

000 001 002 003 004 005 DECOMPOSED ATTENTION FUSION IN MLLMS FOR 006 TRAINING-FREE VIDEO REASONING SEGMENTATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Multimodal large language models (MLLMs) demonstrate strong video understanding by attending to visual tokens relevant to instructions. To exploit this for training-free localization, we cast video reasoning segmentation as video QA and extract attention maps via rollout. Since raw maps are too noisy to represent objects, we propose Decomposed Attention Fusion (DecAF), combining (1) contrastive object-background fusion and (2) complementary video-frame fusion. This yields cleaner attention maps focused on the target object, which can be directly converted into coarse segmentation masks and outperform existing methods. In addition, we introduce attention-guided SAM2 prompting for fine-grained masks, achieving performance comparable to training-based methods on both referring and reasoning VOS benchmarks.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) (Lin et al., 2023; Chen et al., 2024; Zhang et al., 2024; Bai et al., 2025; Wang et al., 2024a) have rapidly advanced, demonstrating strong performance on challenging video QA benchmarks (Mangalam et al., 2023; Fu et al., 2025). These advances reveal their ability to process temporal visual cues and perform complex reasoning over natural language queries. A natural next question is whether such models also possess inherent localization ability in videos, beyond answering text-based queries. This direction remains largely underexplored. In this work, we investigate this possibility and introduce a training-free framework for video reasoning segmentation based on decomposed attention fusion.

Loc-Head (Kang et al., 2025a) explores the localization ability of MLLMs in the image domain by selecting attention heads responsible for grounding. However, we find it does not generalize well to video reasoning segmentation, as its head selection algorithm relies heavily on heuristics. First, it assumes the presence of a single referring object and selects heads based on spatial entropy, which makes extension to multi-object and temporal video data difficult. Second, it is vulnerable to the *visual attention sink* phenomenon (Kang et al., 2025b), where certain regions consistently receive dominant attention scores regardless of the instruction. For instance, Loc-Head excludes heads that strongly attend to the bottom row in LLaVA, but this rule does not transfer to Qwen2VL, where excluding the right-most column is instead required.

To obtain attention maps for object localization without relying on model- or task-specific design, we start with attention rollout (Abnar & Zuidema, 2020). Rollout aggregates attention weights across layers, revealing visual cues to which the MLLM attends when producing answers. Its applicability across attention-based MLLMs makes it a plausible approach to probing localization ability. However, since the rollout integrates signals from all heads, irrelevant regions and visual attention sinks often dominate, reducing the relative strength of object cues.

To overcome these limitations, we introduce *Decomposed Attention Fusion (DecAF)*. DecAF is designed to suppress noise and enhance object attention signals by decomposing and fusing attention maps in two key ways. First, *Contrastive Object-Background Fusion* combines the object and background attention maps through a simple subtraction. The object attention map is obtained with a prompt focusing on the target object, while the background attention map is derived from a contrastive prompt that excludes this object. This design effectively suppresses irrelevant activations and highlights the target object signal, as illustrated in Fig. 1 (a). Second, *Complementary Video-Frame Fusion* leverages the distinct strengths of video and frame attention in a multi-scale manner.

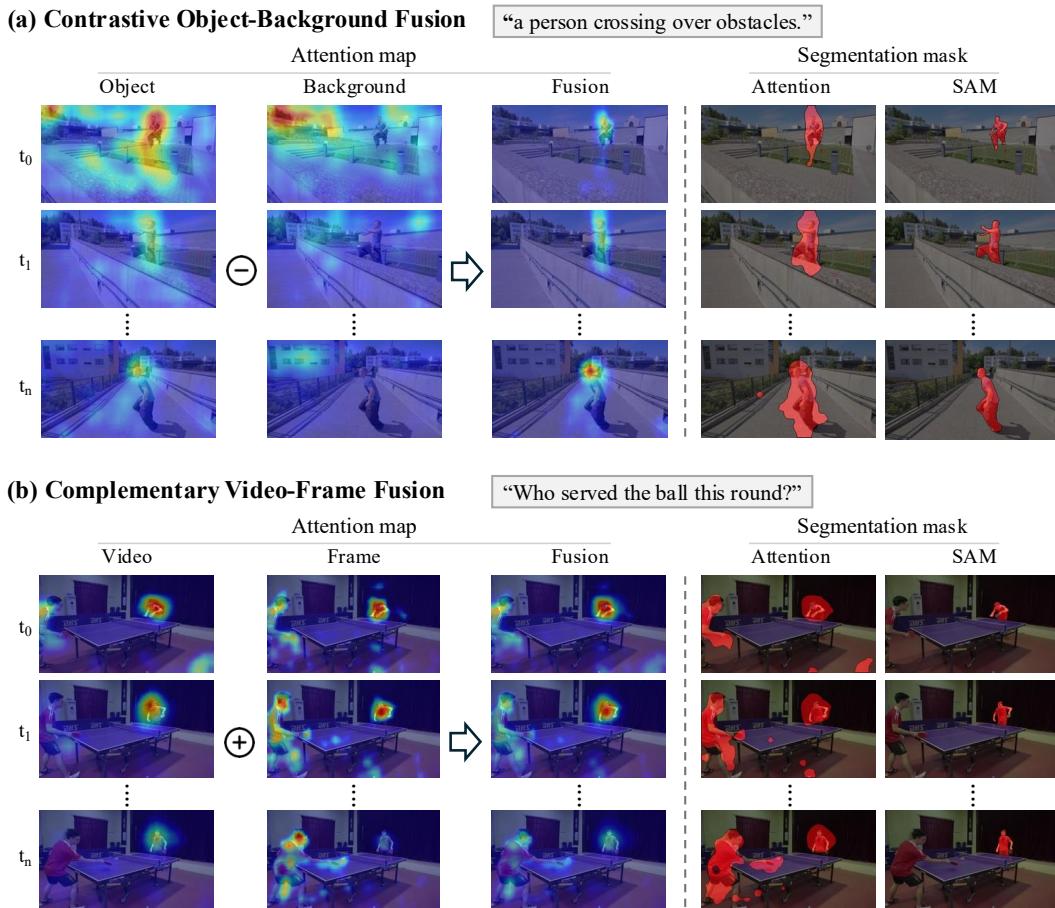


Figure 1: Visualization of our method. **(a)** Noise in irrelevant regions is suppressed by contrastive fusion with the background attention map. As shown in the first frame, background activations are removed, and the target object is emphasized. **(b)** Video attention map captures temporal cues, while frame attention map highlights object-centric details. Their fusion resolves conflicts (e.g., identifying the server vs. the hitting player) and produces more consistent localization. The attention mask is obtained directly from the attention map while the SAM mask is generated by SAM2.

Video attention captures temporal context, which is essential when the object is temporarily absent or requires temporal reasoning, but its coarse granularity limits performance on small objects. In contrast, frame attention provides object-centric, fine-grained cues but lacks temporal coherence. By combining these two attentions, this fusion maintains clearer object focus while also leveraging temporal context, resulting in more robust attention maps that accurately localize the target object across the video.

With the object localization attention map obtained from our two fusion methods, we first generate video object masks through simple thresholding, which provides reliable localization of the target object but remains coarse due to the low granularity of attention. To obtain denser masks, we extract point prompts from the attention map and apply SAM2 (Ravi et al., 2024). However, these coarse prompts, derived from spurious activations in the attention map, often produce false positives. To address this issue, we propose an attention consistency score that evaluates the alignment between the predicted mask and the underlying attention map, enabling unreliable segmentation masks to be filtered out. As shown in Fig. 1, this process transforms a noisy attention map into a precise and reliable segmentation mask.

We evaluate DecAF across three MLLM families and five datasets, including three referring VOS datasets (Khoreva et al., 2018; Seo et al., 2020; Ding et al., 2023) and two reasoning VOS datasets (Yan et al., 2024; Bai et al., 2024). DecAF consistently outperforms prior training-free approaches (Li et al., 2025; Kang et al., 2025a), both with and without SAM. In addition, the dense

108 video object masks achieve performance comparable to training-based methods (Lai et al., 2024;
 109 Yan et al., 2024; Bai et al., 2024; Lin et al., 2025; Gong et al., 2025b;a). These results highlight
 110 that decomposed attention fusion offers a simple and effective framework for training-free video
 111 reasoning segmentation.

112

113

114 2 RELATED WORK

115

116 **Multimodal Large Language Models.** LLMs demonstrate powerful reasoning and cognition cap-
 117 abilities (Brown et al., 2020; Dubey et al., 2024; Yang et al., 2024), leading to the development
 118 of MLLMs (Wang et al., 2024b; Google, 2024; Team, 2024; Liu et al., 2024). These models, built
 119 on the transformer architecture (Vaswani et al., 2017), rely on the attention mechanism. Due to the
 120 quadratic cost of attention, some MLLMs firstly compress video tokens into a fixed number of to-
 121 kens via a lightweight modules (Jin et al., 2024; Song et al., 2024; Maaz et al., 2024). However, this
 122 token compression inevitably sacrifices fine-grained spatial information, unlike LLaVA-style mod-
 123 els (Liu et al., 2023), which use a linear projector to preserve dense spatial features. More recently,
 124 Qwen2VL (Wang et al., 2024b) further advances this line by supporting native-resolution video in-
 125 puts, maintaining both aspect ratio and fine-grained visual details. In this work, we build on such
 126 models and focus on exploring the inherent localization ability of MLLMs.

127

128 **Text-conditioned Video Object Segmentation.** Early research on referring VOS (RVOS) focuses
 129 on localizing the target object from simple textual expressions, typically describing appearance.
 130 Datasets such as Ref-DAVIS (Khoreva et al., 2018) and Ref-YouTube-VOS (Seo et al., 2020) were
 131 designed for this setting and only cover single-object cases. More recently, MeViS (Ding et al.,
 132 2023) introduces motion-centric and more challenging scenarios, including cases where the referred
 133 object is absent or where multiple candidates match the expression.

134

135 With the advent of powerful MLLMs (Liu et al., 2023), video reasoning segmentation has emerged,
 136 targeting complex expressions that extend beyond appearance or motion cues and require reasoning
 137 over world knowledge and temporal context (Yan et al., 2024; Bai et al., 2024). To address this,
 138 existing approaches adapt pretrained MLLMs to RVOS via lightweight finetuning strategies such as
 139 LoRA (Hu et al., 2022), and integrate them with segmentation model such as SAM (Kirillov et al.,
 140 2023) for precise mask generation, often requiring full finetuning of the mask decoder (Gong et al.,
 141 2025b; Lin et al., 2025). In contrast, we leverage MLLMs and SAM in a training-free manner.

142

143 **Training-free Text-to-Visual Grounding with MLLMs.** Recently, MLLMs have been studied
 144 for training-free visual grounding tasks (Lin et al., 2024; Li et al., 2025; Kang et al., 2025a). VL-
 145 SAM (Lin et al., 2024) and TAM (Li et al., 2025) leverage the attention rollout mechanism (Abnar &
 146 Zuidema, 2020) to localize objects in images, with VL-SAM further refining the masks using SAM.
 147 Both methods identify all objects by enumerating categories during MLLM decoding. In contrast,
 148 Kang et al. (2025a) proposed a method that selects specific attention heads responsible for local-
 149 ization, enabling direct grounding of the object referred to by the given expression. However, this
 150 head-selection method shows poor generalization: attention heads identified on referring datasets
 151 transfer poorly and yield low accuracy on reasoning-intensive datasets.

