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Abstract

Missing values are a common phenomenon in multivariate time series data, capable of harm-
ing the performance of machine learning models and introducing bias and inaccuracies into
further analysis. These gaps typically arise from various sources, including sensor malfunc-
tions, extreme events like blackouts, and human error. Previous work has made promising
strides in imputation for time series data. However, they mostly dealt with some selective
cases of missing patterns such as - missing at random, missing due to complete blackout (all
features are missing for a given period of time), and forecasting. In this paper, we delve into
a more general category of missing patterns, which we call partial blackout, wherein a
subset of features remain missing for one or several consecutive time steps. This describes a
more natural scenario that is frequently encountered in real-world applications and covers the
aforementioned patterns as special cases. We introduce a two-stage imputation process that
explicitly models the feature and temporal correlations with the help of self-attention and
diffusion processes. Notably, our model outperforms the state-of-the-art models when deal-
ing with general partial blackout scenarios and exhibits greater scalability, offering promise
for practical data imputation needs. The code and the synthetic experiments are here:
https://anonymous.4open.science/r/SADI-official-repository-3853/README.md.

1 Introduction

Multivariate time-series data frequently exhibit missing values across diverse domains such as finance, meteo-
rology, agriculture, transportation, and healthcare. This common occurrence is attributed to various factors,
including but not limited to human fallibility, equipment malfunctions, and suboptimal data input processes
(Silva et al., 2012; Yi et al., 2016). Most machine learning algorithms depend on having complete data with
no missing values, making imputation an essential tool. It is important to note that suboptimal imputations
could have adverse effects like harming the quality of subsequent tasks and potentially introducing bias into
further analysis, thereby casting doubt over the integrity of the results (Shadbahr et al., 2022; Zhang et al.,
2021).

In the domain of time series data imputation, there have been many deep neural network-based models such
as BRITS (Cao et al., 2018), SAITS (Du et al., 2023), GRUI-GAN (Luo et al., 2018), and GP-VAE (Fortuin
et al., 2020), etc. In recent years, score-based diffusion models have shown improvement in data generation
through a denoising process. They have achieved substantial performance in domains like image generation
(Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020b; Xiang et al., 2023) and audio synthesis (Kong
et al., 2020; Chen et al., 2021). Additionally, these models have shown significant gains in performance for
imputing missing data and forecasting in the case of time series data. These approaches provide good quality
imputations by conditioning on observed values (Tashiro et al., 2021; Alcaraz & Strodthoff, 2022).

However, a recurring theme in many of these works is the attention to limited types of missingness. They focus
on scenarios like randomly missing data, missing a feature for a few consecutive time steps (interpolation),
and complete blackouts where all features are missing for some time. In our study, we explore a more realistic
type of missingness we call “partial blackout,” which covers situations where a variable number of features
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(a) Multiple blocks of 1 fea-
ture missing for one or more
time steps (Random Missing)

(b) 1 feature missing for more
than one time step (Interpo-
lation)

(c) All features missing for
one or more time steps (Com-
plete Blackout)

(d) A special case of complete
blackout (Forecasting)

(e) Multiple blocks of 1 or more fea-
tures missing for one or more time
steps (Random Missing)

Figure 1: Partial blackout scenarios

become unavailable for some time. The concept of partial blackouts covers all the other types of missingness,
such as randomly missing data, interpolation, complete blackout, and forecasting as special cases.

Importantly, this concept allows multiple distinct blocks of missingness, each characterized by its unique
combination of the number of absent features and the duration of the missing time steps, as shown in Figure
1. The random missing scenario in Figure 1a can be expressed as a partial blackout case where multiple
single feature blocks are missing for one time step. Similarly, the interpolation (Figure 1b) case can be
expressed as a partial blackout with one feature missing for a period of time. It is apparent that the other
two scenarios, such as complete blackout (Figure 1c) and forecasting (Figure 1d), are just extreme cases
of partial blackouts. This broad and flexible definition of partial blackouts allows us to address a broad
spectrum of missingness patterns in real-world datasets.

In the scope of our work, we tackle the challenge of partial blackout problem in time series imputation. Our
solution, dubbed as SADI - short for “Self-Attention-based Diffusion Model for Time Series Imputation”,
is a novel approach to diffusion-model-based imputation. The core component of our model is the explicit
modeling of feature dependencies across time in the form of “Feature Dependency Encoder” and temporal
correlations across features in the form of “Gated Temporal Attention” blocks. We also deploy a two-stage
imputation process that considers how the imputed data from the initial stage is further refined and affects
the imputation of other data in the second stage. The model combines the results of the two stages as a
weighted combination where the weights are learned from the data.

In summary, our contributions are threefold, each adding some depth to the solution of the time-series
imputation problem:

1. Exploration of partial blackout scenario: We introduce a new archetype of missing patterns
called “partial blackout,” a more generalized concept encompassing the limited cases of missingness
investigated in previous studies and other real-world scenarios.

2. Explicit modeling of feature and temporal correlations and two-stage imputation: We
introduce a novel diffusion-based imputation model, SADI, which captures feature and time de-
pendencies with explicit components within the denoising function. We also present a two-stage
imputation process, where the second stage refines the initial imputations from the first stage, im-
proving the imputation quality.

3. Empirical study: We evaluate our model in several real-world time series domains and show that
it outperforms and is more scalable than other state-of-the-art models in most partial blackout
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scenarios. We employ synthetically designed datasets with various feature dependencies to better
understand its strengths and weaknesses.

2 Multivariate time-series imputation

We consider multivariate time-series data, which are represented as X = {x1:L,1:K} ∈ RL×K , where L
signifies the time-series length and K denotes the number of features. We assume that the data is distributed
according to the joint distribution P(X). Only a part of the data Xobs is observed, and the rest Xmiss is
missing. The problem of multivariate time series imputation is to generate the missing data according to the
conditional distribution P(Xmiss|Xobs). We represent the observed and missing data using a binary mask,
M = {m1:L,1:K} ∈ {0, 1}L×K , where 0 serves as the indicator for the absence of data, while 1 signifies the
presence of observations. The training data consists of different samples from the joint distribution P where
some values of X are missing. In our study, we introduce a novel time-series imputation technique that
generates the missing values Xmiss conditioned on the observed values Xobs in a test instance.

Traditional statistical approaches: Time-series imputation problem has been thoroughly studied and
reviewed in both deep learning and non-deep learning community. There have been non-deep learning-
based techniques like imputation based on mean/median of the missing features, linear interpolation between
nearest observed values and K-nearest neighbor imputation. A more refined approach with good performance
is MICE (van Buuren & Groothuis-Oudshoorn, 2011), which uses multiple iterations of linear regression
model training to estimate missing values based on the available data from other features.

Autoregressive models: Che et al. (2016) propose GRU-D model as a solution for handling missing data
in time series classification problems. They introduce the notion of incorporating time decay factor based
on the latest observations. This idea has been adopted in subsequent works such as BRITS (Cao et al.,
2018) and M-RNN (Yoon et al., 2017), both of which handle missing data with bidirectional RNNs. The
BRITS model accounts for correlations among the features, which is absent in M-RNN. BRITS optimizes
the reconstruction loss of the observed data along with the consistency of the predicted imputations in the
forward and backward directional RNNs.

Attention-based methods: There have been some research studies that involve utilizing RNNs with
attention mechanisms like GLIMA (Suo et al., 2020) and Shukla & Marlin (2021). Shan & Oliva (2021)
introduces a time-series imputation approach, NRTSI, that treats the time-series as a set of (time, data)
tuples and employs a transformer encoder to handle irregularly sampled data. Another self-attention-based
approach, SAITS, utilizes a two stage self-attention mechanism to capture the temporal dependencies and
feature correlations (Du et al., 2023). This method combines the two stage imputation predictions based on
the attention maps and missingness information, and jointly optimizes the reconstruction loss of observed
data and the imputation loss of artificially omitted data.

Generative models: Time-series imputation has also been studied using generative models. These include
GAN-based works by Luo et al. (2019; 2018); Liu et al. (2019); Miao et al. (2021) and VAE-based probabilistic
imputation methods by Fortuin et al. (2020). These approaches suffer from training instability and fall
short of achieving state-of-the-art performance as illustrated by Du et al. (2023). On the other hand,
score-based diffusion models, such as CSDI (Tashiro et al., 2021) and SSSD (Alcaraz & Strodthoff, 2022),
have demonstrated impressive results and are emerging as strong competitors. The CSDI model separately
captures the temporal and feature dependencies with two distinct transformer encoders. It treats each
feature similarly when modeling temporal dependencies and each time step similarly when modeling the
feature correlations. Another diffusion model, Time-Grad (Rasul et al. (2021)), has demonstrated reliable
performance in various forecasting tasks. While Time-Grad excels at predicting future values based on past
observations using RNN to handle past time-series data, it cannot leverage the future data for imputation
due to its autoregressive nature. There have also been some works based on Bayesian inference modeling. Cui
et al. (2019) introduces a novel Bayesian Gaussian Copula Factor (BGCF) approach designed for parameter
learning in latent variable models, particularly when dealing with mixed data that includes both continuous
and ordinal variables, and also accounts for the presence of missing values. Vidotto et al. (2018) employs
a Bayesian approach, incorporating prior beliefs about the parameters into the model; however, it can only
handle cross-sectional categorical data, which might limit its applicability to continuous data or mixed data
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types without further modifications. Vidotto et al. (2019) proposes an imputation model methodology that
involves using multiple imputations under the Missing At Random assumption to replace missing dataset
values with plausible ones, generated based on observed data and designed to capture various dependencies
and complexities within longitudinal data using Bayesian mixture latent Markov models.

