40, 2 OBV T 508

=1

and the convex dual in mean coordinates 7; = yu; (fixing 0?) is simply

02
ZM -+ const.
1 i

DN | =

d
AOEES

(2
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Here, the Hessian is H = V2W¥*(n) = diag(ofz, e 70(;2), so the Mahalanobis ball S becomes axis-aligned:

[nciﬂ/mof, nci+,/2Aa§}, i=1,....d

Hence, sampling reduces to independent coordinate draws:

ni ~ Umf{nci—,/maf, nci+1/2Aaf}, i=1,....d.

During CEM update, the empirical covariance often collapses, becoming low—rank or even singular; in other
words, the mean component p quickly dominates the search directions. A practical trick here is to freeze
the diagonal variance vector o2 after a few iterations (or to enforce a fixed lower bound). In practice, we
perform such fix-variance trick during the trust region sampling step for high-dimensional planning tasks,
including the MPC implementation for MBRL in Sec. [6.3]

Because the Hessian matrix (Eq. equation |4 is block—diagonal (a diagonal sub-block for the mean and a
sub-block for the variances), we can safely use the PROXY SAMPLER |3| to perform such coordinate-wise
updates exclusively on the mean block. This also avoids numerical issues from near-singular covariances.

C Proof of Theorem [1I

C.1 Preliminaries

Throughout we work on ©,& C R? equipped with Lebesgue measure \%. We write o4_; for the surface
measure on the unit sphere S?~! := {v € R? | |lv||2 = 1}. The following facts are used (see Villani et al.
(2008); [Schneider| (2013).

Fact 1 (Polar coordinates). Under the polar map (p,v) +— 1 = ne+pv with p > 0, v€S¥L, the d-dimensional
Lebesgue volume element factorizes as dn = p?~tdpdog_1(v).

Fact 2 (Uniform distribution). Let ppax : S — (0, 00) be measurable and define
Si={ne+pv:veS™, 0<p < pmax(v)}.
Then )
Vol(S) = 7/ Pmax(v)? dog_1(v)
d Jga—
and the uniform law on S has a radial conditional density

dpd—l

Pmax (v)d ’

fs(plv) = 0 < p < pmax(v).

Fact 3 (Change of variables). For ¥ € C?(0©) strictly convex, the gradient map V¥ : © — & is a C!
diffeomorphism with Jacobian det V2W¥(0). For any non-negative o,

/go(@) 6 = /@(V\Il’l(n))‘detVZ\II(V\II’l(n))‘dn.
€] £

C.2 Auxiliary lemma

We first show the radial Bregman Divergence (see Def. [3)) is strictly increasing.

Lemma 1 (Monotonicity). Let U* be strictly convexr and twice differentiable. For fized ng and v € S¢1
define g,(p) := Dw=(no || 1m0 + pv), p > 0. Then g, is strictly increasing on (0, 00).

Proof. Insert n = o+ pv into Dy~ and differentiate: g,,(p) = (V¥* (1o + pv) — V¥* (1), v). Strict convexity
implies monotonicity of V¥*; hence g, (p) > 0 for all p > 0. O

14



Under review as submission to TMLR

C.3 Main proof

Theorem 1 (Restatement). Algom'thm@ produces Nyew ~ Unif(S) and Opew € Ba(0.). If U is quadratic,
Onew s uniformly distributed in Ba(6.).

Proof. Let g, be defined as above.

Step 1. Boundary existence & uniqueness. By Lemma gy is strictly increasing, so g,(p) = A has
a unique 100t pmax(v) > 0 for each v.

Step 2. Feasibility. Algorithm [2 draws V ~ Unif(S* 1) and U ~ Unif[0, 1], sets p = pmax(V) U4 and
Nhew = Ne + pV. Because gy (p) <gv (pmax(V)) = A, Nnew €S and hence oy := VU (Npew) € Ba(6,).

Step 3. Uniformity. Conditioned on V' = v, p has density d p? !/ piax(v)? on [0, pmax (v)], which matches
Fact [2} integrating over v therefore yields 7yew ~ Unif(S).

Step 4. Pull-back to ©. By Fact 3| fo(6) = fs(V¥(6)) |det V2U(§)|. For general ¥, det V2 (6) varies

with 6, so fp is not constant. If ¥ is quadratic, V2V is constant; hence fy is constant on Ba(6.), i.e. Opew is
uniform. O
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D Experimental Details

D.1 Benchmark Environment Setup

We follow the evaluation protocol of Zhang et al.|(2022)) to assess both our method and the baseline algorithms
on the suite of robotic benchmarks introduced by [Wang et al.| (2019)); [Chua et al|(2018), including classical
robotic control problems and high-dimensional locomotion and manipulation problems. Key environment
parameters are summarized in Table We refer the interested readers to [Zhang et al. (2022) for more
details, such as reward function settings, termination conditions, and other implementation specifics. For
each case study, all algorithms are trained on three random seeds and evaluated on one unseen seed.

Table 5: Details of Benchmark Environments

Parameter Acrobot CartPole Hopper Pendulum Reacher Pusher
Train Iterations 50 50 50 50 100 100
Task Horizon 200 200 1000 100 50 150
Train Seeds {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
Test Seeds {0} {0} {0} {0} {0} {0}
Epochs per Test 3 3 3 3 3 3

D.2 Algorithms Setup

The key parameters for the proposed BC-EvoCEM algorithm and all baseline methods are listed in Table[6]
The dynamic model for each benchmark is parameterized as a fully connected neural network: four hidden
layers with 200 units each, except for the Pusher task, which uses three hidden layers. All algorithms share
identical training settings for learning the dynamics model; further details on model learning can be found
in |Chua et al|(2018) and [Zhang et al.| (2022).

Table 6: Details of Algorithms (DE and PE)

Parameter PETS-evoCEM PETS-DecentCEM PETS-CEM
CEM Type BC-EvoCEM Decent CEM CEM
CEM Ensemble Size 3 3 1

CEM Population Size 100 100 100
CEM Proportion of Elites 10 % 10 % 10 %
CEM Initial Variance 0.1 0.1 0.1
CEM Internal Iterations 5 5 5
Model Learning Rate 0.001 0.001 0.001
Warm-up Episodes 1 1 1
Planning Horizon 30 30 30
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D.3 Stochastic models with trajectory sampling

We adopt the probabilistic ensemble with trajectory sampling of |Chua et al.| (2018)), which captures both
epistemic and aleatoric uncertainty. Under this setting, the learning curves of all three optimizers overlap
within statistical error (Fig. [§] and Fig. E[) No significant performance gaps emerge. We conjecture that
the model’s intrinsic stochasticity already supplies enough trajectory dispersion, so additional exploration
at the optimizer level offers little incremental benefit. Moreover, the benchmark continuous-control tasks
have largely unimodal return landscapes, which leaves less room for diversity-seeking mechanisms to improve
performance beyond what stochastic trajectory sampling already provides.
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Figure 8: Training return curves across 3 control tasks using PETS with different CEM-based optimizers.
All methods use the probabilistic ensemble dynamics model with trajectory sampling (Chua et all 2018]).
Curves show mean performance over 3 random seeds.
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Figure 9: Testing return curves across 3 control tasks using PETS with different CEM-based optimizers. All
methods use the probabilistic ensemble dynamics model with trajectory sampling Chua et al. (2018). Curves
show mean performance over 3 random seeds.
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