152

153

3 METHODOLOGY

154

3.1 OVERVIEW

155

156

157

158

159

160

161

Given a video and a text instruction referring to an object, our framework produces segmentation
 masks of the target object(s). The pipeline consists of two stages. First, coarse segmentation masks
 are obtained from attention score maps computed in an MLLM. Second, fine-grained dense segmen-
 tation masks are generated using SAM conditioned on these attention maps. In the first stage, we
 propose Decoupled Attention Fusion (DecAF), illustrated in Fig. 2, which integrates contrastive and
 complementary fusion strategies with tailored prompting methods. To obtain the attention scores,
 we adopt attention rollout (Abnar & Zuidema, 2020) with a new normalization technique designed
 for MLLMs. In the second stage, we introduce a training-free SAM2 prompting pipeline guided
 by attention maps (Fig. 3). Point queries are first selected by thresholding the attention maps, and
 SAM2 generates mask tracklets for each query. These tracklets are then evaluated with the proposed

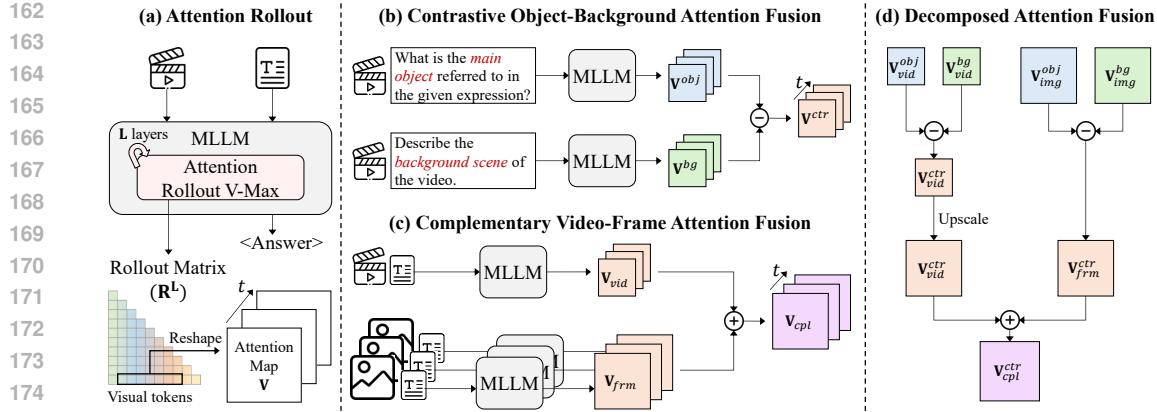


Figure 2: Overview of DecAF. **(a)** Attention rollout with our V-Max normalization produces a rollout matrix that accumulates attention across layers, from which visual-token scores for the final query token are extracted as attention maps for grounding. **(b)** Contrastive fusion suppresses attention scores on background regions. **(c)** Complementary fusion integrates video- and frame-level cues. **(d)** These fusion methods are combined into the full pipeline to refine noisy attention maps.

attention consistency score, which measures whether the predicted masks consistently overlap with high-attention regions across frames. The resulting scores are used to rank and tracklet candidates.

3.2 ATTENTION ROLLOUT WITH VISION-AWARE NORMALIZATION

We trace the influence of visual tokens on the model’s output by propagating attention scores through the transformer layers of MLLMs. To better capture language-conditioned grounding, we modify the standard attention rollout (Abnar & Zuidema, 2020) with a vision-aware normalization scheme.

Standard rollout. Given the attention tensor $\mathbf{A}^{(l)} \in \mathbb{R}^{h \times N \times N}$ from the l -th transformer layer, where h is the number of heads and N is the total number of tokens, the head-wise averaged attention matrix is computed as Eq. 1, and the residual connection is incorporated by adding the identity matrix as Eq. 2. This reflects that a token can either propagate its own representation through the skip connection or attend to other tokens via the attention mechanism. The rollout matrix is then recursively accumulated across layers as Eq. 3, starting from the initialization $\mathbf{R}^{(1)} = \hat{\mathbf{A}}^{(1)}$, and producing $\mathbf{R}^{(L)}$, which encodes how information flows from each token to every other token throughout the network.

$$\mathbf{A}^{(l)} = \frac{1}{h} \sum_{i=1}^h \mathbf{A}_i^{(l)}. \quad (1) \quad \hat{\mathbf{A}}^{(l)} = (\bar{\mathbf{A}}^{(l)} + \mathbf{I})/2. \quad (2) \quad \mathbf{R}^{(l)} = \hat{\mathbf{A}}^{(l)} \mathbf{R}^{(l-1)}. \quad (3)$$

Head-wise weighted aggregation. To reduce the effect of noisy heads, we assign a weight to each head based on the strength of its vision attention. For each layer l , let the original attention tensor before aggregation be denoted as $\mathbf{A}^{(l)} \in \mathbb{R}^{h \times N \times (N_v + N_t)}$, where N_v and N_t indicate the number of visual and textual tokens, respectively. From $\mathbf{A}^{(l)}$, the vision block is extracted: $\mathbf{A}_v^{(l)} \in \mathbb{R}^{h \times N \times N_v}$. The maximum value over the visual token dimension is then computed as:

$$\mathbf{m}^{(l)} = \max_{j=1}^{N_v} \mathbf{A}_v^{(l)}[:, :, j], \quad \mathbf{m}^{(l)} \in \mathbb{R}^{h \times N}. \quad (4)$$

Averaging $\mathbf{m}^{(l)}$ over the token dimension finally produces the head-wise weight vector, $\mathbf{w}^{(l)} \in \mathbb{R}^h$. The weights are normalized so that $\max_h(w_h^{(l)}) = 1$, and these normalized weights are used to aggregate the heads, resulting in the final attention weights $\hat{\mathbf{A}}^{(l)} \in \mathbb{R}^{N \times (N_v + N_t)}$.

3.3 DECOMPOSED ATTENTION FUSION

The attention rollout mechanism quantifies token-to-token influence. To perform text-conditioned video reasoning segmentation, we cast the task as video question answering, where the goal is to

216 identify a category of the object in a video referred to by the text instruction. We then exploit the
 217 rollout matrix values with the last token as query and visual tokens as keys, using them as attention
 218 scores that indicate how visual tokens contribute to answering the video QA, as shown in Fig. 2 (a).
 219

220 However, the rollout matrix aggregates signals across all heads and layers and is too noisy to serve
 221 directly as a segmentation score map. In addition to pervasive noise, we observe strong activations
 222 in irrelevant regions, known as the *visual attention sink* phenomenon. To address this, we introduce
 223 *Decomposed Attention Fusion* (DecAF) to obtain cleaner, object-focused attention maps. As shown
 224 in Fig. 2 (d), DecAF applies contrastive fusion within each modality (video and frame) in parallel,
 225 followed by complementary fusion after upscaling the video-level attention maps to match the
 226 frame-level size. The resulting attention maps are then converted into coarse segmentation masks
 227 via thresholding. Here, we explain with shortened prompts, but the full prompts are in the Appendix.
 228

229 **Contrastive Object–Background Attention Fusion.** A key challenge of using attention maps for
 230 segmentation is that irrelevant regions often receive very high scores, which cannot be suppressed by
 231 simple thresholding. Such *visual attention sinks* frequently appear regardless of the given instruc-
 232 tion. To address this issue, we introduce *contrastive fusion*, which contrasts attention maps obtained
 233 from object-focused and background-focused prompts. Subtracting background from object atten-
 234 tion effectively highlights the target region while suppressing spurious responses.
 235

236 The specific process follows Fig. 2 (b). The object attention map is obtained by prompting the model
 237 to identify the target object category from the referring expression using an object-focused prompt
 238 template, “*What is the main object referred to in the given expression?*” The rollout attention
 239 weights from this response form the positive map. For the background attention map, we first use a
 240 background-focused prompt such as “*Describe the background scene of the video.*” However, this
 241 may cause the target object to be mistakenly attended when it is not the main salient object but still
 242 appears in the background. To mitigate this, we additionally insert the identified category o_{name} into
 243 the template, to explicitly exclude the target object from the background attention map. The rollout
 244 attention map from this response serves as the negative map.
 245

246 Both object and background attention maps are reshaped into (T, H_p, W_p) , where T is the number of
 247 frames and (H_p, W_p) is the patch grid. Before fusion, Gaussian smoothing is applied to both maps
 248 to mitigate the sparsity of raw attention weights. The contrastive map, \mathbf{V}^{ctr} , is then computed by
 249 subtracting the background map from the object map, clamped to remove negative values. Finally,
 250 min–max normalization is applied to scale the values into the $[0, 1]$ range.
 251

252 **Complementary Video–Frame Attention Fusion.** The softmax operation in attention enforces that
 253 all token scores sum to one. With video inputs, this constraint spreads attention across a large number
 254 of tokens, yielding maps that are relatively sparse and shaped by temporal context. In contrast, with
 255 image inputs, attention is concentrated on fewer tokens and tends to emphasize object-centric spatial
 256 details. We therefore exploit these complementary properties of video- and frame-level attention
 257 maps to achieve more robust localization.
 258

259 As shown in Fig. 2 (c), we apply the identical attention rollout pipeline individually to the video
 260 and frame modalities, where each frame in the image modality is processed along the batch axis.
 261 This mixed-modality design introduces two modifications in the contrastive fusion step. (1) Since
 262 background prompting requires an object category, we select a single prediction by aggregating out-
 263 puts from both video- and frame-level inputs with object category choice prompt. (2) For min–max
 264 normalization, we normalize frame-level maps independently per frame, while video-level maps are
 265 normalized globally across all frames. Finally, the two sets of maps are fused by simple aver-
 266 aging, combining the global temporal context of video attention with the spatial precision of frame
 267 attention.
 268

269 Our video–frame decoupled prompting enables multi-scale processing, allowing higher-resolution
 270 inputs to be used for frame attention. Recent MLLMs, such as InternVL and LLaVA-NeXT, support
 271 dynamic image resolutions via tiling, whereas video inputs remain constrained to lower resolutions
 272 (e.g., 448). In contrast, QwenVL supports native resolutions for both video and image; in this case,
 273 we simply double the width and height for image inputs. To align modalities, low-res video attention
 274 maps are upsampled to match the frame-level resolution before fusion.
 275

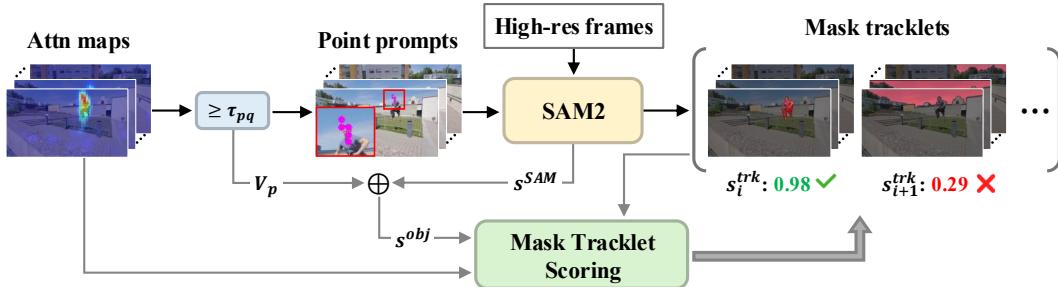


Figure 3: Overview of our SAM prompting pipeline with attention maps. (1) Point queries for SAM2 are obtained from attention maps via thresholding (τ_{pq}). (2) During mask propagation, highly overlapping masks are removed. (3) Spurious mask tracklets are removed using our scoring method.

3.4 SAM2 PROMPTING WITH ATTENTION MAPS

After DecAF process, we obtain the spatio-temporal attention maps, $\mathbf{V} \in \mathbb{R}^{T_s \times H_p \times W_p}$, where T_s is the number of sampled frames and (H_p, W_p) is spatial resolution of visual token grid. Since this resolution is coarse, we introduce a method to prompt SAM2 using the attention maps to produce fine-grained object masks, $\hat{\mathbf{M}} \in \mathbb{R}^{T \times H \times W}$. Here, we use full frames at high-resolution, rather than the sampled frames used in the MLLM. The overall pipeline is illustrated in Fig. 3.

Point Query Generation. Since SAM requires spatial prompts, we generate point queries directly from attention maps to guide object mask prediction. We select visual tokens with attention scores above a threshold τ_{pq} and use their center coordinates as point queries. The set of point queries is defined as in Eq. 5, where o_x and o_y denote half the token width and height, respectively, ensuring that each point corresponds to the token center.

$$\mathcal{P} = \{p = (t, y + o_y, x + o_x) \mid \mathbf{V}_{t,y,x} \geq \tau_{pq}\}. \quad (5)$$

Frame-wise Prompting and Propagation. Starting from the first frame, the point queries are fed sequentially to SAM2 which produces frame-level masks and propagates them through subsequent frames. This process generates a video mask for each point query (p_i), denoted as $\mathbf{M}_i \in \mathbb{R}^{T_s \times H \times W}$, together with its confidence score, s_i^{SAM} , predicted by SAM2.

Naive thresholding may generate a large number of redundant masks. To reduce computation, we assign an object score $s_i^{\text{obj}} = \mathbf{V}_{p_i} + s_i^{\text{SAM}}$ for each predicted mask, where \mathbf{V}_{p_i} is attention score of p_i . We then apply non-maximum suppression (NMS) using this object score. Two masks are considered overlapping if their IoU exceeds a threshold (e.g., 0.7), and the one with the lower score is removed. If a propagated mask from previous frames highly overlaps with a new mask in the current frame, we retain only the one with the higher object score. Through this process, we obtain K video mask tracklets, where $K \ll |\mathcal{P}|$, effectively reducing redundancy while keeping high-quality candidates.

Mask Tracklet Scoring and Selection. Since attention maps are at low resolution, point queries are not spatially precise and may fall on background regions. Nevertheless, SAM often produces high-confidence masks from such queries (e.g., walls), leading to false positives. To suppress these cases, we evaluate each mask tracklet using an attention consistency score (s_i^{ac}), which measures whether the mask consistently overlaps with high-attention regions across frames.

