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Abstract

Most work on adaptive data analysis assumes that samples in the dataset are
independent. When correlations are allowed, even the non-adaptive setting can
become intractable, unless some structural constraints are imposed. To address
this,|Bassily and Freund|[2016] introduced the elegant framework of concentrated
queries, which requires the analyst to restrict itself to queries that are concentrated
around their expected value. While this assumption makes the problem trivial in
the non-adaptive setting, in the adaptive setting it remains quite challenging. In fact,
all known algorithms in this framework support significantly fewer queries than in
the independent case: At most O(n) queries for a sample of size n, compared to
O(n?) in the independent setting.

In this work, we prove that this utility gap is inherent under the current formulation
of the concentrated queries framework, assuming some natural conditions on
the algorithm. Additionally, we present a simplified version of the best-known
algorithms that match our impossibility result.

1 Introduction

Adaptive interaction with data is a central feature of modern analysis pipelines, from scientific
exploration to model selection and parameter tuning. However, adaptivity introduces fundamental
statistical difficulties, as it creates dependencies between the data and the analysis procedures applied
to it, which could quickly lead to overfitting and false discoveries. Motivated by this, following the
seminal work of Dwork et al.|[2015b], a substantial body of work has established rigorous frameworks
for addressing this problem. These works demonstrated that various notions of algorithmic stability,
and in particular differential privacy (DP) [Dwork et al.;|2006], allow for methods which maintain
statistical validity under the adaptive setting. Most of the current work, however, focuses on the case
where the underlying data distribution is a product distribution, i.e., the samples in the dataset are
independent of each other. Much less is understood about the feasibility of accurate adaptive analysis
when the data exhibits correlations. In this work, we examine the extent to which accurate adaptive
analysis remains possible under minimal structural conditions on the data distribution.

Before presenting our new results, we describe our setting more precisely. Let X' be a data domain.
We consider the following game between a data analyst .4 and a mechanism M.

1. The analyst A chooses a distribution D over tuples in X* (under some restrictions).

2. The mechanism M obtains a sample S <— D. % We denote |S| = n.

3. Forkrounds j = 1,2,...,k:

(a) The analyst A chooses a query ¢; : X — [0, 1], possibly as a function of all previous
answers given by M (under some restrictions).
(b) The mechanism M obtains ¢; and responds with an answer a; € R, which is given to A.
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Note that the analyst A is adaptive in the sense that it chooses the queries g; based on previous
outputs of M, which in turn depend on the sample .S. So the queries g; themselves depend on S. If
instead the analyst A were to fix all k& queries before the game begins, then these queries would be
independent of the dataset S. We refer to this variant of the game (where all queries are fixed ahead
of time) as the non-adaptive setting.

The goal of M in this game is to produce accurate answers w.r.t. the expectation of the queries over
the underlying distribution D. Formally, we say that M is («, §)-statistically accurate if for every
analyst A, with probability at least 1 — 3, for every j € [k] it holds that |a; — ¢;(D)| < «, where

¢;(D) :=Ercp ‘—%l > wer 45(x)|. As a way of dealing with worst-case analysts, the analyst A is

assumed to be adversarial in that it tries to cause the mechanism to fail. We therefore sometimes
think of A as an attacker.

The main question here is:

Question 1.1. What is the maximal number of queries one can accurately answer, k, as a function of
the sample size n, the desired utility parameters o, B, and the type of restrictions we place on the
choice of D and the queries q; (in Stepsandabove)?

The vast majority of the work on adaptive data analysis (ADA) focuses on the case where D is
restricted to be a product distribution over n elements (without restricting the choice of the queries
g;j)- After a decade of research, this setting is relatively well-understood: For constant ¢, 3, there
exist computationally efficient mechanisms that can answer ©(n?) adaptive queries, and no efficient
mechanism can answer more than that|']

The situation is far less well-understood when correlations in the data are possible. Let us consider the
following toy example as a warmup. Suppose that the attacker randomly picks one of the following
two distributions:

* Dy = The distribution that with probability 1/2 returns the sample (3, 3, ..., %) and w.p. 1/2
returns the sample (0,0, ...,0).

¢ Dy = The distribution that with probability 1/2 returns the sample (3, 3,..., 1) and w.p. 1/2
returns the sample (1,1,...,1).

Note that in this scenario, a mechanism holding the sample (%, %, ey %) cannot accurately answer

the query g(z) = z, as the true answer could be either 1/4 or 3/4. The takeaway from this toy
example is that when correlations in the data are possible, then we must impose additional restrictions
on our setting in order to make it feasible. There are two main approaches for this in the literature:

1. Explicitly limit dependencies within the sample [Kontorovich et al., 2022]: Intuitively,
if we restrict the attacker A to choose only distributions D that adhere to certain “limited
dependencies” assumptions, then the problem becomes feasible. A downside of this approach is
that it is typically tied to a specific measure for limiting dependencies, and it is not clear why
one should prefer one measure over another.

2. Limit the attacker to concentrated queries |Bassily and Freund}|2016]: Notice that the toy
example above cannot be solved even in the non-adaptive setting, because the description of
the hard query ¢(xz) = x does not depend on the sample S. So in a sense, it is “unfair” to
attempt solving it in the adaptive setting. In other words, if something cannot be solved in the
non-adaptive setting, how can we hope to solve it in the adaptive setting? Motivated by this,
Bassily and Freund|[2016] restricted the attacker A to queries that in the non-adaptive setting
are sharply concentrated around their true mean. Specifically, the attacker is restricted to choose
queries g; such that if we were to sample a fresh dataset T from the underlying distribution
D (where T is independent of the description of ¢;), then with high probability it holds that
the empirical average of g; on T is close to the true mean of g; over D. Notice that under this
restriction, the problem becomes trivial in the non-adaptive setting, as we could simply answer
each query using its exact empirical average. In the adaptive setting, however, the problem is
quite challenging.

ISee, e.g.,|Hardt and Ullman|[2014],|Dwork et al.|[2015b/a]], Steinke and Ullman|[2015].,|Bassily et al.|[2016],
Cummings et al.|[2016],/Rogers et al.|[2016],|Feldman and Steinke||2017]], Nissim et al.|[2018]], |Feldman and
Steinke|[2018],|Shenfeld and Ligett|[2019],|Steinke and Zakynthinou|[2020],|Jung et al.|[2020],| Shenfeld and
Ligett|[2023],|Blanc|[2023],|Nissim et al.|[2023]



In this work we continue the study of this question for concentrated queries. We aim to characterize
the largest number of adaptively-chosen concentrated-queries one can accurately answer (without
assuming independence in the data). Formally,

Definition 1.2 (Concentrated queries). Let X be a domain, let D be a distribution over tuples in X'*,
and let e, € [0, 1] be parameters. A query q : X — [0, 1] is (g,~)-concentrated w.r.t. D if
P —q(D)| > ¢| <
P [1g(8) —a(D)| > ¢ <7,
where q(S) = ‘—él Y wes () is the empirical average of q on S and q(D) = Erp [q(T)] is the
expected value of q over sampling a fresh dataset from D.

