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Abstract
Recent advances in molecular generative mod-
els have demonstrated great promise for accel-
erating scientific discovery, particularly in drug
design. However, these models often struggle
to generate high-quality molecules, especially in
conditional scenarios where specific molecular
properties must be satisfied. In this work, we
introduce GeoRCG, a general framework to im-
prove molecular generative models by integrating
geometric representation conditions with provable
theoretical guarantees. We decompose the gen-
eration process into two stages: first, generating
an informative geometric representation; second,
generating a molecule conditioned on the repre-
sentation. Compared with single-stage generation,
the easy-to-generate representation in the first
stage guides the second stage generation toward
a high-quality molecule in a goal-oriented way.
Leveraging EDM (Hoogeboom et al., 2022) and
SemlaFlow (Irwin et al., 2024) as base generators,
we observe significant quality improvements in
unconditional molecule generation on the widely
used QM9 and GEOM-DRUG datasets. More
notably, in the challenging conditional molecular
generation task, our framework achieves an aver-
age 50% performance improvement over state-of-
the-art approaches, highlighting the superiority of
conditioning on semantically rich geometric repre-
sentations. Furthermore, with such representation
guidance, the number of diffusion steps can be re-
duced to as small as 100 while largely preserving
the generation quality achieved with 1,000 steps,
thereby significantly reducing the generation iter-
ations needed.
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1. Introduction
Recent years have seen rapid development in generative
modeling techniques for molecule generation (Garcia Sator-
ras et al., 2021; Hoogeboom et al., 2022; Luo & Ji, 2022;
Wu et al., 2022; Xu et al., 2023; Le et al., 2023; Morehead &
Cheng, 2024), which have demonstrated great promise in ac-
celerating scientific discoveries such as drug design (Graves
et al., 2020). By representing molecules as point clouds
of chemical elements embedded in Euclidean space (poten-
tially with edges (Vignac et al., 2023; Irwin et al., 2024))
and employing equivariant models such as EGNN (Satorras
et al., 2021) as backbone architectures, these approaches
ensure the O(3)- (or SO(3)-) invariance of the modeled
molecule probability and have shown significant progress
in both unconditional and conditional molecule generation
tasks.

Despite the advances, precisely modeling the molecular
distribution q(M) still remains a challenge, with current
models often falling short of satisfactory results. This is
especially true in more practical scenarios where the goal
is to capture the conditional distribution q(M|c) for condi-
tional generation, with c representing a desired property
such as the HOMO-LUMO gap. In such cases, recent
models still produce molecules with property errors signifi-
cantly larger than the data lower bound (Hoogeboom et al.,
2022; Xu et al., 2023). This challenge arises in part because
molecules are naturally supported in a lower-dimensional
manifold (Mislow, 2012; De Bortoli, 2022; You et al., 2023),
yet they are embedded in a 3D space with much higher am-
bient dimensions (N × (3 + d), where N is the number of
atoms and d the atom feature dimension). Consequently,
directly learning these distributions without additional guid-
ance or conditioning solely on a single property can result
in substantial errors (Song et al., 2021), often leading to
unstable or undesirable molecular samples.

In this work, we propose GeoRCG (Geometric-
Representation-Conditioned Molecule Generation),
a general framework for improving the generation quality
of molecular generative models by leveraging geometric
representation conditions for both unconditional and
conditional generation; see Figure 1 for an overview
of the framework. At a high level, rather than directly
learning the extrinsic molecular distribution, we aim to
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Figure 1: Training and sampling procedure of GeoRCG for unconditional molecule generation. a) During training, each
molecule M is mapped into a representation r by a pre-trained, frozen geometric encoder E. The representation distribution
is then learned by a lightweight representation generator. The molecule generator is trained in a self-conditioned manner,
generating a molecule M conditioned on its own representation E(M). b) During sampling, an informative representation
is first generated, which subsequently guides the molecule generator to produce high-quality molecules.

first transform it into a more compact and semantically
meaningful representation distribution, with the help of a
well-pretrained geometric encoder E such as Unimol (Zhou
et al., 2023) and Frad (Feng et al., 2023). This distribution
is much simpler because it does not exhibit any group
symmetries, such as O(3)/SO(3) and S(N) groups which
are present in extrinsic molecular distributions. As a
result, a lightweight representation generator (Li et al.,
2023) can effectively capture this simple distribution. In
the second stage, we employ a conditional molecular
generator to achieve the ultimate objective: molecular
generation. Unlike conventional approaches, our molecular
generator is directly informed by the first-stage geometric
representation, which encapsulates crucial molecular
structure and property information. This guidance enables
the generation of high-quality molecular structures with
improved fidelity.

Our approach is directly inspired by RCG (Li et al., 2023),
which, however, focuses on image data with fixed sizes
and positions and does not necessitate handling Euclidean
and permutation symmetries—factors that are markedly
different in molecular data. Compared to recent work
GraphRCG (Wang et al., 2024) which applies the RCG
framework to 2D graph data, we explicitly handle 3D ge-
ometry that is more complex due to the additional Eu-
clidean symmetry. Moreover, we avoid the complicated step-
wise bootstrapped training and sampling process proposed
in Wang et al. (2024) that requires noise alignment, sequen-
tial training, and simultaneous encoder training. Instead, we
adopt a simple and intuitive framework that enables parallel
training and leverages advanced pre-trained geometric en-
coders containing valuable external knowledge (Zaidi et al.,
2022; Feng et al., 2023), thus achieving competitive results
without complex training procedures. Notably, while Li
et al. (2023) primarily focuses on empirical evaluation, we
also provide generic theoretical characterizations of the
representation-conditioned diffusion model class for both

unconditional and conditional generation, offering a rigor-
ous understanding of the improved performance.

To illustrate the effectiveness of our approach, we select
one of the simplest and most classical equivariant gen-
erative models, EDM (Hoogeboom et al., 2022), as the
base molecular generator of GeoRCG. For better perfor-
mance on the more challenging dataset GEOM-DRUG, we
also apply GeoRCG onto the recent state-of-the-art (SOTA)
model SemlaFlow (Irwin et al., 2024). Experimentally, our
method achieves the following significant improvements:

• Substantially enhancing the quality (e.g., molecule sta-
bility) of the generated molecules on the widely used
QM9 and GEOM-DRUG datasets. On QM9, GeoRCG
not only improves the performance of EDM by a large
margin, but also significantly surpasses several recent
baselines with advanced performance (Wu et al., 2022;
Xu et al., 2023; Morehead & Cheng, 2024; Song et al.,
2024a). On GEOM-DRUG, GeoRCG also significantly
improves EDM’s performance, and consistently en-
hances SemlaFlow’s already SOTA results.

• More remarkably, in conditional molecule generation
tasks, GeoRCG yields an average 50% improvement
in performance (i.e., difference of generated molecule’s
property with conditions), while many contemporary
models struggle to achieve even marginal gains.

• By incorporating classifier-free guidance into the
molecule generator (Li et al., 2023) and employing low-
temperature sampling for representation generation (In-
graham et al., 2023), GeoRCG demonstrates a flexible
trade-off between molecular quality and diversity on
QM9 dataset without additional training, which is es-
pecially advantageous in specific molecular generation
tasks that prioritize quality over diversity.

• With the assistance of the representation guidance,
GeoRCG significantly reduces the number of diffusion
steps required by approximately 10x, while preserving
the quality of molecular generation.
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2. Related Works
Molecular Generative Models. Early work has primarily
focused on modeling molecules as 2D graphs (composed
of atom types, connections, and edge types), utilizing 2D
graph generative models to learn the graph distribution (Vi-
gnac et al., 2022; Jang et al., 2023; Le et al., 2023; Jo
et al., 2023; Luo et al., 2023; Zhou et al., 2024). How-
ever, since molecules inherently exist in 3D space where
physical laws govern their behavior and spatial geometry
provides critical information related to key properties, re-
cent research has increasingly focused on leveraging 3D
generative models to directly learn the geometric distribu-
tion by modeling molecules as point clouds of chemical
elements. Notable early autoregressive models include G-
SchNet (Gebauer et al., 2019) and G-SphereNet (Luo & Ji,
2022). More recently, diffusion models have demonstrated
effectiveness in this domain, as evidenced by models like
EDM (Hoogeboom et al., 2022) and subsequent advance-
ments that enhance EDM with latent space (Xu et al., 2023),
prior information (Wu et al., 2022) and more powerful back-
bones (Morehead & Cheng, 2024). Furthermore, recent
advances in flow methods (Lipman et al., 2022; Liu et al.,
2022b) have inspired the development of geometric, equiv-
ariant flow methods including EquiFM (Song et al., 2024b)
and GOAT (Hong et al., 2024), which enable much faster
molecule generation speed. Beyond these, there are also
methods that jointly model 2D and 3D information (Vignac
et al., 2023; You et al., 2023; Huang et al., 2024; Irwin et al.,
2024) (also called 3D graph (You et al., 2023)), where rep-
resentative methods include MiDi (Vignac et al., 2023) and
SemlaFlow (Irwin et al., 2024) that jointly learn atom types,
bond types, formal charges and coordinates.

Pre-training for Molecular Encoders Learning mean-
ingful molecular representations is crucial for downstream
tasks like molecular property prediction (Fang et al., 2022).
The strategy of pre-training on large-scale datasets followed
by fine-tuning on smaller, task-specific datasets has been
proven to significantly improve model performance in vi-
sion and language domains (Kenton & Toutanova, 2019;
Brown, 2020; Dosovitskiy, 2020). Building on this suc-
cess, recent studies have explored pre-training methods for
molecular data, aiming to achieve similar performance im-
provements (Zhou et al., 2023; Feng et al., 2023; Liu et al.,
2022a; Fang et al., 2022; Jiao et al., 2024; Ni et al., 2024).
Common pretext tasks involve masking and recovering atom
types, bond lengths, or bond angles (Fang et al., 2022; Zhou
et al., 2023). However, since molecules exist in continuous
3D space, a more effective approach is introduced by adding
carefully crafted noise into the molecular coordinates and
training the model to denoise it. Examples of such noise
types include isotropic Gaussian noise (Zaidi et al., 2022;
Zhou et al., 2023), Riemann-Gaussian noise (Jiao et al.,

2023), and complex hybrid noise (Ni et al., 2024; Feng
et al., 2023; Jiao et al., 2024). Notably, Zaidi et al. (2022)
showed that denoising equilibrium structures effectively
corresponds to learning the underlying force field, thereby
producing molecular representations that are physically and
chemically informative.

Latent Generative Models. At a high level, our framework
can also be viewed as a latent generative model, where data
distributions are learned in a latent space (our stage 1) and
decoded back through some decoder (our stage 2). Most
prior work in this domain either focuses on regular data
forms (e.g., images) with fixed positions and sizes (Van
Den Oord et al., 2017; Razavi et al., 2019; Dai & Wipf,
2019; Aneja et al., 2021; Rombach et al., 2022; Li et al.,
2023), or on graph data without Euclidean symmetry and
requires explicit modeling (Wang et al., 2024). Molecular
data, however, presents unique challenges in both aspects.
One of the key issues in this context is how to define the
latent space—defining it as “latent coordinates and features”
as in GeoLDM (Xu et al., 2023) still results in a geometri-
cally structured and thus complex space, while defining it on
representations as we do introduces the challenge of effec-
tively “decoding” a global, non-symmetric embedding back
into geometric objects. LGD (Zhou et al., 2024) trains a
diffusion model on a unified Euclidean latent space obtained
by jointly training a powerful encoder and a simple decoder,
and performs both generation and prediction tasks focusing
on 2D graphs. LDM-3DG (You et al., 2023) adopts repre-
sentation latent space but employs a cascaded (2D+3D) auto-
encoder (AE) framework, where the decoder is designed (or
trained) to be deterministic, rendering poor performance on
the 3D part as evidenced in our experiments. In contrast, we
model the decoder as a powerful generative model, focusing
solely on geometric learning while demonstrating superior
effectiveness.

3. Methods
3.1. Preliminaries

In this work, we represent molecules as point clouds of chem-
ical elements in 3D space, denoted by M = (x,h), where
x = (x1, . . . ,xN )⊤ ∈ RN×3 represents the atomic coordi-
nates of N atoms, and h = (h1, . . . ,hN )⊤ ∈ RN×d cap-
tures the node features of dimension d, such as atomic num-
bers and charges. This formulation follows the approach
of Hoogeboom et al. (2022); Xu et al. (2023); Morehead &
Cheng (2024) and is widely adopted in molecular represen-
tation learning (Thomas et al., 2018; Li et al., 2024a; Zaidi
et al., 2022), facilitating the integration of pre-trained molec-
ular encoders (Zaidi et al., 2022; Feng et al., 2023). After
generating point clouds of chemical elements, these methods
infer bond types using lookup tables based on atom types
and pairwise distances, or relying on advanced packages
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like OpenBabel (O’Boyle et al., 2011). Notably, approaches
like MiDi (Vignac et al., 2023) and SemlaFlow (Irwin et al.,
2024) additionally represent molecules with explicit bond
types, enabling joint learning and generating of 2D and
3D information, which typically results in improved perfor-
mance. We use q to denote the underlying data distribution,
such as molecule distributions q(M), and p to denote the
approximated distributions captured by parametric models.