Other methods: Other methods include the use of graph neural networks (Cini et al., 2021) to utilize spatial
and relational information among input channels; however, the effectiveness of the GRIN model hinges on
the assumption that monitored physical quantities can be accurately reconstructed from neighboring sensor
observations, requiring a high degree of sensor homogeneity and specific feature availability. A hybrid of latent
ordinal differential equation networks and RNN (Rubanova et al., 2019). While the ODE-RNN and Latent
ODE models introduced offer significant improvements for modeling irregularly sampled time series data,
particularly in handling arbitrary time gaps and enhancing interpretability through continuous-time latent
states, they require more computational resources for evaluation and might not scale as effectively with the
sparsity of data compared to standard RNN models, as evidenced by the increased evaluation time for ODE-
RNNs and Latent ODEs compared to standard GRUs in the experiments. Hyper-parameter optimization
to design MLP architecture for long-term time-series imputation (Park et al., 2022) has limitations in the
challenge of accurately estimating missing values towards the end of data gaps, where the method occasionally
fails, suggesting a potential for error accumulation when predictions are based on previously predicted values.
And, provably convergent schrödinger bridge probabilistic imputation (Chen et al., 2023), which is the first
work of this kind, but showed worse performance than CSDI (Tashiro et al., 2021).

3 Background

In this section we introduce the different mechanisms that form the basis of our proposed approach.

3.1 Self-attention mechanism

A self-attention mechanism, introduced by Vaswani et al. (2017), transforms the input sequence into a
sequence of vectors that is analyzed and processed further. This process is very effective in detecting
patterns and relationships within the input sequence by learning the attention-weights. In self-attention, a
given sequence is transformed and mapped into three distinct vectors: a query vector, q (of dimension dk);
a key vector, k (of dimension dk); and a value vector, v (of dimension dv). The so-called “hard attention”
model returns the value that corresponds to the key that matches the query. A commonly used softer version
of this is the scaled dot-product attention, which weights the v vector by a softmax function applied to the
scaled dot product of the q and k vectors. It is convenient to process multiple queries simultaneously which
are packed together into a matrix Q and apply them to similarly packed key and value matrices K and V .
Then, the whole process is governed by Eq. - 1.

self-attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V (1)

Here, the attention-weights are represented as W = softmax( QKT

√
dk

) and indicate how the components in the
query correlate with different parts of the key. The scaling factor 1/

√
dk is used to prevent the input to the

softmax function from reaching the saturated region for large values of dk.

3.2 Diffusion models

Diffusion models, first introduced by Sohl-Dickstein et al. (2015), have emerged as a noteworthy category
of generative models that have consistently achieved state-of-the-art performance across a diverse range of
data modalities including image data (Dhariwal & Nichol, 2021; Ho et al., 2020; 2022a), speech data (Chen
et al., 2021; Kong et al., 2020), and video data (Ho et al., 2022b; Yang et al., 2022).

Diffusion-based probabilistic models have two distinct processes: a forward process and a reverse process. In
the forward process, noise is incrementally added to the original data at each step, culminating in a state of
pure noise after a series of iterations. Conversely, the reverse process systematically eliminates noise at each
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step, commencing from a state of pure noise and gradually constructing a distribution that represents the
original data, following an identical iteration count as in the forward process Sohl-Dickstein et al. (2015);
Ho et al. (2020).

A diffusion model involves approximating a data distribution q(X0) by learning a model distribution pθ(X0).
Let Xt for t = {1, . . . , T} be the latent variables representing the noisy data at diffusion step t. These belong
to the same sample space as the original data, X0. The forward diffusion process, which is a Markov chain
is defined by

q(X1:T |X0) =
T∏

t=1
q(Xt|Xt−1)

q(Xt|Xt−1) = N (
√

1 − βtXt−1, βtI) (2)
Here, βt represents the variance of the noise applied at each diffusion step t of the forward process. Further-
more, Xt has a closed form Xt =

√
ᾱtX0 +

√
(1 − ᾱt)ϵ, where αt = 1 − βt, ᾱt =

∏t
i=1 αi, and ϵ ∼ N (0, I).

The reverse process is also a Markov chain that denoises Xt to get Xt−1 using a denoising function ϵθ. After
T such iterations, we regenerate X0. The reverse process is defined by:

pθ(X0:T ) = p(XT )
T∏

t=1
pθ(Xt−1|Xt), where XT ∼ N (0, I) and

pθ(Xt−1|Xt) = N (µθ(Xt, t), σθ(Xt, t)I) (3)
Here, pθ(Xt−1|Xt) is a learnable function. Following (Ho et al., 2020), we have:

µθ(Xt, t) = 1
√

αt

(
Xt − βt√

1 − ᾱt
ϵθ(Xt, t)

)
(4)

where σθ(Xt, t) is kept constant for each diffusion step t. In Eq. 4, the ϵθ denoising function is trainable.
Using the parameterization of µθ(Xt, t) in Eq. 4, Ho et al. (2020) have shown that the reverse process can
be trained by optimizing the following objective:

L = min
θ

EX∼q(X0),ϵ∼N (0,I),t||ϵ − ϵθ(Xt, t)||22 (5)

The denoising function ϵθ takes the noisy data at step t, Xt, and the diffusion step t as inputs and computes
the added noise ϵ introduced to the noisy input Xt−1 to get Xt in the forward diffusion step. Once the
training is completed, we can sample X0 by following the expressions outlined in Eqs. (6) and (4).

3.3 Probabilistic imputation with diffusion models

We extend the definition of diffusion for the time-series imputation problem by making the reverse process
condition on the observed value for the posterior estimation. Given a sample X0, we condition on the
observed values, Xco

0 and generate the imputation targets, Xta
0 . In the case of probabilistic imputation, we

approximate the data distribution q(Xta
0 |Xco

0 ) with model distribution pθ(Xta
0 |Xco

0 ). To do that, we extend
Eqs. 6 and 4 to account for the conditional input Xco

0 . We now have,

pθ(Xta
t−1|Xta

t , Xco
0 ) = N (µθ(Xta

t , Xco
0 , t), σθ(Xta

t , Xco
0 , t)I) (6)

µθ(Xta
t , Xco

0 , t) = 1
√

αt

(
Xta

t − βt√
1 − ᾱt

ϵθ(Xta
t , Xco

0 , t)
)

(7)

Here, Xta
t represents the noisy data at diffusion step t in place of the imputation targets (missing values).

And, µθ(Xta
t , Xco

0 , t) represents the function determining the mean of Xta
t−1 from the inputs Xta

t , diffusion
step t, and the conditional data Xco

0 . Similarly, σθ(Xta
t , Xco

0 , t) is the function determining the variance of
Xta

t−1. The variance is assumed as constant for each time step as illustrated in Eq. - 8.

σθ(Xta
t , Xco

0 , t) = 1 − ᾱt−1

1 − ᾱt
βt (8)

5



Under review as submission to TMLR

4 Self-attention-based Diffusion Model for Time-series Imputation

Our model, SADI, leverages the general framework for the conditional diffusion process provided in the
work of Ho et al. (2020) for time-series imputation. Figure 2a provides an overview of the architecture
that models the denoising function, ϵθ(Xta

t , Xco
0 , t), as depicted in Eq. 7. The CSDI model also learns

the same ϵθ function, but has a different architecture that models the feature and time correlations with
two distinct transformers in sequence. The first transformer isolates each time step into distinct samples
when modeling feature dependencies. The second transformer similarly segments the features into separate
samples when modeling temporal correlations (see Figure 2b). Unfortunately, this segregation of time and
features overlooks correlations that occur jointly. In contrast, we adopt a more general approach in the
form of feature dependency encoder (FDE) and gated temporal attention block (GTA) to capture the joint
correlations, drawing some inspiration from the SAITS model, which outperforms CSDI in some random
missing and partial blackout tasks Du et al. (2023). The FDE consists of two main components. The first is
a 1-D convolution that captures information on the locality of a time-series. The second is a self-attention
layer that focuses attention on the feature dimension. Together, these two components capture feature
correlations that are time-aware. The GTA (Gated Temporal Attention) component is then responsible for
capturing the temporal dependencies. Our two-stage imputation process was designed after the two DMSA
(Diagonally Masked Self-attention) blocks in SAITS (Du et al., 2023), which combine the two intermediary
imputations by learning weights based on attention maps and missingness information. While our work draws
inspiration from the SAITS model, it diverges in significant ways, particularly with the incorporation of the
FDE to capture the time-aware feature correlations and the inclusion of a generative diffusion component. In
scenarios where there are partial blackouts, it can be challenging to accurately predict time-series data due
to missing feature values and extended time gaps. This is especially true when relying solely on accessible
feature values or long temporal intervals. Our research goes beyond existing models like SAITS, which aren’t
generative and may not perform optimally in these contexts. Instead, our model incorporates a generative
dimension inspired by models like CSDI to address the problem of partial blackouts better.

We show a side-by-side comparison of SADI and CSDI in Figure 2. CSDI uses a back-to-back transformer
approach to capture feature and time correlation information, which is then represented as vectors along
the channel dimension. On the other hand, SADI employs a single channel with two explicit self-attention-
based components to capture both feature and time correlations. Despite having both feature and temporal
encoders in sequence, there is a difference in the way SADI and CSDI capture feature dependencies. SADI’s
feature dependency encoder is time-aware when capturing feature dependencies, while CSDI models feature
correlations separately for each time step.

SADI has three main components: the feature dependency encoder (FDE), which models feature corre-
lations across time; the gated temporal attention (GTA) block, which captures temporal dependencies
across different features; and finally, a two-stage imputation process that enhances the quality of impu-
tations. We know that the diffusion denoising function is used to predict the noise added by the forward
process. Nevertheless, as shown by Eq. 7, it is evident that predicting noise is equivalent to predicting
imputation. Henceforth, our discussion will revolve around predicting imputation for various components,
although the actual computation of values is indirectly based on noise prediction. Figure 6 illustrates a more
detailed view of our model architecture.