For example, if D is a product distribution over datasets of size n, then, by the Hoeffding bound,

every query ¢ : X — [0,1] is (e, v)-concentrated for every ¢ > /12 with v = 2¢=27=" | This

2n
example motivates the following question:

Question 1.3. How many adaptive queries could we efficiently answer when correlations in the data
are allowed, but the analyst is restricted to (e, ~)-concentrated queries for ,~ that are comparable
to what is guaranteed without correlations, say € = ﬁ and~y =n~10?

Bassily and Freund| [2016] introduced this question and presented noise addition mechanisms that
can efficiently answer O(n) adaptive queries under the conditions of Question By noise addition
mechanism we mean a mechanism that given a sample S answers every query g with ¢(S) + 7,
where 7 is drawn independently from a fixed noise distribution. Note the stark contrast from the i.i.d.
case, where it is known that O(n?) queries can be supported rather than only O(n). To achieve their
results,|Bassily and Freund|[2016| introduced a stability notion called typical stability and showed
that (1) noise addition mechanisms with appropriate noise are typically stable; and (2) typical stability
guarantees statistical validity in the adaptive setting, even in the face of correlations in the data. More
generally, the algorithm of Bassily and Freund|[2016] can support roughly O (E%) queries provided
that ~y is mildly small (polynomially small in k).

Following that, Kontorovich et al.|[2022] showed that a qualitatively similar result could be obtained
via compression arguments (instead of typical stability). However, their (computationally efficient)
algorithms require ~y to be exponentially small in k£ and thus do not apply to the parameters €, -y stated
in Question They do support other ranges for (e, ), but at any case their efficient algorithms can-
not answer more than O(n) queries when the parameters (g, y) adhere to the behavior of Hoeffding’s
inequality for i.i.d. samples. For example, for ¢ = O(1) and y = 2~%(") their algorithm supports
O(n) adaptive queries to within constant accuracy (even when there are correlations in the data).

To summarize, currently there are two existing techniques for answering adaptively chosen concen-
trated queries: Either via typical stability in the small € regime or via compression arguments in the
tiny «y regime. At any case, all known results do not break the O(n) queries barrier, even when the
concentration parameters reflect the behavior guaranteed in the i.i.d. setting. In contrast, without
correlations in the data, answering O(n?) queries is possible.

1.1 Our results
1.1.1 An impossibility result for answering concentrated queries

We establish a new negative result providing strong evidence that the linear barrier discussed above
is inherent. Our result applies to mechanisms that perturb the empirical mean of a query either by
adding independent noise or by evaluating it on a randomly selected subsample of the dataset, which
together constitute all known efficient, polynomial-time techniques for answering a super-linear
number of queries in the i.i.d. setting. For brevity, we refer to these as Noise and Subsampling
(NS) mechanisms. Specifically, we show that NS mechanisms cannot answer more than O(n)
adaptively chosen concentrated queries, even if the query concentration matches the behavior of
Hoeffding’s inequality for i.i.d. samples. This constitutes the first negative result for answering
adaptively chosen concentrated queries, and stands in sharp contrast to the O(n?) achievable in the
1.i.d. setting. Specifically,

Theorem 1.4 (informal). Let e > 0 and v € (0, 1]. Then there exists a domain X and a distribution
D over X™ such that the following holds. For any NS mechanism M there exists an adaptive analyst



issuing (g, )-concentrated queries qi, . . ., qx, where k = Q (min {%, 5% In (ﬁ) }), such that
with probability at least 0.9 there is a query q; for which the answer provided by M deviates from its
true mean q;(D) by at least 0.9.

To interpret this result, note for example that when ¢ = O(1) and ¥ = 27" then our bound on &
gives k = O(n). We show that the same is true for all values of (g, ) that match the behavior of the
Hoeffding bound in the i.i.d. setting.

This negative result emphasizes a fundamental limitation. In order to break the linear barrier on
the number of supported queries, future work must either impose additional structural assumptions
on the problem or introduce new algorithmic techniques beyond noise addition and subsampling
mechanisms.

1.1.2 A simplified positive result

As we mentioned, |Bassily and Freund|[2016] introduced the notion of typical stability and leveraged
it to design algorithms supporting adaptive concentrated queries. However, their definitions and
techniques are quite complex. In particular, bounding the number of supported queries k as a function
of the concentration parameters € and -y is not easily extractable from their theorems.

We present a significantly simpler analysis for their algorithm that does not use typical stability at all.
Instead, it relies on techniques from differential privacy|Dwork et al.|[2006]. In addition to being
simpler, our analysis allows us to save logarithmic factors in the resulting bounds on k. Formally, we
show the following theorem.

Theorem 1.5 (informal). Fix parameters ¢,~. There exists a noise addition mechanism M that
guarantees (Wlov Wlo)—statistical accuracy against any analyst A issuing at most k queries which are

(€, 7)-concentrated, provided that k = O (min { %, W}) .

In retrospect, leveraging differential privacy (DP) to answer concentrated queries (as we do in this
work) is a natural approach as it is simpler than prior work on this topic and aligns with other works
on other variants of the ADA problem. In a sense, the reason for the additional complexity in the
work of|Bassily and Freund|[2016] steams from their alternative stability notion (typical stability).
To the best of our knowledge, our work is the first to derive meaningful positive results for answering
adaptively chosen concentrated queries via differential privacy when correlations are present in the
data.

1.1.3 Technical overview of our negative result (informal)

The key insight underlying our negative result is that query concentration alone does not prevent
an attacker from extracting substantial information about correlated data. We consider a domain X
partitioned into % subsets, and define a distribution D over X" in which each sample consists of é
distinct elements, each drawn from a different subset and repeated en times.

This structure simultaneously maximizes the information each query can reveal while ensuring
that every query remains tightly concentrated. The attacker designs each query to assign nonzero
values only within a single targeted subset, keeping the empirical mean within [0, ] and satisfying
(€, v)-concentration by construction. Yet, the responses still leak significant information about the
data.

Building on the adaptive attack of|Nissim et al.|[2018] for the i.i.d. setting, our attacker progressively
identifies the repeated elements: each query randomly assigns binary values within the targeted
subset and updates an accumulated score to isolate the correct element. We present a simple analysis
adapted to our setting, showing that the sample can be recovered with high probability. This breaks
the accuracy guarantee of any NS mechanism once the number of queries exceeds our derived lower
bound.

Our construction highlights that when correlations are present, concentration alone cannot prevent
information leakage. Thus, accurately answering more than a linear number of adaptive, concentrated
queries requires stronger structural assumptions on the distribution.



1.1.4 Technical overview of our positive result (informal)

We prove Theoremby showing that the mechanism that answers queries with their noisy empirical
average guarantees statistical accuracy (for an appropriately calibrated noise distribution). To show
this, we introduce a thought experiment involving three mechanisms, all initialized with the same
sample S ~ D, all interacting with the same analyst .A:

* Real-world mechanism: Answers each query using the empirical mean plus independent noise.
This is the mechanism whose accuracy we want to analyze.

* Oracle mechanism: Answers each query using its true mean under the target distribution D,
plus independent noise. Note that this mechanism “knows” the target distribution D. This is not
a real mechanismy; it only exists as part of our proof. The noise magnitude will be small enough
such that this mechanism remain accurate.