We denote the pre-trained geometric encoder as E :⋃+∞
N=1(RN×3 × RN×d) → Rdr , which embeds a molecule

M with an arbitrary number of nodes N into a represen-
tation vector r of fixed dimension dr. The geometric en-
coder exhibits E(3)- (or SE(3)-) invariance, suggesting that
E(M) = E(x,h) = E(xRT + t,h) for any t ∈ R3 and
R ∈ O(3) (or SO(3)), where O(3) is the set of orthogonal
matrices (and SO(3) being the set of special orthogonal
matrices).

3.2. GeoRCG: Geometric-Representation-Conditioned
Molecular Generation

Geometric Representation Generator. To improve the
quality of the generated molecules, we propose to first trans-
form the geometrically structured molecular distribution
q(M) into a non-geometric representation distribution q(r)
using a well-pretrained geometric encoder E that maps each
molecule M to its representation r. Learning the representa-
tion distribution q(r) is considerably easier, since represen-
tations do not exhibit any symmetry as in explicit molecular
generative models (Hoogeboom et al., 2022). We thus lever-
age a simple yet effective MLP-based diffusion architecture
as proposed in (Li et al., 2023) for the representation gen-
erator pφ(r), which follows DDIM schemes (Song et al.,
2020a) for training and adopts predictor-corrector frame-
works for sampling (Song et al., 2020b).

Figure 2: t-SNE visualizations of the representations pro-
duced by Frad (Feng et al., 2023) for the QM9 dataset (left)
and by Unimol (Zhou et al., 2023) for the GEOM-DRUG
dataset (right). The representations exhibit clear clustering
based on node count.

One additional design compared to previous practices (Li
et al., 2023; Wang et al., 2024) is that we condition the rep-
resentation generator on the molecule’s node number N by
default1. This is crucial to ensuring consistency between the

1We omit the condition N in our probability decompositions

size of the representation’s underlying molecule and the size
of the molecule it guides to generate. Moreover, molecules
with different sizes often have distinct modes in structures
and properties (Hoogeboom et al., 2022), which is reflected
in their geometric representations learned by modern pre-
trained geometric encoders (Zhou et al., 2023; Feng et al.,
2023), as shown in Figure 2. From the figures, it is evident
that by conditioning on N , the learning process for the rep-
resentation generator becomes simpler and more effective,
leading to the following loss function of our representation
generator:

Lrep = E(r,N)∈Drep
train,ϵ∼N (0,I),t∼U(0,T )

[
||r − fφ(rt; t,N)||2

]
,

(1)
where Drep

train = {(E(M), N(M))|M ∈ Dmol
train}, with

N(M) representing atom number of M and Dmol
train de-

noting the molecule dataset. Here, fφ is the MLP back-
bone (Li et al., 2023), and rt =

√
αtr +

√
1− αtϵ is the

noisy representation computed with the predefined schedule
αt ∈ (0, 1].

Molecule Generator. Since the ultimate goal of our frame-
work is to generate molecules from q(M), we decompose
the molecular distribution as q(M) =

∫
q(M|r)q(r) dr to

explicitly enable geometric-representation conditions. Con-
sequently, a geometric-representation-conditioned molec-
ular generator pθ(M|r) is required. In principle, we can
use many modern molecule generators (Hoogeboom et al.,
2022; Xu et al., 2023; Morehead & Cheng, 2024; Irwin et al.,
2024), as these models can all take additional conditions.

To illustrate the effectiveness of our approach, we choose a
relatively simple model EDM (Hoogeboom et al., 2022) as
the base generator and primarily demonstrate our method
with it. Furthermore, we showcase the generality of our ap-
proach by adapting it to a recent flow-matching based SOTA
model, SemlaFlow (Irwin et al., 2024), emphasizing its
ability to consistently improve SOTA models’ performance.

EDM is designed to ensure the O(3)-invariance, i.e., for
any R ∈ O(3), pθ(M) = pθ(x,h) = pθ(xR

T ,h). To
accommodate EDM to representation conditions, we use the
following training objective:

Lmol = E(M,r)∼Dmol-rep
train ,t∼U(0,T ),ϵ∼N̂ (0,I)

[
||ϵ− fθ(Mt; t, r)||2

]
,

(2)
where Dmol-rep

train = {(M, E(M))|M ∈ Dmol
train}, and sam-

pling from N̂ (0, I) entails drawing ϵ0 = [ϵ
(x)
0 , ϵ

(h)
0 ] from

N (0, I), adjusting ϵ
(x)
0 by subtracting its geometric cen-

ter to obtain ϵ(x), and setting ϵ = [ϵ(x), ϵ
(h)
0 ]. This en-

sures the zero center-of-mass property, as the distribution
is defined on this subspace to ensure translation invari-
ance (Hoogeboom et al., 2022). The noisy molecule is

and mathematical derivations for statement simplicity, as its inclu-
sion does not affect the overall framework and conclusions.
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given by Mt = α
(M)
t [x,h] + σ

(M)
t ϵ, with time-dependent

schedules α(M)
t and σ(M)

t , while the diffusion backbone fθ,
which is instantiated with EGNN (Satorras et al., 2021), is
conditioned on r.

Combining the Two Generators Together. The represen-
tation generator pφ(r) and the molecule generator pθ(M|r)
together model the molecular distribution pφ,θ(M) :=∫
pθ(M|r)pφ(r) dr, which approximates the data distri-

bution q(M) =
∫
q(M|r)q(r) dr that we aim to capture.

One notable advantage of the framework is that the decom-
position enables parallel training of the two generators.
The entire training and sampling procedure is summarized
in Algorithm 1.

Theoretical Analysis of GeoRCG. There are several key
properties of GeoRCG that facilitate high-quality molecule
generation. First, GeoRCG preserves symmetry properties
of the base molecule generator pθ(M):
Proposition 3.1. (Symmetry Preservation) Assume the
original molecular generator pθ(M) is O(3)- or SO(3)-
invariant. Then, the two-stage generator pφ,θ(M) is also
O(3)- or SO(3)-invariant.

Proof. This result follows directly from the defini-
tion. Specifically, pφ,θ(M) =

∫
pθ(M|r) pφ(r) dr =∫

pθ(xR
T ,h|r) pφ(r) dr = pφ,θ(xR

T ,h) for any R ∈
O(3) (or SO(3)). The second equality holds due to the
symmetric property of pθ(M), which remains valid when
additional non-symmetric conditions r are applied.

Moreover, representation-conditioned diffusion models can
achieve no higher overall total variation distance than tradi-
tional diffusion models, and can arguably yield better results,
as the representation encodes key data information that may
further reduce estimation error. We present the rigorous
bound in Theorem 3.2, and provide corresponding proof
and detailed discussions in Appendix D.1. Remarkably, this
is a generic theoretical characterization that applies to prior
experimental work (Li et al., 2023). For models that account
for equivariant symmetries such as EDM, we build upon
results from (Feng et al., 2024; You et al., 2023) to establish
finer-grained bounds, as detailed in Theorem D.14.
Theorem 3.2. Consider the random variable x ∈
RN(d+3) ∼ q(x), and assume that the second moment mx

of x is bounded as m2
x := Eq(x)[∥x − x̄∥2] < ∞, where

x̄ := Eq(x)[x]. Further, assume that the score ∇ ln q(xt) is
Lx-Lipschitz for all t, and that the score estimation error
in the second-stage diffusion is bounded by ϵφ,θ,cond such
that Er∼pφ(r), xt∼qt(xt|r)[∥sθ(xt, t, r)−∇ ln qt(xt|r)∥2] ≤
ϵ2φ,θ,cond. Denote the step size as h := T/Nd, where T
is the total diffusion time and Nd is the number of dis-
cretization steps, and assume that h ⪯ 1/Lx. Suppose
that we sample x ∼ pθ(x|r) from Gaussian noise, where
r ∼ pφ(r), and denote the final distribution of x as pθ,φ(x).

Define p
qT |φ
0 , which is the ending point of the reverse pro-

cess starting from qT |φ instead of Gaussian noise. Here,
qT |φ is the T -th step in the forward process starting from
q0|φ := 1

A

∫
r
q(x0|r)pφ(r) dr, where A is the normaliza-

tion factor. Denote the k-dim isotropic Gaussian distribu-
tion as γk. Then the following holds,

TV(pθ,φ(x), q(x)) ⪯
√
KL(q0|φ||γN(d+3)) exp(−T )︸ ︷︷ ︸

convergence of forward process

(3)

+(Lx

√
N(d+ 3)h+ Lxmxh)

√
T︸ ︷︷ ︸

discretization error

(4)

+ ϵφ,θ,cond

√
T︸ ︷︷ ︸

conditional score estimation error

(5)

+ TV(q0|φ, q0)︸ ︷︷ ︸
representation generation error

(6)

Balancing Quality and Diversity of Molecule Genera-
tion. In many scientific applications, researchers priori-
tize generating higher-quality molecules over more diverse
ones. To facilitate this, we introduce a feature that allows
fine-grained control over the trade-off between diversity
and quality in the sampling stage (thus without retraining).
This is achieved by integrating two key techniques: low-
temperature sampling (Ingraham et al., 2023) (controlled
via the temperature T ) for the representation generator, and
classifier-free guidance (Ho & Salimans, 2022; Zheng et al.,
2023) (controlled via the coefficientw) for the molecule gen-
erator. We provide more details about the two techniques
in Appendix A. The combination of the two techniques
enables flexible and explicit control, which we refer to as
“Balancing Controllability” and demonstrate its effective-
ness in Section 4.2.

Handling Conditional Molecule Generation. The frame-
work discussed thus far focuses on unconditional molecule
generation, where no specific property c (e.g., HOMO en-
ergy) is prespecified. However, for molecule generation,
a more practical and desired scenario is conditional (also
called controllable) generation, where additional condi-
tions c, such as the HOMO-LUMO gap energy, are intro-
duced, and our objective shifts to generating molecules
from the distribution q(M|c). In GeoRCG, this condi-
tional generation is naturally decomposed as pθ,φ(M|c) :=∫
pθ(M|r)pφ(r|c) dr , suggesting that we first generate a

“property-meaningful” molecular representation r, which
is then independently used to condition the second-stage
molecule generation; see Figure 3 for an illustration. A
key advantage of this modeling approach is that, when
different properties (e.g., HOMO, LUMO, GAP energy)
need to be captured, only the representation generator
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requires retraining under the new conditions. This retrain-
ing is highly efficient due to the lightweight nature of the
representation generator. Notably, GeoRCG demonstrates
outstanding conditional generation performance, as shown
in Section 4.3. Moreover, we theoretically demonstrate that,
under mild assumptions, the representation generator can
provably estimate the conditional distribution and generate
representations that lead to provable reward improvements
toward the target, which subsequently benefits the second-
stage generation. Further theoretical details are provided
in Appendix D.2.

Molecule 
Generator
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Figure 3: A single molecule generator can be employed
for both unconditional and conditional molecule genera-
tion with respect to various properties. For conditional
generation, only the representation generator is re-trained
on (molecule, property) pairs, allowing it to conditionally
sample property-meaningful representations during the sam-
pling stage.

4. Experiments
4.1. Experiment Setup

Datasets and Tasks. As a method for 3D molecule
generation, we evaluate GeoRCG on the widely used
datasets QM9 (Ramakrishnan et al., 2014) and GEOM-
DRUG (Gebauer et al., 2019; 2022; Axelrod & Gomez-
Bombarelli, 2022). We focus on two tasks: unconditional
molecule generation, where the goal is to sample from
q(M), and conditional (or controllable) molecule gener-
ation, where a property c is given, and we aim to sample
from q(M|c).

We use “GeoRCG (EDM)” to denote the variant of
GeoRCG that employs EDM as the base molecule generator,
“GeoRCG (Semla)” to refer to its application built upon Sem-
laFlow (Irwin et al., 2024), and “GeoRCG” when the context
is clear or for general purpose. To ensure fair comparisons,
we follow the dataset split and configurations exactly as
in Anderson et al. (2019); Hoogeboom et al. (2022); Xu
et al. (2023). Without further clarification, we bold the
highest scores and underline the second-highest one. Addi-
tionally, to highlight the direct improvement over the base
model, we display green numbers next to the score to indi-
cate the improvement, and red numbers to denote a decrease.
Without further clarification, results are calculated based on

10k randomly sampled molecules, averaged over three runs,
with standard errors reported in parentheses.

Instantiation of the Pre-trained Encoder. We employ
Frad (Feng et al., 2023), which was pre-trained on the
PCQM4Mv2 dataset (Nakata & Shimazaki, 2017) using
a hybrid noise denoising objective, as the geometric en-
coder for QM9 dataset. For GEOM-DRUG, we adopt Uni-
mol (Zhou et al., 2023) but perform our own pretraining
using the dataset from (Zhou et al., 2023), with GEOM-
DRUG included as an additional pretraining dataset. This is
because GEOM-DRUG contains unique chemical elements
not found in PCQM4Mv2 or other commonly used pretrain-
ing datasets such as ZINC or ChemBL (Li et al., 2021).
We note that, when using Frad (Feng et al., 2023) as the
encoder, GeoRCG also leads to significant improvements
on the GEOM-DRUG dataset, although with slightly lower
performance compared to Unimol; see Appendix C.