For each tracklet i , we then compute a combined tracklet score, $s_i^{\text{trk}} = \text{Avg}(\mathbf{V}_{p_i}, s_i^{\text{SAM}}, s_i^{\text{ac}})$. Tracklets with $s_i^{\text{trk}} \geq \tau_{\text{trk}}$ are retained and propagated across all video frames via SAM2 to generate the final dense segmentation masks. This procedure naturally supports both single-object and multi-object localization by treating each high-confidence query as an independent object hypothesis.

The computation of s_i^{ac} is as follows. First, we obtain a binary mask for each frame by thresholding the attention map at its mean score μ_t (Eq. 6). Second, we assign the negative maximum attention score per frame, $\delta_t = -\max(\mathbf{V}_{t,:,:})$, to regions below μ_t , (Eq. 7), penalizing low-attention areas. Finally, each mask tracklet is downsampled to the attention map resolution, $\tilde{\mathbf{M}}_i \in \mathbb{R}^{T_s \times H_p \times W_p}$, and s_i^{ac} is computed as a ratio of inner products (Eq. 8), where $\langle \cdot, \cdot \rangle$ denotes the tensor inner product.

$$\mathbf{M}_{\text{Attn}} = \begin{cases} 1, & \mathbf{V}_{t,y,x} \geq \mu_t, \\ 0, & \text{otherwise.} \end{cases} \quad (6) \quad \hat{\mathbf{V}}_{t,y,x} = \begin{cases} \mathbf{V}_{t,y,x}, & \mathbf{V}_{t,y,x} \geq \mu_t, \\ \delta_t, & \text{otherwise.} \end{cases} \quad (7) \quad s_i^{\text{ac}} = \frac{\langle \tilde{\mathbf{M}}_i, \hat{\mathbf{V}} \rangle}{\langle \mathbf{M}_{\text{Attn}}, \hat{\mathbf{V}} \rangle} \quad (8)$$

324 Table 1: Comparison of MLLM-based text-conditioned VOS methods that directly compute masks
325 from attention maps (Attn Mask). All methods are training-free and grouped by MLLM.

326 Method	327 MLLM	Ref-DAVIS			ReasonVOS			ReVOS (Overall)			ReVOS (Referring)			ReVOS (Reasoning)		
		$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}												
328 Loc-Head [CVPR'25]	329 LLaVA-7B	18.9	23.2	14.5	12.2	14.1	10.2	12.6	15.0	10.2	14.1	17.4	10.8	11.1	12.7	9.5
330 Loc-Head [CVPR'25]	331 LLaVA-OV-7B	15.9	14.1	17.7	12.3	11.2	13.4	13.1	12.0	14.3	14.9	13.8	16.0	11.4	10.3	12.5
332 DecAF [Ours]	333 LLaVA-OV-7B	21.6	24.0	19.1	17.2	19.4	15.0	15.6	17.6	13.7	16.9	19.5	14.4	14.3	15.6	12.9
334 Loc-Head [CVPR'25]	335 InternVL3-8B	19.0	24.1	14.0	14.1	15.6	12.6	14.6	16.8	12.4	16.5	19.3	13.7	12.7	14.2	11.1
336 DecAF [Ours]	337 InternVL3-8B	20.7	26.0	15.3	18.4	21.8	14.9	16.7	20.4	13.0	18.2	22.5	13.9	15.2	18.3	12.1
TAM [ICCV'25]	Qwen2VL-7B	2.5	1.8	3.3	2.8	2.8	2.9	2.8	2.9	2.6	2.9	3.1	2.7	2.7	2.8	2.6
Loc-Head [CVPR'25]	Qwen2VL-7B	18.8	23.8	13.8	9.0	11.1	6.8	13.2	17.5	8.9	16.5	22.2	10.7	10.0	12.9	7.2
DecAF [Ours]	Qwen2VL-7B	20.0	24.8	15.2	13.8	17.5	10.0	15.2	19.8	10.7	17.5	23.2	11.8	13.0	16.4	9.6
TAM [ICCV'25]	Qwen2.5VL-7B	3.5	2.8	4.3	3.7	3.4	3.9	4.0	4.0	4.0	4.1	4.1	4.1	3.8	3.8	3.8
Loc-Head [CVPR'25]	Qwen2.5VL-7B	19.1	24.2	14.0	10.7	13.1	8.3	14.1	18.6	9.6	16.9	22.7	11.0	11.4	14.5	8.3
DecAF [Ours]	Qwen2.5VL-7B	25.3	32.0	18.6	20.6	26.0	15.3	20.2	26.0	14.5	22.1	28.8	15.4	18.3	23.1	13.5

338 Table 2: Comparison of MLLM-based text-conditioned VOS methods. The upper gray rows correspond to training-based methods, while the lower colored rows correspond to training-free methods.

340 Method	341 MLLM	Ref-DAVIS			ReasonVOS			ReVOS (Overall)			ReVOS (Referring)			ReVOS (Reasoning)		
		$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}												
LISA [CVPR'24]	LLaVA-7B	64.8	62.2	67.3	31.1	29.1	33.1	40.9	39.1	42.7	45.7	44.3	47.1	36.1	33.8	38.4
VISA [ECCV'24]	ChatUniVi-7B	69.4	66.3	72.5	-	-	-	46.9	44.9	49.0	50.9	49.2	52.6	43.0	40.6	45.4
VideoLISA [NeurIPS'24]	LLaVA-Phi-3-V	68.8	64.9	72.7	47.5	45.1	49.9	-	-	-	-	-	-	-	-	-
GLUS [CVPR'25]	LLaVA-7B	-	-	-	49.9	47.5	52.4	54.9	52.4	57.3	58.3	56.0	60.7	51.4	48.8	53.9
VRS-HQ [CVPR'25]	ChatUniVi-7B	76.0	72.6	79.4	54.9	52.6	57.3	59.1	56.6	61.6	62.1	59.8	64.5	56.1	53.5	58.7
Veason-R1 [arxiv'25.08]	Qwen2.5VL-7B	-	-	-	59.9	56.0	63.8	61.3	58.2	64.4	63.6	60.7	66.5	59.0	55.8	62.2
Loc-Head [CVPR'25]	LLaVA-7B	55.6	51.5	59.6	37.1	32.9	41.4	35.3	31.1	39.6	39.2	35.0	43.4	31.5	27.2	35.7
Loc-Head [CVPR'25]	LLaVA-OV-7B	24.2	21.3	27.1	32.6	29.7	35.4	31.7	28.3	35.1	32.8	29.2	36.5	30.6	27.4	33.7
DecAF [Ours]	LLaVA-OV-7B	59.4	54.8	64.0	52.8	49.3	56.3	40.0	35.8	44.1	43.4	39.1	47.6	36.6	32.6	40.7
Loc-Head [CVPR'25]	InternVL3-8B	66.3	62.4	70.2	44.3	41.0	47.5	43.7	39.9	47.5	46.7	42.9	50.6	40.7	36.9	44.5
DecAF [Ours]	InternVL3-8B	62.8	56.9	68.6	58.9	55.1	62.7	47.4	43.7	51.2	51.7	47.9	55.5	43.2	39.5	46.8
Loc-Head [CVPR'25]	Qwen2VL-7B	61.9	58.0	65.8	34.0	31.8	36.2	44.0	40.8	47.2	52.7	49.1	56.2	35.4	32.6	38.2
DecAF [Ours]	Qwen2VL-7B	64.1	59.4	68.9	52.5	49.0	56.0	45.3	41.6	49.0	52.7	48.9	56.4	37.9	34.3	41.5
Loc-Head [CVPR'25]	Qwen2.5VL-7B	64.6	60.2	68.9	41.1	37.9	44.3	47.0	43.3	50.7	53.1	49.3	56.9	40.8	37.2	44.4
DecAF [Ours]	Qwen2.5VL-7B	75.2	70.9	79.5	63.9	54.2	60.5	58.7	54.8	62.6	49.7	45.4	53.9			

Table 3: Comparison on additional datasets.

355 Method	356 MLLM	MeViS			Ref-YTVOS		
		$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
VISA [ECCV'24]	ChatUniVi-7B	44.5	41.8	47.1	61.5	59.8	63.2
VideoLISA [NeurIPS'24]	LLaVA-Phi-3-V	44.4	41.3	47.6	63.7	61.7	65.7
GLUS [CVPR'25]	LLaVA-7B	51.3	48.5	54.2	67.3	65.5	69.0
VRS-HQ [CVPR'25]	ChatUniVi-7B	50.6	47.6	53.7	70.4	68.3	72.5
Veason-R1 [arxiv'25.08]	Qwen2.5VL-7B	52.2	48.4	56.0	-	-	-
Loc-Head [CVPR'25]	Qwen2.5VL-7B	39.4	35.2	43.6	51.0	46.8	55.2
DecAF [Ours]	Qwen2.5VL-7B	48.1	44.0	52.1	59.9	56.2	63.5

4 EXPERIMENTS

4.1 EVALUATION SETTING

Datasets and Evaluation Metrics. We evaluate our method on three referring VOS datasets: Ref-DAVIS (Khoreva et al., 2018), Ref-YouTube-VOS (Seo et al., 2020), and MeViS (Ding et al., 2023). In addition, we validate it on two reasoning VOS datasets: ReasonVOS (Bai et al., 2024) and ReVOS (Yan et al., 2024). Note that ReasonVOS provides only a test set and is used for zero-shot evaluation, whereas the other datasets include training data. For evaluation, we employ the standard VOS metrics: region similarity (\mathcal{J}), contour accuracy (\mathcal{F}), and their mean ($\mathcal{J} \& \mathcal{F}$).

Implementation Details. For mask generation directly from attention maps, we apply Otsu's adaptive thresholding method (Otsu et al., 1975). By default, attention rollout starts from the middle LLM layer (e.g., 14 for 28 layers of Qwen2.5VL-7B), and SAM prompting threshold values of $\tau_{trk} = 0.8$ and $\tau_{pq} = 0.8$. We use publicly released MLLM checkpoints and the SAM2-hiera-large.

378 Table 4: Ablation study of decomposed attention fusion.
379

			(a) Object-background contrasting				(b) Video-frame complementing				(c) Multi-scale complementing				
380 MLLM	Obj	Bg	Attn Mask		SAM Mask		381 MLLM	Vid	Frm	Ref-D	ReasV	382 MLLM	MS	Ref-D	ReasV
			Ref-D	ReasV	Ref-D	ReasV									
383 IVL3	✓		12.4	13.2	50.8	54.7	384 IVL3	✓		46.0	50.2	385 IVL3	✓	54.0	53.7
	✓	✓	20.7	18.4	62.8	58.9		✓	✓	62.8	58.9		✓	62.8	58.9
384 QVL2.5	✓		14.5	13.8	61.9	58.4	385 QVL2.5	✓		65.9	58.6		✓	72.4	60.5
	✓	✓	25.3	20.6	75.2	63.9		✓	✓	75.2	63.9		✓	75.2	63.9

386
387 4.2 COMPARISON WITH EXISTING METHODS USING MLLMs
388

389 **Mask without SAM.** We evaluate segmentation masks obtained directly from MLLM attention
390 maps using simple upscaling and thresholding, and compare them with existing methods in Tab. 1.
391 Uniformly sampled 16 frames are used here. TAM (Li et al., 2025) performs poorly due to its
392 strong dependence on predicted word tokens, making it unable to reliably ground expressions under
393 our object-focused prompt. Further analysis of TAM’s failure cases is provided in the Appendix.
394 Loc-Head (Kang et al., 2025a) is also designed for text-conditioned segmentation, but operates
395 in the image domain. Our method consistently outperforms Loc-Head across different MLLMs
396 and datasets, with especially large margins on datasets require complex reasoning. This suggests
397 that our method generalizes more effectively to reasoning-intensive scenarios, whereas localization
398 heads rely on heuristic head selection and thus exhibit limited robustness.

399 Despite these relative improvements, attention maps remain very low resolution, and the resulting
400 scores are still below those of conventional segmentation models. In particular, contour accuracy (\mathcal{F})
401 is much lower than region similarity (\mathcal{J}), reflecting the inability of low-resolution attention maps
402 to capture fine-grained boundaries – opposite to the trend observed in segmentation-specialized
403 models. These findings suggest that attention masks alone are too coarse for precise segmentation,
404 but they provide a sufficient coarse localization signal to guide SAM prompting (Ravi et al., 2024).