* Hybrid mechanism: Initially behaves like the real-world mechanism, but switches permanently
to behave like the oracle mechanism if at some point the empirical mean on any query deviates
significantly from its true mean. This is also not a real mechanism; it exists only as part of our
proof.

Our analysis proceeds in two steps. First, we leverage techniques from differential privacy to
demonstrate that the output distributions of the the oracle and hybrid mechanisms are close. This
allows us to invoke advanced-composition-like theorems from differential privacy, ensuring that the
outcome distributions of these two mechanisms remain close even after £ adaptive queries.

Second, we identify a class of good interactions. In these scenarios, the hybrid mechanism never
switches to oracle responses, making its behavior identical to the real-world mechanism. We show
that these good interactions occur with high probability under the oracle mechanism, and by extension,
under the hybrid mechanism. We thus get that the real-world mechanism is also likely to produce
these good interactions.

By combining these insights, we conclude that, under suitable concentration assumptions on the
queries, the real-world mechanism’s outputs closely track those of the oracle mechanism, which is
statistically accurate by definition, thus ensuring statistical accuracy even in adaptive settings.

2 Preliminaries

We now formally define the two classes of mechanisms for which our negative result holds, which we
refer to collectively as Noise and Subsampling (NS) mechanisms.

Definition 2.1 (Noise-Addition Mechanism). A mechanism M is a noise-addition mechanism if,
given a dataset S and a statistical query q, it returns a = q(S) + n, where 1 is a random variable
drawn independently from a fixed, zero-mean noise distribution that does not depend on S or q.

Definition 2.2 (Subsampling Mechanism). A mechanism M is a subsampling mechanism if, given a
dataset S of size n, it answers each query q as follows. For each round independently, the mechanism
samples a subsample S’ of size m by drawing m elements from S independently and uniformly at
random with replacement, and returns a = q(S’) = % > wes 4(), the empirical mean of q on the
subsample. The subsample S’ is freshly resampled for every query, independently of previous rounds.

Differential privacy. Consider an algorithm that operates on a dataset. Differential privacy is a
stability notion requiring the (outcome distribution of the) algorithm to be insensitive to changing
one example in the dataset. Formally,

Definition 2.3 (Dwork et al.|[2006]]). Let M be a randomized algorithm whose input is a dataset.
Algorithm M is (g, 0)-differentially private (DP) if for any two datasets S, S’ that differ in one
point (such datasets are called neighboring) and for any event E it holds that Pr[M(S) € E] <
ef - PriM(S") € E] 4 4.

The most basic constructions of differentially private algorithms are via the Laplace mechanism as
follows.
Definition 2.4 (The Laplace Distribution). A random variable has probability distribution Lap(b) if

_ Lzl

its probability density function is f(x) = % exp ( 7 ) where x € R.



Theorem 2.5 (Dwork et al.|[2006]). Let f be a function that maps datasets to the reals with sensitivity
{ (i.e., for any neighboring S, S we have |f(S) — f(S")| < £). The mechanism M that on input S
adds noise with distribution Lap(f) to the output of f(S) preserves (g, 0)-differential privacy.

Finite precision and bounded outputs Real-world computing devices can only produce finitely
many bits of precision. Accordingly, we assume outputs are rounded or truncated, ensuring a discrete
output space. In our negative result, we additionally assume that outputs lie within a fixed bounded
range. This holds automatically for subsampling mechanisms, since the empirical mean of values
in [0, 1] always lies in [0, 1]. For noise-addition mechanisms, we assume outputs lie in the interval
[—1,2]. Since queries are bounded in [0, 1] and the accuracy parameter « is also in [0, 1], any response
outside this range would already violate the accuracy guarantee, meaning the mechanism has failed
and the attack has succeeded.

3 An impossibility result for answering concentrated queries

We begin by noting that the bound of 1/~ queries is unavoidable. To see this, consider a distribution
D that is uniform over 1/v disjoint samples Si, ..., Sy, of size n each. Now consider the analyst
that queries (one by one) all 1/~ queries of the form ¢;(z) = 1 if z € S; and ¢;(z) = 0 otherwise.
The “true mean” of each of these queries over D is exactly v, and each of them, the probability of
deviating from this true mean by more than « (over sampling S ~ D) is at most y. So for v < ¢ and
o < 1 — ~y these queries are all concentrated, and one of them causes the mechanism to lose accuracy.
See Appendix[A.1]for the formal details.

The main result of this section gives a stronger impossibility bound. We construct a distribution and
domain such that any NS mechanism can be forced to fail with probability 1 — 3 by an attacker

issuing only (e, v)-concentrated queries after k = ) (6% -In (ﬁ)) rounds.

We then consider the setting where  is a function of n and ¢ that corresponds to the concentration
of bounded queries in an i.i.d. regime. Specifically, if v(n,&) = 2exp(—2¢2n), as given by the
double-sided Hoeffding inequality, then the two combined bounds imply that no NS mechanism can
answer more than O(n) such queries.

Domain and distribution. We now formalize the domain and sample construction described above.
Let ¢ € (0,1] and define 7 = 1/¢. Let X be a finite domain of size N = max { L i} Assume

2> ey
for simplicity that » is an integer and that it divides both /V and n. Partition & into 7 disjoint subsets
X1,..., X, each of size ¢ N. Label the elements in each subset arbitrarily: X; = {z}, 27, ..., 25V}
foralli =1,...,r.

The distribution D over X" is deﬁned as _foll(_)ws. Fir_st, sample an index j ~ Unif{1,2,...,eN}.
Then, output the sample S = (z1,...,27, 23,...,2}, ..., z/,...,2]). That s, a single index j
—_— ———

I

X En EN En
determines one point =] from each subset X;, and the sample consists of each of these points repeated
exactly n/r = en times. Although D is defined on X, its support contains only N/r = N distinct
samples, and each is determined by the shared index j.

Attack Overview: The attack procedure (Algorithm|[T) operates over k rounds of information
gathering followed by a single final query. During the information gathering rounds, each query ¢,
is constructed using i.i.d. Bernoulli random variables: each element zJ in the targeted subset X
independently takes the value 1 with probability p; ~ Unif[0, 1], while all other elements in the
domain receive value 0. Throughout the interaction, we track an accumulated score Z; for each

element 7, defined so that the score increment 2] has positive expectation if ] matches the unique
element appearing in the true sample, and zero expectation otherwise. After all k£ rounds, we identify
the element with the highest cumulative score. By standard concentration arguments, this element
is likely to be the one present in the actual sample, as it uniquely accumulates a positive expected
score. We issue a final query that evaluates to 1 for the elements in the sample we identified and
0 for all other elements, thus pinpointing the true sample. Throughout the analysis, we assume



a<l- m, ensuring that if the final query successfully identifies the true sample, the resulting
deviation exceeds a.

Algorithm 1 Attack Procedure
Initialization: Let M be an NS mechanism initialized with a sample S ~ D. For each element

:cjl € X}, initialize an accumulated score Z; = 0.
Information gathering rounds: For each round ¢ € [k]:

1. Sample p; ~ Unif|0, 1].
2. Define the query ¢; : X — {0, 1} as:

[~ Bemoulli(p;) ifz € A&7,
a(w) = {0 otherwise.