Baselines. A direct comparison is made with our base
molecule generators, EDM or SemlaFlow. For GeoRCG
(EDM), we compare it against generative models that, like
EDM, do not explicitly generate bonds but instead infer
them based on bond lengths. Although this approach may
be less effective in generating valid molecules, it is widely
adopted and presents a greater challenge for generative
models in learning 3D geometric distributions—precisely
where our geometric representation guidance offers the most
significant improvement. These models include: (1) the non-
equivariant counterparts of EDM and GeoLDM (Xu et al.,
2023), specifically GDM(-AUG)(Hoogeboom et al., 2022)
and GraphLDM(-AUG)(Xu et al., 2023); (2) the autoregres-
sive method G-SchNet (Gebauer et al., 2019); (3) advanced
equivariant diffusion models such as GeoLDM (Xu et al.,
2023), EDM-Bridge (Wu et al., 2022), and GCDM (More-
head & Cheng, 2024); (4) fast equivariant flow-based meth-
ods like E-NF (Garcia Satorras et al., 2021), EquiFM (Song
et al., 2024b), and GOAT (Hong et al., 2024); and (5) the
recently introduced Bayesian-based method GeoBFN (Song
et al., 2024a).

For GeoRCG (Semla), we compare it with recent advanced
2D&3D methods that directly generate bonds to produce
higher-quality samples similar to SemlaFlow, including
MiDi (Vignac et al., 2023) and EQGAT-diff (Le et al., 2023).

Note that we intentionally separate the comparison between
EDM-like 3D-only models and SemlaFlow-like 2D&3D
models, focusing on the improvements brought by GeoRCG
to the base model. This is because combining the com-
parisons would be unfair, as 2D&3D models additionally
learn bond information, which reduces the complexity of
generating valid molecules (Morehead & Cheng, 2024).

We provide further experiments, including ablation studies
on the pre-trained encoder, in Appendix C.
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Table 1: Unconditional molecule generation on QM9 and GEOM-DRUG. The gray cells denotes the base molecule generator
employed in GeoRCG.

QM9 DRUG

Methods
Metrics

Atom Sta (%) ↑ Mol Sta (%) ↑ Valid (%) ↑ Valid & Unique (%) ↑ Atom Sta (%) ↑ Valid (%) ↑

Data 99 95.2 97.7 97.7 86.5 99.9
G-Schnet 95.7 68.1 85.5 80.3 - -
GDM 97 63.2 - - 75 90.8
GDM-AUG 97.6 71.6 90.4 89.5 77.7 91.8
GraphLDM 97.2 70.5 83.6 82.7 76.2 97.2
GraphLDM-AUG 97.9 78.7 90.5 89.5 79.6 98
EDM 98.7 82 91.9 90.7 81.3 92.6
EDM-Bridge 98.8 84.6 92 90.7 82.4 92.8
GeoLDM 98.9(0.1) 89.4(0.5) 93.8(0.4) 92.7(0.5) 84.4 99.3
GCDM 98.7(0.0) 85.7(0.4) 94.8(0.2) 93.3(0.0) 89 95.5
ENF 85 4.9 40.2 39.4 - -
EquiFM 98.9(0.1) 88.3(0.3) 94.7(0.4) 93.5(0.3) 84.1 98.9
GOAT 98.4 84.1 90.9 89.99 81.8 96.0
GeoBFN 99.08(0.03) 90.87(0.1) 95.31(0.1) 92.96(0.1) 85.6 92.08
GeoRCG (EDM) 99.12(0.03) 0.43% 92.32(0.06) 12.59% 96.52(0.2) 5.03% 92.45(0.2) 1.93% 84.3(0.12) 3.69% 98.5(0.12) 6.37%

4.2. Unconditional Molecule Generation

We first evaluate the quality of unconditionally generated
molecules from GeoRCG, with the commonly adopted va-
lidity and stability metrics for assessing molecules’ qual-
ity (Hoogeboom et al., 2022). See Appendix B for detailed
descriptions of these metrics.

We present the main results of GeoRCG on the QM9 and
GEOM-DRUG datasets in Table 1 and Table 2. Below, we
highlight the key findings: (i) Improvement over the base
model: By leveraging geometric representations, GeoRCG
significantly outperforms the base model, on both QM9
and GEOM-DRUG datasets. Notably, on QM9, GeoRCG
(EDM) increases stable molecules from 82% to 93.9%
and validity from 91.9% to 97.4%, while also improving
molecule uniqueness. (ii) Superior performance com-
pared to advanced methods: GeoRCG (EDM) also sur-
passes included advanced models on the QM9 dataset.
On the GEOM-DRUG dataset, GeoRCG (EDM) outper-
forms models such as EDM-Bridge and GOAT, and gets
a high score in validity. Although GeoRCG (EDM) falls
short of achieving the best performance, we attribute this
to the relatively limited capabilities of EDM. To address
this, we replace EDM with the recent SOTA flow-matching
based model, SemlaFlow (Irwin et al., 2024), as the base
model on the GEOM-DRUG dataset, as shown in Table 2.
As demonstrated, GeoRCG (Semla) consistently enhances
SemlaFlow’s SOTA performance across all metrics on the
GEOM-DRUG dataset.

We proceed to investigate the “Balancing Controllablility”
feature of GeoRCG introduced in Section 3.2. To this end,
we conducted a grid search by varying both w and T on
QM9 dataset for GeoRCG (EDM), as depicted in Figure 4

Table 2: Unconditional molecule generation on GEOM-
DRUG for 2D&3D methods. Molecule stability and validity
are reported as percentages, while energy and strain energy
are expressed in kcal·mol−1. Results marked with ∗ were
reproduced in our own experiments.

Methods Atom Stab ↑ Mol Stab ↑ Valid ↑ Energy ↓ Strain ↓
MiDi 99.8 91.6 77.8 - -
EQGAT-diff 99.8(0.01) 93.4(0.21) 94.6(0.24) 148.8(0.9) 140.2(0.7)
SemlaFlow∗ 99.8(0.00) 97.4(0.07) 94.4(0.17) 95.72(1.24) 56.42(1.07)
GeoRCG (Semla) 99.8(0.00) 97.6(0.00) 95.3(0.13) 88.6(1.03) 47.64(1.10)

(see Appendix C for the extended figure that includes va-
lidity). The results indicate a clear trend: increasing w and
decreasing T improve validity and stability at the expense of
uniqueness, allowing for fine-grained, flexible control over
molecule generation. At its best, this approach achieves a
molecule stability of 93.9% and a validity of 97.42%, ap-
proaching the dataset’s upper bound, with a trade-off in
lower validity&uniqueness of 86.82%.

Figure 4: Balance controllable generation on QM9 of
GeoRCG (EDM). Increasing w and decreasing T enhances
stability, with the cost of a reduction in uniqueness.
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In Appendix C, we present additional experiments on QM9,
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Table 3: Conditional molecule generation on QM9. The metric used is the MSE between the target property value and
the classifier-predicted value. The gray cells denote the baseline molecule generator employed in our proposed approach.
Models marked with ∗ indicate results obtained from our own experiments; these are provided only as a coarse reference
due to potentially differing evaluation criteria, see Appendix B for details.

Methods
Properties

α ∆ε εHOMO εLUMO µ Cv

QM9 (lower bound) 0.1 64 39 36 0.043 0.04
Random 9.01 1470 646 1457 1.616 6.857
N atoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GeoLDM 2.37 587 340 522 1.108 1.025
GCDM 1.97 602 344 479 0.844 0.689
EquiFM 2.41 591 337 530 1.106 1.033
GOAT 2.74 605 350 534 1.01 0.883
LDM-3DG∗ 12.29 1160 583 1093 1.42 5.74
GeoBFN 2.34 577 328 516 0.998 0.949
GeoRCG (EDM) 0.86(0.01) 68.84% 325.2(3.4) 50.35% 202.2(1.2) 43.20% 257.9(5.5) 55.84% 0.805(0.006) 27.54% 0.475(0.005) 56.86%

demonstrating that GeoRCG enhances distribution-level
geometric metrics, such as BondAngleW1, which under-
score GeoRCG’s improved geometric learning capabilities.

4.3. Conditional Molecule Generation

We now turn to a more challenging task: generating
molecules with a specific property value c from q(M|c). We
strictly follow the evaluation protocol outlined in (Hooge-
boom et al., 2022). Speicifically, QM9 is split into two
halves, and an EGNN classifier (Satorras et al., 2021)
is trained on the first half for evaluating the generated
molecules’ property, while the generator is trained on the
second half. We focus on six properties: polarizability (α),
orbital energies (εHOMO, εLUMO), their gap (∆ε), dipole mo-
ment (µ), and heat capacity (Cv).

The results are presented in Table 3. The first three base-
lines, as introduced by EDM (Hoogeboom et al., 2022),
represent the classifier’s inherent bias as the lower bound
for performance, the random evaluation result as the upper
bound, and the dependency of properties on N . For more
details, please refer to Appendix B.

As shown, GeoRCG (EDM) nearly doubles the performance
of the best existing models for most properties, with an av-
erage 50% improvement over the best ones. This is a task
where many recent models struggle to make even modest
improvements, as evidenced in the table. Notably, for differ-
ent properties, we only re-train the representation generator,
as demonstrated in Section 3.2, significantly saving training
time. In Figure 5, we visualize the generated samples, which
exhibit minimal property errors and display a clear trend as
the target values increase. Additional randomly generated
molecules are provided in Appendix E.2.

A potential concern is that for a given property value c,
pφ(r|c) may produce a representation corresponding to a

molecule from the training dataset, allowing the molecule
generator to simply recover its full conformation based on
that representation. This could lead to small property er-
rors but a lack of novelty. To address this, we conducted a
thorough evaluation of the generated molecules across each
property, finding that the novelty (the proportion of new
molecules not present in the training dataset) remains com-
parable to other methods. Additionally, the conditionally
generated molecules demonstrate much higher molecule sta-
bility than EDM (Hoogeboom et al., 2022). Further details
can be found in Appendix C.

Table 4: Unconditional molecule generation on QM9 with
fewer diffusion steps. The blue cells indicate the highest
value among methods with the same number of diffusion
steps, while bold font emphasizes values that outperform
all other methods across all diffusion steps.

Methods
Metrics

# Steps Atom Sta (%) ↑ Mol Sta (%) ↑ Valid (%) ↑

Data - 99 95.2 97.7
EquiFM 200 98.9(0.1) 88.3(0.3) 94.7(0.4)
GOAT 90 98.4 84.1 90.9
EDM 50 97.0(0.1) 66.4(0.2) -
EDM-Bridge 50 97.3(0.1) 69.2(0.2) -
GeoBFN 50 98.28(0.1) 85.11(0.5) 92.27(0.4)
GeoRCG (EDM) 50 98.75(0.05) 1.80% 89.08(0.52) 34.16% 95.05(0.33)
EDM 100 97.3(0.1) 69.8(0.2) -
EDM-Bridge 100 97.9(0.1) 72.3(0.2) -
GeoBFN 100 98.64(0.1) 87.21(0.3) 93.03(0.3)
GeoRCG (EDM) 100 99.08(0.03) 1.83% 91.85(0.34) 31.59% 96.49(0.27)
EDM 500 98.5(0.1) 81.2(0.1) -
EDM-Bridge 500 98.7(0.1) 83.7(0.1) -
GeoBFN 500 98.78(0.8) 88.42(0.2) 93.35(0.2)
GeoRCG (EDM) 500 99.09(0.01) 0.60% 91.89(0.24) 13.17% 96.57(0.12)
EDM 1000 98.7 82 91.9
EDM-Bridge 1000 98.8 84.6 92
GeoBFN 1000 99.08(0.06) 90.87(0.2) 95.31(0.1)
GeoRCG (EDM) 1000 99.12(0.03) 0.43% 92.32(0.06) 12.59% 96.52(0.2) 5.03%

4.4. Fewer-Step Generation

With geometric representation condition, it is reasonable to
expect that fewer discretization steps of the reverse diffu-
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64.20
64.45

69.99
70.10

75.77
75.60

81.56
81.00

87.34
87.41

93.13
93.24

98.91
97.44

104.70
104.73

Figure 5: Conditionally generated molecules on property α using GeoRCG (EDM). The black number indicates the condition
value, the green number represents the oracle property value for the generated molecule conformer.

Table 5: Unconditional molecule generation on GEOM-
DRUG with fewer diffusion steps.

# Steps Atom Sta (%) ↑ Valid (%) ↑
GeoBFN GeoRCG (EDM) GeoBFN GeoRCG (EDM)

50 75.11 81.44(0.10) 91.66 95.70(0.70)
100 78.89 83.02(0.06) 93.05 96.30(0.70)
500 81.39 84.03(0.37) 93.47 97.57(0.90)
1000 85.6 84.3(0.12) 92.08 98.5(0.12)

sion SDE (Song et al., 2021) would still yield competitive
results. Therefore, we reduce the number of diffusion steps
and evaluate the model’s performance. The results are pre-
sented in Table 4 and Table 5. We provide the fewer-step
performance of GeoRCG (Semla) on GEOM-DRUG dataset
in Appendix C.

As demonstrated, with the geometric representation condi-
tion, GeoRCG consistently outperforms other approaches
across almost all step numbers. Notably, in Table 4, with
approximately 100 steps, the performance of our method
nearly converges to the optimal performance observed with
1000 steps, which already surpasses all other methods
across all step numbers. This demonstrates the strong poten-
tial of GeoRCG to reduce the number of iterations required
by sequential generative methods.