4.1 Learning feature dependencies

In scenarios where there is partial blackout, some features may be present at the same time step, and the
feature dependency encoder (FDE) plays a crucial role in capturing the relationships between these features.
By learning and modeling these feature dependencies, SADI is able to make more accurate imputations and
better handle the partial blackout scenario. The FDE computes a new representation of the time-series that
captures the joint time-series level relationships between the features in the original data. This self-attention
mechanism with layer normalization and feed-forward network puts attention on the feature dimension to
capture time-series-wise correlations.

Our approach deviates from the CSDI methodology by considering the time-series data of each feature as
a unified sequence. Rather than isolating individual time steps into separate instances to capture feature
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(a) Overview of the architecture of our
denoising function, ϵθ

(b) Overview of the architecture of
CSDI’s ϵθ function

Figure 2: A side-by-side comparison figure depicting the denoising function architectures of SADI and CSDI.
CSDI utilizes a pair of consecutive transformers to capture both feature and temporal dependencies. In the
context of modeling temporal relationships, they partition the features into K distinct instances, with K
representing the number of features. Likewise, they segment time steps into L separate instances, where L
corresponds to the length of the time series. On the other hand, SADI models feature and time dependencies
jointly, thereby capturing the combined correlations of both features and time.

correlations, we utilize a 1-D convolution operation with a kernel size of (1×3) to extract locality information
within the series. This approach uses a window of size 3 to iteratively update the value of the current
time step, thus capturing the local temporal dynamics within the sequence. We then apply the attention
mechanism to capture joint time-series level feature correlations. By placing the attention on the feature
dimension after the convolution operation, we can effectively capture the dependencies between different
features based on the time-series level relationships. This approach enables the FDE to better understand
the complex relationships between different features in the time-series data.

FDE operates on both the observed values and the noisy data (Xco
0 + Xta

t ) of dimensions (L, K), subjecting
them to the missingness mask, M co

0 of the same dimensions. Furthermore, categorical positional encod-
ing is applied to distinguish between different features within the feature dimension. A hyperparameter
NF DE controls the number of FDE layers. The operations for FDE are shown in Eq. 9. Here, the output
representation X̂ has a dimensionality of (L, K).

X = (feature_pos_enc(concat((Xco
0 + Xta

t ), M co
0 )))T ; X has dimensions (K, L)

X̂ =
{

FDEn(X) ;if it is the 1st layer (n = 1)
FDEn(X̂) ;if 1 < n ≤ NF DE

(9)
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4.2 Learning temporal dependencies

To handle missing data in a partial blackout scenario, it is crucial for the model to take advantage of
the available data on the temporal axis while making predictions. This requires the model to capture the
relationship between different time steps across all features. Our model accomplishes this through the use
of a gated temporal attention (GTA) block. This component specifically focuses on capturing temporal
dependencies across different features, enabling the model to effectively leverage the available data to make
accurate predictions, even in scenarios with significant data gaps.

The gated temporal attention (GTA) block resembles the residual block architecture within DiffWave (Kong
et al. (2020)) and WaveNet (Oord et al. (2016)) models illustrated in Figure 6. Instead of employing dilated
convolutions, our approach uses two self-attention layers focusing attention on the time dimension. The CSDI
model also adopts the same residual block architecture, with its primary innovation being the inclusion of
temporal and feature transformers within this block. In our case, the residual block, which we call GTA, only
models temporal dependencies across features as the attention mechanism focuses on the time dimension.
In this context, we introduce positional encoding in the time dimension to signify it as a sequence for the
self-attention mechanism. There is a Gated Linear Unit (GLU) activation applied to the outputs of the last
self-attention layer, hence, we named the block gated temporal attention.

The GTA block also has multiple layers controlled by the hyperparameter NGT A. It operates on the output
from the FDE, denoted as X̂1 of dimensions (L, K) from Eq. 9 and Xco

0 (L, K) after applying the missing
mask M co

0 and positional encoding on the time dimension. The positional encoding method is the sine-cosine
encoding outlined in (Vaswani et al., 2017). We concatenate the missingness mask M co

0 with both X̂1 and
Xco

0 and project them to higher dimension with a feed-forward network (denoted as linear() function in
Eq. 10 and 11) and apply positional encoding to get X̂pos1 (L, D) and Xco

pos (L, D), where D is the projected
dimension. GTA takes X̂pos1 , Xco

pos, and the diffusion step embedding temb as input and generates three
outputs: a hidden state X̃ (L, D) which is fed into the subsequent GTA layer as an input, a skip connection
ϵ′ (L, D) contributing to the intermediary imputation, and attention weights WL (L, L). To get the interim
imputation ϵ1, we sum over all ϵ′ (L, D) skip connections and project them to dimensions (L, K) according
to Eq. 13. A detailed architecture of the GTA block can be found in Appendix A.2 Figure 6.

X̂pos1 = time_pos_enc(linear(concat(X̂1, M co
0 ))) (10)

Xco
pos = time_pos_enc(linear(concat(Xco

0 , M co
0 ))) (11)

X̃, WL, ϵ′ =
{

GTAi
n(X̂posi

, Xco
pos, temb) ;if it is the 1st layer (n = 1)

GTAi
n(X̃, Xco

pos, temb) ;if 1 < n ≤ NGT A

(12)

ϵ1 = linear

(∑NGT A

n ϵ′
n√

2

)
(13)

4.3 Two-stage imputation process

After passing through multiple FDE and GTA layers, the data undergoes transformations that significantly
alter its initial characteristics. This alteration is a part of the model’s design to handle feature and temporal
dependencies within the dataset. To deal with the potential loss of original data characteristics and improve
imputation quality, we reintegrate the original noisy data into the process. This reintroduction serves as
a grounding step, ensuring that the subsequent application of the second GTA block leverages both the
transformed and original data characteristics for enhanced imputation results.

In the first stage, each GTA layer passes the hidden state X̃ to the subsequent GTA layer. However, these
layers do not directly receive the imputation information, represented by ϵ′, until the completion of the first

8



Under review as submission to TMLR

block, where they are aggregated into the initial interim imputation ϵ1. To enhance the prediction of missing
values by leveraging already imputed data, ϵ1 is incorporated into the input for the second stage of GTA
operations. The intuition behind this is that, initially, there are no imputed values to aid in the prediction
process. But once the first set of imputations is generated, they are utilized to inform the prediction of the
missing values in the subsequent block. This method not only leverages the imputed values themselves but
also captures the relationships between observed and imputed data, as well as the impact imputed values
have on other missing data points. The second GTA block carries out the same operations described in
Section 4.2, yielding another interim imputation, denoted as ϵ2 and an attention weight matrix, WL of
dimension (L, L). Here, we introduce the original noisy data Xta

t into the input of the second GTA with the
following operations to get the second interim imputation ϵ2.

X̂2 = X̃ + ϵ1 + Xta
t

X̂pos2 = time_pos_enc(linear(concat(X̂2, M co
0 ))) (14)

X̃, WL, ϵ′ =
{

GTA2
n(X̂pos2 , Xco

pos, temb) ;if it is the 1st layer (n = 1)
GTA2

n(X̃, Xco
pos, temb) ;if 1 < n ≤ NGT A

(15)

ϵ2 = linear

(∑NGT A

n ϵ′
n√

2

)
(16)

Subsequently, we combine these two interim outputs, ϵ1 and ϵ2, to obtain the final imputation denoted as
ϵθ as depicted in Eq. 18. The weighted combination is designed to determine how much of each interim
estimation should be used in order to produce the final estimation. These weighting coefficients, denoted as
W̃L (L, K), are acquired by applying missingness mask M co

0 and a feed-forward network to project them to
proper dimensions (L, K) as shown in Eq. 17. In Eq. 18, ⊙ is conventionally used to express element-wise
product between two matrices/tensors.

W̃L = sigmoid(linear(concat(WL, M co
0 ))) (17)

ϵθ = (1 − W̃L) ⊙ ϵ1 + W̃L ⊙ ϵ2 (18)

4.4 Training and sampling/inference

We adopt the training methodology outlined in Ho et al. (2020). This approach, illustrated in Algorithm 1,
involves the uniform sampling of a diffusion step t ∈ {1, 2, . . . , T} during each training iteration in Step 2.
Subsequently, it employs the forward process in closed form, denoted as Xta

t =
√

ᾱtX
ta
0 +

√
(1 − ᾱt)ϵ, to

progress to any time step t of diffusion in a single step as illustrated in Step 5 of Algorithm 1. Our proposed
denoising function, denoted as ϵθ(Xta

t , Xco
0 , t), is designed to predict the noise component ϵ that must be

removed from Xta
t during the reverse process in Step 6. To optimize our model, we formulate a loss function

that minimizes the denoising loss in Step 7 as described in Eq. 5 for all three noise predictions produced by
our denoising function: ϵ1, ϵ2, and ϵθ, as expressed by Eq. 19.

loss = M ta
0

2N

(
||ϵ − ϵθ||22 + (||ϵ − ϵ1||22 + ||ϵ − ϵ2||22)

2

)
(19)

In our experiments, we observed that focusing solely on optimizing the final ϵθ prediction does not lead to
the training loss converging to a favorable minima. However, when we optimize the loss function of all three
predictions with respect to the ground truth, we achieve improved outcomes. Minimizing all three losses
drives each of the predictions to the same ground truth. Ideally, all interim imputations should converge
towards the same value and match the ground truth. Since the final prediction ϵθ is a linear combination of

9



Under review as submission to TMLR

ϵ1 and ϵ2 and the loss function drives them to be the same value, ideally, the weights that combine the two
interim predictions approach 0.5.

In Eq. 19, N is the number of imputation targets and M ta
0 is the target mask where 1 indicates the targets

for imputation task and 0 represents observed values and original missing data (without ground truth). Let’s
assume M is the mask where 0 represents the original missing values and M co

0 is the mask where 0 represents
both original and artificially created missing values (with ground truth). Then, the imputation target mask
is M ta

0 = M − M co
0 .