3. Submit ¢; to the mechanism and receive the response a;.
4. For each &} € Xy, define 2] = (a; — p:/7) (¢:(2]) — p;), and update Z; + Z; + z].

Final query: After k rounds, compute j* = arg max; Z;. Submit a final query ¢* : X — {0, 1} by
setting

. 1 ife=al forie[r],
q"(z) = .
0 otherwise.

Analysis of the attack. We now prove that the attack described above succeeds using only (e, )-
concentrated queries. This analysis establishes three components: (1) all ¥ information-gathering
queries are (&, )-concentrated, (2) the final attack query ¢* is also (e, v)-concentrated, and (3) with
high probability, the attack correctly identifies the underlying sample. The proofs for the concentration
of the queries are deferred to Appendix[A.2]

Theorem 3.1. For the attack to identify the true sample with probability at least 1 — [, it suffices
that fo = @ (& [max {In (1), 1o (1) } +1n (1)]).

Proof Sketch. Consider the variables 2/ = (a; — %)(qt(x{) — pt). It can be shown (Appendix
that these satisfy E[z]] = % if j corresponds to the true sample, and 0 otherwise. Summing these

variables, define Z; = Zle z]. Each Z; thus accumulates a positive expectation only for the true
index j,, and zero otherwise. Using standard concentration inequalities, one obtains that the index
maximizing Z; coincides with the true sample with probability at least 1 — 3, provided k satisfies the
stated bound. The detailed argument is deferred to Appendix O

Combining Theorem|[3.T]and the attack in Appendix[A.T] we get:

Theorem 3.2. Lete > 0, v € (0,1], and 8 € (0,1). Then there exists a domain X and a distribution
D over X™ such that for any NS mechanism M, and any o € (O, 1-— m), there exists an

analyst issuing k adaptive (e, ~y)-concentrated queries with k = (min {%, 6% In (E.éq> }) , such

that Pr [3i € [k] such that | M (q;) — ¢;(D)| > a] > 1— 0.

Comparison to the i.i.d. setting We now compare our query bound to the classical i.i.d. setting,
where differentially private mechanisms can answer up to O(n?) adaptive statistical queries with
bounded error. In sharp contrast, our results imply a strong negative statement: even if the query con-
centration matches the behavior of Hoeffding’s inequality for i.i.d. samples, the number of accurately
answerable queries by NS mechanisms is tightly bounded by O(n). To make this comparison precise,
we assume a fixed failure probability (e.g. S = 0.01), and let the concentration rate y(n, ¢) follow
the double-sided Hoeffding bound: ~(n,e) = 2exp(—2ne?). Under this assumption, the bound
from theorem|3.2[simplifies to k = O(n) for any € € (0, 1]. The full derivation is a straightforward
asymptotic calculation, deferred to Appendix



4 A simplified positive result

4.1 Setup and definitions

We introduce a thought experiment involving three mechanisms, all initialized with the same sample
S ~ D, all interacting with the same adaptive analyst .4 over k rounds.

A sample S ~ D is drawn once and remains hidden from the analyst. The analyst .4 issues a sequence
of k statistical queries q1, . .., qr : X — [0, 1], where each query may depend adaptively on previous
queries and responses; .4 is assumed to be deterministic without loss of generality, as randomized
analysts can be treated by taking expectation over a distribution of deterministic strategies.

The mechanism’s responses are based on one of three strategies: the real-world mechanism adds
Laplace noise to the empirical mean Mg(q;) = ¢:(S) + n;, where 7; ~ Laplace(0, b); the oracle
mechanism adds Laplace noise to the true mean Mo (q;) = ¢:(D) + 1., where n} ~ Laplace(0, b);
and the hybrid mechanism responds as the real-world mechanism while all past queries are -
concentrated relative to S, but switches to the oracle mechanism once any empirical mean deviates
qi(S)+mn;, if maxjgi‘q}-(S) —qj (D)‘ <e,

by more than € from the true mean: Mg (q;) = {qi (D) + 1!, otherwise.

To describe the interaction between the analyst and the mechanism, we define the transcript t =
(¢1,0a1,...,qk,ar), which records the sequence of queries and their corresponding responses. Each
answer a; is given by either Mgs(q;), Mo/(g;), or Mr(g;), depending on the mechanism being used
in the interaction.

Definition 4.1 (Transcript). Let A be an analyst interacting with a mechanism over k rounds. The
random transcript T is the sequence of queries and responses generated in the interaction. A
particular outcome is denoted by t = (q1, a1, . .., qg, ak)-

Transcript Probability Notation. Let ¢ be a transcript arising from an interaction between an
analyst A and a mechanism M. We denote the probability of ¢ arising under mechanism M as
Pry (T = t), where Prao (T = t), Praq, (T = t), and Prag,, (T = t) refer to the probabilities
under the real-world, oracle, and hybrid mechanisms, respectively.

To analyze the outcome of the interaction, we define two categories of "good" events: (1) Statistical
accuracy: This event contains all transcripts ¢ such that all answers in ¢ are close to the true means of
their respective queries. (2) Sample concentration: This event contains all pairs of transcripts ¢ and
samples S such that the empirical mean on S of each query in ¢ is close to its true mean on D. Note
that statistical accuracy is a property of the mechanism’s outputs and their deviation from the true
means, independent of the sample; sample concentration, by contrast, depends on both transcript and
sample as it reflects how well the empirical means align with the true expectations.

Definition 4.2 («-accurate transcript). A transcriptt = (g1, a1, . . ., qk, ar) is a-accurate if every
response a; is within o of the true mean q;(D); that is: |a; — ¢;(D)| < a for all i € [k].

Definition 4.3 (s-good pair (S, t)). Let S € Supp(D) be a sample and let t = (q1,a1, ..., qr, ar)
be a transcript of k queries and responses. The pair (S, t) is called e-good if, for every query q; in t,
the empirical mean of q; on S is close to its true mean: |qi(S) — qi(D)| < e

Our strategy involves demonstrating that the probability of sample concentration events occurring
is similar across the real-world, oracle, and hybrid mechanisms. By establishing this, we can infer
that events satisfying both statistical accuracy and sample concentration—which occur with high
probability under the oracle mechanism—also occur with high probability under the real-world
mechanism. Thus ensuring that the real-world mechanism maintains statistical accuracy despite the
adaptivity of the analyst.

4.2 Relating the distribution of events under the oracle and hybrid mechanisms

The first component of our analysis shows that the output distributions of the oracle and hybrid
mechanisms are closely aligned, similarly to the guarantees provided by (e, 0)-differential privacy
for neighboring datasets. This is formalized in Lemmal[4.4] with the proof deferred to Appendix [B.1]



Lemma 4.4. Let S € Supp(D) be a sample, and let q be any query. Then for every measurable set
in the output space £ C Y: Pr[MH(q) S 8] < eb Pr[./\/lo(q) S 5] and Pr[/\/lo(q) S 5] <
et Pr[Mpy(q) € &].

