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Abstract
We tackle a challenging blind image denoising
problem, in which only single distinct noisy im-
ages are available for training a denoiser, and no
information about noise is known, except for it
being zero-mean, additive, and independent of
the clean image. In such a setting, which often
occurs in practice, it is not possible to train a
denoiser with the standard discriminative train-
ing or with the recently developed Noise2Noise
(N2N) training; the former requires the underly-
ing clean image for the given noisy image, and the
latter requires two independently realized noisy
image pair for a clean image. To that end, we
propose GAN2GAN (Generated-Artificial-Noise
to Generated-Artificial-Noise) method that first
learns a generative model that can 1) simulate the
noise in the given noisy images and 2) generate a
rough, noisy estimates of the clean images, then
3) iteratively trains a denoiser with subsequently
synthesized noisy image pairs (as in N2N), ob-
tained from the generative model. In results, we
show the denoiser trained with our GAN2GAN
achieves an impressive denoising performance
on both synthetic and real-world datasets for the
blind denoising setting.

1. Introduction
Image denoising is one of the oldest problems in image
processing and low-level computer vision, yet it still attracts
lots of attention due to the fundamental nature of the prob-
lem. A vast number of algorithms have been proposed over
the past several decades, and recently, the CNN-based meth-
ods, e.g., (Cha & Moon, 2019) (Zhang et al., 2017) (Tai
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et al., 2017) (Liu et al., 2018), became the throne-holders
in terms of the PSNR performance. The main approach of
the most CNN-based denoisers is to apply the discrimina-
tive learning framework with (clean, noisy) image pairs and
known noise distribution assumption. While being effective,
such framework also possesses a couple of limitations that
become critical in practice; the assumed noise distribution
may be mismatched to the actual noise in the data or obtain-
ing the noise-free clean target images is not always possible
or very expensive, e.g., medical imaging (CT or MRI) or
astrophotographs. The more additional related works are
explained in Supplementary Material (S.M.)

In this paper, we consider the pure unsupervised blind de-
noising setting where only single distinct noisy images are
available for training. Namely, nothing is known about the
noise other than it being zero-mean, additive, and indepen-
dent of the clean image, and neither the clean target images
for blind training nor the noisy image pairs for N2N training
is available. The crux of our method is to first learn a Wasser-
stein GAN (Arjovsky et al., 2017)-based generative model
that can 1) learn and simulate the noise in the given noisy
images and 2) generate rough, initially denoised images.
Using such generative model, we then synthesize noisy
image pairs by corrupting each of the initially denoised im-
ages with the simulated noise twice and use them to train
a CNN denoiser as in the N2N training (i.e., Noisy N2N).
We further show that iterative N2N training with refined
denoised images can significantly improve the final denois-
ing performance. We dubbed our method as GAN2GAN
(Generated-Artifical-Noise to Generated-Artificial-Noise)
and show that the denoiser trained with our method can
achieve (sometimes, even outperform) the performance of
the standard supervised-trained or N2N-trained blind denois-
ers for the white Gaussian noise case. Furthermore, for mix-
ture/correlated noise or real-world noise in microscopy/CT
images, for which the exact distributions are hard to know
a priori, we show our denoiser significantly outperforms
those standard blind denoisers.

2. Motivation
In order to develop the core intuition for motivating our
method, we first consider a simple, single-letter Gaussian
noise setting. Let Z = X + N be the noisy observation
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of X ∼ N (0, σ2
X), corrupted by the N ∼ N (0, σ2

N ). It is
well known that the minimum MSE (MMSE) estimator of
X given Z is f∗MMSE(Z) = E(X|Z) = σ2

X

σ2
X+σ2

N
Z. We now

identify the optimality of N2N in this setting.

N2N Assume that we have two i.i.d. copies of the noise N :
N1 and N2. Then, let Z1 = X +N1 and Z2 = X +N2 be
the two independent noisy observation pairs ofX . The N2N
in this setting corresponds to obtaining the MMSE estimator
of Z2 given Z1,

fN2N(Z1) , argmin
f

E(Z2 − f(Z1))
2 = E(Z2|Z1)

= E(X +N2|Z1)
(a)
= E(X|Z1) =

σ2
X

σ2
X + σ2

N

Z1, (1)

in which (a) follows fromN2 being independent ofZ1. Note
(1) has the exact same form as f∗MMSE(Z), hence, estimating
X with fN2N(Z) also achieves the MMSE, in line with
(Lehtinen et al., 2018).