405 **Mask with SAM.** We evaluate dense segmentation masks for all video frames using SAM2, and
406 report the results in Tabs. 2 and 3, including both training-based and training-free methods. Loc-Head
407 proposes its own SAM prompting method, but it is developed under a single-object assumption:
408 the largest bounding box (bbox) is obtained using the convex hull algorithm. Also, prompting with
409 an imprecise bbox may result in segmenting non-target objects. On Ref-DAVIS with LLaVA-7B,
410 Loc-Head’s bbox prompting achieves 30.3, whereas our prompting achieves 55.6. This large gap
411 highlights the advantage of our prompting method; thus, we adopt for all subsequent comparisons.

412 In regards to training-free methods, our method outperforms Loc-Head across different MLLMs and
413 datasets, including the additionally presented MeViS and Ref-YTVOS (Tab. 3). Although Loc-Head
414 achieves slightly higher scores on Ref-DAVIS with InternVL3-8B, its performance drops substantially
415 on ReasonVOS, which requires handling more complex expressions.

416 Compared with training-based methods, our method achieves comparable or even superior perfor-
417 mance. On Ref-DAVIS, our method with Qwen2.5VL-7B outperforms VISA and VideoLISA by
418 5.8 and 6.4 \mathcal{J} & \mathcal{F} , respectively. On MeViS, our method achieves 48.1, outperforming both VISA
419 (44.5) and VideoLISA (44.4), and reaching performance close to VRS-HQ (50.6). It is worth noting
420 that recent state-of-the-art models (GLUS, VRS-HQ, Veason-R1) leverage trained keyframe selec-
421 tion modules, whereas our method simply employs uniform sampling. Even with this difference,
422 our approach surpasses all training-based methods on ReasonVOS, despite Veason-R1 additionally
423 training the same MLLM (Qwen2.5VL) with an RL-based algorithm. This clearly manifests the
424 effectiveness of our method.

425 4.3 ABLATION STUDY

426 We use Qwen2.5-VL-7B (QVL2.5) and InternVL3-8B (IVL3) as models, and Ref-DAVIS (Ref-D)
427 and ReasonVOS (ReasV) as datasets. By default, results are reported with QVL2.5 and \mathcal{J} & \mathcal{F} .

428 **Decoupled Attention Fusion.** We evaluate the effectiveness of DecAF. First, we examine object-
429 background contrastive fusion (Tab. 4a), which substantially improves attention mask accuracy on
430 both referring and reasoning VOS datasets (e.g., 12.4 → 20.7 and 14.5 → 25.3 on Ref-D) by sup-
431 pressing the irrelevant regions. Similar improvements are also observed for SAM mask accuracy.

432
433
Table 5: Ablation study of attention rollout.
(a) Rollout method

Method	Ref-D	ReasV
Rollout (Abnar & Zuidema, 2020)	68.4	56.8
Rollout Max (Lin et al., 2024)	72.9	60.9
Rollout V-Max (Ours)	75.2	63.9
(b) Starting LLM layer for rollout		
Layer index	Qwen2.5VL-7B	InternVL3-8B
	Ref-D	ReasV
7 (1/4)	69.2	62.8
14 (2/4)	75.2	63.9
21 (3/4)	73.6	64.1
	55.8	60.1

434
435
436
437
Table 6: SAM prompt-
ing threshold values.

τ_{trk}	τ_{pq}	Ref-D	ReasV
0.7	0.7	71.0	59.9
0.7	0.8	75.0	62.1
0.7	0.9	74.3	65.7
0.8	0.7	70.6	61.1
0.8	0.8	75.2	63.9
0.8	0.9	74.3	65.9
0.9	0.7	71.6	61.7
0.9	0.8	74.5	64.9
0.9	0.9	74.2	66.4

438
439
440
441
442
443
Table 7: Ablation study of
computing attention consistency score (s^{ac}).

Thresh (μ)	Penalty (δ)	Ref-D	ReasV
Not Use		60.0	52.9
Otsu		68.3	59.6
Otsu	✓	67.9	61.1
Mean		65.1	56.0
Mean	✓	75.2	63.9

444
445
446
447
448
449
450
451
452
453
454
Table 8: Evaluation on other sizes of MLLMs.

MLLM	Size	Ref-DAVIS			ReasonVOS			ReVOS (Overall)			ReVOS (Referring)			ReVOS (Reasoning)		
		$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}												
InternVL3	2B	53.5	48.1	58.9	54.1	50.7	57.6	38.1	34.0	42.2	42.3	38.2	46.5	33.9	29.9	38.0
	8B	62.8	56.9	68.6	58.9	55.1	62.7	47.4	43.7	51.2	51.7	47.9	55.5	43.2	39.5	46.8
	14B	63.3	58.3	68.4	65.6	62.2	68.9	47.0	43.0	51.0	51.3	47.2	55.4	42.7	38.8	46.6
Qwen2VL	2B	41.8	37.1	46.6	47.6	44.4	50.8	30.2	26.4	34.0	37.1	33.0	41.2	23.3	19.8	26.8
	7B	64.1	59.4	68.9	52.5	49.0	56.0	45.3	41.6	49.0	52.7	48.9	56.4	37.9	34.3	41.5
Qwen2.5VL	3B	58.1	53.6	62.6	52.9	49.6	56.2	39.7	35.6	43.8	46.5	42.1	50.9	32.9	29.1	36.7
	7B	75.2	70.9	79.5	63.9	60.5	67.2	54.2	50.1	58.2	58.7	54.8	62.6	49.7	45.4	53.9

455
456
457
458 Second, video-frame complementary fusion (Tab. 4b) further enhances accuracy. For Qwen2.5VL,
459 video-only and frame-only inputs yield 65.9 and 67.4 on Ref-D, respectively, whereas combining
460 both achieves 75.2. Consistent gains are also observed on ReasV and with InternVL3.

461 For video-frame fusion, we adopt a multi-scale scheme that leverages higher resolution inputs at
462 the frame level. While Qwen2.5VL supports native resolutions, InternVL and LLaVA-OV models
463 require a fixed input size but can handle dynamic high resolution image inputs through tiling. As
464 shown in Tab. 4c, this multi-scale fusion brings additional improvements, particularly for InternVL,
465 whose attention map resolution is very low without tiling.

466 **Attention Rollout.** Tab. 5a compares our method with previous attention rollout methods. Our
467 vision-aware head-weighted normalization further improves accuracy over the method of Lin et al.
468 (2024). We also evaluate different LLM layers for rollout (Tab. 5b), and observe that selecting a
469 middle layer yields the best overall performance.

470 **SAM Prompting.** Tab. 6 reports the results with different threshold values to filter point queries
471 (τ_{pq}) and tracklets (τ_{trk}) used in the SAM prompting process. Increasing τ_{pq} helps filter out non-
472 target objects or background regions, but a too high value may result in missing points. While the
473 optimal threshold combination varies across datasets, our method remains substantially robust to
474 threshold choices, and we use $\tau_{pq} = 0.8$ and $\tau_{trk} = 0.8$ across all datasets and models.

475 **Mask Tracklet Scoring.** As shown in Tab. 7, we ablate the attention consistency score (s^{ac}), which
476 contributes to the mask tracklet score (s^{trk}). Omitting s^{ac} and relying only on the object score
477 s^{obj} leads to a significant accuracy drop. For \mathbf{M}^{Attn} , we compare Otsu thresholding and simple
478 averaging to obtain μ , and for $\hat{\mathbf{V}}$, we evaluate both with and without the penalty term (δ). Without
479 δ , Otsu thresholding yields higher accuracy than mean thresholding, as it produces tighter object
480 masks. In contrast, with δ , mean thresholding performs better, as it tends to cover the entire object
481 region, while any included background has low attention scores and low s^{ac} .

482 **MLLM Scalability.** Tab. 8 shows that larger MLLMs generally yield better performance. InternVL3 improves from 53.5 to 63.3 on Ref-D and 54.1 → 65.6 on ReasV while Qwen2.5VL also scales effectively, with its 7B model achieving the best results across all datasets.

483
484
485 **Qualitative Results.** Due to space limitations, qualitative results are provided in the Appendix.

486 5 CONCLUSION
487

488 We explore the intrinsic localization ability of MLLMs by casting video reasoning segmentation as
489 video QA. Based on the attention rollout, we materialize the influence of visual tokens as attention
490 maps, which can be converted into coarse segmentation masks via thresholding. To suppress noise,
491 we propose decoupled attention fusion method and introduce an attention-guided SAM2 prompting
492 pipeline that produces fine-grained masks in a training-free manner.

494 REFERENCES
495

496 Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In *Proceedings of*
497 *the Association for Computational Linguistics (ACL)*, 2020.

498 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
499 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
500 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
501 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
502 *preprint arXiv:2502.13923*, 2025.

503 Zechen Bai, Tong He, Haiyang Mei, Pichao Wang, Ziteng Gao, Joya Chen, Lei Liu, Zheng Zhang,
504 and Mike Zheng Shou. One token to seg them all: Language instructed reasoning segmentation in
505 videos. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

506 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
507 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
508 few-shot learners. *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*,
509 33:1877–1901, 2020.

510 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
511 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
512 for generic visual-linguistic tasks. In *Proceedings of IEEE Conference on Computer Vision and*
513 *Pattern Recognition (CVPR)*, pp. 24185–24198, 2024.

514 Henghui Ding, Chang Liu, Shuting He, Xudong Jiang, and Chen Change Loy. Mevis: A large-scale
515 benchmark for video segmentation with motion expressions. In *Proceedings of International*
516 *Conference on Computer Vision (ICCV)*, pp. 2694–2703, 2023.

517 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
518 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
519 *arXiv preprint arXiv:2407.21783*, 2024.

520 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
521 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive eval-
522 uation benchmark of multi-modal llms in video analysis. In *Proceedings of IEEE Conference on*
523 *Computer Vision and Pattern Recognition (CVPR)*, pp. 24108–24118, 2025.

524 Sitong Gong, Lu Zhang, Yunzhi Zhuge, Xu Jia, Pingping Zhang, and Huchuan Lu. Reinforcing
525 video reasoning segmentation to think before it segments, 2025a. URL <https://arxiv.org/abs/2508.11538>.

526 Sitong Gong, Yunzhi Zhuge, Lu Zhang, Zongxin Yang, Pingping Zhang, and Huchuan Lu. The
527 devil is in temporal token: High quality video reasoning segmentation. In *Proceedings of IEEE*
528 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025b.

529 Gemini Team Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
530 of context. *arXiv preprint arXiv:2403.05530*, 2024.

531 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
532 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *Proceed-
533 ings of International Conference on Learning Representations (ICLR)*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

540 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univ: Unified visual
 541 representation empowers large language models with image and video understanding. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13700–13710,
 542 2024.

543

544 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. Your large vision-language model
 545 only needs a few attention heads for visual grounding. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9339–9350, June 2025a.

546

547 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
 548 attention sink in large multimodal models. *arXiv preprint arXiv:2503.03321*, 2025b.

549

550 Anna Khoreva, Anna Rohrbach, and Bernt Schiele. Video object segmentation with language referring
 551 expressions. In *Proceedings of Asian Conference on Computer Vision (ACCV)*, pp. 123–141. Springer, 2018.

552

553 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 554 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of International Conference on Computer Vision (ICCV)*, pp. 4015–4026, 2023.

555

556 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
 557 segmentation via large language model. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9579–9589, June 2024.

558

559 Yi Li, Hualiang Wang, Xinpeng Ding, Haonan Wang, and Xiaomeng Li. Token activation map
 560 to visually explain multimodal llms. In *Proceedings of International Conference on Computer Vision (ICCV)*, 2025.

561

562 Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
 563 visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*, 2023.

564

565 Lang Lin, Xueyang Yu, Ziqi Pang, and Yu-Xiong Wang. Glus: Global-local reasoning unified into
 566 a single large language model for video segmentation. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

567

568 Zhiwei Lin, Yongtao Wang, and Zhi Tang. Training-free open-ended object detection and segmentation
 569 via attention as prompts. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

570

571 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 36, 2023.

572

573 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 574 tuning. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 26296–26306, 2024.

575

576 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 577 Towards detailed video understanding via large vision and language models. In *Proceedings of the Association for Computational Linguistics (ACL)*, 2024.

578

579 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic benchmark
 580 for very long-form video language understanding. *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 36:46212–46244, 2023.

581

582 Nobuyuki Otsu et al. A threshold selection method from gray-level histograms. *Automatica*, 11
 583 (285–296):23–27, 1975.

584

585 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 586 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 587 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 588 Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024. URL <https://arxiv.org/abs/2408.00714>.

589

594 Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos: Unified referring video object segmenta-
 595 tion network with a large-scale benchmark. In *Proceedings of European Conference on Computer*
 596 *Vision (ECCV)*, pp. 208–223. Springer, 2020.