Extending advanced composition to our setting. The preceding lemma allows us to extend the
advanced composition analysis of [Dwork et al.|[2010b] (see also [Dwork and Roth|[2014]) to our
framework. One of their results shows that if an (e, 0)-differentially private mechanism interacts with
an analyst over k rounds, then for any ¢’ > 0, the overall interaction is (¢*, §’')-differentially private,
where €* ~ /ke. Although this theorem is framed in terms of differential privacy and neighboring
datasets, the proof relies solely on the following: in each round, the conditional distributions of the
outputs in two parallel experiments Y and Z given identical histories up to the previous round satisfy

that for any B C Supp(Y), it holds that In ( <7,

our setting, Lemma[4.4]implies that this condition holds for any interaction of a fixed analyst with
the oracle and hybrid mechanisms once you condition on identical histories. We now formalize the
corresponding composition theorem in our framework and, for completeness, supply a full proof in
appendix that mimics the proof of [Dwork et al.;|2010b] Theorem III.1] to demonstrate that it
applies under our conditions.

Theorem 4.5. Let S € Supp(D) be a sample, and let A be a fixed analyst. Consider two k-round
interactions with A: one with the hybrid mechanism M g, and one with the oracle mechanism M.

For any p > 0, define €* = |/ 2k 111(%) THki (65/” — 1). Then

) < ¢, and similarly for the reverse ratio. In

P T=t
>z—:*} <p, and Pr IHM > e*

<
teMo | Pra, (T =1t) =7

Pr |In Pruu(T'=1)
teMpg | Prap, (T =1t)

From this, we conclude the following corollary (the proof is deferred to Appendix[B.3):

Corollary 4.6. Let A be a fixed analyst, S € Supp(D) a sample, and let £ be any event that
can arise in the interaction with the analyst. For any p > 0, define €* as in Theorem Then
e (Prato €] = p) < Praiylé] < € Pragolé] + p.

4.3 High-probability accuracy of the Laplace mechanism

The next lemma shows that the real-world and hybrid mechanisms assign equal probability to any
event consisting entirely of e-good sample—transcript pairs. This follows from the fact that both
mechanisms operate with the same randomness, so as long as all queries remain ¢-good, their
responses are identical. Full details are provided in Appendix|[B.4]

Lemma 4.7. Fix an analyst A, and let G be the set of e-good sample—transcript pairs. Then, for
every measurable subset £ C G, Pra,[E] = Prag, [E]-

The following lemma provides a high-probability guarantee for e-good and c-accurate transcripts
under the oracle mechanism. Since the output is independent of the sample, a union bound over
queries and noise yields this result, with the full argument deferred to Appendix

Lemma 4.8. Let S ~ D and consider a k-round interaction between an analyst A and the oracle
mechanism, producing the transcript t. Define the failure probability of any of the Laplace noises
exceeding aas ¢ =1 — Pr[|n}| < o]*, forn} ~ Laplace(0,b). Then,

P o - .
SnD. t~Pracg, [(S,t) is e-good and t is c-accurate] > ky— ¢

We have established that: (1) the transcript distribution under the hybrid mechanism closely ap-
proximates that of the oracle mechanism, (2) the probability of any event consisting of e-good
sample—transcript pairs is identical under both the real-world and hybrid mechanisms, and (3) under
the oracle mechanism, the joint event of e-good pairs and a-accuracy occurs with high probabil-
ity. Combining these facts implies that the real-world mechanism is statistically accurate with
high probability. This is formalized in the following theorem, the proof of which is deferred to

Appendix



Theorem 4.9. Let A be an analyst, and Mg the real-world Laplace mechanism interacting with A
over k rounds. For o > 0 and p > 0, define ¢* as in theorem[4.5] and let ¢ be as in lemma[4.8| Then,
the probability that the real-world mechanism produces an a-accurate transcript satisfies

o [t=(q,a1,.. ..k ax) : Vila; — (D) <a] > e (1—ky—(—p).

Theorem 4.10. Ler A be any analyst issuing k adaptive (g, v)-concentrated queries, and fix an
accuracy parameter o > 0 and failure probability 5 > 0. Then the Laplace mechanism can achieve

. . _ . B _9 o? B2
(a, B)-accuracy over all k queries provided k = O(mm{ 5 BE™, T AT W n(1/0)E n(1/B) })
Proof. Run the Laplace mechanism with noise scale b = #1/5) Theorem|4.9|implies that for any
fixed o > 0 and number of queries k, the real-world mechanism satisfies («, §)-accuracy provided
e s . (1 —ky—(C— p) > 1 — [3. Requiring each term in the failure probability p, (, kv and £* to
be < [3/4, yields the desired result. See Appendixfor the details of this derivation. O

Simplified bound for constant accuracy and failure (example). If we assume constant parameters
for failure probability and accuracy with ¢ < «a (e.g., « = g = 0.01), Theoremimplies the
existence of a noise addition mechanism M that guarantees (0.01,0.01)-statistical accuracy against
any analyst .4 issuing up to k adaptive, (&, )-concentrated queries, provided

kzo(mi“{i’ M})
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide accurate summaries of the major claims
made in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the results are captured in the formal theorem statements,
and we emphasize the differences between our setting an other settings studied in prior
work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We fully prove all of our theorems.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLS to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper and its underlying research conform to the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is not expected to have any immediate societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

¢ The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Additional proofs for negative result

A.1 A simple negative result using 1/ queries

We present a simple construction showing that for any valuesof 0 <y <e <landanyoa <1 —17,
there exists a domain, distribution, and adversary strategy such that after at most k = 1/ queries, all
of which are (e, v)-concentrated, the mechanism is forced to return a response that is not statistically-
accurate.

Claim A.1. Fix parameters 0 < v < e < 1 and o <1 — . There exists a distribution D over X"
and a set of k = % queries, each (e,7y)-concentrated, such that an attacker submitting these queries
to any mechanism will receive a response that differs from its true expectation by more than o on at
least one query.

Proof. Letr = 1/~, assumed to be an integer for simplicity. Let the domain be X = {1,2,...,rn},
partitioned into r disjoint subsets 51, ..., S, C X, each of size n.

Let D be the uniform distribution over these subsets: that is, S ~ D means S = S; with probability
1/r=~foranyi e {1,...,r}.

Define queries gs, , .. .,qs, : X — {0,1} by

1 ifxes;,
0 otherwise.

qs;(x) = {

Each query has true mean gg, (D) = 1/r = ~. For any sample S = S;, we have gg,(S) = 1, while
forall j # i, g5, (S) = 0.

To verify concentration, note that for any S # .S;, The empirical mean gg, (S) = 0, so the deviation
from the true mean is exactly v < e. For the sample S = S;, ¢s,(S) = 1, and the deviation is
1—v>a.

Thus, submitting the k = 1/~ queries guarantees that one query must yield an error greater than «,
violating («, 3)-statistical accuracy.

A.2  All queries in the attack described in algorithmare (¢,7y)-concentrated

Lemma A.2. Each query q; in the first k rounds in the attack described in algorithm is (g,7)-
concentrated.

Proof. Fix round ¢ and any S’ € Supp(D). The sample consists of en copies of x{ of some element
2] € X1, and (n—en) elements from X'\ X;. Since g, (x) = 0 for z ¢ Xy, we have ¢,(S’) = eqq(z7),
where ¢;(2]) ~ Bernoulli(p; ). Therefore the empirical mean of any sample in Supp(D)is in {0, &},
and ¢;(D)the true mean is ep; € [0, ], so the absolute deviation is at most . O

Lemma A.3. The final query q* in the attack described in algorithmis (e,7)-concentrated under
D.