5. Conclusions and Limitations
Conclusions. In this work, we present GeoRCG, a simple
yet effective framework to improve the generation quality
of arbitrary molecule generators by incorporating geometric
representation conditions. We use EDM (Hoogeboom et al.,
2022) and SemlaFlow (Irwin et al., 2024) as base generators
and demonstrate the effectiveness of our framework through
extensive molecular generation experiments. In conditional
generation tasks, GeoRCG achieves a remarkable 50% per-
formance boost compared to recent SOTA models. Addition-
ally, the representation guidance enables sampling with 10x
fewer diffusion steps while maintaining near-optimal perfor-
mance. Beyond these empirical improvements, we provide
theoretical characterizations of representation-conditioned
generative models, which address a key gap in the existing
empirical literature (Li et al., 2023).

Table 6: Sampling time (in seconds) for 5k samples using
SemlaFlow and GeoRCG (Semla) across different numbers
of sampling steps, measured on a single NVIDIA RTX 4090.

# Steps Method Rep. Time ↓ Mol. Time ↓ Mol. Time w/o CFG ↓

100 SemlaFlow - 610 610
GeoRCG (Semla) 97 1481 770

50 SemlaFlow - 310 310
GeoRCG (Semla) 97 690 380

20 SemlaFlow - 152 152
GeoRCG (Semla) 97 315 189

Limitations. We discuss two limitations of GeoRCG. First,
as a representation-guided generative method, its generation
quality may depend heavily on the quality of representa-
tions. For instance, in the GEOM-DRUG dataset, an insuf-
ficiently pre-trained encoder may produce less meaningful
representations. As a result, the benefits of low-temperature
sampling and classifier-free guidance in enhancing gener-
ation quality and controllability may be less pronounced.
Future work could investigate more effective pre-training
strategies beyond standard denoising or enhanced repre-
sentation regularization techniques to mitigate this issue.
Second, although the additional conditioning module intro-
duces small overhead, the use of classifier-free guidance re-
quires doubling the batch size, resulting in roughly twice the
resource consumption (memory and computation), see Ta-
ble 6. Nonetheless, for many cases such as GeoRCG (EDM)
in QM9, performance gains are substantial even without
employing classifier-free guidance. With ongoing advance-
ments in hardwares and infrastructures, we expect the over-
head introduced by parallelism to be further minimized.
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A. Algorithms
High-level Algorithm for Parallel Training and Sequential Sampling We provide the high-level training and sampling
algorithm for GeoRCG in Algorithm 1.

Algorithm 1 Parallel Training and Sequential Sampling for GeoRCG

Input: Molecule dataset Dmol
train ⊂

⋃+∞
N=1

(
RN×3 × RN×d

)
, pre-trained geometric encoder E, initial representation

generator pφ0
(r), molecule generator pθ0(M|r).

Output: Trained representation generator pφ(r), molecule generator pθ(M|r), and molecule samples from pφ,θ(M).
Parallel Training:
Pre-process to obtain:

- The representation dataset Drep
train = {(E(M), N(M))|M ∈ Dmol

train}
- The mol-rep dataset Dmol-rep

train = {(E(M),M)|M ∈ Dmol
train}

Train the representation generator pφ0
(r) with Drep

train using loss Lrep in Equation (1).
Train the molecule generator pθ0(M|r) with Dmol-rep

train using loss Lmol in Equation (2), while applying the training
techniques outlined below, including representation perturbation and representation loss.
Sequential Sampling:
Sample a representation r∗ ∼ pφ(r) with low-temperature sampling technique outlined below.
Sample a molecule M∗ ∼ pθ(M|r∗) conditionally, with classifier-free guidance technique outlined below.
Return: Trained representation generator pφ(r), molecule generator pθ(M|r), and generated molecule sample.

Training: Representation Perturbation Unlike typical conditional training scenarios, GeoRCG faces a unique challenge:
the representations that condition the molecule generator during training may not always coincide with those generated
by the representation generator during the sampling stage. This issue is particularly pronounced in molecular generation
than image case (Li et al., 2023), where pre-trained encoders are typically not trained on that large datasets with advanced
regularization techniques like MoCo v3 (Chen et al., 2021). Consequently, the molecule generator is susceptible to overfitting
to the training representations, as evidenced by our preliminary experiments on QM9 molecule generation shown in Table 7.

Table 7: Quality of molecules generated by GeoRCG trained on the QM9 dataset without using the representation perturbation
technique, comparing different representation sources. “Training Dataset” refers to representations sampled from Drep

train,
while “Rep. Sampler” refers to representations generated by the trained representation generator pφ(r).

Rep source
Metrics

Mol Sta (%) (↑) Valid (%) (↑)

Training Dataset 93.20 (0.50) 97.07 (0.32)
Rep. Sampler 86.93 (0.50) 89.12 (0.21)

We find that a simple technique—perturbing the geometric representation during training the molecule generator with
some Gaussian noise σrepϵ, where ϵ ∼ N (0, I) and σrep is a relatively small variance—is particularly effective for solving
this problem. Formally, after sampling a data point (E(M),M) from Dmol-rep

train , we use (M, E(M) + σrepϵ) for training.
Ablation study in Appendix C show this simple method can effectively prevent overfitting and ensure that performance on
novel representations matches those from the training dataset.

In practice, we set σrep to 0.3 for QM9 dataset and σrep to [0.3, 0.5] for GEOM-DRUG dataset.

Training: Representation Loss Training molecular generative models typically involves predicting a clean molecule
from a noisy molecule input (in noise parameterization or vector field parameterization, an equivalent formulation exists for
constructing clean molecule predictions). The loss is computed by minimizing the distance (e.g., MSE for coordinates)
between the predicted clean molecule and the true clean molecule. To further strengthen supervision of the representation,
we introduce an additional representation loss during training. This loss is defined as the MSE between the predicted clean
molecule’s representation and the actual clean molecule’s representation.

In practice, for GeoRCG (EDM), we do not apply this technique, whereas for GeoRCG (Semla), we incorporate it with a
relatively small coefficient.
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Sampling: Low-Temperature Sampling We adopt the low-temperature sampling algorithm introduced by Chroma (In-
graham et al., 2023) to the representation generator. However, we apply it to an MLP-based diffusion model rather than the
equivariant diffusion model that processes geometric objects as Chroma.

The objective of low-temperature sampling is to perturb the learned representation distribution pφ(r) by rescaling it with an
inverse temperature factor, 1

T , where T is a tunable temperature parameter during sampling, and finally enables sampling

from ZT p
1
T
φ , where ZT is a normalization constant. The method proposed in Chroma (Ingraham et al., 2023) scales the

score ϵt estimated at each diffusion time step using a time-dependent factor λt. The approach is derived from and has
theoretical guarantees for simplified toy distributions, and its performance on complex distributions, though lacking strict
guarantees, has shown consistent results when combined with annealed Langevin sampling (Song et al., 2021). Here we
briefly introduce it for self-containess, and recommend the readers to Ingraham et al. (2023) for detailed derivation and
illustration.

Consider the vanilla reverse SDE used in DDPM sampling (VP formulation) (Song et al., 2021):

dr = −1

2
βtr − βt∇r log qt(r)dt+

√
βtdw̄, (7)

where w̄ is a reverse-time Wiener process, qt(r) denotes the ground-truth representation distribution at time t, and βt
represents the time-dependent diffusion schedule. To incorporate low-temperature sampling, we utilize the following Hybrid
Langevin Reverse-time SDE:

dr = −1

2
βtr −

(
λt +

λ0ψ

2

)
βt∇r log qt(r)dt+

√
βt(1 + ψ)dw̄, (8)

where λt is a time-dependent temperature parameter defined as λ0

α2
t+(1−α2

t )λ0
, with λ0 = 1

T . αt satisfies 1
2βt =

d logαt

dt . The
parameter ψ controls the rate of Langevin equilibration per unit time, and as shown in Ingraham et al. (2023), it helps align
more effectively with the reweighting objective in complex distributions. In our implementation, we employ the explicit
annealed Langevin process (the corrector step from (Song et al., 2021)) to achieve similar results.

In practice, for the unconditional QM9 and GEOM-DRUG generation results of GeoRCG (EDM) shown in Table 1, we set
T = 1.0 for QM9 and T = 0.5 for GEOM-DRUG. For conditional generation in Table 3, we set T = 1.0. The effect of
varying T on QM9 is detailed in Table 10. For GeoRCG (SemlaFlow) results in Table 2, we use T = 1.0.

Sampling: Classifier-Free Guidance We employ the classifier-free guidance algorithm, as introduced in (Ho & Salimans,
2022), for our molecule generator. Specifically, we introduce a trainable “fake” representation, denoted as l, which serves as
the unconditional signal. During the training phase, l is initialized as learnable parameters, and with a probability of pfake,
the true representation r is replaced by l. This ensures that the model is capable of generating molecules unconditionally,
i.e., pθ(M|l) approximates q(M). During sampling, the final score estimate produced by the molecule generator is adjusted
using the formula (1 + w)fθ(Mt, t, r)− wfθ(Mt, t, l), allowing flexible control over the strength of the representation
guidance.

In practice, for unconditional generation in Table 1, we set w = 1.0 for QM9 and w = 0.0 for GEOM-DRUG. The impact of
varying w on QM9 is shown in Table 10. For conditional generation in Table 3, we set w = 2.0. For GeoRCG (SemlaFlow),
we use w = −0.9 (note that −1.0 < w < 0.0 indicates subtle representation guidance that exerts a small but still meaningful
influence on the model’s behavior). Further tuning of these hyperparameters may yield improved performance.

B. Experiment Details
Metrics and Baseline Descriptions We adopt the evaluation metrics, guidelines and baselines commonly used in prior
3D molecular generative models to ensure a fair comparison (Hoogeboom et al., 2022).

• In the unconditional setting, we assess the generated molecules using several key metrics:

– Atom Stability: The proportion of atoms with correct valency.
– Molecule Stability: The proportion of molecules where all atoms within the molecule are stable.
– Validity: The proportion of molecules that can be converted into valid SMILES using RDKit.
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– Validity & Uniqueness: The proportion of unique molecules among the valid molecules.
– Energy: The energy U(x) of a conformation x. Lower energy values typically correspond to more stable

and physically plausible conformations that are closer to what would be observed in nature. Following (Irwin
et al., 2024), the energy is calculated using the MMFF94 force field within RDKit, a commonly used molecular
modeling framework.

– Strain: A measure of how distorted a generated conformation x is compared to its relaxed (optimized) state x̃.
The relaxed conformation x̃ is obtained by applying energy minimization using the MMFF94 force field, where
the molecular structure is iteratively adjusted to reduce its energy until reaching a local minimum. Mathematically,
the strain energy is defined as U(x)− U(x̃) , where U(x) is the energy of the generated conformation and U(x̃)
is the energy of the relaxed conformation. Lower strain energy values imply that the generated conformations are
closer to being physically accurate and require minimal correction during optimization.

Following the approach of Hoogeboom et al. (2022); Vignac & Frossard (2021), we do not report Novelty scores in
the main text, since QM9 represents an exhaustive enumeration of molecules satisfying a predefined set of constraints,
therefore, “novel” molecule would often violate at least one of these constraints, which indicates that a model fails to
fully capture the properties of the dataset. For reference, we observe that the novelty of GeoRCG (EDM) on QM9 is
approximately 42% when w = 0.0, T = 1.0, compared to about 65% for EDM.

When comparing with 2D & 3D models in Table 8, we evaluate two 3D metrics introduced by MiDi (Vignac et al.,
2023), which directly assess the geometry learning ability:

– BondLengthW1: The weighted 1-Wasserstein distance between the bond-length distributions of the generated
molecules and the training dataset, with weights corresponding to different bond types. Formally, it is defined as:

BondLengthsW1 =
∑

y∈bond types

qY (y)W1(D̂dist(y), Ddist(y)), (9)

where qY (y) is the proportion of bonds of type y in the training set, D̂dist(y) is the generated distribution of bond
lengths for bond type y, and Ddist(y) is the corresponding distribution from the test set.

– BondAngleW1: The weighted 1-Wasserstein distance between the atom-centered angle distributions of the
generated molecules and the training dataset, with weights based on atom types. Formally, it is defined as

BondAnglesW1 =
∑

x∈atom types

qX(x)W1(D̂angles(x), Dangles(x)), (10)

where qX(x) denotes the proportion of atoms of type x in the training set, restricted to atoms with two or more
neighbors, and Dangles(x) represents the distribution of geometric angles of the form ∠(rk − ri, rj − ri), where i
is an atom of type x, and k and j are neighbors of i.

• In the conditional generation setting, as described in (Hoogeboom et al., 2022), we evaluate our approach on the QM9
dataset across six properties: polarizability α, orbital energies εHOMO, εLUMO, and their gap ∆ε, dipole moment µ,
and heat capacity Cv. The generative model is trained conditionally on the second half of the QM9 dataset, and an
EGNN (Satorras et al., 2021) classifier, trained on the first half, is employed to evaluate the MAE property error of the
generated samples.

Three baselines are adopted in Table 3:

– QM9 (lower bound): The mean error of a classifier trained on the first half of the QM9 dataset and evaluated on
the second half. This baseline represents the inherent bias/error of the classifier, setting a lower bound for model
performance and reflecting the best possible performance a model can achieve.