597

598 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 599 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
 600 long video understanding. In *Proceedings of IEEE Conference on Computer Vision and Pattern*
 601 *Recognition (CVPR)*, pp. 18221–18232, 2024.

602 OpenAI Team. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.

603

604 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 605 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Proceedings of Advances in*
 606 *Neural Information Processing Systems (NeurIPS)*, 30, 2017.

607 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 608 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 609 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 610 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

611 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 612 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 613 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

614

615 Cilin Yan, Haochen Wang, Shilin Yan, Xiaolong Jiang, Yao Hu, Guoliang Kang, Weidi Xie, and
 616 Efstratios Gavves. Visa: Reasoning video object segmentation via large language models. In
 617 *Proceedings of European Conference on Computer Vision (ECCV)*, 2024.

618 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 619 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint*
 620 *arXiv:2407.10671*, 2024.

621

622 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu,
 623 and Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024. URL
 624 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX

649

650

651 A USE OF LARGE LANGUAGE MODELS

652

653 We utilized GPT for polishing our manuscript. Our usage is only limited to refining and grammar
654 check of our own written draft.

655

656

657 B PROMPT TEMPLATES

658

659 We describe here the prompts used to obtain object and background attention maps in Contrastive
660 Object-Background Fusion.661 **Object-focused Prompt.** The object attention map is obtained from the attention weights produced
662 when the MLLM answers a prompt about the target object category referred to in the given expres-
663 sion. The prompt template is shown below:

664

665

```
{Expression}
What is the main object (or objects) referred to in the given
expression or question?
Focus on the **primary subject or agent** involved in the described
action or behavior.
Respond with a single word (e.g., 'cat', 'person', 'dog') that best
describes the target object(s).
```

672

673 **Background-focused Prompt.** In contrast, the background attention map is derived from the atten-
674 tion weights produced when the MLLM responds to a prompt that asks it to describe the background,
675 excluding the target object category, in a single word or short phrase. The prompt template is shown
676 below:

677

```
Describe the background scene of the video, excluding any {Object
category}.
Answer the question using a single word or phrase.
```

680

681 **Object Category Choice Prompt.** The quality of this contrastive fusion relies on the correctness of
682 the object category. To ensure robust category selection, we first gather category predictions from
683 both video-level and frame-level inputs and then confirm the final target category through an explicit
684 query. The prompt template is shown below:

685

686 Here is the prompt template:

687

688

689

690

691

692

693

694

695

696

697

698

```
Given:
- Expression: {Expression}
- Candidate object class list: {Object category list}
Goal: Identify the object class referred to by the expression.
Instructions:
1. If the expression is **clear**, rely on it directly (e.g., 'a
person driving a car' → 'person').
2. If the expression is **vague**, use the object class list to
support your decision (e.g., check frequency and plausibility).
3. Avoid defaulting to the most frequent class unless the expression
lacks clarity.
Output the most likely referred object class - just the label.
```

699

700

701

702 The final object category is used to construct the background-focused prompts when obtaining
703 video- and frame-level background attention maps. Importantly, the same set of prompt templates
704 was applied across all MLLMs and datasets without any dataset-specific or model-specific modifi-
705 cations.

Figure 4: Analysis of TAM’s failure cases

C MORE DETAILS ABOUT PREVIOUS METHODS

TAM. TAM (Li et al., 2025) exhibits strong sensitivity to the predicted word tokens. As shown in Fig. 4 (a), when the model predicts the token “bike”, the resulting attention map is largely misaligned with the target object. In Fig. 4 (b), when the expression is changed to a black bicycle, the word bicycle is split into two tokens, and the first token “b” again shows severe misalignment. In contrast, Fig. 4 (c) displays the attention map for the second token “icycle”, which provides a relatively better alignment with the target object. These examples demonstrate that TAM’s localization is highly unstable and depends heavily on how object words are generated and tokenized.

Moreover, decoding object or background categories typically spans multiple tokens, and the original evaluation protocol reports the best-performing token (*i.e.*, the highest IoU among the predicted tokens) for each class. Such an evaluation overstates performance, underscoring TAM’s lack of robustness in practical scenarios.

Loc-Head. Loc-Head (Kang et al., 2025a) was originally proposed in the image domain, where attention maps from MLLMs are used to segment the target object referred to by a given expression in a training-free manner. The method consists of two stages: first, identifying localization heads and then generating object masks using the attention weights from these heads.

In reproducing this method, we observed two major limitations. First, the procedure for discovering localization heads relies on sampling 1,000 image–text pairs from RefCOCO. While heads discovered from RefCOCO yielded reasonable performance when evaluated on video datasets, re-discovering heads from samples drawn directly from video datasets led to a substantial drop in performance. For example, the Attn-mask (\mathcal{J}) score decreased from 24.2 \rightarrow 19.2 on Ref-DAVIS (Khoreva et al., 2018) and from 18.6 \rightarrow 4.2 on ReVOS (Yan et al., 2024). Consequently, all experiments in our reproduction used the RefCOCO-discovered heads across datasets. Second, the head-selection process includes a heuristic that excludes heads strongly attending to the bottom row to prevent the visual attention sink phenomenon. We found that this heuristic does not generalize across all models. For example, on Qwen2VL, applying the original heuristic resulted in a score of 0.0 because the attention tended to concentrate in the right-most column rather than the bottom

756 row. After adapting the rule to exclude heads that strongly attend to the right-most column, the Attn-
 757 mask J improved to 23.8. Similarly, for InternVL3, enabling tiling during head discovery degraded
 758 performance, indicating further sensitivity to preprocessing choices. These results suggest that the
 759 Loc-Head procedure does not generalize reliably across either models or datasets.

760 A second issue arises in producing dense segmentation masks. In Loc-Head, the attention map is
 761 first binarized using the mean attention score as a threshold, after which the largest convex hull
 762 algorithm is applied to extract a bounding box. This bounding box is then used as a prompt to SAM
 763 for generating a dense mask. However, because the attention map is coarse, the resulting bounding
 764 boxes are often inaccurate, leading to large degradation in the quality of the SAM masks. When we
 765 reproduced this procedure, the performance dropped significantly compared to the paper’s reported
 766 numbers; for instance, on RefCOCO validation the score decreased from $74.2 \rightarrow 34.4$. To ensure
 767 a fair comparison, we therefore applied our SAM prompting process consistently across all video
 768 datasets.

769 Overall, these findings highlight that the Loc-Head approach depends heavily on dataset-specific
 770 sampling, model-specific heuristics. These issues make it difficult to obtain consistent results across
 771 models and datasets. In contrast, our proposed DecAF framework works reliably across different
 772 MLLMs and datasets, providing more consistent and generalizable performance compared to the
 773 Loc-Head approach.

774 **Loc-Head with LLaVA-OV Details.** We attempted the following implementations for adapting
 775 Loc-Head to LLaVA-OV-7B, but Loc-Head still performs poorly with LLaVA-OV-7B, highlighting
 776 its limited robustness across models. 1. Adapting Loc-Head for tiling. LLaVA-OV-7B employs
 777 tiling to process high-resolution images. As we observed with InternVL3, extracting localization
 778 heads from tiled inputs leads to severe performance degradation. Following this observation, we
 779 disable tiling when extracting localization heads and only enable tiling during the computation of
 780 attention maps for segmentation. 2. Identifying the appropriate attention-sink region to exclude.
 781 Loc-Head removes heads with strong attention in the bottom row. Although this details is not de-
 782 scribed in the Loc-Head paper, it is implemented in the official code repository ¹. However, this
 783 heuristic does not generalize across different MLLMs. For LLaVA-OV-7B, we found that addition-
 784 ally excluding the left-most column is necessary for the method to produce reasonable results.

785 786 D QUALITATIVE RESULTS

787 We provide qualitative results to demonstrate the effectiveness of our proposed Decomposed At-
 788 tention Fusion (DecAF) and SAM prompting. Fig. 5, 6, 7, 8, 9 present diverse cases, including
 789 single-object, multi-object, small-object, temporal reasoning, and world knowledge scenarios. Each
 790 example shows the attention maps obtained through DecAF, the attention masks directly generated
 791 from the fused attention maps, and the dense masks obtained via SAM prompting.

792 Across these scenarios, DecAF consistently produces attention maps that align with instruction-
 793 referred target objects, and both the attention masks and SAM masks accurately capture the object
 794 regions. Even in challenging settings involving multiple objects or small targets, our approach
 795 maintains robust localization and segmentation quality. Moreover, for cases requiring temporal
 796 reasoning or world knowledge, DecAF effectively leverages the capabilities of MLLMs to generate
 797 accurate masks without additional training.

798 We also report several failure cases (Fig. 10). As shown in Fig. 10 (a), our proposed attention
 799 consistency scoring method may underperform when the target object occupies a large area in certain
 800 frames but the attention weights cover only a small portion of that region. In such cases, the method
 801 assigns a strong penalty, leading to low scores even when the mask tracklet is correctly generated.
 802 Similarly (Fig. 10 (c)), when the target object is small and appears only briefly in the video, it
 803 occupies only a small fraction of the overall attention weights in the video, which results in low
 804 attention consistency scores and false filtering. Finally, Fig. 10 (b) shows that when the target object
 805 is extremely thin or elongated (*e.g.*, paraglider lines), the attention maps fail to capture its structure,
 806 resulting in poor masks.

807 808 809 ¹Link to the official code line for bottom-row exclusion

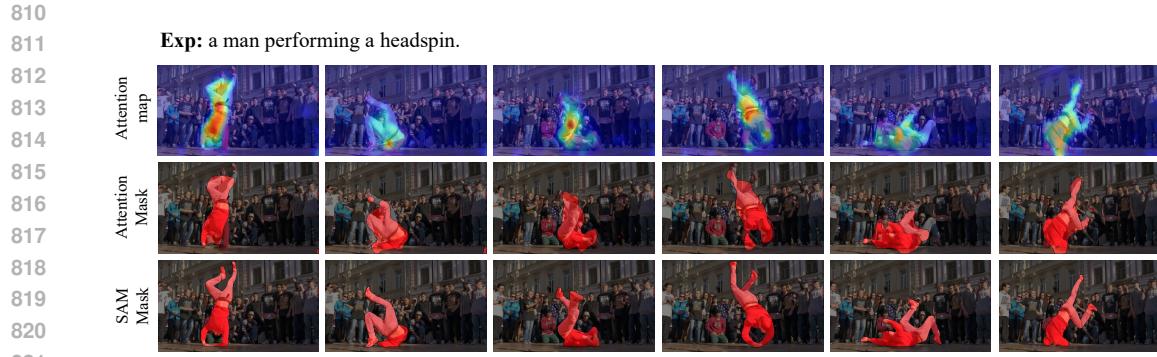


Figure 5: Qualitative results for the single object case.

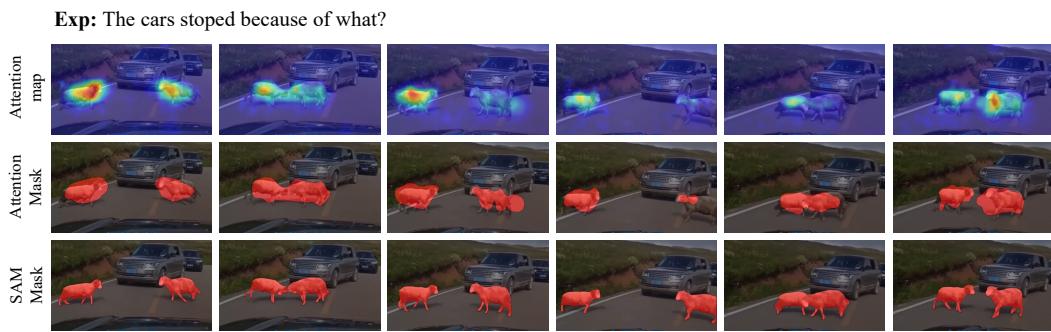


Figure 6: Qualitative results for the multiple objects case.

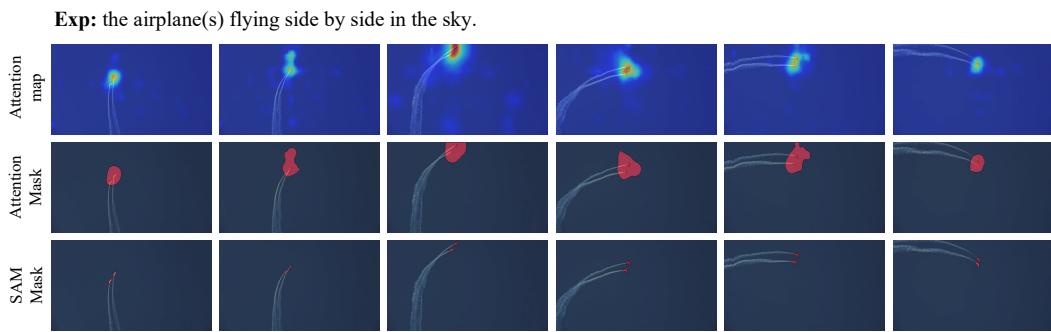


Figure 7: Qualitative results for the small object case.