Algorithm 1 Training of our diffusion model
Input: Distribution of training data X0 ∼ q(X0), the number of iteration/epochs N , the list of noise levels

(ᾱ1, . . . , ᾱT )
Output: Trained ϵθ denoising function

1: for i = 0 to N do
2: t ∼ Uniform({1, . . . , T})
3: Separate X0 into conditional observations Xco

0 and imputation targets Xta
0

4: Noise ϵ = N (0, I) with the same dimension as Xta
0

5: One step calculation to noisy targets at step t, Xta
t =

√
ᾱtX

ta
0 +

√
(1 − ᾱt)ϵ

6: denoising function prediction, ϵ1, ϵ2, ϵθ = ϵθ(Xta
t , Xco

0 , t)
7: Optimize the loss function for ϵθ, ϵ1, and ϵ2 according to Eq. (5) and (19).

During the inference phase shown in Algorithm 2, we generate imputed data for locations with missing
values using a reverse diffusion process. This procedure is iterative, starting with pure Gaussian noise
Xta

T ∼ N (0, I) at locations containing missing values. At each diffusion step t, we progressively remove some
noise to produce the sample Xta

t−1 for the preceding step, t − 1. To determine the noise to eliminate at
diffusion step t, we utilize our proposed denoising function ϵθ(Xta

t , Xco
0 , t) in Step 4. For producing Xta

t−1, we
first calculate the mean µθ of Xta

t−1 by removing the predicted noise ϵθ from Xta
t in Step 5. The variance σθ

in Step 6 remains constant for each diffusion step t following the formulation from Ho et al. (2020). Step 7
to 10 show the formulation of Xta

t−1 from the mean µθ and the variance σθ. Finally, we generate the output
sample with predicted imputations in Step 12. We generate Nsample such samples and use their mean as the
final imputation.

Algorithm 2 Sampling process
Input: Data sample X0, missingness mask M co

0 , total number of diffusion steps T , trained denoising function
ϵθ

Output: Imputed missing values Xta
0

1: Xco
0 = observed values of X0

2: Xcurr = Xta
T ∼ N (0, I) (same dimensions as X0)

3: for t = T to 1 do
4: ϵθ = ϵθ(Xcurr, Xco

0 , M co
0 )

5: µθ = 1√
αt

(Xcurr − βt√
1−ᾱt

ϵθ)
6: σθ = 1−ᾱt−1

1−ᾱt
βt; [Taken from Ho et al. (2020)]

7: if t = 0 then
8: Xcurr = N (µθ, I)
9: else

10: Xcurr = N (µθ, σθI)
11: Xta

0 = Xcurr

12: X0 = Xco
0 × M co

0 + Xta
0 × (1 − M co

0 )

10
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5 Experiments

5.1 Experimental setup

We employed six synthetic datasets and four real-world datasets to assess the effectiveness of our model,
SADI. We compared the performance of SADI with CSDI (Tashiro et al., 2021) (a conditional diffusion-
based model), BRITS (Cao et al., 2018) (a bidirectional RNN-based autoregressive model), SAITS (Du
et al., 2023) (a self-attention-based model), and MICE (van Buuren & Groothuis-Oudshoorn, 2011) (an
iterative linear regression-based model) on both the synthetic datasets and the real-world datasets under
partial blackout scenario. In every experimental trial, we randomly removed a number of blocks of data
(2 in all our experiments), choosing a specified number of features uniformly from all features. For each
absent block, we omitted a chosen number of consecutive time steps for the selected features. In the case of
synthetic datasets, we eliminated 20 consecutive time steps. For the Air Quality dataset, we eliminated 10
consecutive time steps. For all other real-world datasets, we removed 30 consecutive time steps.

We trained the models once and tested them 20 times on the test set in different missingness settings
(different ground truths) under partial blackout. For each test, we uniformly selected which features are
missing and selected the number of blocks of such missingness (2 in all our experiments). As CSDI and
SADI are generative models, we generate 50 predicted samples to approximate the probability distribution
of the missing data. For SADI, we calculate the mean of these samples, while for CSDI, following the
guidance from Tashiro et al. (2021), we take the median of the samples to determine the final prediction.
The remaining three models make point predictions for imputation.

To assess the performance of SADI, we rely on two key metrics: Mean Squared Error (MSE) and the Contin-
uous Ranked Probability Score (CRPS), introduced in Matheson & Winkler (1976), along with the inclusion
of a 95% confidence interval. CRPS is a statistical metric used to measure the accuracy of probabilistic
forecasts, especially in fields like meteorology. This metric measures the difference between the cumulative
distribution function (CDF) of the predicted values and the CDF of the actual observed values. More pre-
cisely, CRPS is determined by calculating the integral of the squared differences between these two CDFs
across all possible values. If, say, F is a function that predicts a distribution and the ground truth is y, then
the CRPS formulation is given in Eq. 20. A lower CRPS value indicates a more accurate prediction. Since
CRPS is a measure of performance for generative models, we use this metric only for CSDI and SADI.

CRPS(F, y) =
∫

(F (x) − 1x≥y)2dx (20)

5.2 Synthetic time-series data

The goal of the synthetic datasets is to systematically study the strengths and weaknesses of our model as
a function of the causal relationships in the data. We created six synthetic datasets denoted as v1, v2, v3,
v4, v5, and v6. Figure - 3 illustrates the time-series features and their interrelationships in these synthetic
datasets. Each dataset has a time-series length of 100. The circular nodes in Figure - 3 represent the
features in each dataset, and the arrows depict the functional dependencies between these features. The
solid arrows indicate dependencies between features within the same time step, while the dashed arrows
indicate dependencies with the previous time step. In Figure 3, θi

t represents the input of the periodic
functions (e.g. sin(θi

t)) for feature fi at time t. All feature functions are constrained within a finite range.
The characteristics of each dataset are detailed in Table 6. The independent features are generated by
randomly selecting the lower and upper bound of the input within the specified limits outlined in Table 6,
and then doing a linear interpolating from the lower bound to the upper bound to create the inputs to the
periodic function for each time step t for a given sample.

Tables - 1 and 2 show the comparative analysis of the performance of SADI against the other models using
the six synthetic datasets. The first columns of the tables denote the dataset names, the second columns
indicate the number of missing data blocks, and the third columns give the number of features with missing
data in each experiment. The remaining columns show the mean squared error in Table 1 and CRPS in
Table 2. Both tables show that with the exception of the dataset v1, SADI outperforms other models across
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(a) v1 (b) v2 (c) v3

(d) v4 (e) v5 (f) v6

(g) v7

Figure 3: Synthetic datasets. The solid arrows indicate feature interconnections within the same time step,
while the dashed arrows signify that the t-th time step’s feature depends on the same or other features’
t − 1-th or t − 2-th time step’s value.

all synthetic experiments. For dataset v1, CSDI performs better than SADI in both MSE and CRPS, a
circumstance that can be attributed to the absence of high feature correlations. This is corroborated by the
data in Table 9, indicating that v1 possesses the lowest average Variance Inflation Factor (VIF) among its
features. In statistical terms, a VIF score exceeding 5 signifies a high degree of multicollinearity or significant
feature correlation, a situation that characterizes the other synthetic datasets. Consequently, SADI performs
better when the dataset comprises features with high intercorrelation and fares worse than CSDI when the
features exhibit limited correlation. As we will see from the ablation studies in Section 5.4, this is directly
attributable to the FDE component of SADI, which is specifically designed to capture the dependencies
between different features. In the case of v1, the FDE component tries to find dependencies where there is
little correlation among the features, consequently hurting the performance. Dataset v7 has a non-markovian
relationship among the features, and SADI can handle these type of relationships, too, as evident from Table
- 1 and 2.

We conducted experiments with three additional synthetic datasets to support our claim that SADI performs
better when there are more dependent features. These datasets are v8, v9, and v10, as illustrated in

12
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Datasets # of
blocks

# of
Missing
Features

MICE BRITS SAITS CSDI SADI

v1 2
1 0.02253 ± 0.00142 0.01253 ± 0.00085 0.00322 ± 0.00069 0.00150 ± 0.00082 0.00237 ± 0.00126
2 0.02268 ± 0.00088 0.01332 ± 0.00096 0.00291 ± 0.00046 0.00107 ± 0.00040 0.00159 ± 0.00087
3 0.02211 ± 0.00089 0.02031 ± 0.00196 0.00284 ± 0.00032 0.00174 ± 0.00040 0.00224 ± 0.00083

v2 2
1 0.00454 ± 0.00049 0.00324 ± 0.00028 0.00033 ± 0.00007 0.00010 ± 0.00002 0.00005 ± 0.00002
2 0.01109 ± 0.00118 0.00396 ± 0.00024 0.00023 ± 0.00005 0.00012 ± 0.00003 0.00006 ± 0.00002
3 0.01305 ± 0.00094 0.00451 ± 0.00031 0.00020 ± 0.00004 0.00012 ± 0.00002 0.00005 ± 0.00001

v3 2

1 0.00337 ± 0.00058 0.00571 ± 0.00073 0.00121 ± 0.00056 0.00013 ± 0.00005 0.00008 ± 0.00003
2 0.01051 ± 0.00172 0.00568 ± 0.00059 0.00189 ± 0.00042 0.00020 ± 0.00006 0.00012 ± 0.00005
3 0.01815 ± 0.00202 0.00604 ± 0.00032 0.00212 ± 0.00068 0.00022 ± 0.00009 0.00014 ± 0.00004
4 0.01983 ± 0.00165 0.00675 ± 0.00045 0.00285 ± 0.00054 0.00023 ± 0.00009 0.00021 ± 0.00007