Proof. LetT ~ D. The query ¢* evaluates to 1 if 7" is the sample generated by choosing the j*-th
element in each subset X;, and 0 otherwise. Thus, the true mean ¢*(D) = ELN If ¢*(T) = 0, the

deviation is ﬁ; if ¢*(T') = 1, the deviation exceeds ¢ but this event occurs with probability ﬁ
Since N = max %, L }, we have % < egand LN < 7, so the deviation exceeds € with probability
27 gy £ €

at most -y, meaning ¢* is (&, y)-concentrated. O

A.3  Proof of theorem[3.1]

We begin by proving a supporting lemma:
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A.3.1 Lemma

Lemma A4. Let j; denote the index of the elements that appear in the true sample S that is used by

the mechanism. Define
Jj_ bt
2 =@ =7 a:(x]) — pe

Then for each j € {1,...,eN}andt € {1,...,k},
E[Zg] _ {6r ifj=Js,

0  otherwise.

Proof. Let S = (¢°,... 2% ... xJs ... aJ*) be the true sample that is used by the mechanism.
Case I: j # js. Here g;(x7) is independent of a;, and E[g;(z7)] = py, so:

E[]] = E[(a; — &)(ar(2]) — p1)] = 0.
Case 2: j = js. The analysis in this case depends on the type of mechanism used.

If M is a noise addition mechanism: Substitute a; = %{) + n; into z{ *. Since 7, is zero-mean
and independent,
) 1 )
E[z°] = ;E[(Qt(les) - p)?]-
Because ¢, (}*) ~ Bernoulli(p;) and p; ~ Unif[0, 1], this gives:
; 1 1
Elz*] = - -E[p:(1 — = —.
) = Elpl1 - p0) = o

If M is a subsampling mechanism:The output a; is the empirical mean of the query evaluated on
a subsample Sj; of size m which is constructed by drawing elements i.i.d. and uniformly from the
original sample S. We can express the output as:

ar = ¢(Sm) = Z%(Ye

where each Yy is drawn uniformly from S. By construction, the original sample S’ (of size n) contains

exactly n/r copies of zJ°. Therefore, the probability that any given draw Y5 is equal to zJ° is:
j n/r 1
Pr(Y, =a)) = 1 =~.
r(Yy = a77) n r

Furthermore, ¢;(Y;) = 0 whenever Y, # xl Let C be the number of times x]l is drawn into S,
so C ~ Bin(m, 1/r). The output can then be simplified to:

C P
ag = E qt(l‘Jlb)a

as all other points sampled into Sj; contribute zero to the sum. We first compute the expectation
conditioned on p; and C".

E|(at — &)(Qt(ﬂ’/’{s) —Dt)

e ZE[(Z%(%{ pt) (q:(=]") = pe)

Pt C:|

_E [g 0 (27 (qu(=l) — pi)

Pt} - E{ (Qt(ﬂﬁl Pt) ‘pt}

C
= Ept(l — Dt)-

Next, taking the expectation over the binomial random variable C' yields the expectation conditioned
only on p;:

E[+}"

E[i} pe(1 —py) = %Pt(l —Dt)-

Thus, in the subsampling case as well, the final expectation is:

Blef'] = - Elpu(1 -] = 5.
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Theorem For the attack to identify the true sample with probability at least 1 — B, it suffices that

c-oEfeful() ()} o )

Proof of theorem- Let j5s denote the index of the true sample fed to the mechanism. Define for
each index j the cumulative variable Z; = Et 1 7, where

2= (a-2) (e )

1 . . .

j o ifj=7s
Elz]] =4 6r ’
=] { 0  otherwise.

According to lemma

For each j # js, define the difference WJ = zt - zf and let W7 = Zle Wtj = Zj, — Z;. Note
that for a fixed j, the variables 27, . .. zk are i.i.d., and so are the variables W7, ..., W,z

By assumption, mechanism outputs are bounded in a fixed interval. Since p;, ¢:(x) € [0, 1], each
term W7 | is bounded. Also, E[W] = .

Applying Hoeffding’s inequality to W7, we get:
, k
Pr[W < 0] < e
W7 < }_exp< CT2>,

for some constant C'.

We compare each alternative index j # js to the true one by checking whether Z; > Z;_, which
occurs exactly when W7 < 0. By a union bound over the N/r — 1 such indices:

) ) N k
Pl £ 22 2] < o (< g )

To ensure that the attack identifies the true sample with probability of at least 1 — [3, it suffices that

N k N
2. < > Cr? .
" exp( Or 2> 8 = k>Cr-In <T5>

Substituting = 1/ and using the definition of N = max { } we obtain
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o (2) - on(3) msf () o} )
o3 fnfo () 2 ()

A.4 Comparison to the i.i.d. setting

Thus,

Fixed failure probability. For simplicity, we assume the failure probability 3 is a constant (e.g.
B = 0.01). Under this simplification, the final bound from Sectionmeans that no noise-addition
mechanism can maintain («, 3)-statistical accuracy for:

1 1 1 1
k = min {, (0] (2 max{ln <> , In () }) } .
v € € v
Comparison under Hoeffding-style concentration To mirror the i.i.d. setting, let y(n, ) be the
double-sided Hoeffding bound: (n, &) = 2 exp(—2ne?). This yields

.1 1 1
k = min {2 exp(2ne?), O (222 max {ln (5) , n52}> } .
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Parametrizing the concentration rate To understand how k scales with n, we write e(n) =

f(n)/+/n, where f(n) € (0,/n]. This gives:
ne? = f(n)?, In <é> = %lnn —1In f(n).

Substituting, we get:

7(;7 =i %GXP(Qf(n)Q% Eigmax {ln (é) , nsQ} = f(Z)Q - max {ln (%) , f(n)Q},

We divide the analysis into three regimes based on the value of f(n)? relative to Inn:

Case 1: f(n)? > Inn. In this case, the maximum in the second term is attained by f(n)?, so:

n

k=0 (W : f(n)2) = O(n).

Case 2: f(n)? € [31nn,Inn]

Case3: f(n)? < ilnn

7(; 9= %cxp(Qf(n)Q) < %CXp(ln n) = O(n).

Conclusion For any choice of ¢ € (0, 1], whether constant or varying with n (e.g., e(n) = %), if
~(n, €) matches the behavior of the Hoeffding concentration bound, the resulting bound is £ = O(n).

B Additional proofs for positive result

B.1 Proof of lemmal[4.4]

Lemma Let S € Supp(D) be a sample, and let q be any query. Then for every measurable set
in the output space £ C Y: Pr[Mpy(q) € E] < eb Pr[Mol(q) € €] and Pr[Mo(q) € €] <
eb Pr(Mpu(q) € €]

Proof of lemma[4.4] 1f My (q) = Mo(q), the probabilities are equal. Otherwise, since My (¢q) =
Ms(q) and |q(S) — ¢(D)| < e, we have Mp(q) ~ Laplace(q(S),b) and Mo(q) ~
Laplace(g(D),b). The two distributions differ only in location by at most . Therefore, their
Py (a)(Y)
PrMmo @ ()
Assuming the mechanism outputs are discretized to a finite set )) C R by rounding to fixed precision,
each output value y € ) corresponds to an interval I;, C R. Integrating over these intervals preserves
the density ratio bound, yielding the stated probability bounds. O

density ratio is bounded: < exp(e/b) for all y € R, and similarly for the reverse ratio.