“Noisy” N2N Now, consider the case in which we again
have the two i.i.d. N1 and N2, but the noisy observations
are of a noisy version of X . Namely, let X ′ = X + N0,
in which N0 ∼ N (0, σ2

0), and denote Z ′1 = X ′ +N1 and
Z ′2 = X ′+N2 as the noisy observation pairs. Then, we can
define a “Noisy” N2N estimator as the MMSE estimator of
Z ′2 given Z ′1,
fNoisy N2N(Z

′
1, y) , argmin

f
E(Z ′2 − f(Z ′1))2

= E(X ′|Z ′1) =
σ2
X(1 + y)

σ2
X(1 + y) + σ2

N

Z ′1, (2)

in which we denote y , σ2
0/σ

2
X and assume that 0 ≤ y < 1.

Note clearly (2) coincides with (1) when y = σ2
0 = 0.

Following N2N, (2) is essentially estimating X ′ based on
Z ′ = X ′ +N . An interesting subtle question is what hap-
pens when we use the mapping fNoisy N2N(Z, y) for estimat-
ingX given Z = X+N , not X ′ given Z ′. Our theorem be-
low, of which proof is in the Supplementary Material (S.M.),
shows that for a sufficiently large σ2

0 , fNoisy N2N(Z, y) gives
a better estimate of X than X ′.

Theorem 1 Consider the single-letter Gaussian setting and
fNoisy N2N(Z, y) obtained in (2). Also, assume 0 < y <
1. Then, there exists some y0 s.t. ∀y ∈ (y0, 1), E(X −
fNoisy N2N(Z, y))

2 < σ2
0 .

Theorem 1 provides a simple, but useful, intuition that mo-
tivates our method; if simulating the noise in the images
is possible, we may carry out the N2N training iteratively,
provided that a rough noisy estimate of the clean image is
initially available. Namely, we can first simulate the noise to
generate noisy observation pairs of the initial noisy estimate,
then do the Noisy N2N training with them to obtain a de-
noiser that may result in a better estimate of the clean image
when applied to the actual noisy image subject to denoising

(as in Theorem 1). Then, we can refine the estimates by
iterating the Noisy N2N training with the generated noisy
observation pairs of the previous step’s estimate of the clean
image, until convergence. To check whether above intu-
ition is valid, we carry out a feasibility experiment and the
experimental result is proposed in S.M.

3. Main Method: Three Components of
GAN2GAN

To concretely describe our method, we first set the notations.
We assume the noisy image Z is generated by Z = x+N, in
which x denotes the underlying clean image and N denotes
the zero-mean, additive noise that is independent of x. For
training a denoiser, we do not assume either the distribution
or the covariance of N is known. Moreover, we assume
only a database of n distinct noisy images, D = {Z(i)}ni=1,
is available for learning a denoiser. A CNN-based denoiser
is denoted as X̂φ(Z) with φ being the model parameter,
and we use the standard quality metrics, PSNR/SSIM, for
evaluation. Our method consists of three parts; 1) smooth
noisy patch extraction, 2) training a generative model, and
3) iterative GAN2GAN training of X̂φ(Z), each of which
we elaborate below.

3.1. Smooth noisy patch extraction
The first step is to extract the noisy image patches from
D that correspond to smooth, homogeneous areas. Our
extraction method is similar to that of the GCBD proposed
in (Chen et al., 2018), but we make a critical improvement.

The GCBD determines a patch p (of pre-determined size)
is smooth if it satisfies the following for all of its smaller
sub-patches, qj , with some hyperparameters µ, γ ∈ (0, 1):

|E(qj)− E(p)| ≤ µE(p), |V(qj)− V(p)| ≤ γV(p), (3)

in which E(·) and V(·) are the empirical mean and variance
of the pixel values.

While (3) works for extracting smooth patches to some
extent, it does not rule out choosing patches with high-
frequency repeating patterns, which are far from being
smooth. Thus, we instead use the 2D discrete wavelet
transform (DWT) for a new extraction rule; namely, we
determine p is smooth if its four sub-band decompositions
obtained by DWT, {Wk(p)}4k=1, satisfy

1

4

4∑
k=1

∣∣∣σ̂(Wk(p))− E[σ̂W (p)]
∣∣∣ ≤ λE[σ̂W (p)], (4)

in which σ̂(·) is the empirical standard deviation of the
wavelet coefficients, E[σ̂W (p)] , 1

4

∑4
k=1 σ̂(Wk(p)), and

λ ∈ (0, 1) is a hyperparameter. This rule is much simpler
than (3), which has to be evaluated for all the sub-patches,
{qj}. Once N patches are extracted from D using (4), we
subtract each patch with its mean pixel value, and obtain a
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set of “noise” patches,N = {n(j)}Nj=1. Such subtraction is
valid since all the pixel values should be close to their mean
in a smooth patch, and the noise is assumed to be zero-mean,
additive.