– Random: The classifier’s performance when evaluated on the second half of QM9 with randomly shuffled
molecule property labels. This baseline provides an upper bound, representing the worst achievable performance.

– N atoms: The performance of a classifier trained exclusively on the number of atoms N and evaluated using
only N as input. This baseline captures the intrinsic relationship between molecular properties and the number of
atoms, which a generative model must surpass to demonstrate effectiveness.
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Model Architectures, Hyperparameters and Training Details

• Representation Generator. We use the same architecture for the representation generator as the MLP-based diffusion
model proposed in Li et al. (2023). We use 18 blocks of residual MLP layers with 1536 hidden dimensions, 1000
diffusion steps, and a linear noise schedule for βt. The representation generator is trained for 2000 epochs with a batch
size of 128 for both the QM9 and GEOM-DRUG datasets. Training on QM9 takes approximately 2.5 days on a single
Nvidia 4090, while training on GEOM-DRUG takes around 4 days on a single Nvidia A800. Training time can indeed
be further reduced, as the model shows minimal progress after approximately half of the reported time.

• Molecule Generator. We adopt EDM (Hoogeboom et al., 2022) as the base molecule generator, using the same
EGNN (Satorras et al., 2021) architecture, with the exception of the conditioning module. Specifically, we introduce a
simple gated feedforward layer to incorporate the representation condition, inserting it between each EGNN block to
enhance regularization and improve model expressiveness.

For the EGNN hyperparameters, we use 9 layers with 256 hidden dimensions for QM9 and 4 layers with 256 hidden
dimensions for GEOM-DRUG. The number of diffusion steps is set to 1000 (except for cases in Table 4 that generate
molecules with fewer steps), and we employ the polynomial scheduler for α(M)

t . Notably, all model hyperparameters
are identical to those in EDM for fair comparison.

During training, we use a batch size of 128 and 3000 epochs on QM9, and a batch size of 64 and 20 epochs on
GEOM-DRUG. Training takes approximately 6 days on QM9 using a single Nvidia 4090, and around 10 days on
GEOM-DRUG using two Nvidia A800 GPUs.

For GeoRCG (SemlaFlow), we similarly adopt the gated feedforward layer for conditioning on representations and
place it between every block of Semla. During training, we use the batch cost 2048 and trains for 300 epochs.

Evaluation of LDM-3DG (You et al., 2023) We evaluate the performance of LDM-3DG (You et al., 2023) in Table 8
and Table 3, an Auto-Encoder-based method that also leverages the compactness of the representation space to achieve good
performance.

• For the unconditional results in Table 8, we utilize the 3D conformations unconditionally generated by LDM-3DG (You
et al., 2023) and compute the bond information using the look-up table method from EDM (Hoogeboom et al., 2022).
Notably, although LDM-3DG predicts both the 2D molecular graph and the 3D conformation, we do not use the bond
information it predicts for the following reasons:

1. For the calculation of 3D geometry statistics, we observe significant inconsistencies between the generated 2D
graphs and 3D geometries (e.g., valid molecules with bond lengths exceeding 100m), leading to unreliable
statistics (e.g., BondLengthW1 exploding to 3900).

2. For stability and validity metrics, which are fundamentally 2D and computed based on molecular graphs (atoms
and bond types), using the generated 2D graph would ignore the contribution of the 3D module, preventing an
evaluation of its 3D learning performance.

3. Most critically, their 2D module is explicitly designed to filter out invalid (sub-)molecules during generation using
the RDKit method. This means that if invalid molecules or sub-molecules are generated, they are regenerated.
This explicit filtering deviates from our standard evaluation criteria and is unsuitable for a fair comparison.

• For the conditional results in Table 3, we first note a potential issue with LDM-3DG (You et al., 2023): The model
cannot explicitly specify the node number N during molecule generation, as it uses an auto-regressive 2D generator
that automatically stops adding atoms/motifs when deemed sufficient. However, the evaluation in Table 3 requires
specifying both N and property c, following the ground-truth distribution q(N, c) from the training dataset. To ensure
fair evaluation, conditions feeding to LDM-3DG must also satisfy this distribution. As the authors claim the model can
implicitly learn q(N) and thus q(N |c), we first sample 10,000 values from q(c) and feed them to LDM-3DG, expecting
it to infer N from c implicitly as argued, and thus matching the q(N, c) conditions.

C. Additional Experiment Results
Comparison of GeoRCG (EDM) with 2D&3D Methods We compare GeoRCG (EDM) with recent 2D&3D methods
such as MiDi (Vignac et al., 2023) and LDM-3DG (You et al., 2023). As discussed in Section 4.1, such comparison is not
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fair, since these models learn and generate both 2D bond structures and 3D geometries, which is beneficial for metrics like
validity and stability. Considering that they rely on external chemistry toolkits like RDKit or OpenBabel (O’Boyle et al.,
2011) for bond determination at the input stage and continue to leverage this bond information throughout training and
generation, we report GeoRCG (EDM) using the same external tools for accurate bond computation in the generated 3D
conformations, rather than relying on simple look-up tables, to narrow the comparison gap (though not completely addressed
since GeoRCG (EDM) still do not explicitly learn to generate bonds).

Furthermore, as GeoRCG (EDM) essentially captures 3D geometric distributions, we place more emphasis on 3D metrics
that directly evaluate 3D learning capabilities, including BondLengthW1 and BondAngleW1 proposed by Vignac et al.
(2023) and detailed in Appendix B.

The results in Table 8 demonstrate that GeoRCG not only significantly outperforms MiDi and LDM-3DG on 3D metrics,
highlighting the advantages of using a pure 3D model for learning 3D structures, but also further enhances EDM’s
performance, which has already shown considerable promise in 3D learning.

Table 8: 3D geometry statistics and generated molecule quality on QM9 across different methods. Models marked with ∗

indicate results obtained from our own experiments; see Appendix B for the evaluation guidelines. The stability metrics for
EDM are higher than in Table 1 due to using the MiDi codebase for evaluation, which permits more valency for atoms.

Methods
Metrics

Angles (◦) ↓ Bond Length (e-2 Å) ↓ Mol Sta (%) ↑ Atom Sta (%) ↑ Validity (%) ↑ Uniqueness (%) ↑

Data ∼0.1 ∼0 98.7 99.8 98.9 99.9
MiDi (uniform) 0.67(0.02) 1.6(0.7) 96.1(0.2) 99.7(0.0) 96.6(0.2) 97.6(0.1)
MiDi (adaptive) 0.62(0.02) 0.3(0.1) 97.5(0.1) 99.8(0.0) 97.9(0.1) 97.6(0.1)
LDM-3DG∗ 3.56 0.2 94.03 99.38 94.89 97.03
EDM 0.44 0.1 90.7 99.2 91.7 98.5
EDM + OBabel 0.44 0.1 97.9 99.8 99.0 98.5
GeoRCG (EDM) 0.21(0.04) 52.27% 0.04(0.0) 60% 95.82(0.16) 5.6% 99.59(0.02) 0.39% 96.54(0.27) 5.28% 95.74(0.18) 2.8%

GeoRCG (EDM) + OBabel 0.20(0.04) 54.55% 0.07(0.06) 30% 98.21(0.09) 0.32% 99.88(0.00) 0.08% 99.0(0.04) 0.0% 95.74(0.16) 2.8%

Balancing Controllability We present a more comprehensive figure that includes molecule stability, atom stability,
validity, and validity&uniqueness in Figure 6.

Figure 6: Balance controllable (unconditional) generation on QM9 dataset of GeoRCG (EDM). Increasing w and decreasing
T enhances stability, with the cost of a reduction in uniqueness.
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Fewer-step Sampling of GeoRCG (Semla) We present the performance of GeoRCG (Semla) across varying numbers of
sampling steps in Table 9. The results demonstrate consistent improvements over SemlaFlow, highlighting the effectiveness
of GeoRCG on this advanced method with reduced sampling steps.

Ablation Study: Representation Encoders Geometric representations play a pivotal role in GeoRCG. To evaluate the
importance of representation quality, we conduct an ablation study comparing the quality of molecule samples generated by
GeoRCG trained under different geometric encoder configurations.

We first assess the benefits provided by the pre-training stage. Specifically, we utilize the pre-trained encoder Frad (Feng
et al., 2023), trained on the PCQM4Mv2 dataset (Nakata & Shimazaki, 2017) with a hybrid coordinates denoising task (Feng
et al., 2023). This approach has been proven to equivalently learn force fields (Feng et al., 2023; Zaidi et al., 2022), and is
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Table 9: Comparison between SemlaFlow and GeoRCG (Semla) across varying numbers of sampling steps. Results of
SemlaFlow is obtained by our experiments.

# Steps Method Energy ↓ Strain ↓ Atom-Stab. ↑ Mol.-Stab. ↑ Validity
kcal·mol−1 kcal·mol−1 % %

100 SemlaFlow 95.72(1.24) 56.42(1.07) 99.8(0.00) 97.4(0.07) 94.4(0.17)
GeoRCG (Semla) 88.6(1.03) 47.64(1.10) 99.8(0.00) 97.6(0.00) 95.3(0.13)

50 SemlaFlow 100.60(0.55) 60.31(0.13) 99.8(0.00) 96.9(0.11) 94.6(0.17)
GeoRCG (Semla) 91.60(1.03) 50.50(0.65) 99.8(0.00) 97.2(0.20) 95.3(0.22)

20 SemlaFlow 117.03(1.37) 76.99(1.18) 99.7(0.01) 95.4(0.17) 93.2(0.30)
GeoRCG (Semla) 99.83(0.91) 62.88(0.56) 99.7(0.00) 95.5(0.13) 94.2(0.01)

therefore expected to produce informative representations that capture high-level molecular information. We train GeoRCG
(EDM) using representations from a well-pretrained Frad and a Frad with randomly initialized weights. The molecule
generation quality on QM9, as shown in Table 10, clearly underscores the critical role of pre-training on large datasets
with advanced techniques in improving representation quality, ultimately enhancing GeoRCG’s performance.

Table 10: Quality of molecules generated by GeoRCG (EDM) with different encoders trained on the QM9 dataset. “Random”
indicates that the weights were initialized randomly without any pre-training.

Encoder
Metrics

Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

Random Enc 98.55(0.01) 78.66(0.07) 94.68(0.09) 55.99(0.83)
Pretrained Enc 99.10(0.02) 92.15(0.23) 96.48(0.08) 92.45(0.21)

Next, we investigate the impact of different pre-trained encoders, which could vary in model structure and proxy tasks
used for pre-training. Specifically, we compare Unimol (Zhou et al., 2023), which employs a message-passing neural
network framework incorporating distance features (i.e., DisGNN in (Li et al., 2023; 2024b)) and primarily uses naive
coordinates denoising, with Frad (Feng et al., 2023), which adopts TorchMD (Thölke & De Fabritiis, 2022) as the backbone
and utilizes carefully designed hybrid-denoising tasks. Both Unimol (Zhou et al., 2023) and Frad (Feng et al., 2023) are
pre-trained on the GEOM-DRUG dataset until convergence. We visualize the t-SNE of the representations generated for
GEOM-DRUG. As shown in Figure 7, the t-SNE of the Unimol representations exhibits a clearer clustering pattern based on
node numbers compared to the Frad representations, which may suggest better representation learning. To further investigate,
we utilize both encoders to train GeoRCG and subsequently evaluate the quality of molecule generation. The Frad-based
GeoRCG achieves a Validity of 96.9(0.44) and Atom Stability of 84.4(0.27), while the Unimol-based GeoRCG achieves a
Validity of 98.5(0.12) and Atom Stability of 84.3(0.12): Although the Frad-based GeoRCG produces slightly higher atom
stability, its high variance and significantly lower validity suggest inferior performance. These findings, along with our
main results, offer insights into the types of representations more effective for guiding molecule generation, suggesting that
sensitivity to molecule size may be a critical factor.

Table 11: Quality of molecules generated by GeoRCG (EDM) trained on the QM9 dataset, with and without representation
perturbation and representation condition dropout.

Hyper-parameters
Metrics

Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

rep noise ✗ cond. dropout ✗ 98.53(0.08) 86.93(0.5) 93.69(0.09) 89.12(0.21)
rep noise ✗ cond. dropout ✓ 98.62(0.08) 87.9(0.35) 94.64(0.18) 90.15(0.02)
rep noise ✓ cond. dropout ✗ 99.05(0.01) 91.69(0.08) 96.48(0.11) 92.38(0.12)
rep noise ✓ cond. dropout ✓ 99.10(0.02) 92.15(0.23) 96.48(0.08) 92.45(0.21)

Ablation Study: Representation Perturbation As discussed in Appendix A, we investigate the effectiveness of the
straightforward representation perturbation technique by introducing random noise to perturb the representations during
training. Additionally, we apply extra dropout in the conditioning module of our molecule generator to mitigate overfitting
on the representation conditions. Ablation experiments presented in Table 11 demonstrate the efficacy of these simple yet
impactful methods.
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Figure 7: t-SNE visualization of representations produced by the pre-trained encoders for the GEOM-DRUG dataset, colored
by node number. The left plot corresponds to Unimol (Zhou et al., 2023), and the right plot corresponds to Frad (Feng et al.,
2023).