v4 2

1 0.00268 ± 0.00020 0.00586 ± 0.00060 0.00073 ± 0.00009 0.00008 ± 0.00003 0.00007 ± 0.00002
2 0.00831 ± 0.00152 0.00417 ± 0.00027 0.00052 ± 0.00014 0.00007 ± 0.00003 0.00005 ± 0.00001
3 0.01103 ± 0.00080 0.00482 ± 0.00044 0.00060 ± 0.00013 0.00008 ± 0.00002 0.00007 ± 0.00002
4 0.01451 ± 0.00104 0.00627 ± 0.00042 0.00059 ± 0.00007 0.00011 ± 0.00002 0.00009 ± 0.00002

v5 2

1 0.0016 6± 0.00021 0.00371 ± 0.00036 0.00037 ± 0.00016 0.00028 ± 0.00007 0.00007 ± 0.00004
2 0.00989 ± 0.00244 0.00612 ± 0.00081 0.00036 ± 0.00013 0.00016 ± 0.00005 0.00009 ± 0.00005
3 0.01598 ± 0.00188 0.00722 ± 0.00062 0.00073 ± 0.00021 0.00017 ± 0.00006 0.00015 ± 0.00007
4 0.01882 ± 0.00233 0.00743 ± 0.00041 0.00054 ± 0.00015 0.00021 ± 0.00006 0.00017 ± 0.00007
5 0.02078 ± 0.00228 0.00898 ± 0.00074 0.00057 ± 0.00014 0.00017 ± 0.00005 0.00015 ± 0.00006

v6 2
1 0.01628 ± 0.00175 0.00650 ± 0.00047 0.00048 ± 0.00016 0.00003 ± 0.00001 0.00002 ± 0.00001
2 0.01743 ± 0.00128 0.00698 ± 0.00047 0.00063 ± 0.00011 0.00005 ± 0.00002 0.00004 ± 0.00002
3 0.01948 ± 0.00111 0.00675 ± 0.00034 0.00062 ± 0.00013 0.00005 ± 0.00001 0.00004 ± 0.00001

v7 2
1 0.00870 ± 0.00142 0.00585 ± 0.00130 0.00052 ± 0.00032 0.00022 ± 0.00022 0.00009 ± 0.00007
2 0.01167 ± 0.00155 0.00831 ± 0.00118 0.00040 ± 0.00013 0.00019 ± 0.00008 0.00010 ± 0.00006
3 0.01476 ± 0.00160 0.00951 ± 0.00159 0.00052 ± 0.00027 0.00026 ± 0.00013 0.00013 ± 0.00006

Table 1: Partial blackout scenario for synthetic datasets: MSE (with 95% confidence interval) is calculated
by averaging 20 inference trials (length of missing time period = 20).

(a) v8 (b) v9 (c) v10

Figure 4: Synthetic datasets showing different levels of feature dependency. The dashed arrows represent
dependency with the feature at the same time step.

Figures 4a, 4b, and 4c, respectively. Dataset v8 has three independent features and two interdependent
features, while v9 has two independent features and three interdependent features. Dataset v10 has two
independent features and two groups of two interdependent features. We present the results for these three
datasets on the partial blackout scenario in Figure 5. The results indicate that for dataset v8, where there are
more independent features than dependent ones, CSDI performs significantly better than SADI. However,
for datasets v9 and v10, where there are more interdependent features than independent features, SADI
outperforms CSDI by a huge margin.
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Datasets # of
blocks

# of
Missing
Features

CSDI SADI

v1 2
1 0.00261 ± 0.00057 0.00352 ± 0.00094
2 0.00245 ± 0.00036 0.00307 ± 0.00060
3 0.00269 ± 0.00037 0.00339 ± 0.00056

v2 2
1 0.00120 ± 0.00012 0.00081 ± 0.00010
2 0.00132 ± 0.00014 0.00085 ± 0.00011
3 0.00132 ± 0.00008 0.00079 ± 0.00007

v3 2

1 0.00092 ± 0.00012 0.00090 ± 0.00013
2 0.00108 ± 0.00014 0.00107 ± 0.00012
3 0.00182 ± 0.00016 0.00114 ± 0.00015
4 0.00154 ± 0.00019 0.00133 ± 0.00019

v4 2

1 0.00085 ± 0.00012 0.00083 ± 0.00013
2 0.00073 ± 0.00011 0.00070 ± 0.00009
3 0.00083 ± 0.00010 0.00080 ± 0.00010
4 0.00095 ± 0.00010 0.00094 ± 0.00010

v5 2

1 0.00110 ± 0.00022 0.00082 ± 0.00012
2 0.00111 ± 0.00018 0.00091 ± 0.00019
3 0.00111 ± 0.00020 0.00110 ± 0.00018
4 0.00120 ± 0.00019 0.00119 ± 0.00017
5 0.00113 ± 0.00017 0.00109 ± 0.00017

v6 2
1 0.00052 ± 0.00008 0.00044 ± 0.00007
2 0.00049 ± 0.00008 0.00040 ± 0.00008
3 0.00053 ± 0.00006 0.00046 ± 0.00007

v7 2
1 0.00105 ± 0.00035 0.00076 ± 0.00023
2 0.00097 ± 0.00021 0.00075 ± 0.00020
3 0.00097 ± 0.00021 0.00076 ± 0.00015

Table 2: Partial blackout scenario for synthetic datasets: CRPS (with 95% confidence interval) is calculated
by averaging 20 inference trials (length of missing time period = 20).

5.3 Real-world time-series data

The first real-world dataset we describe is a grape cultivar cold hardiness dataset from AgAID, which
measures the resistance of the grape plants and their other characteristics along with environmental factors
at regular points of time (Institue (2023)). The plant-related features were collected by the viticulture team
from Washington State University1. The environmental data, on the other hand, was directly acquired
through the AgWeatherNet API 2. The dataset covers dormant seasons, commencing from September 7-th
of one year and extending to May 15-th of the subsequent year. There are 21 features and 252 steps in
time-series. It has a total of 34 seasons (1988 to 2022), where we used the first 32 seasons as the training
data, and the last 2 as the test data.

Air Quality is a popular dataset considered in (Yi et al., 2016) among others. In accordance with prior re-
search (Song et al., 2020b; Cao et al., 2018; Tashiro et al., 2021), we utilize hourly PM2.5 measurements from
36 stations (features) located in Beijing, covering a period of 12 months. We aggregate these measurements
into time series, each consisting of 36 consecutive time steps. This dataset exhibits an approximate 13% rate
of missing values. Importantly, the missing values follow some unknown patterns which are not completely
random. This dataset includes a distinct test set that provides ground truth values for the missing data. We
applied our customized missing scenarios to this test data.

1https://wine.wsu.edu/
2https://weather.wsu.edu/

14



Under review as submission to TMLR

(a) v8, # of features missing = 2 (b) v8, # of features missing = 3 (c) v8, # of features missing = 4

(d) v9, # of features missing = 2 (e) v9, # of features missing = 3 (f) v9, # of features missing = 4

(g) v10, # of features missing = 2 (h) v10, # of features missing = 3 (i) v10, # of features missing = 4

Figure 5: MSE ± 95% confidence interval for CSDI and SADI. The dot shows the MSE value, and the bar
represents the 95% confidence interval. The length of missingness in the time series is 20 in these experiments.

Another widely known dataset is the Electricity Load Diagram from the public UCI machine learning
repository Dua & Graff (2017). It comprises electricity consumption data, measured in kilowatt-hours
(kWh), gathered from 370 clients at 15-minute intervals. This dataset has no original missing data. There
are 48 months worth of data from January 1, 2011, to December 31, 2014. This dataset has 370 features
and 100 time steps. Since this dataset has no missing data, we artificially removed 20% of the data when
training our model on it. We designate the first 10 months of data (from January 2011 to October 2011) as
the test set, the subsequent 10 months (from November 2011 to August 2012) as the validation set, and the
remaining data (from September 2012 to December 2014) as the training set, the same as Du et al. (2023).

The last dataset examined in this study consists of temperature data sourced from the Northwest Alliance for
Computational Science & Engineering ( NACSE) PRISM climate data PRISM (2014). It has the maximum
and minimum temperatures recorded daily across 176 weather stations in Oregon. The dataset comprises
352 features, and the time-series spans a year, specifically 366 days. The dataset contains data for a total
of 11 years, from January 1, 2011, to December 31, 2021. For our experimental setup, we designate the first
9 years as the training data and reserve the last 2 years for testing.

Tables 3 and 4 show the MSE and CRPS results with 95% confidence interval for the four real-world datasets.
The experimental setup and the columns of the tables are the same as previously discussed. Here, we can
observe that SADI outperforms the other models in MSE and CRPS in partial blackout scenarios. Our model,
SADI, demonstrates superior performance compared to other models, even in instances involving random
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Datasets # of
blocks

# of
Missing
Features

MICE BRITS SAITS CSDI SADI

AgAID 2

1 0.0050 ± 0.0028 0.0087 ± 0.0048 0.0016 ± 0.0008 0.0026 ± 0.0021 8.6e-05 ± 9.7e-05
3 0.0156 ± 0.0072 0.0135 ± 0.0068 0.0022 ± 0.0010 0.0045 ± 0.0019 0.0004 ± 0.0003
5 0.0205 ± 0.0065 0.0137 ± 0.0064 0.0027 ± 0.0014 0.0058 ± 0.0026 0.0004 ± 0.0003
7 0.0252 ± 0.0051 0.0150 ± 0.0031 0.0036 ± 0.0012 0.0074 ± 0.0051 0.0005 ± 0.0005
9 0.0459 ± 0.0126 0.0256 ± 0.0100 0.0045 ± 0.0013 0.0049 ± 0.0017 0.0003 ± 0.0002
11 0.0582 ± 0.0159 0.0335 ± 0.0113 0.0055 ± 0.0015 0.0059 ± 0.0021 0.0006 ± 0.0004