3.2. Training a W-GAN based generative model
Equipped with D = {Z(i)}ni=1 and the extracted noise
patches N = {n(j)}Nj=1, we train a generative model,
which can learn and simulate the noise as well as gener-
ate initial noisy estimates of the clean images, hence, re-
alize the Noisy N2N training explained in Section 2. As
shown in Figure 2 (in S.M.), our model has three genera-
tors, {gθ1 , gθ2 , gθ3}, and two critics, {fw1 , fw2}, in which
the subscripts stand for the model parameters. The loss
functions associated with the components of our model are:

Ln(θ1,w1) , En
[
fw1

(n)]− Er[fw1
(gθ1(r))

]
(5)

LZ(θ1,θ2,w2) , EZ

[
fw2

(Z)
]
−

EZ,r

[
fw2

(gθ2(Z) + gθ1(r))
]

(6)

Lcyc(θ2,θ3) , EZ

[
‖z − gθ3(gθ2(Z))‖1

]
. (7)

The loss (5) is a standard W-GAN (Arjovsky et al., 2017)
loss for training the first generator-critic pair, (gθ1 , fw1

),
of which gθ1 learns to generate the independent realization
of the noise mimicking the patches in N = {n(j)}Nj=1,
taking the random vector r ∼ N (0, I) as input. The second
loss (6) links the two generators, gθ1 and gθ2 , with the
second critic, fw2

. The second generator gθ2 is intended
to generate the estimate of the underlying clean patch for
Z, i.e., coarsely denoise Z, and the critic fw2

determines
how close the distribution of the generated noisy image,
gθ2(Z) + gθ1(r), is to the that of Z1. Our intuition is, if gθ1
can realistically simulate the noise, then enforcing gθ2(Z) +
gθ1(r) to mimick Z would result in learning a reasonable
initial denoiser gθ2 . One important detail regarding gθ2 is
its final activation must be the sigmoid function for stable
training. The third loss (7), which resembles the cycle loss
in (Zhu et al., 2017), imposes the encoder-decoder structure
between gθ2 and gθ3 , hence, helps gθ2 to compress the
most redundant part of Z, i.e., the noise, and carry out the
initial denoising. Once the losses are defined, training the
generators and critics are done in an alternating manner,
as in the training of W-GAN (Arjovsky et al., 2017), to
approximately solve

min
θ1,θ2,θ3

max
w1,w2

[
αLn(θ1,w1) + βLZ(θ1,θ2,w2)

+ γLcyc(θ2,θ3)
]
, (8)

in which (α, β, γ) are hyperparameters to control the trade-
offs between the loss functions. There are a couple of subtle
points for training with the overall objective (8), and we

1We assume gθ2 implicitly has the cropping step for Z such
that the dimension of gθ2(Z) and gθ1(r) match.

describe the full details on model architectures, hyperparam-
eters, and training procedures in the S.M.

3.3. Iterative GAN2GAN training of a denoiser
With our generative model, we then carry out the iterative
Noisy N2N training as described in Section 2, with the
generated noisy images. Namely, given each Z(i) ∈ D, we
generate the pair

(Ẑ
(i)
11 , Ẑ

(i)
12 ) , (gθ2(Z

(i))+gθ1(r
(i)
11 ), gθ2(Z

(i))+gθ1(r
(i)
12 )),

(9)
in which r(i)11 , r

(i)
12 ∈ R128 are i.i.d. ∼ N (0, I). In con-

trast to the ideal case in Section 2, each generated image
in (9) is a noise-corrupted version of gθ2(Z

(i)), in which
the corruption is done by the simulated noise gθ1(r). De-
noting the set of such pairs as D̂1 = {(Ẑ(i)

11 , Ẑ
(i)
12 )}ni=1, a

denoiser X̂φ(Z) is trained by minimizing LG2G(φ, D̂1) ,
1
n

∑n
i=1(Ẑ

(i)
11 − X̂φ(Ẑ

(i)
12 ))

2. In LG2G(·), we only use the
generated noisy images and do not use the actual observed
Z(i), hence, we dubbed our training as GAN2GAN (G2G)
training. Now, denoting the learned denoiser as G2G1 (with
parameter φ1), we can iterate the G2G training. For the j-th
iteration (with j ≥ 2), we generate(

Ẑ
(i)
j1 , Ẑ

(i)
j2

)
,
(
X̂φj−1(Z

(i)) + gθ1(r
(i)
j1 ), X̂φj−1(Z

(i))

+ gθ1(r
(i)
j2 )
)
, (10)

for each Z(i) and denote the resulting set of the pairs
as D̂j . Note in (10), we update the noisy estimate of
the clean image with the output of G2Gj−1. Then, the
new denoiser G2Gj is obtained by computing φj ,
argminφ LG2G(φ, D̂j), where the minimization is done via
warm-starting from φj−1.