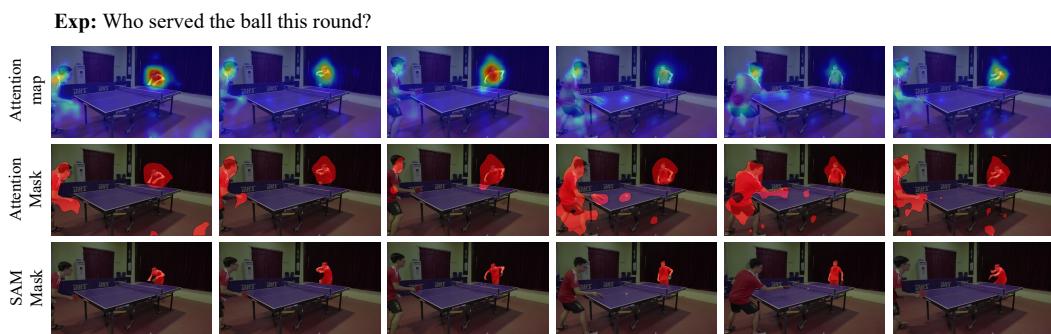
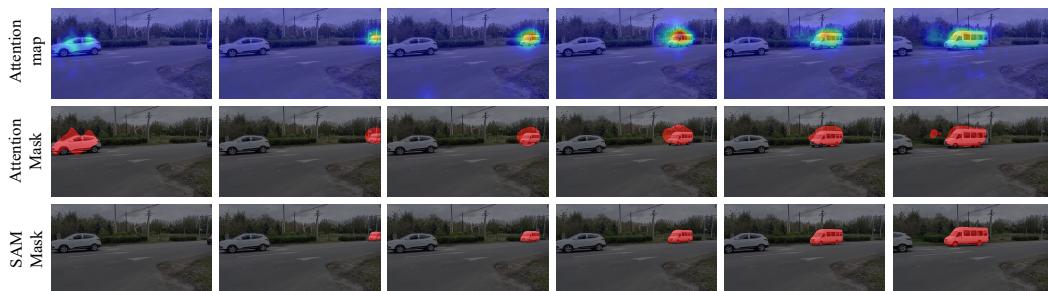


Figure 8: Qualitative results for the temporal reasoning case.

864
865
866
867
868
869
870
871
872
873
874

875 **(a) Exp:** which object is product of Apple Inc?

886 **(b) Exp:** The spacious vehicle capable of accommodating numerous passengers.



896 **(c) Exp:** the most unusual person in the video.

907 Figure 9: Qualitative results for the world knowledge cases.
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923

924 **(a) Exp: a motor-bike.**

925
926
927
928
929
930
931
932
933
934
935
936
937
938 **(b) Exp: paraglider lines.**

939
940
941
942
943
944
945
946
947
948
949
950
951 **(c) Exp: Among the persons present, who seems to have food or beverage in their possession?**

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971 **Figure 10: Qualitative examples of failure cases.**

972 Table 9: Comparison with naive baselines that directly use the spatial grounding of Qwen2.5-VL-
 973 7B together with SAM2. The baselines differ in how Qwen2.5-VL grounding is applied across
 974 the video: All frames performs frame-wise grounding and segmentation, First frame grounds only
 975 the first frame and propagates with SAM2, Ref & key frames uses 16 reference frames to identify
 976 the target and grounds a key frame for propagation, and 16 frames grounds uniformly sampled 16
 977 frames. We report results on Ref-DAVIS and ReasonVOS. QVL2.5 denotes Qwen2.5-VL-7B.

978 979 980	Method	Sampling	Ref-DAVIS			ReasonVOS		
			$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
981	QVL2.5 + SAM2	All frames	53.0	50.1	55.9	44.2	41.9	46.4
982	QVL2.5 + SAM2	First frame	52.8	50.4	55.2	38.9	36.7	41.2
983	QVL2.5 + SAM2	Ref & key frames	36.5	33.0	40.0	23.5	21.8	25.2
984	QVL2.5 + SAM2	16 frames	64.8	58.0	71.6	48.0	41.7	54.3
985	Loc-Head	16 frames	64.6	60.2	68.9	41.1	37.9	44.3
986	DecAF [Ours]	16 frames	75.2	70.9	79.5	63.9	60.5	67.2

990 E NATIVE GROUNDING OF QWEN2.5VL

991
 992
 993 Tab. 9 presents the results of evaluating video segmentation using the native spatial grounding ca-
 994 pability of Qwen2.5-VL-7B (QVL2.5) in a keypoint-prompts form together with SAM2. In all
 995 settings, QVL2.5 is directly prompted to output the target object’s keypoint based on the expression,
 996 and SAM2 utilizes this keypoint for segmentation or propagation. Experiments are conducted on
 997 both Ref-DAVIS and ReasonVOS, and the details of the evaluation settings are described below.

998 **All frames (frame-wise grounding + per-frame SAM2).** We apply QVL2.5 independently to every
 999 frame to obtain the keypoints of target objects for that frame. Each point is then used to prompt
 1000 SAM2, producing a segmentation mask for the corresponding frame without temporal propagation.

1001 **First frame (single-frame grounding + SAM2 propagation).** We extract the key points only from
 1002 the first frame using QVL2.5, and then prompt SAM2 to propagate the mask over the full video.

1003 **Ref & key frames (video-conditioned grounding + SAM2 propagation).** Since QVL2.5 does not
 1004 support video-level spatial grounding, we provide 16 uniformly sampled reference frames so that
 1005 the model can identify the target object using the spatio-temporal context. Using this inferred target
 1006 information, QVL2.5 localizes the object on the key frame—defined as the first frame among the
 1007 reference frames—and extracts the corresponding keypoints. SAM2 then propagates this keypoint
 1008 across the entire video to obtain the final segmentation.

1009 **16 frames (QVL2.5 grounding + our SAM2 pipeline).** In this setting, we uniformly sample 16
 1010 frames from each video and use QVL2.5 to extract a keypoint on each sampled frame. These key-
 1011 points are then fed into our SAM2 prompting and propagation process to obtain the final video
 1012 segmentation masks. For reference, in the same 16-frame setting, Loc-Head derives the keypoints
 1013 from its attention maps, while DecAF uses its fused attention to obtain them.

1014 Across all settings, native grounding with QVL2.5 shows reasonable performance but consistently
 1015 remains below that of our method. The ‘All frames’ and ‘First frame’ setups rely on frame-wise
 1016 grounding and therefore cannot incorporate temporal information, leading to limited accuracy. Al-
 1017 though the ‘Ref & key frames’ setting attempts to provide temporal context through reference
 1018 frames, QVL2.5 does not support video-level visual grounding and fails to reliably extract target
 1019 keypoints under this prompting scheme.

1020 For a fair comparison, we use the same uniform 16-frame sampling and apply the identical SAM2
 1021 prompting and propagation process as in our method. QVL2.5 grounding performs better than Loc-
 1022 Head but still falls significantly short of DecAF. These results indicate that, despite not supporting
 1023 video grounding natively, DecAF effectively leverages the MLLM’s video understanding capability
 1024 to perform robust target localization. This demonstrates that our approach, while simple, provides
 1025 an effective solution for video object grounding

Table 10: Ablation study of the object-focused prompts.

Prompt Design	Ref-DAVIS			ReasonVOS			ReVOS (Overall)			ReVOS (Referring)			ReVOS (Reasoning)		
	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}												
Original	75.2	70.9	79.5	63.9	60.5	67.2	54.2	50.1	58.2	58.7	54.8	62.6	49.7	45.4	53.9
V1 (Single Sentence)	69.8	65.0	74.7	63.5	60.3	66.7	56.3	52.3	60.2	60.7	56.8	64.5	51.9	47.8	55.9
V2 (Rephrased)	75.9	71.5	80.4	64.4	61.1	67.8	56.3	52.2	60.3	60.8	56.9	64.7	51.8	47.6	55.9
V3 (Short)	74.2	69.7	78.6	63.8	60.4	67.1	54.9	51.0	58.8	59.8	55.9	63.6	50.1	46.0	54.1

Table 11: Ablation study of the background-focused prompts.

Prompt Design	Ref-DAVIS			ReasonVOS		
	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
Original	75.2	70.9	79.5	63.9	60.5	67.2
V1 (No Object Category)	72.0	67.4	76.6	63.5	60.3	66.8
V2 (Single Sentence)	75.6	71.2	80.1	62.6	58.9	66.2
V3 (Expression-only)	75.5	71.0	79.9	63.6	60.1	67.0

F PROMPT ROBUSTNESS ANALYSIS

We evaluate the robustness of DecAF to prompt variations by using multiple formulations of the three prompts in our pipeline: the object-focused prompt, background-focused prompt, and object category choice prompt. For each prompt type, we generate several alternative versions using ChatGPT and evaluate how these variations affect the model’s performance.

Object-focused Prompt. This prompt identifies the target object described in the expression. As shown in Tab. 10, we evaluate three variants: a single sentence prompt (V1), a slightly modified version of our original prompt (V2), and a prompt that is shorter than the original (V3). Overall, the three versions produce similar performance. Although V1’s performance drops slightly on Ref-DAVIS, it slightly improves performance on ReVOS. Despite this small variation, the results indicate that DecAF robustly handles changes in object-focused prompt. The prompt templates are shown below:

```

• V1 (Single Sentence)
{Expression}
Identify the primary object referred to in the expression and answer
with a single word.

• V2 (Rephrased)
{Expression}
Identify the primary object referred to in the expression.
Focus on the **primary subject or agent** involved in the described
action or behavior. Respond with a single word (e.g., 'cat',
'person', 'dog') that best describes the target object(s).

• V3 (Short)
{Expression}
Determine the primary subject or agent mentioned in the expression
or question, and provide the object's label within a single word or
phrase.

```

Background-focused Prompt. This prompt identifies the background of the scene. In Tab. 11, we evaluate three variants: (V1) a prompt that queries the background without providing any object-class information, (V2) a single sentence prompt, and (V3) a prompt that excludes the object described in the expression. Since V1 does not supply the object class, the model may occasionally misinterpret the target object as part of the background, particularly when the target is not the primary object in the scene. As a result, V1 tends to perform slightly lower than the original version. Nevertheless, all three variants still show highly similar performance overall, indicating that DecAF

1080 Table 12: Ablation study of the object category choice prompts.
1081

Prompt Design	Ref-DAVIS			ReasonVOS		
	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}	$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
Original	75.2	70.9	79.5	63.9	60.5	67.2
V1 (Single Sentence)	73.1	68.5	77.7	62.4	59.0	65.8
V2 (Short)	75.1	70.8	79.4	63.7	60.4	67.0
V3 (Expression-only)	74.5	70.1	79.0	63.5	60.2	66.9

1088
1089
1090 remains robust to different formulations of the background prompt. The prompt templates are shown
1091 below:
1092

1093 • **V1 (No Object Category)**
1094

1095 Describe the background scene of the video. Answer the question using
1096 a single word or phrase.

1097 • **V2 (Single Sentence)**
1098

1099 Describe the background of the video while excluding any {Object
category}, using a single word or short phrase.

1100 • **V3 (Expression-only)**
1101

1102 Describe the background scene of the video, excluding the objects
1103 referred to in the given expression or question {Expression}. Answer
1104 the question using a single word or phrase.

1105 **Object Category Choice Prompt.** This prompt identifies the final object category using the object
1106 classes obtained from both the video- and frame-level predictions. In Tab. 12, we evaluate three
1107 variants: a single sentence prompt (V1), a prompt that is shorter than the original (V2), and a
1108 prompt that infers the category solely from the expression without providing the class from the
1109 object-focused prompt (V3). All variants yield similar performance, showing that DecAF robustly
1110 determines the object category across different prompt formulations. The prompt templates are
1111 shown below:

1112 • **V1 (Single Sentence)**
1113

1114 Given the expression {Expression} and the candidate object classes
1115 {Object category list}, select the single class label that best matches
1116 the object referred to in the expression.

1117 • **V2 (Short)**
1118

1119 Using the expression {Expression} and the candidate object classes
1120 {Object category list}, determine which object class the expression
1121 refers to.
1122 If the reference is explicit, rely on the expression; if ambiguous,
1123 use the class list as support.
1124 Output only the most likely object class.