B.2 Proof of Theorem|4.5

Before presenting the full proof of theore we first introduce additional preliminaries, notation,
and a supporting lemma that are used throughout the argument.

B.2.1 Additional preliminaries

Definition B.1 (KL divergence or relative entropy |Kullback and Leibler, |1951]). For two dis-
tributions Y and Z on the same domain, the KL divergence (or relative entropy) of Y from Z
is

D(Y)12) = By [in(5524)]-
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We now recall several definitions and results from Dwork et al.|[2010b] that are instrumental in the
proof of advanced composition in differential privacy, and which we will use directly in our analysis.
Definition B.2 (Max divergence, e.g., [Dwork et al.;|2010a]). Let Y and Z be distributions on the
same domain. Their max divergence is

Dor12) = s, W(FEE).
Lemma B.3 (Lemma IIL.2 in |Dwork et al.|[2010b])). If Y and Z satisfy Do (Y| Z) < € and
Do (Z||Y) <e then DY ||Z) < ¢ (eE — 1).
Lemma B.4 (Azuma-Hoeffding inequality [Azuma}|1967]). Let C1, ..., Cy be real-valued random
variables with |C;| < a almost surely. Suppose also that E[C; | C1 = ¢1,...,Ci—1 = ¢i—1] < B for
every partial sequence (c1,...,c;—1) € Supp(Ch,...,Ci_1). Then, for any z > 0,

k
Pr{ZCi > kﬁ—l—zx/%a} < e /2,
i=1

B.2.2 Definitions and notations

We recall the definition of a transcript:

Definition[4.1|(Transcript). Let A be an analyst interacting with a mechanism over k rounds. The
random transcript T is the sequence of queries and responses generated in the interaction. A
particular realization is denoted by t = (g1, a1, . .., qk, ak)-

Extended notation. We extend the transcript notation introduced above by letting ); and A; denote
the random variables corresponding to the query issued and response returned at round 4, respectively.
The full transcript is then the random tuple T = (@1, A1, . .., Qk, Ag), and a specific realization
is written t = (¢1, a1, ..., qk, ar). The values of A, depend on the mechanism: in the real-world
mechanism, A; = Mg(q;); in the oracle mechanism, A; = Mo(g;); and in the hybrid mechanism,
Ai = My (q).

Definition B.5 (Transcript prefix). For each round i € [k], the prefix of the transcript up to round
i is the random variable T;—1 = (Q1, A1, ..., Qi—1,A;_1). For a particular realization t =
(q1,a1,...,qk, ax), we write the corresponding prefix as t;—1 = (q1,a1, ..., Gi—1,0i—1)-
Definition B.6 (Support of transcripts). Let D be the data distribution over X", and let T' be the
random transcript produced by an interaction (with any of the mechanisms) with an analyst A. We
define: Ty ={t:Pr[T =t >0}.

Remark B.7. The support T4 depends only on the analyst A, not on the mechanism. This is
true because all mechanisms respond by adding independent Laplace noise to either q;(S) or
qi(D), and, by assumption, the output space Y is finite. Therefore, for any fixed query q;, every
output a; € Y occurs with positive probability under all mechanisms. As a result, the transcript
t=(q,a1,...,qx, ax) has nonzero probability under each mechanism if and only if it is possible
under the analyst’s query selection behavior.

B.2.3 Supporting Lemma

Lemma B.8. Let S € Supp(D) be a fixed sample, and let q be any query. Then the Kullback—Leibler
divergence between the outputs of the hybrid and oracle mechanisms satisfies

D(Mu(@)[Mo(@) < - (/7 =1),  D(Mo(@) [ Mu(q) < 3 - (/" —1).

Proof. By Lemma for every measurable event E C ), we have
P E P E
I‘[MH(Q) € } < exp(a/b)7 r[MO(Q) € ]
Pr[Mo(q) € E] Pr[Mpu(q) € E]
Taking the supremum over all £ C Y gives
€
oMu(@)[[Mol@) < 5, Dec(Mol(q)[| Mu(a)) <
Applying Lemma[B.3] yields the stated inequalities:

DMu(@)]| Mo(@) < 5 - (" =1).  D(Mo(a) | Ma(a)) <

< exp(e/b).

S M

%-(es/l’— 1).
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B.2.4 Proof of theorem[4.5]

Theorem- Let S € Supp(D) be a sample, and let A be a fixed analyst. Consider two k-round
interactions with A: one with the hybrid mechanism M g, and one with the oracle mechanism M.

For any p > 0, define c* = | [2k ln(;) T+k3 (eg/b —1). Then

Pro, (T =t Pro, (T =t
pr [T =6 . <p ad Pr |mimMeT=0 )
te—Mp Praj, (T =1t) t+—Mo t

Proof of theorem Fix an analyst .A and a sample S. To show that

[ln Pry, (T'=t)

P
v | Prag, (T = t)

> <
t«— Mgy :| =P

We begin by decomposing the log—likelihood ratio over the k£ rounds:

In

PI'MH[T—t Zl PI'MH —t |T 1:t1 1]
PI‘MO[T—t Pr/\/lo '—t |Tz 1—t1 1]

Since the analyst is assumed to be deterministic, the query in the i-th round is fully determined by the
history up to that round. Therefore for any mechanism M and for any ¢ = (q1, a1, ..., Gk, ar) € Ta,
it holds that:

PA)JI"[Ti =t; | Tim1 =t;_1]) = Pr[Qs = ¢; | Ti—y = tiq] - Pr(M(q;) = a;) = 1-Pr(M(q:) = a;)

Next, we define the random variable, for any ¢ = (¢1,a1,...,qx, ax) € Ta:
Pray [T =t | Tic1 = ti—1] - Pr(Mu(q:) = a;)

Ci ti =In n .
( ) PI‘MO[ i —t | T 1= tz 1} PI‘(Mo(qi) == ai)
Then
Pr = k
In 4MH ZCI

Pr./\/lo

We want to apply Azuma—Hoeffding’s inequality to the sequence C', ... ., Cy, to show that for

any p >0
k

tNIj\flg[; Cilts) > 1/ 2k ln(%) % +k %(eg/b — 1)} <p

which implies that
p T=t
Pr |In M > | <
teMpg | Pra, (T =1t)

To apply Azuma—Hoeffding’s inequality (Lemma|B.4) to the sequence C1, ..., Cy, it suffices to
verify the following conditions for all ¢ € {1,..., k}:

2. Forany cq,...,¢;—1 € Supp(Ch,...,Ci—1):
E[Ci|Ci=ci1,...,Cim1 = ci—1] < % (e5/° — 1),

We now verify each item in turn. Fix any transcript t = (¢q1, a1, - .., qk, ax) € Ta.