Table 12: Supplementary evaluation of conditionally generated molecules from GeoRCG (EDM). The right side reports
metrics for unconditionally generated molecules from other methods for reference. Note that conditional models (left) were
trained on half of the QM9 dataset, while unconditional models (right) were trained on the full dataset, which may account
for slight decreases in stability and validity metrics.

α ∆ε εHOMO εLUMO µ Cv EDM GeoLDM EquiFM
Atom Sta (%) 98.93(0.04) 98.95(0.03) 98.93(0.02) 98.99(0.01) 98.90(0.02) 98.98(0.02) 98.7 98.9(0.1) 98.9(0.1)
Mol Sta (%) 90.64(0.36) 90.46(0.24) 90.38(0.19) 90.94(0.23) 90.02(0.22) 90.87(0.12) 82 89.4(0.5) 88.3(0.3)
Valid (%) 95.40(0.04) 95.44(0.11) 95.46(0.19) 95.74(0.16) 95.26(0.04) 95.62(0.08) 91.9 93.8(0.4) 94.7(0.4)
Valid & Unique (%) 90.47(0.44) 90.09(0.13) 90.06(0.11) 90.32(0.24) 89.93(0.24) 90.20(0.16) 90.7 92.7(0.5) 93.5(0.3)
Valid & Unique & Novelty (%) 50.03(0.26) 50.81(0.15) 50.90(0.33) 50.59(0.08) 51.70(0.79) 51.10(0.29) 65.7 58.1 57.4

Quality of Conditionally Generated Molecules Detailed molecular metrics for conditionally generated molecules are
provided in Table 12. For comparison, we also include the stability metrics of molecules conditionally generated by EDM,
which highlight a notable improvement in stability with GeoRCG. Specifically, EDM’s stability scores are: α (80.4%), ∆ε
(81.73%), εHOMO (82.81%), εLUMO (83.6%), µ (83.3%), and Cv (81.03%).

D. Theoretical Analysis
In this section, we provide rigorous theoretical analysis on representation-conditioned diffusion models. Our theory is not
limited to molecule generation, and is the first theoretical breakthrough for the RCG framework (Li et al., 2023).

Our analysis is organized as follows. In Appendix D.1, we analyze the generation bound of representation-conditioned
diffusion models in unconditional generation tasks by showing: (i) the representation can be well generated by the first-stage
diffusion model with mild assumptions (Appendix D.1.1); (ii) the second-stage representation-conditioned diffusion model
exhibits no higher generalization error than traditional one-stage diffusion model, and can arguably achieve lower error
leveraging the informative representations (Appendix D.1.2). Then in Appendix D.2, we analyze conditional generation
tasks as follows: (iii) under mild assumptions of representations and targets, we provide novel bound for score estimation
error (Appendix D.2.1); (iv) generated representations have provable reward improvement towards the target, with the
suboptimality composed of offline regression error and diffusion distribution shift (Appendix D.2.2), thus would improve
the second stage of conditional generation (Appendix D.2.3).

Notations. In this section, we use SDE and score matching formulations of diffusion models to present our theoretical
results, given their equivalence with the DDPM family (Song et al., 2021). We consider the random variable x ∈ RN×(d+3),
and use q(·) to denote the ground truth distributions, p(·) to denote the posterior distribution predicted by diffusion models.
For instance, q(x) is the ground truth distribution of the underlying data x, while pφ(r) is the predicted distribution of latent
representations. We use T to denote the total time of diffusion models, and Nd to represent the discretization step number.
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We consider a SDE with continuous time [0, T ], as well as its discretized DDPM which has Nd diffusion steps with step size
h := T/Nd. The forward process is denoted as (xt)t∈[0,T ] ∼ qt, and the reverse process is denoted as (x̄t)t∈[0,T ] ∼ pt. If
the reverse process is predicted by the score matching network, we use its parameters as the subscript. Please note that there
are two different initialization of the reverse process: the end of forward process qT and standard Gaussian noise γd. We use
superscript qT to differentiate the former from the latter.

D.1. Unconditional Generation

D.1.1. PROVABLE GENERATION OF REPRESENTATIONS

Recall the two-stage generation process of representation-conditioned generation: p(x, r) = pθ(x|r)pφ(r). To quantitatively
evaluate the generation process, we consider two stages separately. In this subsection, we first provide theoretical analysis
on the provable generation of representations pφ(r).

Assumption D.1. (Second moment bound of representations.)

m2
r := Eq(r)[||r − r̄||2] <∞ (11)

where q(r) is the ground truth distribution of the representations, and r̄ := Eq(r)[r].

Assumption D.2. (Lipschitz score of representations). For all t ≥ 0, the score ∇ ln q(rt) is Lr-Lipschitz.

where q(rt) is the distribution of noisy latent rt at diffusion step t in the forward process.

Finally, the quality of diffusion models obviously depends on the expressivity of score network φ with prediction s(t)φ .

Assumption D.3. (Score estimation error of representations). For all t ∈ [0, T ],

Eq(rt)[||s
(t)
φ −∇ ln q(rt)||2] ≤ ϵ2φ,score (12)

These are similar assumptions to the ones in (Chen et al., 2023).

Proposition D.4. Suppose Assumption D.1, Assumption D.2, Assumption D.3 hold, and the step size h := T/Nd satisfies
h ⪯ 1/Lr. Then the following holds,

TV(pφ(r0), q(r)) ⪯
√
KL(q(r)||γdr ) exp(−T )︸ ︷︷ ︸
convergence of forward process

+(Lr

√
drh+ Lrmrh)

√
T︸ ︷︷ ︸

discretization error

+ ϵφ,score

√
T︸ ︷︷ ︸

score estimation error

(13)

Here a(·) ⪯ b(·) means there exists a constant C such that a(·) ≤ Cb(·) always holds. This is a direct conclusion from (Chen
et al., 2023). In typical DDPM implementation, we choose h = 1 and thus T = Nd. Remarkably, Proposition D.4 indicates
the benefit of generating the representation first: since dr ≪ d, the generation quality (measured by the TV distance in
Proposition D.4) of the low-dimensional representation can easily outperform directly generating the high-dimensional
data points x. The theorem also accounts for applying a lightweight MLP as the denoising network while in the stage of
generating the representation.

D.1.2. PROVABLE SECOND-STAGE GENERATION

Tractable Training Loss. Now we analyze the generation quality of the second-stage diffusion model. Since we sample
from pθ(x, r), we have representations as conditions even for unconditional generation tasks. To learn the score function
conditioning on the representations, consider the following loss for score matching,

L(θ) =
∫ T

0

λ(t)Ext,r[||sθ(xt, r, t)−∇xt
log qt|r(xt|r)||2]dt (14)

However, since qt|r(xt|r) is intractable, we use the following equivalent losses:

L(θ) =
∫ T

0

λ(t)Ex0,r

[
Ext|x0

[
||sθ(xt, r, t)−∇xt log qt|0(xt|x0)||2|x0

]]
dt+ C (15)
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Proposition D.5. (Tractable representation-conditioned score matching loss.)

L(θ) : =
∫ T

0

λ(t)Ext,r[||sθ(xt, r, t)−∇xt
log qt|r(xt|r)||2]dt (16)

=

∫ T

0

λ(t)Ex0,r

[
Ext|x0

[
||sθ(xt, r, t)−∇xt

log qt|0(xt|x0)||2|x0
]]
dt+ C (17)

Proof. The key is the following important property holds since the gradient is taken w.r.t. xt only:

∇xt
log qt|r(xt|r) = ∇xt

log qt,r(xt, r) (18)

The remaining of the derivation parallels to traditional DDPM. We can replace ∇xt
log qt,r(xt, r) with

∇xt log qt,r|0(xt, r|x0):

∇xt log qt,r(xt, r) = Ex0,r|xt

[
∇xt log qt,r|0(xt, r|x0)

∣∣∣xt] (19)

Thus,

ErExt∼q(xt|r)[||sθ(xt, r, t)−∇xt
log qt|r(xt|r)||2] (20)

=ErEx0∼q(x0|r)Ext∼q(xt|r,x0)[||sθ(xt, r, t)−∇xt log qt|r(xt|x0, r)||2] (21)

=ErEx0∼q(x0|r)Ext∼q(xt|x0)[||sθ(xt, r, t)−∇xt
log qt|r(xt|x0)||2] (22)

which is equivalent to our tractable score matching loss.

Rigorous Error Bound for Second-Stage Generation. Utilizing Proposition D.5, analysis of the second-stage diffusion
parallels to the first stage, except that the score network takes additional inputs r.

Assumption D.6. (Second moment bound of molecule features.)

m2
x := Eq(x)[||x− x̄||2] <∞ (23)

where q(x) is the ground truth distribution of the molecule features, and x̄ := Eq(x)x.

Assumption D.7. (Lipschitz score of second stage). For all t ≥ 0, the score ∇ ln q(xt) is Lx-Lipschitz.

where q(xt) is the distribution of noisy latent xt at diffusion step t in the forward process.

Finally, we make some assumptions of the score network estimation error.

Assumption D.8. (Score estimation error of second-stage diffusion). For all t ∈ [0, T ],

Er∼pφ(r),xt∼qt(xt)[||sθ(xt, t, r)−∇ ln qt(xt)||2] ≤ ϵ2θ,score (24)

This assumption contains the error brought by generating representations, i.e., the TV distance shown in Proposition D.4.
Later in Theorem D.12 we explicitly deal with the error brought by representation generation, which results in a more
fine-grained error bound.

We now present a key lemma which facilitates analysis and the proof of the central Theorem D.12.

Lemma D.9. Suppose Assumption D.6, Assumption D.7, Assumption D.8 hold, and the step size h := T/Nd satisfies
h ⪯ 1/Lx. Suppose we sample x ∼ pθ(x|r) from Gaussian noise where r ∼ pφ(r), and denote the final distribution of x as
pθ,φ(x). Then the following holds,

TV(pθ,φ(x), q(x)) ⪯
√
KL(q(x)||γN(d+3)) exp(−T )︸ ︷︷ ︸

convergence of forward process

+(Lx

√
N(d+ 3)h+ Lxmxh)

√
T︸ ︷︷ ︸

discretization error

+ ϵθ,score
√
T︸ ︷︷ ︸

score estimation error

(25)
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Proof. Recall the notation that pθ,φ(x) :=
∫
r
p0|r(x0|r)pr(r)dr = p0 predicted by denoising networks θ, φ starting from

Gaussian noise γN(d+3). Consider the reverse process pqT0 (x0) starting from qT instead of γN(d+3),

TV(p0, q(x)) ≤ TV(p0, p
qT
0 ) + TV(pqT0 , q0) (26)

Using the convergence of the OU process in KL divergence (see (Chen et al., 2023)), the following holds for the first term,

TV(p0, p
qT
0 ) ≤ TV(γN(d+3), qT ) ≤

√
KL(q(x)||γN(d+3)) exp(−T ) (27)

The second term is caused by score estimation error and discretization error, which can be bounded by

TV(pqT0 , q0)
2 ≤ KL(q0||pqT0 ) ⪯ (ϵ2θ,score + L2

xN(d+ 3)h+ L2
xm

2
xh

2)T (28)

We start proving Equation (28) by proving

Nd∑
k=1

Eq0,r∼pφ

∫ kh

(k−1)h

||s(kh)θ (xkh, kh, r)−∇ ln qt(xt)||2dt ⪯ (ϵ2θ,score + L2
xN(d+ 3)h+ L2

xm
2
xh

2)T (29)

For t ∈ [(k − 1)h, kh], we decompose

Eq0,r∼pφ
[||s(kh)θ (xkh, kh, r)−∇ ln qt(xt)||2] (30)

⪯Eq0,r∼pφ
[||s(kh)θ (xkh, kh, r)−∇qkh(xkh)||2] + Eq0 [||∇qkh(xkh)−∇qt(xkh)||2] (31)

+ Eq0 [||∇qt(xkh)−∇qt(xt)||2] (32)

⪯ϵ2θ,score + Eq0

[∣∣∣∣∇ ln
qkh
qt

(xkh)
∣∣∣∣2]+ L2

xEq0 [||xkh − xt||2] (33)

Note that we omit the term r in expectation of last two terms because they are independent of r.

Utilizing Lemma 16 from (Chen et al., 2023), we bound∣∣∣∣∇ ln
qkh
qt

(xkh)
∣∣∣∣2 ⪯ L2

xN(d+ 3)h+ L2
xh

2||xkh||2 + (L2
x + 1)h2||∇ ln qt(xkh)||2 (34)

For the last term,

||∇ ln qt(xkh)||2 ⪯ ||∇ ln qt(xt)||2 + ||∇ ln qt(xkh)−∇ ln qt(xt)||2 (35)

⪯ ||∇ ln qt(xt)||2 + L2
x||xkh − xt||2 (36)

where the second term is absorbed into the third term of the decomposition Equation (30). Thus,

Eq0,r∼pφ
[||s(kh)θ (xkh, kh, r)−∇ ln qt(xt)||2] (37)

⪯ϵ2θ,score + L2
xN(d+ 3)h+ L2

xh
2Eq0 [||xkh||2] + L2

xh
2Eq0 [||∇ ln qt(xt)||2] + L2

xEq0 [||xkh − xt||2] (38)

⪯ϵ2θ,score + L2
xN(d+ 3)h+ L2

xh
2(N(d+ 3) +m2

x) + L3
xN(d+ 3)h2 + L2

x(m
2
xh

2 +N(d+ 3)h) (39)

⪯ϵ2θ,score + L2
xN(d+ 3)h+ L2

xh
2m2

x (40)

Analogous to (Chen et al., 2023), using properties of Brownian motions and local martingales, we can apply Girsanov’s
theorem and complete the stochastic integration. Since q0 is the end of the reverse SDE, by the lower semicontinuity of the
KL divergence and the data-processing inequality (Beaudry & Renner, 2011), we take the limit and obtain

KL(q0||pqT0 ) ⪯ (ϵ2θ,score + L2
xN(d+ 3)h+ L2

xh
2m2

x)T (41)

We finally conclude with Pinsker’s inequality (TV2 ≤ KL).
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This result holds for general representation-conditioned diffusion models, and to our best knowledge we are the first to
provide theories for representation-conditioned generation, which is a general generation framework suitable for various
domains such as images (Li et al., 2023) and graphs.