1125 • **V3 (Expression-only)**
1126

1127 Given:

1128 - Expression: {Expression}

1129 Goal: Identify the object class referred to by the expression.

1130 (e.g., 'a person driving a car' → 'person').

1131 Output the most likely referred object class - just the label.

1132 Overall, these experiments show that DecAF is robust to prompt variations. Importantly, we do not
1133 perform any prompt tuning for different MLLMs or benchmarks; all experiments in both the main
1134 paper and the appendix use the same fixed set of prompts. The consistent results across diverse
1135 prompt formulations further demonstrate that DecAF does not rely heavily on the exact choice of
1136 prompt and remains stable even when the prompts are varied.

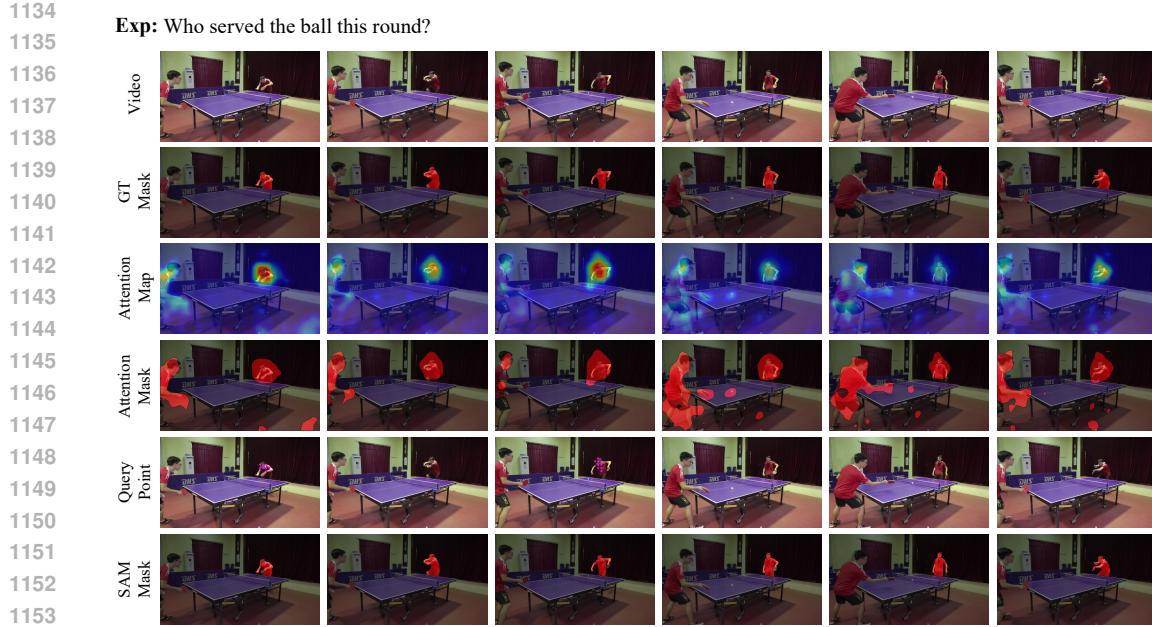


Figure 11: Additional qualitative results for Figure 1. Query points are visualized in magenta.

1154

1155

1156

1157 Table 13: Comparison with VRS-HQ on ReasonVOS for the similar multiple-object scenario.

1158 Fullset and Subset denote the results on all evaluation samples and the similar multiple-object sam-

1159 ples, respectively.

Method	Dataset Type	ReasonVOS		
		$\mathcal{J} \& \mathcal{F}$	\mathcal{J}	\mathcal{F}
VRS-HQ [CVPR'25]	Fullset	54.9	52.6	57.3
VRS-HQ [CVPR'25]	Subset	48.6	45.4	51.9
DecAF [Ours]	Fullset	63.9	60.5	67.2
DecAF [Ours]	Subset	60.5	56.4	64.7

G ADDITIONAL RESULTS OF FIGURE 1

1172 Fig. 11 presents additional visualization of Fig. 1 (b), including the final fused attention maps, the

1173 attention masks obtained directly from the fused attention, the query points used for SAM2 prompting,

1174 and the resulting dense SAM masks. The fused attention maps clearly highlight strong activation

1175 in the target object. However, because the attention mask is produced via frame-wise thresholding,

1176 weak attention responses may also be converted into foreground regions. Our SAM prompting pro-

1177 cess resolves this issue by deriving query points through thresholding the fused attention map. As

1178 shown in Fig. 11, these query points emerge only within the true target region, enabling SAM2 to

1179 generate an accurate and dense segmentation mask.

H ANALYSIS OF SIMILAR MULTIPLE OBJECTS SCENARIO

1183 We evaluate our method on the similar multiple objects scenario. Among the 458 samples in the

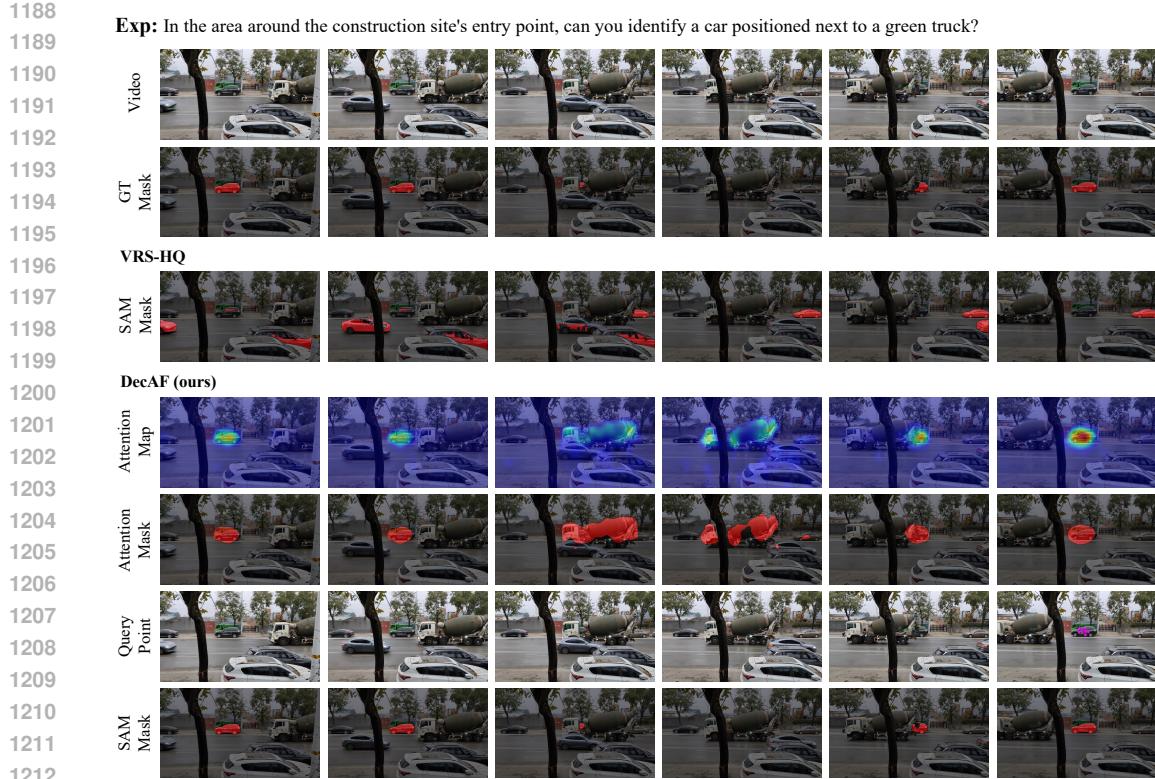
1184 ReasonVOS (Bai et al., 2024) dataset, we extract 187 samples corresponding to this challenging

1185 case. As shown in Tab. 13, the performance of the training-based method VRS-HQ (Gong et al.,

1186 2025b) decreases from 54.9 to 48.6 (-11.5%), whereas our method shows a smaller decline from 63.9

1187 to 60.5 (-5.3%). Although performance decreases in this challenging setting, these results indicate

1188 that our approach maintains relatively stable performance when multiple similar objects are present.



1213 Figure 12: Qualitative results for the similar multiple objects case. Query points are visualized in
1214 magenta.
1215
1216

1217 We further provide qualitative comparisons with VRS-HQ in Fig. 12, 13 and 14. While VRS-HQ
1218 often produces masks on incorrect objects, our method—even with complex expressions—consistently
1219 highlights the correct target object in the attention map among multiple similar objects. This accurate
1220 localization enables our method to generate precise dense segmentation masks for the target objects.
1221
1222

1223 I PART-LEVEL SEGMENTATION ANALYSIS

1224 Our method is evaluated on object-level video segmentation since there is no video object segmen-
1225 tation benchmark focusing on part-level referring expressions. Nonetheless, we also examine its
1226 behavior on expressions referring to specific parts of an object, such as "the shirt of the person" or
1227 "the glasses of the person", and provide qualitative results for these part-level cases in Figs. 15, 16,
1228 17 and 18.

1229 Figs. 15 and 16 show that our DecAF attention maps accurately capture the regions indicated by the
1230 expression. When the expression is "the person," the attention map broadly covers the entire person,
1231 whereas for "the shirt of the person," it focuses tightly on the shirt region. As a result, both the
1232 attention mask and the corresponding query point are aligned with the shirt.
1233

1234 A similar trend appears in Figs. 17 and 18 for the smaller regions of "the face" and "the glasses."
1235 In both cases, the attention maps effectively highlight the intended part, and the resulting attention
1236 masks and query points reflect this localization. Notably, the attention map for "the glasses" exhibits
1237 an even sharper focus due to the expression referring to a more specific and smaller region.
1238

1239 However, despite obtaining well-aligned attention maps and part-level query points, the dense masks
1240 produced by SAM2 do not consistently capture the fine-grained target regions. While the face is
1241 successfully segmented in Fig. 17, prompting SAM2 with only a single positive point can make it
ambiguously whether the model should segment the object as a whole or the specific part.

1267 Figure 13: Qualitative results for the similar multiple objects case. Query points are visualized in
1268 magenta.
1269

1270 Although part-level segmentation is not the primary focus of our method, these results show that
1271 DecAF is still able to perform reliable visual grounding at the part level, producing attention maps
1272 that are well aligned with the fine-grained regions referenced by the expression. Incorporating additional
1273 cues, such as negative points, could enable SAM2 to produce dense masks that precisely align
1274 with the part-level localization provided by our attention maps.
1275

1277 J ANALYSIS OF NON-EXPLICIT OBJECT EXPRESSION CASE.

1278 Fig. 19, 20 and 21 present qualitative results for expressions in which the target object is not explicitly
1279 described or mentioned. As shown in these examples, these expressions provide no direct
1280 visual attributes or class-level cues about the target. Instead, identifying the correct object requires
1281 reasoning over the scene context (e.g., "Learning is an important process for self-improvement. In
1282 the scene, which object is most likely to help enhance knowledge?").
1283

1284 Our method naturally handles such challenging cases by formulating video reasoning segmentation
1285 as a Video QA task. By leveraging the MLLM's reasoning-driven attention maps—generated when
1286 answering the question formatted with the expression—this design enables the fused attention map
1287 to accurately highlight the correct target object even when the expression provides no explicit ob-
1288 ject description. Furthermore, by utilizing these well-aligned attention maps, our method can also
1289 produce accurate dense segmentation masks for the inferred target.
1290

1296

1297

1298 **Exp:** I am driving on the road, but I have to change lanes to the right because the white vehicle in front is blocking my way. Which
 1299 one is the vehicle causing me to change lanes?