4. Experimental results
4.1. Data and experimental settings
Data & training details In synthetic noise experiments,
we always used the noisy training images from BSD400
(BSD) (Martin et al., 2001). For evaluation, we used the
standard BSD68 (Roth & Black, 2009) as a test set. For
real-noise experiment, we experimented on two data sets:
the WF set in the microscopy image datasets in (Zhang
et al., 2019) and the reconstructed CT dataset. For both
datasets, we trained/tested on each (Avg = n) and each dose
level, respectively, which corresponds to different noise
levels. The details on the experimental settings and baslines
is proposed in S.M.

4.2. Denoising results on synthetic noise
White Gaussian noise Table 1 shows the results on BSD68
corrupted by white Gaussian noise with different σ’s. Sev-
eral variations of our G2G, gθ2 and the G2G iterates,
G2Gj≥1, are shown for two different training data versions
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Table 1. Results on BSD68/Gaussian. Boldface denotes algorithms that only use single noisy images. Red and blue denotes the highest
and second highest result among those algorithms, respectively.

PSNR/SSIM Baselines G2G variation Upper Bound
BM3D DnCNN-B N2N N2V gθ2 G2G1 G2G2 G2G3 N2C(Eq.(4))

σ = 15 31.07/0.8717 31.44/0.8836 31.20/0.8745 29.48/0.8199 25.94/0.7519 30.98/0.8552 32.51/0.8827 31.45/0.8825 31.64/0.8870
σ = 25 28.56/0.8013 28.92/0.8137 28.74/0.8041 26.97/0.7083 24.16/0.6630 28.23/0.7669 28.82/0.8056 28.96/0.8080 29.11/0.8189
σ = 30 27.78/0.7727 28.06/0.7812 27.91/0.7720 26.38/0.6657 23.43/0.5967 27.58/0.7413 27.99/0.7783 28.03/0.7759 28.28/0.7890
σ = 50 25.60/0.6866 25.78/0.6721 25.71/0.6712 24.30/0.5765 20.58/0.4482 25.08/0.6215 25.55/0.6639 25.78/0.6749 26.03/0.6951

Table 2. Results on BSD68/Mixture & Correlated noise. The boldface and colored texts are as before.
PSNR/SSIM Baselines G2G variation Upper bound

BM3D DnCNN-B N2N N2V gθ2 G2G1 G2G2 G2G3 N2C(Eq.(4))

Mixture
noise

Case A s = 15 41.44/0.9822 39.62/0.9749 40.59/0.9860 33.53/0.9368 31.85/0.9522 42.35/0.9876 42.56/0.9888 42.49/0.9885 42.92/0.9843
s = 25 37.97/0.9647 37.23/0.9616 37.39/0.9737 31.62/0.9057 32.73/0.9478 39.13/0.9761 39.64/0.9800 39.72/0.9807 40.42/0.9843

Case B s = 30 30.12/0.8549 30.58/0.8655 30.58/0.8655 28.10/0.7543 27.55/0.7728 29.05/0.8199 30.32/0.8456 30.49/0.8538 30.78/0.8685
s = 50 29.27/0.8190 30.20/0.8547 30.20/0.8547 28.22/0.7755 27.36/0.7712 29.78/0.8345 30.04/0.8392 30.00/0.8417 30.39/0.8574

Correlated
noise

σ = 15 29.84/0.8504 30.84/0.9011 30.69/0.9223 28.80/0.8367 28.13/0.8370 30.73/0.8889 31.09/0.8949 31.26/0.8954 31.60/0.9075
σ = 25 26.69/0.7544 27.39/0.8257 27.32/0.8594 26.11/0.7348 25.68/0.7607 27.80/0.8130 28.01/0.8271 28.00/0.8447 28.42/0.8376

for learning the generative model.