Air
Quality 2

1 0.0280 ± 0.0100 0.0281 ± 0.0101 0.0280 ± 0.0101 0.00223 ± 0.00244 0.00174 ± 0.00191
3 0.02074 ± 0.0183 0.0200 ± 0.0188 0.0206 ± 0.0183 0.00185 ± 0.00129 0.00104 ± 0.0004
5 0.0166 ± 0.0072 0.0174 ± 0.0073 0.0166 ± 0.0071 0.00153 ± 0.00063 0.00109 ± 0.00059
7 0.0223 ± 0.0127 0.0220 ± 0.0127 0.0225 ± 0.0128 0.00154 ± 0.00040 0.00130 ± 0.00065
9 0.0214 ± 0.0160 0.0203 ± 0.0151 0.0203 ± 0.0153 0.00147 ± 0.00059 0.00106 ± 0.00032
11 0.0197 ± 0.0066 0.0192 ± 0.0062 0.0192 ± 0.0065 0.00124 ± 0.00021 0.00107 ± 0.00020

Electricity 2

1 0.5466 ± 0.1231 0.8743 ± 0.4098 0.8312 ± 0.2567 0.3569 ± 0.0498 0.1726 ± 0.0892
10 0.5991 ± 0.0303 1.0313 ± 0.0474 0.9915 ± 0.0621 0.6317 ± 0.0590 0.1379 ± 0.0125
15 0.5790 ± 0.0199 0.9393 ± 0.0770 0.9003 ± 0.0394 0.5703 ± 0.0832 0.1273 ± 0.0191
20 0.5757 ± 0.0199 0.9239 ± 0.0429 0.8877 ± 0.0252 0.5863 ± 0.0477 0.1346 ± 0.0478
30 0.6027 ± 0.0100 0.9979 ± 0.0134 0.9387 ± 0.0169 0.56090 ± 0.03535 0.1248 ± 0.0066
100 0.6916 ± 0.0289 1.009 ± 0.0202 0.9366 ± 0.0239 0.4395 ± 0.0209 0.1346 ± 0.0072

NACSE 2

2 0.0044 ± 0.0011 0.0071 ± 0.0030 0.0091 ± 0.0056 0.0205 ± 0.0032 0.0045 ± 0.0038
10 0.0051 ± 0.0008 0.0082 ± 0.0021 0.01092 ± 0.0027 0.0191 ± 0.0016 0.0049 ± 0.0018
50 0.0070 ± 0.0009 0.0083 ± 0.0009 0.0100 ± 0.0013 0.0191 ± 0.0011 0.0064 ± 0.0008
90 0.0116 ± 0.0008 0.0117 ± 0.0010 0.0109 ± 0.0010 0.0210 ± 0.0011 0.0071 ± 0.0008
100 0.0117 ± 0.0012 0.0117 ± 0.0013 0.0106 ± 0.0011 0.0206 ± 0.0012 0.0073 ± 0.0007

Table 3: Partial blackout scenario: MSE (with 95% confidence interval) is calculated by averaging 20 inference
trials (length of missing time period = 10 (Air Quality) and 30 (for the rest)).

missing data, complete blackout, and forecasting as illustrated in Appendix A.5. In these experiments, we
have observed that CSDI (code taken from one of the author’s GitHub reporsitory3)requires a huge amount
of GPU memory when dealing with high dimensional data such as - Electricity and NACSE datasets. For
these two datasets, we had to reduce the number of channels to 4 because of our GPU constraints, which
may have had some negative effect on its performance shown in Tables 3 and 4.

5.4 Ablation Study

Our model, SADI, has three core components: (1) the FDE (feature dependency encoder) block that models
feature inter-correlations, (2) the two-stage imputation process, and (3) the weighted combination of the
two intermediate imputations. Now, we will do an ablation study to show the impact of these three design
decisions. The models for ablation are -

• SADI: The SADI model with all of its components.

• No FDE: SADI model without the FDE component.

• No 2nd block: SADI model after removing the second stage of imputation. Instead of having two
separate NGT A layers for each block, we now have a single block with 2 × NGT A layers. It takes the
first stage’s output as the final imputation.

• No wt. comb.: SADI model without the weighted combination of two blocks. It takes the
prediction of the second stage as the final imputation.

Table - 5 shows the ablation results for all three design choices. The ablation study was done on six synthetic
datasets, the AgAID dataset, and the NACSE dataset. For every model, the training was done 3 times and
each time there were 20 inference runs with different missing scenarios. Table 5 reports the MSE with 95%
confidence interval averaging across all training and inference runs. Note that all values in Table 5 should

3https://github.com/ermongroup/CSDI
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Datasets # of
blocks

# of
Missing
Features

CSDI SADI

AgAID 2

1 0.0089 ± 0.0037 0.0033 ± 0.0038
3 0.0092 ± 0.0040 0.0022 ± 0.0009
5 0.0085 ± 0.0029 0.0023 ± 0.0009
7 0.0087 ± 0.0017 0.0024 ± 0.0004
9 0.0093 ± 0.0020 0.0024 ± 0.0006
11 0.0095 ± 0.0018 0.0027 ± 0.0005

Air Quality 2

1 0.0094 ± 0.0079 0.0073 ± 0.0062
3 0.0047 ± 0.0010 0.0039 ± 0.0007
5 0.0042 ± 0.0004 0.0034 ± 0.0004
7 0.0039 ± 0.0014 0.0028 ± 0.0009
9 0.0051 ± 0.0013 0.0041 ± 0.0011
11 0.0050 ± 0.0012 0.0041 ± 0.0012

Electricity 2

1 0.1383 ± 0.0202 0.0556 ± 0.0011
10 0.1488 ± 0.0059 0.0515 ± 0.0016
15 0.1477 ± 0.0040 0.0486 ± 0.0020
20 0.1517 ± 0.0023 0.0488 ± 0.0020
30 0.1518 ± 0.0027 0.0480 ± 0.0025
100 0.1557 ± 0.0030 0.0566 ± 0.0035

NACSE 2

2 0.0263 ± 0.0021 0.0165 ± 0.0030
10 0.0258 ± 0.0018 0.0155 ± 0.0010
50 0.0268 ± 0.0018 0.0151 ± 0.0010
90 0.0258 ± 0.0016 0.0146 ± 0.0009
100 0.0249 ± 0.0018 0.0137 ± 0.0008

Table 4: Partial blackout scenario: CRPS (with 95% confidence interval) is calculated by averaging 20
inference trials (length of missing time period = 10 (Air Quality) and 30 (for the rest)).

be multiplied by 10−3 for true MSE and confidence interval. From Table 5, we observe that with all of its
components, SADI outperforms the versions that lack at least one of the core components in all but one
dataset. The only exceptuon is dataset v1, where the model No FDE outperforms SADI. This outcome
aligns with our expectations, given that SADI’s FDE component tries to identify correlations in situations
where such associations are scarce or nonexistent.

It can be observed that for most of the datasets, removing the second stage leads to a significant decrease in
performance. This is particularly true for the two synthetic datasets that contain features with dependencies
on the previous time step values of other features. The difference in performance is highly visible in the
two real-world datasets. The difference is not much in the case of synthetic datasets because they are
composed of fairly simple periodic functions, and the models can predict them well even if some components
are missing. Finally, the absence of weighted combination damages performance significantly in the two
real-world datasets and the 3 synthetic datasets v2, v3, and v5. These datasets have high correlation among
features of the same time step. This component matters only slightly in case of the datasets whose features
have interdependency with previous time step’s features as observed from the results of v4 and v6 in Table 5.

6 Discussion and future work

In this paper, we address the multivariate time-series imputation, which is a critical problem in many do-
mains. While existing research in time series imputation has made significant progress, a common limitation
has been the concentration on a narrow set of cases of missingness, leaving a gap in understanding and
addressing more realistic missing data scenarios. To close this gap, we introduce a flexible framework called
partial blackouts that includes a wide variety of missing data patterns found in the real world. This
notion provides a more thorough and practical evaluation of imputation models. Our approach to training
and evaluation hinges on the MCAR (missing completely at random) strategy, as the missingness masks are
independent of any observed data. Within the partial blackout framework, there exists a degree of correla-
tion in missing values, yet it does not qualify as MAR (missing at random) because the absence of values
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Datasets # of
blocks

# of Missing
Features

MSE ×103 ± 95% CI ×103

SADI No FDE No 2nd block No wt. comb.

v1 2
1 2.3 ± 1.2 2.172 ± 0.55 2.2 ± 0.65 2.668 ± 0.733
2 1.5 ± 0.08 1.386 ± 0.515 1.52 ± 1.3 2.122 ± 0.373
3 2.2 ± 0.08 1.668 ± 0.210 1.97 ± 0.72 1.703 ± 0.248

v2 2
1 0.064 ± 0.01 0.074 ± 0.011 0.861 ± 0.805 0.069 ± 0.017
2 0.053 ± 0.021 0.137 ± 0.021 3.419 ± 2.531 0.144 ± 0.017
3 0.061 ± 0.022 0.185 ± 0.021 21.34 ± 7.075 0.199 ± 0.016

v3 2

1 0.083 ± 0.033 0.086 ± 0.021 0.238 ± 0.111 0.087 ± 0.027
2 0.1 ± 0.048 0.113 ± 0.14 0.486 ± 0.201 0.116 ± 0.008
3 0.1 ± 0.04 0.128 ± 0.017 0.536 ± 0.152 0.121 ± 0.015
4 0.2 ± 0.071 0.207 ± 0.02 0.483 ± 0.139 0.265 ± 0.041

v4 2

1 0.077 ± 0.026 0.085 ± 0.015 10.15 ± 3.997 0.079 ± 0.010
2 0.052 ± 0.014 0.108 ± 0.017 28.83 ± 14.98 0.088 ± 0.013
3 0.074 ± 0.019 0.127 ± 0.018 35.45 ± 5.916 0.102 ± 0.013
4 0.094 ± 0.019 0.125 ± 0.011 47.71 ± 10.31 0.121 ± 0.019

v5 2

1 0.078 ± 0.035 0.108 ± 0.062 4.199 ± 0.884 0.058 ± 0.041
2 0.091 ± 0.058 0.098 ± 0.048 4.732 ± 0.760 0.129 ± 0.049
3 0.015 ± 0.075 0.105 ± 0.042 4.111 ± 0.701 0.175 ± 0.067
4 0.170 ± 0.069 0.182 ± 0.068 4.768 ± 0.984 0.183 ± 0.049
5 0.150 ± 0.060 0.169 ± 0.053 4.536 ± 0.535 0.161 ± 0.056

v6 2
1 0.029 ± 0.013 0.043 ± 0.016 16.89 ± 12.66 0.061 ± 0.034
2 0.040 ± 0.016 0.044 ± 0.020 237.3 ± 94.75 0.043 ± 0.016
3 0.042 ± 0.012 0.058 ± 0.015 265.4 ± 56.62 0.046 ± 0.018