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

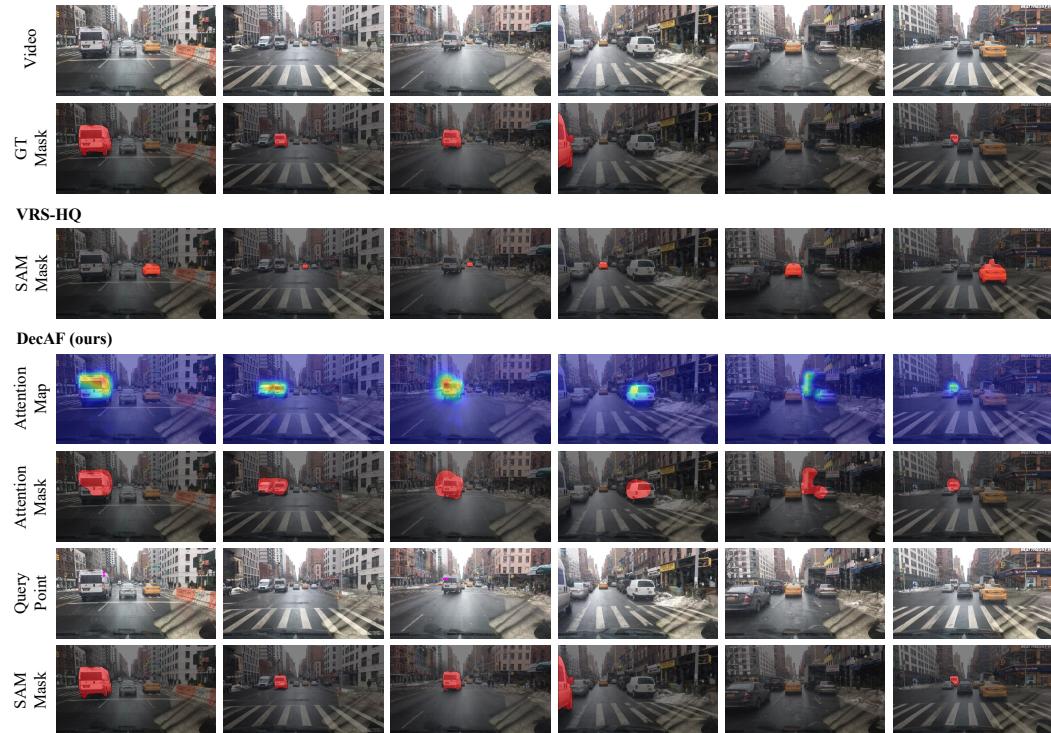


Figure 14: Qualitative results for the similar multiple objects case. Query points are visualized in magenta.

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

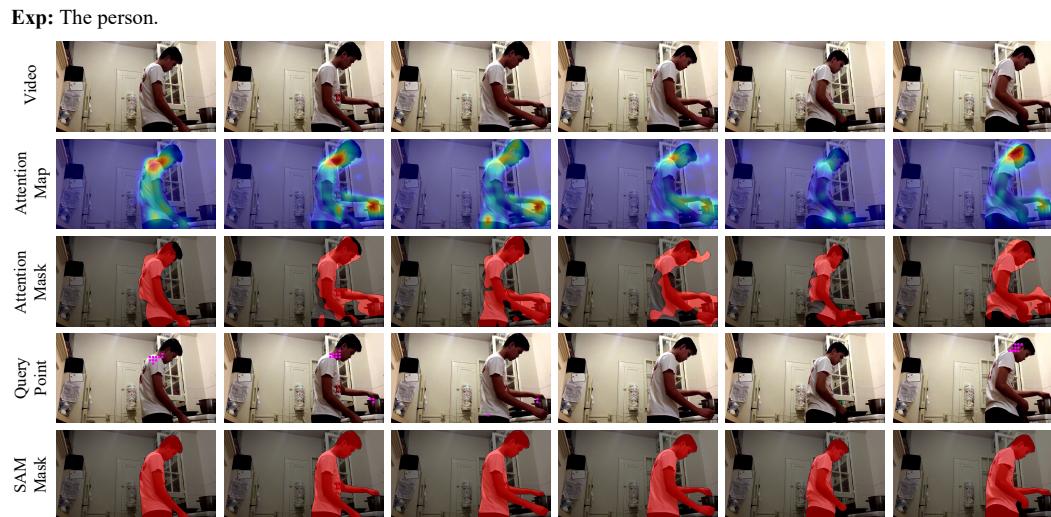


Figure 15: Qualitative results for the object-level target case (person). Query points are visualized in magenta.

1350

1351

1352

1353

1354

Exp: The shirt of the person.

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

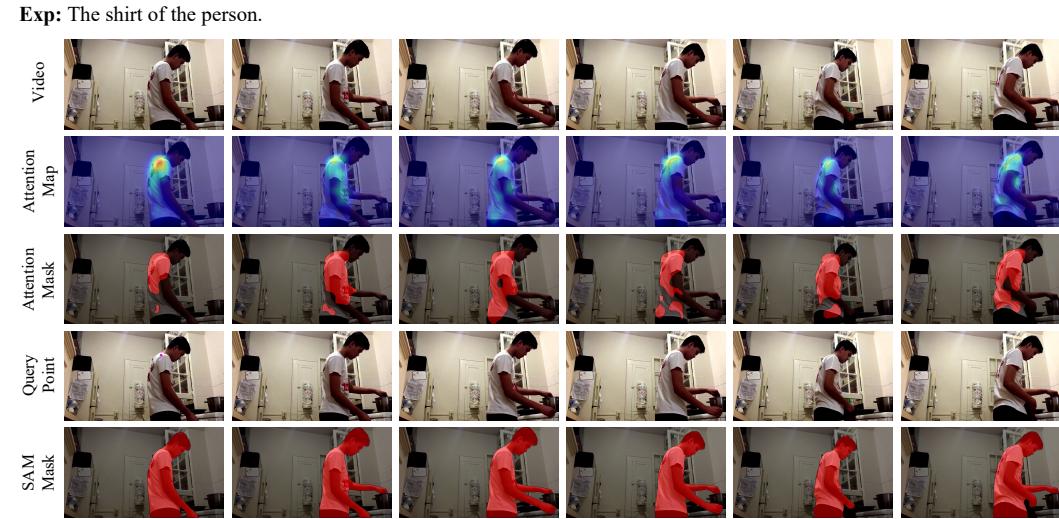


Figure 16: Qualitative results for the part-level target case (shirt). Query points are visualized in magenta.

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

Exp: The face of the person.

1382

Figure 17: Qualitative results for the part-level target case (face). Query points are visualized in magenta.

1398

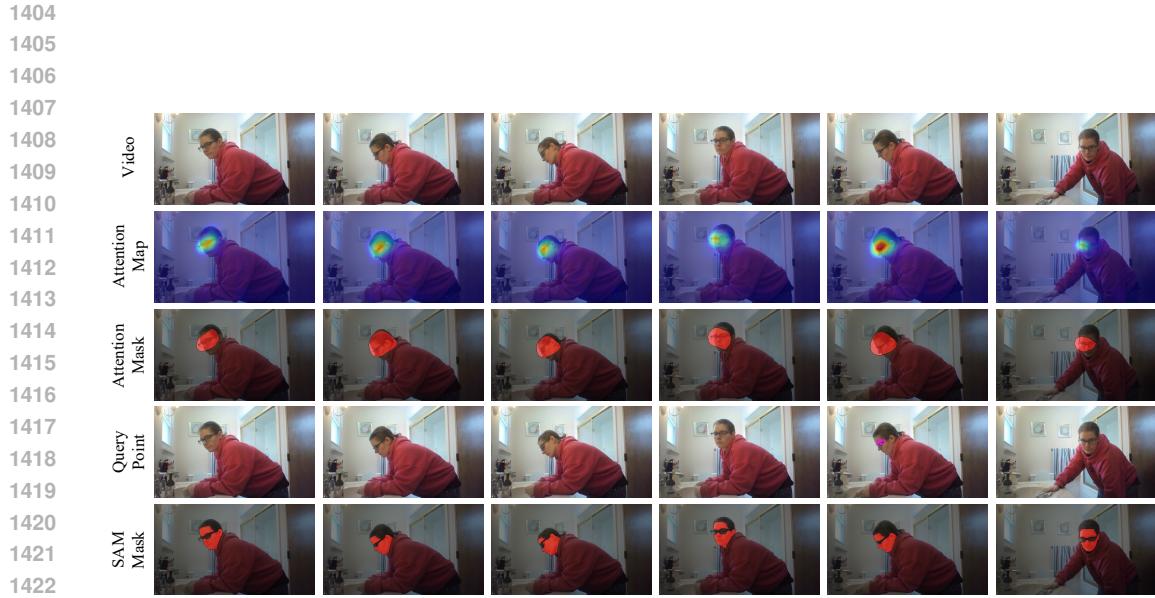
1399

1400

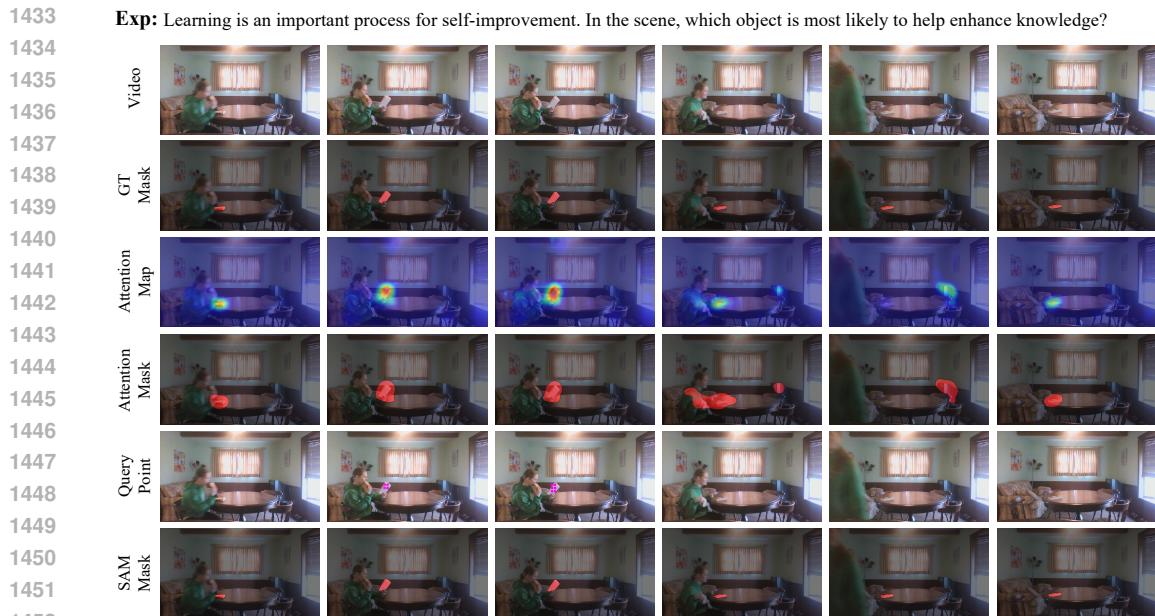
1401

1402

1403



1423
1424 Figure 18: Qualitative results for the part-level target case (glasses). Query points are visualized in
1425 magenta.



1453
1454 Figure 19: Qualitative results for the non-explicit object expression case. Query points are visualized in
1455 magenta.

1456
1457

1458

1459

1460

1461 **Exp:** After washing hands, which item is typically used to absorb the remaining moisture?

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

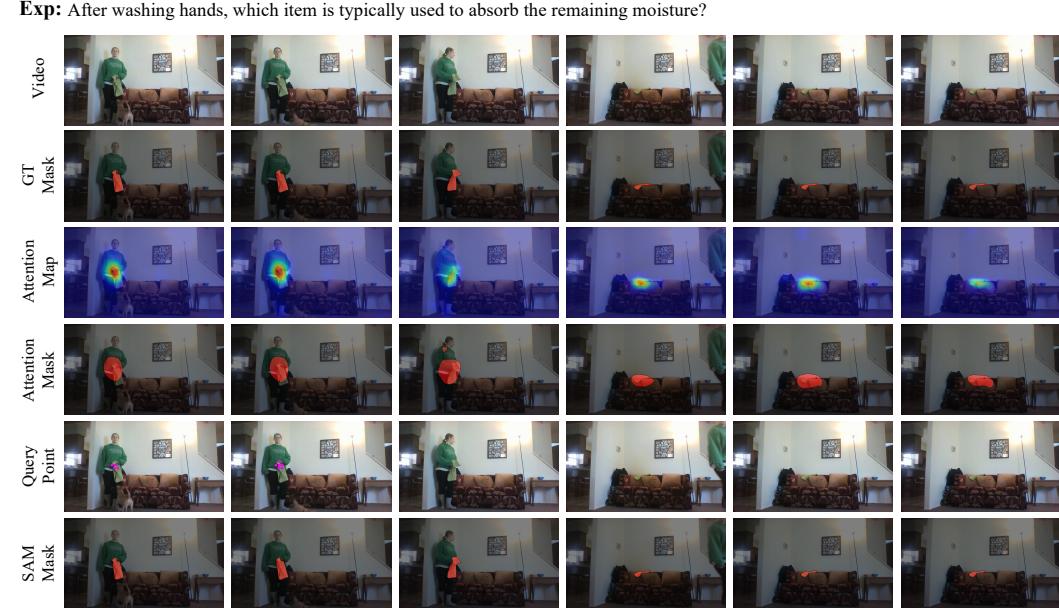


Figure 20: Qualitative results for the non-explicit object expression case. Query points are visualized in magenta.

1481

1482

1483

1484

1485

1486

1487

1488 **Exp:** The construction site has halted work due to a shortage of materials. Which object is most likely being awaited?

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

Figure 21: Qualitative results for the non-explicit object expression case. Query points are visualized in magenta.

1510

1511