Lemma D.9 quantitatively characterizes the bound on generalization error in representation-conditioned diffusion. It directly
suggests that the error of representation-conditioned diffusion will be no higher than that of its one-stage counterpart.
This is because the first two components of the generalization error (i.e., the convergence of the forward process and the
discretization error) of the representation-conditioned diffusion model align with those of traditional DDPM, provided that
both are parameterized using the same diffusion processes. Furthermore, the third component (score estimation error) can
be made identical if we simply set all representation-relevant parameters in sθ to zero and disregard representation’s impact.
We therefore have the following conclusion,

Corollary D.10. Self-representation-conditioned diffusion model can have the same or a lower generation distribution
error than one-stage diffusion model.

We now give a more fine-grained error bound analysis of representation-conditioned diffusion, given the relationship
between r and x that enables our further qualitative analysis for the argubly better performance.

Assumption D.11. (representation-conditioned score estimation error of second-stage diffusion). For all t ∈ [0, T ],

Er∼pφ(r),xt∼qt(xt|r)[||sθ(xt, t, r)−∇ ln qt(xt|r)||2] ≤ ϵ2φ,θ,cond (42)

The following main theorem is novel and precise since it (i) deals with the generation error of first-stage representations
explicitly; (ii) takes advantages of the conditional distribution q(x|r) in the denoising network.

Theorem D.12. (Theorem 3.2 in the main text) Suppose Assumption D.6, Assumption D.7, Assumption D.11 hold, and
the step size h := T/Nd satisfies h ⪯ 1/Lx. Suppose we sample x ∼ pθ(x|r) from Gaussian noise where r ∼ pφ(r), and
denote the final distribution of x as pθ,φ(x). Define p

qT |φ
0 , which is the end point of the reverse process starting from qT |φ

instead of Gaussian. Here qT |φ is the T -th step in the forward process starting from q0|φ := 1
A

∫
r
q(x0|r)pφ(r)dr where A

is the normalization factor. Then the following holds,

TV(pθ,φ(x), q(x)) ⪯
√

KL(q0|φ||γN(d+3)) exp(−T )︸ ︷︷ ︸
convergence of forward process

+(Lx

√
N(d+ 3)h+ Lxmxh)

√
T︸ ︷︷ ︸

discretization error

(43)

+ ϵφ,θ,cond

√
T︸ ︷︷ ︸

conditional score estimation error

+ TV(q0|φ, q0)︸ ︷︷ ︸
representation generation error

(44)

Proof. The proof sketch parallels that of Lemma D.9, except that in the first step we decompose the TV distance as follows,

TV(pθ,ϕ, q(x)) ≤ TV(p0, p
qT |φ
0 ) + TV(p

qT |φ
0 , q0|φ) + TV(q0|φ, q0) (45)

We complete the proof analogously to the proof of Lemma D.9.

Remarkably, when q0|φ, i.e., pφ fully recovers the ground truth marginal distribution of representations q(r), Theorem D.12
has the same format as Lemma D.9 but with ϵφ,θ,cond < ϵθ,score. This is because the former is the score estimation error
based on explicit relationship between x and r while the latter learns implicitly. Thus, Theorem D.12 is a much tighter
bound for representation-conditioned generation. To the best of our knowledge, this is the first rigorous theoretical analysis
on RCG (Li et al., 2023). We now provide some qualitative discussions on why representations can arguably lead to better
generalization error.

Typically, representations are powerful (and sometimes even complete) as they encode key information about x with potential
additional knowledge via pretraining tasks (for example, coordinates denoising for molecules (Zaidi et al., 2022; Feng et al.,
2023)). Therefore, it is reasonable to expect that score estimation conditioned on representations can be more accurate
(i.e., ϵθ,score could be significantly smaller than when estimating the score without representation conditioning). If the
representations are complete—where a special case would be r = x—this would greatly assist in predicting the noise. The
same applies when r can be properly transformed back to x by a neural network. More generally, there are intermediate
cases where r reflects partial information about x (e.g., a multiset of atoms and bonds), which would still aid in improving
prediction.

23



Geometric Representation Condition Improves Equivariant Molecule Generation

Extension to Equivariant Diffusion Models. The previous conclusions are generic and can be applied to general
representation-conditioned generation. However, so far we only consider traditional diffusion models without taking into
account the permutation Π and SE(3) transformation Ω invariance/equivariance of the diffusion model. We thus extend our
theory specifically to equivariant diffusion models that operate on symmetry structures, which is the case for our experiments.
Moreover, the previous results assume that both the diffusion process and the denoising model treat atom coordinates x and
atom type features h identically, while the fact is that (1) the noises of atom coordinates always have zero center of mass
(CoM), thus actually lies in a subspace with degree of freedom 3(N − 1) as opposed to 3N ; (2) in the forward process,
xt and ht are conditional independent give x0 and h0, and since the denoising network processes coordinates xt and ht

differently, the score estimation error term can be further decomposed as in Assumption D.13.

Assumption D.13. (fine-grained representation-conditioned score estimation error of second-stage diffusion). For all
t ∈ [0, T ],

Er∼pφ(r),xt∼qt(xt|r)[||sθ(xt, t, r)−∇ ln qt(xt|r)||2] (46)

=Er∼pφ(r),xt∼qt(xt|r)[||s
(x)
θ (xt, t, r)−∇xt ln qt(xt|r)||2 + ||s(h)θ (xt, t, r)−∇ht ln qt(ht|r)||2] (47)

≤(ϵxφ,θ,cond)
2 + (ϵhφ,θ,cond)

2 (48)

where s(x)θ (·) and s(h)θ (·) refer to the predicted score of coordinates and atom type features by the score network, respectively.

Combining all the pieces, we conclude the following result Theorem D.14 for equivariant diffusion models that generate 3D
coordinates as described above.

Theorem D.14. Suppose Assumption D.6, Assumption D.7, Assumption D.13 hold, and the step size h := T/Nd satisfies
h ⪯ 1/Lx. Suppose we sample x ∼ pθ(x|r) from Gaussian noise with zero CoM in the coordinate subspace where r ∼
pφ(r), and denote the final distribution of x as pθ,φ(x). Define p

qT |φ
0 , which is the end point of the reverse process starting

from qT |φ instead of Gaussian. Here qT |φ is the T -th step in the forward process starting from q0|φ := 1
A

∫
r
q(x0|r)pφ(r)dr

where A is the normalization factor. Denote γN(d+3)
0−CoM the N(d+ 3)-dimensional Gaussian but with zero center of mass in

the N × 3-dimensional subspace for coordinates. Denote p̃(·) as the distribution after acting permutation group Π and
SE(3) transformation Ω on the data from p(·). Then the following holds,

TV(p̃θ,φ(x), q̃(x)) :=α(pθ,φ,Π,Ω)TV(pθ,φ(x), q(x)) (49)

⪯α(pθ,φ,Π,Ω)

(√
KL(q0|φ||γ

N(d+3)
0−CoM ) exp(−T )︸ ︷︷ ︸

convergence of forward process

+(Lx

√
N(d+ 3)h+ Lxmxh)

√
T︸ ︷︷ ︸

discretization error

(50)

+ (ϵxφ,θ,cond + ϵhφ,θ,cond)
√
T︸ ︷︷ ︸

conditional score estimation error

+ TV(q0|φ, q0)︸ ︷︷ ︸
representation generation error

)
(51)

where α(·) ∈ [0, 1].

Proof. The proof parallels the proof of Theorem D.12 with three distinct parts.

1. Due to the existence of the permutation group Π and the SE(3) group Ω, we need to consider the distribution
p̃θ,φ(x). Note the definition α(pθ,φ,Π,Ω) :=

TV(p̃θ,φ(x),q̃(x))
TV(pθ,φ(x),q(x)) , and by data processing inequality (Beaudry & Renner,

2011), α(pθ,φ,Π,Ω) ∈ [0, 1]. Specifically, when the denoising model pθ,φ is constructed invariant/equivariant to
permutations Π and SE(3) transformations Ω (which means the model treats all elements in one equivalent class the
same), α(pθ,φ,Π,Ω) reaches the minimum; see (You et al., 2023) for further explanations.

2. Since the Gaussian noises for coordinates are sampled from a subspace with zero center of mean, the prior distribution
γN(d+3) in Theorem D.12 should be replaced with γN(d+3)

0−CoM , the N(d+ 3)-dimensional Gaussian but with zero center

of mass in the N × 3-dimensional subspace for coordinates. It is notable that the degree of freedom of γN(d+3)
0−CoM is

actually N(d+ 3)− 3, and the remaining of the proof still holds (Feng et al., 2024).

3. As explained before, in a properly designed forward process, xt and ht can be conditional independent give x0 and h0.
Meanwhile, the denoising network processes coordinates xt and ht differently, the score estimation error term can be
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further decomposed as in Assumption D.13; see (Feng et al., 2024) for more details. Therefore, the term ϵφ,θ,cond

√
T

in Theorem D.12 can be replaced by
√

(ϵxφ,θ,cond)
2 + (ϵhφ,θ,cond)

2, which is further bounded by (ϵxφ,θ,cond+ ϵhφ,θ,cond).

In conclusion, we provide a detailed characterization of the generalization error of representation-conditioned diffusion
models in this subsection. It is important to note that some parameters in our assumptions, such as Lipschitz scores and
estimation errors, are not constants; they are functions of the SDE total time T and the number of diffusion steps Nd. Our
conclusions also explain why representation-conditioned generation methods remain competitive even when the number of
second-stage diffusion steps Nd is decreased for faster generation. This is because the score estimation error can remain
small even when the number of diffusion steps is reduced, given the guidance from representations. As a result, reducing
Nd causes a slower increase in ϵφ,θ,cond(Nd) compared to the score estimation error without representation conditioning,
leading to representation-conditioned generative models’ strong performance with fewer steps.

D.2. Conditional Generation

In this subsection, we aim to prove that conditional generation using our representation-conditioned generation have probable
reward improvement. While we used c to denote conditions in the main text, we use the notation y instead for the targets or
“reward” to keep coordinate with existing literature. Denote qa := q(·|y = a) as the ground truth conditional distribution,
and p̂a := p(·|y = a) the estimated distribution. Suppose the ground truth distribution satisfies y := f∗(x, r) which can be
decomposed as

f∗(x, r) = g∗(x∥, r∥) + h∗(x⊥, r⊥) (52)

where we denote x = x∥ when x ∼ q(x), r = r∥ when r ∼ q(r), and f∗(x, r) = g∗(x, r) when x ∼ q(x), r ∼ q(r).

To start with, we assume a linear relationship between r and y, which is reasonable thanks to the powerful pretrained model
(which makes the representations helpful in predicting molecule properties and even complete) if some noises are allowed.
In detail, the reward is f∗(x, r) = ŵ⊤r + ξ and ξ ∼ N (0, ν2). In some cases, we may further make Gaussian assumptions
on r (WLOG, r ∼ N (µ,Σ)) but is not necessary.

D.2.1. PARAMETRIC CONDITIONAL SCORE MATCHING ERROR

First, we give a detailed form of the representation score estimation error presented in Assumption D.1 under the assumptions
above.

Lemma D.15. For δ ≥ 0, with probability 1− δ, the score estimation error ϵr ≃ ϵφ,score is bounded by

1

T − t0

∫ T

t0

E(rt,y)∼qt [||∇ log qt(rt|y)− ŝφ(rt, y, t)||22]dt ≤ ϵ2r = O
( 1

t0

√
N (S, 1

n )d
2
r log

1
δ

n

)
(53)

where t0 is the early stopping time of the SDE, n is the number of samples, S is the parametric function class of denoising
network, and N (S, 1

n ) is the log covering number of S. When S is linearly parameterized, N (S, 1
n ) = O(d2r log(

drn
ν2 )).

Proof. This is a direct extension of Lemma C.1 from (Yuan et al., 2023). Note that we consider the special case where
the low-dimensional subspace is the original space (i.e., A = Idr and d = D = dr in their paper), and our noised linear
assumption between r and y is identical to their pseudo labeling setting (i.e., ŷ = ŵ⊤r + ξ where ξ ∼ N (0, ν2)). We only
provide the proof sketch here.