AgAID 2
3 0.46 ± 0.35 1.43 ± 0.9 4.059 ± 4.339 0.78 ± 0.56
7 0.59 ± 0.55 1.77 ± 1.72 2.219 ± 1.152 5.41 ± 9.4
11 0.63 ± 0.40 1.64 ± 0.8 6.516 ± 5.201 6.75 ± 3.87

NACSE 2
10 4.9 ± 1.8 37.44 ± 20.46 59.5 ± 18.28 39.53 ± 16.15
50 6.4 ± 0.8 78.19 ± 14.94 95.08 ± 22.97 64.83 ± 18.11
100 7.3 ± 0.7 86.08 ± 12.19 80.25 ±15.77 63.65 ± 9.12

Table 5: Ablation Study of the three core components of SADI: MSE (with 95% confidence interval) is
calculated by averaging accross three training runs each running 20 inference trials.

does not depend on any observed ones. The missingness in MCAR is independent of any known or unknown
values, while in MAR it depends on some observed values. This MCAR setup for both our evaluation and
training is also consistent across prior research works.

Another common drawback in many existing works is the absence of explicit modeling of feature dependen-
cies at the time-series level, leading to suboptimal imputation quality. Among the state-of-the-art models,
only the CSDI model addresses capturing feature dependencies as a distinct consideration. Our proposed
solution, SADI, explicitly models both feature and temporal correlations. This design choice provides a
robust approach for imputing data in scenarios involving diverse feature dimensions and interrelationships.
Furthermore, our two-step imputation procedure takes into account the impact that imputed values have
on further imputations, aiming to enhance the overall quality of the imputation. On the other hand, the
imputation generated in the second stage may not always be better than the initial imputation in terms of
quality. To address this concern, we have developed a dynamic weighting mechanism between the outputs of
the two stages where the weights are determined by learnable parameters. The ablation experiments show
that this weighting mechanism is critical for the success of our method.

In Section 5, we have demonstrated that SADI exhibits better performance compared to the state-of-the-art.
We also observe that, with the exception of the v1 dataset, SADI outperforms CSDI across all datasets.
Notably, the v1 dataset has lower multicollinearity among its features, as indicated by the average Variance
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Inflation Factor (VIF) values in Table 9. This table shows that all other datasets, excluding v1, have an av-
erage VIF exceeding 5, which is typically considered indicative of high feature correlation in statistics. SADI
performs better in scenarios where the dataset has high multicollinearity among the features. Conversely, its
performance does not surpass that of the state-of-the-art when multicollinearity is minimal or absent. This
discrepancy arises from the fact that the FDE component of SADI attempts to model feature correlations,
even in cases where none exist as evident by ablation study where we removed the FDE component (See
Table 5, first and second columns).

Additionally, our model requires a lower amount of GPU memory compared to CSDI for both training and
inference, which makes it a viable option for diverse applications. When executing CSDI on large datasets
such as Electricity and NACSE, we had to decrease the hyperparameter related to the number of channels
due to GPU memory constraints. In contrast, SADI did not necessitate any hyperparameter reductions to
accommodate the same GPU memory capacity.

Our primary focus in this paper is on modeling the feature and time correlations in the setting of low-to-high
dimensional feature space. While we investigate the performance of our model in the partial blackout scenario
in high dimensional feature space, our focus remains attuned to the short-to-medium term time series length.
Our study does not encompass capturing long-term dependencies in time series data. Consequently, in our
evaluation, we have not included the SSSD (Alcaraz & Strodthoff, 2022) model, as it falls within the domain
of capturing long-term time dependencies and cannot work with a large number of features. Instead, we
have chosen to take the CSDI model as the representative of the diffusion-based models for the scope of our
investigation.

The current diffusion framework our model uses is borrowed from DDPM (Ho et al., 2020), which shows a
notable time delay in the sampling process. This delay might be minimized by adopting the newer diffusion
frameworks like improved DDPM (Song & Ermon, 2020), DDIM (Song et al., 2020a) and Schrödinger Bridge
(De Bortoli et al., 2021; Chen et al., 2023). Another limitation of our model becomes apparent in case of
datasets having minimal multicollinearity among their features, where it underperforms. This limitation also
offers opportunities for future improvement.

7 Conclusion

In summary, this paper introduces the “partial blackout” framework to address multivariate time-series
imputation, providing a more realistic evaluation of imputation models. Our model, SADI, explicitly models
feature and temporal correlations and performs well except in datasets with minimal feature correlations.
We have an innovative two-stage imputation process that enhances the quality of imputation. It requires
less GPU memory than existing state-of-the-art models like CSDI. However, SADI does not utilize spatial
information in spatiotemporal data and the diffusion framework it adopts has a slow sampling process.
Future work aims to overcome these limitations.
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A Appendix

A.1 Synthetic data generation

We create six artificial datasets containing basic periodic functions as features. The input for these functions
is represented as θi, where i corresponds to the fi feature of the dataset. Each θi is constrained within
a specified range, as detailed in Table - 6. We perform linear interpolation between the lower and upper
bounds over 100 time steps and apply the periodic functions accordingly, as depicted in Table - 6. The
dataset construction follows the outlined procedure:

• v1: All features are independent of each other and each feature only depends on the previous time
steps value of itself.

• v2: Features have some dependency to each other in the same time step.

• v3: Two features have some dependency and one has linear dependency and the other has non-linear
dependency.

• v4: Has a feature which is dependent on the other features’ values from the previous time step.

• v5: Groups of interdependent features with some noise added to them.

• v6: Has a feature dependent on the values other features and itself from the previous time step.

Dataset name Number of
features θi bounds Features

v1 3
θ1 = [0.00001, 2π

3 ),
θ2 = [0, 2π),
θ3 = [− π

3 , π
3 )

f1[t] = sin(θ1
t ), f2[t] = cos(θ2

t ), f3[t] = tan(θ3
t )

v2 3 θ1 = [− π
3 , π

3 ),
θ2 = [− π

4 , π
3 ) f1[t] = sin(θ1

t ), f2[t] = cos(θ2
t ), f3[t] = f1[t]

f2[t]

v3 4 θ1 = [0.0001, 2π
3 ),

θ2 = [0, π)
f1[t] = sin(θ1

t ), f2[t] = cos(θ2
t ),

f3[t] = f1[t] + f2[t], f4[t] = f1[t] × f2[t]

v4 4 θ1 = [− π
3 , π

3 ),
θ2 = [− π

3 , π
3 )

f1[t] = sin(θ1
t ), f2[t] = cos(θ2

t ), f3[t] = 1 + (f1[t])2,
f4[t + 1] = 1 − f1[t]

f2[t]

v5 6 θ1 = [− π
3 , π

3 ),
θ2 = [− π

3 , π
3 )

f1[t] = sin(θ1
t ),

f2[t] = 1 + (f1[t])2 + N (0, I) × 10−4,
f3[t] = cos(θ3

t ),
f4[t] = 1 − (f3[t])2 + N (0, I) × 10−4,

f5[t] = tan(θ5
t ), f6[t] = 1 − (f5[t])2 + N (0, I) × 10−4

v6 3
θ1 = [− π

3 , π
3 ),

θ2 = [− π
3 , π

4 ),
θ3 = [− π

3 , π
3 )

f1[t] = sin(θ1
t ), f2[t] = cos(θ2

t ),
f3[t + 1] = 1 + f3[t] − f1[t]

f2[t] ; [2 ≤ t ≤ 100],
f3[1] = 1 − sin(θ1

0)
cos(θ2

0)

Table 6: Properties of synthetic data

A.2 Model architecture

Figure - 6 shows the detailed architecture of SADI’s denoising model.

A.3 Hyperparameter search

MICE, BRITS, and SAITS have only few hyper-parameters. For MICE, we found the number of iterations
30 is the optimal choice for all of the datasets. BRITS has the number of hidden state embedding size as
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Figure 6: Detailed architecture of the denoising function of SADI

hyper-parameter and setting it to 64 works best for all the datasets. Increasing it for the larger feature size
datasets did not give us better performance. For SAITS, we varied three hyper-parameters number of layers
nlayers (3, 4, 5, 6), dimension of linear embedding demb (256, 512, 1024) and size of the feed forward network
inside the self-attention encoder dffn (128, 256, 512) for different datasets.

For CSDI, we employ the official implementation of CSDI (Tashiro et al. (2021)) as our baseline and search
for appropriate hyperparameter settings for each dataset. Table - 7 outlines the range of hyperparameter
values explored for CSDI. For most of the cases, the default hyperparameter settings provided by the authors
suffice. However, for the NACSE (PRISM (2014)) and Electricity (Dua & Graff (2017)) datasets, we faced
GPU RAM limitations due to their high dimensionality. Consequently, we had to limit the use of residual
channels to just 4.