Verification 0 From Lemma for every round 4, we have

PrMpy(q:) = ai]

—— <¢/b —Ci(t;) =1
Pr{Molg) = o) =/ TG
Thus for any ¢ € T4:

|Ci(t:)] <
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Verification of| We begin by bounding the conditional expectation of C; given any fixed transcript
prefix ¢;_1 € 7 4. Since the analyst is deterministic, fixing ¢;_; determines the query g;, and the
randomness in round ¢ lies only in the mechanism’s response.

E[Ci(Ti) | Tim1 = tia] = Z Ali"r [T; = t;|T;—1 = tia] - Ci(t))
ti€Ta "

S pe (1 s = ] P [B T =6

Al e = il =t Proi, [T = )| T = t]_]

ti€TA
— T i) = al - HW
= (;;P [(Mu(q:) = a] -1 Pr(Mo(¢;) = d]

= D(MH(%) H Mo(qz)) < % (ea/b _ 1)’

where the third equality uses the fact that t;_; = ¢,_1, since t; ~ Praq, [-|T;—1 = t;—1], and the
final inequality follows from Lemma|B.§

Note that C1, . .., C} are deterministic functions of the transcript, meaning that the transcript prefix
t;—1 fully determines the values cy,...,c;—;. Hence by showing the above bound holds for any
transcript prefix in the support 7 4, it implies the desired conditional expectation also holds for any
€1y, ¢i—1 € Supp(Chy,...,C;_1). Therefore:

ElC;|Ci=c1,...,Cic1=c¢i—1] < = - (ei/b —1).

<
b
Con(c)lusion. Since both items andhold, Azuma-Hoeffding’s inequality implies that for any
p > )
e ISS o 1\ E L St
MZH[H Ci(t:) > 2k:1n(p) LG 1)} <p,

as claimed.

A symmetric argument applies to the reversed log-likelihood ratio, by repeating the analysis with the
roles of M g and M swapped. Hence, for any ¢ € 74, we obtain

Pr [ln Pry, (T =t) Pra, (T =1t)

‘< d Pr |1
b M PrMO(T:t)>E}_p’ an " [nPrMH(T:t)

>e*| <
t+«— Mo :|_P

B.3  Proof of corollary[4.6]

Corollary |4.6, Let A be a fixed analyst, S € Supp(D) a sample, and let & be any event that

can arise in the interaction with the analyst. For any p > 0, define €* as in Theorem Then

e (Pratol€] = p) < Pragyl€] < € Pragol€] + p

Proof. Let B = {t € Ta:In iﬁﬁHigj; > ¢*} be the “bad” event where the likelihood-ratio
o (T=

bound fails. By Theorem(4.5] Pr a4, [B] is at most p. Hence

_ ] <« e* c] <« e* )
Pr [£] Eg[smBHEL[EmB],He 52[508} < p+e [€]

Pr
My Mo
Exchanging roles of My and M yields the lower bound Prpy, [€] > e~ (P, [E] — p). O

B.4 Proof of lemma

Lemma Fix an analyst A, a noise scale b, and let G be the set of e-good sample—transcript pairs.
Then, for every measurable subset € C G, Pra,[E] = Pra, [E]-
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Proof of lemma Run both mechanisms by first drawing the sample S ~ D and then drawing
k independent Laplace noises 71, . .., n; ~ Laplace(0,b). These draws fix all randomness in the
interaction. On any transcript ¢ in the event &, every query g; satisfies |¢;(S) — ¢;(D)| < e, so
by definition, the hybrid mechanism never switches to the oracle mode. Hence for every draw
(S,m,...,n) that yields ¢, both Mg and Mg produce the same ¢. Since the joint distribution
over (S,n1,...,n) is identical in both mechanisms, the probability of observing any ¢ € & is the
same. O

B.5 Proof of lemma[4.8]

Lemma Let S ~ D and consider a k-round interaction between an analyst A and the oracle
mechanism, producing the transcript t. Define the failure probability of any of the Laplace noises
exceeding ovas ( = 1 — Pr[|n}| < a]®, forn, ~ Laplace(0,b). Then,

S,t) is e-good and t is a- te]| > 1—ky—¢(.
S~D,t~rPrMo [(S,t) is e-good and t is a-accurate] > v—C

Proof of lemma Since the oracle mechanism operates independently of the sample, the queries
are chosen independently of the sample. By the definition of (&,~y)-concentration and applying a
union bound over all k£ queries, the probability that the sample-transcript pair is e-good is at least
1 — k- ~. Additionally the probability that for all k£ rounds the oracle’s response is within « of the true
mean is 1 — (, where ( represents the failure probability due to the added Laplace noises. Combining
these bounds with a union bound yields the desired result. O

B.6 Proof of theorem[4.9]

Theorem Let A be an analyst, and Mg the real-world Laplace mechanism interacting with A
over k rounds. For o > 0 and p > 0, define €* as in theorem[#.3] and let ¢ be as in lemma[4.8] Then,
the probability that the real-world mechanism produces an a-accurate transcript satisfies

/\}/)11; [t: (g1,01,..,qk,ar) : Vila; — q(D)| < a] > 676*(1 —k‘v—{—p).

Proof of theorem Let £ denote the event that a sample—transcript pair (S, ¢) is both e-good
and a-accurate. By Lemma we have Pra,[€] > 1 — kv — {. Applying Lemma the
probability of £ under the hybrid mechanism is Praq, [£] > e (Praq, [€] — p). By Lemma
we know the probabilities for e-good pairs are identical for the real-world and hybrid mechanisms,
s0 Prag[E] = Prag, [€]. Since € is a subevent of the event that the transcript is «-accurate, we

conclude that the probability of an a-accurate transcript is at least e~ (1—ky—C¢—p). OJ

B.7 Detailed derivation of the query bound

Theoremm Let A be any analyst issuing k adaptive (g,v)-concentrated queries, and fix an
accuracy parameter o > 0 and failure probability B > 0. Then the Laplace mechanism can achieve

(o, B)-accuracy over all k queries provided k = O(min{g, Be2, m })

Full derivation of the bounds in theorem[#.10] Theorem[4.9]implies that for any fixed v > 0 and
number of queries k, the real-world mechanism satisfies (v, 3)-accuracy provided

PrVi: |g(S)+m—a(D)|<a] > e - (1-ky—(—p) > 1-4.

As in the proof of Theorem , we set b = m The overall failure probability depends on four

terms: p, k~, ¢, and £*, each of which is bounded by /4. Under these conditions, the total success
probability is approximated by

e’s*-(l—k’y—C—p) ~ e P e =P 1B,

Concretely:
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(i) Concentration failure.

ky <

PR

— k< B O(é).
4 v
(ii) Noise-exceedance failure. Recall ( =1 — (1 — e~ ®/?)F < k e~/ Requiring

ke /b < B

<7 BN kggea/b20(6£_2)7

(iii) Likelihood-ratio failure. The term ¢* = /2k1In(1/p) % +k %(es/ b — 1) must satisfy e* <
/4. With p = (/4 and using the bound e*/* — 1 < 2¢/b for £ €(0,1), we obtain

v (5 < 4

4

Substitute b = m, so § = 2¢ % This yields

042 32
k= 0(52 n(1/e)]? ln(l/B))'

Conclusion. Taking the minimum over the three derived bounds on k£ completes the proof of
Theorem|4.10

O
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