When r follows the Gaussian design, some algebra gives

∇r log qt(r, y) =
α(t)

h(t)
Bt

(
α(t)r +

h(t)

ν2
yw
)
− 1

h(t)
r (54)

where α(t) = exp(−t/2), h(t) = 1 − exp(−t), B(t) =
(
α2(t)Idr

+ h(t)
ν2 ww

⊤ + h(t)Σ−1
)−1

. We then bound the
estimation error with PAC-learning concentration argument by using Dudley’s entropy integral to bound the Rademacher
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complexity, and obtain

ϵ2r = O
( 1

t0

√
N (S, 1

n )d
2
r log

1
δ

n

)
(55)

Further, the log covering number of S under Gaussian design satisfies

N (S, 1
n
) ≤ d2r log

(
1 +

drn

t0λminν2

)
(56)

where 0 < λmin < 1 is the smallest eigenvalue of Σ, and typically the early stopping time t0 = O(1). In (Yuan et al., 2023)
the authors assume ν2 = 1/dr which states that the variance ν2 of regression residuals ξ reduces when we increase the
representation dimensions, which is reasonable.

Lemma D.15 provides a detailed score estimation error given the linear assumption between r and y, which serves as a
special case of ϵ2φ,score. Substituting it into Proposition D.4, we can obtain a quantitative result of representation generation
error.

D.2.2. REWARD IMPROVEMENT VIA CONDITIONAL GENERATION

Next, we want to obtain the reward guarantees of the generated samples give the condition y. Define the suboptimality of
distribution P as

SubOpt(P ; y∗) = y∗ − E(x,r)∼P [f
∗(x, r)] (57)

where y∗ is the target reward value (condition) and f∗ is the ground truth reward function. We use the notation p̂a :=
pφ(r|y∗ = a), then we have the following result for SubOpt(p̂a; y

∗ = a), which can also be viewed as a form of off-policy
regret.

Lemma D.16. (Theorem 4.6 in (Yuan et al., 2023).)

SubOpt(p̂a; y
∗ = a) ≤ Er∼qa

[∣∣(ŵ − w)⊤r
∣∣]︸ ︷︷ ︸

E1

+
∣∣∣Er∼qa [g

∗(r∥)]− Er∼p̂a
[g∗(r∥)]

∣∣∣︸ ︷︷ ︸
E2

+Er∼p̂a
[h∗(r⊥)]︸ ︷︷ ︸
E3

(58)

Proof. Recall the notation qa := q(·|y = a), we have

Er∼p̂a
[f∗(r)] (59)

≥Er∼qa [f
∗(r)]−

∣∣Er∼p̂a
[f∗(r)]− Er∼qa [f

∗(r)]
∣∣ (60)

≥Er∼qa [f̂(r)]− Er∼qa

[∣∣f̂(r)− f∗(r)
∣∣]− ∣∣Er∼p̂a

[f∗(r)]− Er∼qa [f
∗(r)]

∣∣ (61)

≥Er∼qa [f̂(r)]− Er∼qa

[∣∣f̂(r)− g∗(r)
∣∣]︸ ︷︷ ︸

E1

−
∣∣Er∼qa [g

∗(r∥)]− Er∼p̂a [g
∗(r∥)]

∣∣︸ ︷︷ ︸
E2

−Er∼p̂a [h
∗(r⊥)]︸ ︷︷ ︸

E3

(62)

where ŵ is the estimated w by Ridge regression, Er∼qa [f̂(r)] = Ea∼q[a] and r = r⊥, f ∗ (r) = g∗(r) when r ∼ qa.

Here we give a brief interpretation of the decomposition. E1 is the prediction and generalization error coming from regression,
which is independent from the diffusion error. Both E2 and E3 come from the diffusion process, where E2 reflects the
disparity between p̂a and qa on the subspace support while E3 measures the off-subspace error in p̂a. The following results
give concrete bounds for the terms in Lemma D.16.

Bounding Regression Error with Offline Bandits. By estimating w with Ridge regression, we have

ŵ = (R⊤R+ λI)−1R⊤(Rw∗ + η) (63)

where R⊤ = (r1, . . . , rn) and η = (ξ1, . . . , ξn) where ξi ∼ N (0, ν2). Define Vλ := R⊤R + λI , Σ̂λ := 1
nVλ and

Σqa := Er∼qarr
⊤ and take λ = 1, we have
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Proposition D.17. With high probability,

E1 ≤
√

Tr(Σ̂−1
λ Σqa) ·

O(||w∗||+ ν2
√
dr log n)√

n
(64)

Further when r has Gaussian design r ∼ N (µ,Σ),

Tr(Σ̂−1
λ Σqa) ≤ O

( a2

||w∗||Σ
+ dr

)
(65)

when n = Ω(max{ 1
λmin

, dr

||w∗||2Σ
}).

Proof. First we have
E1 = Ep̂a

|r⊤(w∗ − ŵ)| ≤ Ep̂a
||r||V −1

λ
· ||w∗ − ŵ||Vλ

(66)

where

Ep̂a
||r||V −1

λ
≤
√
Ep̂a

r⊤V −1
λ r =

√
Tr(V −1

λ Ep̂a
rr⊤) ≃

√
Tr(V −1

λ Σqa) (67)

Hence we only need to prove

||w∗ − ŵ||Vλ
≤ O(||w∗||+ ν2

√
dr log n) (68)

Using the closed form expression, we have

ŵ − w∗ = V −1
λ R⊤η − λV −1

λ w∗ (69)

Thus,
||w∗ − ŵ||Vλ

≤ ||R⊤η||V −1
λ

+ λ||w∗||V −1
λ

(70)

where λ||w∗||V −1
λ

≤
√
λ||w∗||, and according to (Abbasi-yadkori et al., 2011),

||R⊤η||V −1
λ

= ||R⊤η||(R⊤R+λI)−1 ≤ O(ν2
√
dr log n) (71)

with high probability. We hence conclude the first part of proof.

Further, when r has Gaussian design r ∼ N (µ,Σ), according to Lemma C.6 of (Yuan et al., 2023), we can prove the results.
The key here is the conditional distribution follows the Gaussian below,

Pr

(
r|f̂(r) = a

)
= N

(
µ+Σŵ(ŵ⊤Σŵ + ν2)(a− ŵ⊤µ),Σ− Σŵ(ŵ⊤Σŵ + ν2)−1ŵ⊤Σ

)
(72)

Thus

trace(Σ̂−1
λ Σqa) = trace

(
Σ1/2ŵŵ⊤ΣΣ̂−1

λ Σ1/2a2

(||ŵ||2Σ + ν2)2

)
≤ (1 +

1√
λminn

) · O(
a2

||ŵ||2Σ
+ dr) (73)

Notice that ||ŵ||Σ ≥ ||w∗||Σ − ||ŵ − w∗||Σ. We have

||ŵ − w∗||Σ = O
(
||w∗||+ ν2

√
dr log(n)√

n

)
(74)

where we can prove ||ŵ||Σ ≥ 1
2 ||w

∗||Σ when n = Ω( dr

||w∗||2Σ
).

Remarkably, this is a more precise bound improving the results (Lemma C.5 and C.6) in (Yuan et al., 2023), where we make
less assumptions on the relationship between y and r, explicitly taking ||w|| and ν2 into account.

27



Geometric Representation Condition Improves Equivariant Molecule Generation

Bounding Distribution Shift in Diffusion. We define the distribution shift between two arbitrary distributions p1 and p2
restricted under function class L as

T (p1, p2;L) := sup
l∈L

Ex∼p1
[l(x)]

Ex∼p2
[l(x)]

(75)

We have the follow lemma.
Lemma D.18. Under the assumption that r follows Gaussian design, then

TV(p̂a, qa) = O
(√

T (q(r, y = a), qry;S)
λmin

· ϵr
)

(76)

where ϵr is defined in Lemma D.15. We can bound E2 with:

E2 = O
(
(TV(p̂a, qa) + t0)

√
M(a)

)
(77)

where M(a) = O( a2

||w∗||Σ + d). By plugging in ϵ2r = Õ(
d2
r

t0
√
n
), when t0 = (d4r/n)

1/6, E2 admits the best trade off with
bound

E2 = Õ
(√

T (q(r, y = a), qry;S)
λmin

· (d4r/n)1/6a
)

(78)

Proof. The proof directly follows from Lemma C.4 and Lemma C.7 in (Yuan et al., 2023). However, the conclusion is
slightly different as we do not assume a low dimensional subspace of r.

One can also verify that when r follows Gaussian design, T (q(r, y = a), qry;S) = O(a2 ∨ dr).

D.2.3. SECOND STAGE OF CONDITIONAL GENERATION

Now that we have proved that: (i) the first-stage diffusion model can estimate the score function with provable error bound
(Appendix D.2.1); and (ii) the generated representations have provable reward improvement (Appendix D.2.2). We continue
to show that the ultimate generated samples also have distribution shift towards the desired target in the following contexts.
Particularly, we want to answer the question: why utilizing the conditionally generated representations is enough for the
second stage generation?

First, when we use the generated representations as the only condition of the second stage diffusion model, the generation
process is identical to the second stage of unconditional generation. Therefore, the results in Appendix D.1.2 can be directly
applied to analyze the second stage generation of conditional generation, which states that the generation conditioning
on representations has small TV distance error compared with ground truth conditional distribution. Thus, when we have
high-quality first-stage generation, the corresponding second stage generation would introduce almost no additional error,
which implies provable reward improvements towards the desired target. In addition, the well-pretrained encode ensures that
the correspondence between representations and data points is good, which makes it possible to rigorously construct the
data points given the representations (a special case would be r is the complete representation of x).

We then partially answer this question from the information theoretic perspectives. We use H(·) to denote the information
entropy, and I(·; ·) to denote the mutual information between two variables.

• I(x; r) ≥ I(x; y). On the one hand, r contains enough information to recover the targets y thanks to the results in
Appendix D.2.2, thus we do not explicitly need y for the second stage. One the other hand, benefit from the pretraining
task, the representations obviously contains more information in addition to y. This assumption is valid if w∗ in
previous analysis is sparse (there are components in r independent of y), i.e., H(r) > H(y). Therefore, generating
x conditioning on r is much easier than generating conditioning on y (traditional one stage generation), as the score
estimation error of the former one would obviously be much smaller than the latter.

• I(x, r; y) ≥ I(x; y). Recall Equation (52) which states the target property y depends on both x and r. Hence, r may
contain additional information of y obtained from pretrained tasks that is hard to (or cannot) be directly extracted from
x - the complex pretrained model assists in extracting relevant information in our two-stage generation, while one-stage
generation solely relies on the single denoising model to do so. Therefore, by leveraging representations with provable
error bounds, we can better shift the distribution towards the target.
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In summary, r is an ideal middle state connecting x and y - it is easy to recover r from y (Appendix D.2.1) and to recover
x from y (Appendix D.1.2), and vice versa. In comparison, it is somewhat more difficult to directly recover x from y or
predict y from x. Consequently, r may be a better indicator of y compared with x due to the aforementioned reasons.

Indeed, one-stage diffusion models generate x directly from conditions y need to optimize a highly complex score
∇x log p(x|y) where x and y are highly non-linearly mapped. As Theorem E.4 in (Yuan et al., 2023) points out, the
nonparametric SubOpt of x generated by deep neural networks is larger than our results in Appendix D.2.2, which further
validates the advantage of first generating r that can be well mapped from y.

E. Visualization
E.1. Representation Visualization

To illustrate how well pφ(r) fits q(r), we sample from both q(r) (i.e., the representations produced by the pre-trained
encoder for the QM9 and GEOM-DRUG datasets) and the trained representation generator pφ(r). We then visualize them
in Appendix E.1, with colors indicating whether the samples are from q(r) or pφ(r). We compute the Silhouette Score
of the clustering results, scaled by 102 for clarity. A score close to zero suggests that the two clusters are difficult to
distinguish, indicating a good fit between pφ(r) and q(r). Similarly, we provide the visualization of conditionally generated
representations in Figure 9

Figure 8: t-SNE visualizations of representations unconditionally generated by the representation generator (T = 1.0) vs.
those produced by the pre-trained encoder on the QM9 and GEOM-DRUG datasets. The Silhouette Score is scaled by 102

for clarity.

E.2. Visualization of Molecule Samples

In this section, we provide additional random molecule samples to offer deeper insights into the performance of GeoRCG.
Figure 10 and Figure 11 show unconditional random samples generated by GeoRCG trained on the QM9 and GEOM-DRUG
datasets, respectively. Figure 12 presents random samples conditioned on the α property, along with their corresponding
errors.
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Figure 9: t-SNE visualization of representations conditionally generated by the representation generator vs. those produced
by the pre-trained encoder on the QM9 dataset: (a) α, (b) ∆ϵ, (c) ϵHOMO, (d) ϵLUMO, (e) µ, and (f) Cv . The Silhouette Score
is scaled by 102 for clarity.
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Figure 10: Unconditional random samples from GeoRCG trained on QM9. The number of nodes is randomly sampled from
the node distribution q(N).
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Figure 11: Unconditional random samples from GeoRCG trained on GEOM-DRUG. The number of nodes is randomly
sampled from the node distribution q(N).
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Figure 12: Conditional random samples from GeoRCG trained on QM9 dataset and α property. Black numbers indicate the
specified property value condition, while green numbers represent the evaluated property value of the generated samples.
The number of nodes and property value conditions are randomly sampled from the joint distribution q(N, c).
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