Hyperparameters Values
learning rate 0.01, 0.001, 0.0001

β0 0.0001
βend 0.3, 0.5, 0.7

Residual layers 3, 4, 5
Residual channels 4, 16, 32, 64

Diffusion embedding dim 128
Diffusion steps 50, 60, 70, 100

Feature embedding dim 128
Time embedding dim 16
Self-attention heads 4, 8

Table 7: CSDI hyperparameters

For SADI, the majority of diffusion hyperparameters align with those used in CSDI. The search range for
hyperparameters in SADI is detailed in Table - 8. Importantly, for the high-dimensional datasets mentioned
earlier, we did not encounter the need to impose any limitations on these hyperparameters in the case of
SADI.
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Hyperparameters Values
learning rate 0.01, 0.001, 0.0001

β0 0.0001
βend 0.3, 0.5, 0.7

Diffusion embedding dim 128
Diffusion steps 50, 60, 70,

NF DE 3, 4
NGT A 3, 4
dmodel 128, 256, 512, 1024
dinner 128, 256, 512

dk 64
dv 64

Self-attention heads 8

Table 8: SADI hyperparameters

To ensure optimal performance, we employ a grid search technique to choose the hyperparameters for each
model and dataset. The search is conducted over the parameters listed in Tables - 7 and 8. To evaluate the
performance, we create artificial missingness through a random missing mask applied to the validation sets
of the corresponding dataset. This missingness is then used as the ground truth for the evaluation.

A.4 Correlation analysis with VIF

The Variance Inflation Factor (VIF) is a statistical measure used to evaluate the presence of multicollinearity
within regression analysis. Multicollinearity arises when there is a strong correlation between two or more
independent variables within a regression model. It is computed by the following formula. Here, R2

i denotes
the unaltered coefficient of determination when regressing the i-th independent variable against the others.
R2 value for a feature is always between 0 and 1, where 0 means no-correlation and 1 means perfect correlation
(a linear regression perfectly fits the observed data for the current dependent variable).

V IFi = 1
1 − R2

i

We computed the VIF for our synthetic datasets (which did not contain any missing values) and two real-
world datasets, specifically the Electricity and Air Quality datasets, after excluding rows with missing values.
Unfortunately, we were unable to perform the same analysis for the AgAID and NACSE datasets because
all rows in these datasets had at least one missing value. Table 9 presents the average VIF values for the
features in each of these datasets. It is evident that within the synthetic datasets, the dataset v1 exhibits
the lowest level of feature correlation, as the average VIF for its features is less than 5. In statistics, a VIF
exceeding 5 signifies a high degree of correlation among features. The dataset v3 shows ∞ VIF because
features f1, f2, f3 have linear dependency and each of them can be perfectly predicted from the other two
with a linear regression model.

A.5 Results for random, complete blackout, and forecasting scenario

We conducted experiments aligned with existing research to assess SADI’s performance relative to CSDI.
Our evaluation consists of three scenarios: random missingness (at 10%, 30%, and 50%), complete blackout
missing data (where all features were missing for e.g. 10, 30, and 50 consecutive time steps), and a forecasting
scenario (predicting outcomes for e.g. 10, 30, and 50 future time steps). These evaluations were done for
AgAID, NACSE, and Electricity datasets. In the case of the Air Quality dataset, we used the ground truth
test data made available in Tashiro et al. (2021).

Table - 11, 10, and 12 present the Mean Squared Error (MSE) results along with 95% confidence interval,
derived from 20 inference trials on the test sets. For the forecasting scenario, the inference setup remains
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Dataset Avg VIF of the features
v1 2.12237
v2 5.56661
v3 ∞
v4 28.76032
v5 57.37916
v6 9.92046

Electricity 11.60544
Air Quality 47.18543

Table 9: Average Variance Inflation Factor of the features of different datasets

the same, so it results in a single experiment for forecasting. Here, we again observe that across all datasets
SADI performs better than other existing models.

Random missing (%)
10% 30% 50%

MICE 0.00656 ± 9.3e-05 0.01149 ± 0.0001 0.01673 ± 0.0001
BRITS 0.00781 ± 0.0001 0.01087 ± 8.8e-05 0.01354 ± 0.0001
SAITS 0.00734 ± 0.0001 0.00852 ± 5e-05 0.01101 ± 4e-05
CSDI 0.01913 ± 9e-05 0.01783 ± 6e-05 0.01577 ± 5e-05
SADI 0.00564 ± 7e-05 0.00581 ± 4e-05 0.00595 ± 4e-05

Blackout missing (length)
50 100 150

MICE 0.04968 ± 0.0152 0.06412 ± 0.0118 0.07189 ± 0.0024
BRITS 0.05865 ± 0.0093 0.10718 ± 0.0210 0.12596 ± 0.0201
SAITS 0.05905 ± 0.0143 0.07254 ± 0.0092 0.07489 ± 0.0070
CSDI 0.08860 ± 0.0231 0.13408 ± 0.0168 0.16927 ± 0.0307
SADI 0.02832 ± 0.00516 0.03184 ± 0.0043 0.03560 ± 0.0027

Forecasting (length)
50 100 150

MICE 0.06424 0.06413 0.06414
BRITS 0.24533 0.26943 0.26943
SAITS 0.06552 0.06533 0.06533
CSDI 0.08143 0.08456 0.08330
SADI 0.025044 0.02508 0.02468

Table 10: Comparison of MSE with 95% confidence interval between SADI and other 4 models in the
random missing, blackout missing, and forecasting scenarios for NACSE temperature data
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Random missing (%)
10% 30% 50%

MICE 0.02504 ± 0.0021 0.03222 ± 0.0017 0.04679 ± 0.0019
BRITS 0.01122 ± 0.0006 0.01301 ± 0.0006 0.01726 ± 0.0006
SAITS 0.00279 ± 0.0002 0.00336 ±0.0002 0.00518 ± 0.0002
CSDI 0.00419 ± 0.0002 0.00462 ± 0.0002 0.00602 ± 0.0003
SADI 0.00026 ± 6e-05 0.00025 ± 4e-05 0.00049 ± 7e-05

Blackout missing (length)
50 100 150

MICE 0.06298 ± 0.0121 0.06157 ± 0.0076 0.0588 ± 0.0085
BRITS 0.06154 ± 0.0070 0.05551 ± 0.0041 0.05841 ± 0.0048
SAITS 0.05559 ± 0.0053 0.05885 ± 0.0042 0.06092 ± 0.0051
CSDI 0.03299 ± 0.0060 0.03255 ± 0.0036 0.03373 ± 0.0043
SADI 0.02230 ± 0.0033 0.02401 ± 0.0030 0.02752 ± 0.0044

Forecasting (length)
50 100 150

MICE 0.07654 0.07676 0.07710
BRITS 0.07757 0.07773 0.07773
SAITS 0.07745 0.07776 0.07775
CSDI 0.05694 0.05715 0.05655
SADI 0.05094 0.05106 0.05051

Table 11: Comparison of MSE with 95% confidence interval between SADI and other 4 models in the
random missing, blackout missing, and forecasting scenarios for AgAID Merlot Cultivar data

Random missing (%)
10% 30% 50%

MICE 9.0664 ± 0.0106 10.7183 ± 0.0233 12.5995 ± 0.0356
BRITS 12.0307 ± 0.0281 13.1066 ± 0.0064 14.2556 ± 0.0270
SAITS 10.9526 ± 0.0167 12.2415 ± 0.0090 13.9783 ± 0.0373
CSDI 33.4264 ± 0.3796 29.2097 ± 0.1018 20.1168 ± 0.0944
SADI 4.65954 ± 0.0076 4.50983 ± 0.0068 4.82148 ± 0.0044

Blackout missing (length)
10 30 50

MICE 31.6813 ± 0.0526 31.6907 ± 0.0566 31.6736 ± 0.0115
BRITS 21.6905 ± 0.2231 24.8239 ± 0.1039 26.0286 ± 0.1050
SAITS 32.75354 ± 0.0325 33.1214 ± 0.1087 32.6807 ± 0.0458
CSDI 22.9892 ± 0.5940 10.1132 ± 0.1805 6.50201 ± 0.0222
SADI 9.35785 ± 0.4959 11.20489 ± 0.1394 12.51583 ± 0.0918

Forecasting (length)
10 30 50

MICE 31.6291 31.5622 31.5622
BRITS 27.7793 18.9535 18.9535
SAITS 24.7884 23.9151 23.9152
CSDI 28.0036 68.6411 68.5007
SADI 4.08528 4.87973 4.89543

Table 12: Comparison of MSE with 95% confidence interval between SADI and other 4 models in the
random missing, blackout missing, and forecasting scenarios for Electricity Load Diagram data
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Random missing (%)
10% 30% 50%

MICE 0.0314 ± 0.0006 0.0292 ± 0.0003 0.0285 ± 0.0002
BRITS 0.0232 ± 0.0031 0.0173 ± 0.0020 0.0191 ± 0.0014
SAITS 0.0231 ± 0.0028 0.0168 ± 0.0018 0.0184 ± 0.0012
CSDI 0.0013 ± 9.0e-05 0.0011 ± 5.2e-05 0.0014 ± 8.9e-05
SADI 0.0006 ± 0.0001 0.0006 ± 8.6e-06 0.0007 ± 3.2e-05

Blackout missing (length)
5 10 15

MICE 0.0539 ± 0.0623 0.0468 ± 0.0458 0.0417 ± 0.0372
BRITS 0.0334 ± 0.0060 0.0247 ± 0.0165 0.0326 ± 0.0227
SAITS 0.0319 ± 0.0009 0.0238 ± 0.0153 0.0309 ± 0.0219
CSDI 0.0036 ± 0.0051 0.0082 ± 0.0074 0.0080 ± 0.0046
SADI 0.0024 ± 0.0009 0.0051 ± 0.0044 0.0080 ± 0.0038

Forecasting (length)
5 10 15

MICE 0.0289 0.0289 0.0289
BRITS 0.0271 0.0365 0.0410
SAITS 0.0221 0.0311 0.0370
CSDI 0.0191 0.0261 0.0285
SADI 0.0180 0.0248 0.0265

Table 13: Comparison of MSE between SADI and other 4 models in the random missing, blackout missing,
and forecasting scenarios for Air Quality data
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