Firstly, we clearly observe the iterative G2G training is very
effective; namely, it significantly improves the initial noisy
estimate gθ2 , particularly when the quality of the initial esti-
mate is not good enough. Secondly, we note G2G1 already
considerably outperforms N2V (Krull et al., 2019), which is
trained with the exact same model architecture and dataset.
Finally, the performance of G2G3 is very strong; it outper-
forms BM3D (Dabov et al., 2007), which knows true σ, and
even sometimes outperforms the blindly trained DnCNN-B
(Zhang et al., 2017) and N2N (Lehtinen et al., 2018), which
is trained with the same BSD400 dataset, but with more
information. This somewhat counter-intuitive result is possi-
ble since our G2Gj accurately learns the correct noise level
in the image, while DnCNN-B and N2N are trained with
the composite noise levels, σ ∈ [0, 55].

Mixture and correlated noise Table 2 shows the results on
mixture and correlated noise beyond white Gaussian. Note
our G2Gj does not assume any distributional or correlation
structure of the noise, hence, it can still run as long as the
assumption on the noise holds. In the table, the G2G results
are for (BSD) as specified above. Moreover, DnCNN-B
and N2N are still blindly trained with the mismatched white
Gaussian noise.

From the table, we first note that DnCNN-B and N2N suffer
from serious performance degradation for both mixture and
correlated noises due to noise mismatch, and the conven-
tional BM3D outperforms them for some cases (e.g., Case A
for mixture noise). However, we note our G2G2 can still de-
noise very well after just two iterations and outperforms all
the baselines for all noise types, solely based on single noisy
images. Note N2V seriously suffers and is not comparable
to ours. Finally, N2C(Eq.(4)) is a sound upper bound for
all noise types, confirming the correctness of the extraction
rule (4).

4.3. Denoising results on real noise
We also test our method on the real-world noise. While some
popular real noise is known to have source-dependent char-
acteristics, there are also cases in which the noise is source-

independent and pixel-wise correlated, which satisfies the
assumption of our method. We tested on two such datasets,
the Wide-Focal (WF) set in the microscopy image dataset
(Zhang et al., 2019) and a Reconstructed CT dataset. A more
detailed description and analysis on these two datasets are
in S.M. The WF and Reconstructed CT data has 5 sets (Avg

g 2 G2G1 G2G2 G2G3
G2G variations
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Figure 1. Results on real microscopy image denoising on WF and
medical image denoising.

= 1, 2, 4, 8, 16) and 4 sets (Dose=25, 50, 75, 100) with dif-
ferent noise levels, respectively. We did not exploit the fact
that the images are multiple noisy measurements of a clean
image, which enables employing N2N, but treated them as
noisy images of distinct clean images. Figure 1(a) and 1(b)
shows the PSNR of all methods for each dataset, respec-
tively, averaged over all sets. The baselines were DnCNN-B
and BM3D and N2V. We note BM3D estimated noise σ
using the method in (Chen et al., 2015). We iterated until
G2G3 and N2C(Eq.(4)) was an upper bound for each set. We
clearly observe that the performance of G2Gj significantly
improves (over gθ2) as the iteration continues. In results,
G2G3 becomes significantly better than DnCNN-B and N2V
as well as BM3D, still one of the strongest baselines for
real-world noise denoising when no clean target images are
available, for both datasets. We report more detailed exper-
imental results (including SSIM) on both datasets in S.M.
Moreover, the inference time for BM3D is about 4.5∼5.0
seconds per image since a noise estimation has to be done
for each image separately, whereas that for G2Gj is only
4 ms (on GPU), which is another significant advantage of
our method. The visualizations on the denoising result are
shown in the S.M.
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GAN2GAN: Generative Noise Learning for
Blind Denoising with Single Noisy Images
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1. Related work
Several works have been proposed to overcome the limitation of the vanilla supervised learning based denoising. As
mentioned above, Noise2Self (N2S) (Batson & Royer, 2019) and Noise2Void (N2V) (Krull et al., 2019) recently applied
self-supervised learning (SSL) approach to train a denoiser only with single noisy images. Their settings exactly coincide
with ours, but we show later that our GAN2GAN significantly outperforms them. More recently, (Laine et al., 2019)
improved N2V by incorporating specific noise likelihood models with Bayesian framework, however, their method required
to know the exact noise model and could not be applied to more general, unknown noise settings. Similarly, (Soltanayev &
Chun, 2018) proposed SURE (Stein’s Unbiased Risk Estimator)-based denoiser that can also be trained with single noisy
images, but it worked only with the Gaussian noise. Their work was extended in (Zhussip et al., 2019), but it required
noisy image pairs as in N2N as well as the Gaussian noise constraint.

Table 1. Summary of different settings among the recent baselines.
Alg.\ Requirements Clean image Noisy “pairs” Noise model

N2N (Lehtinen et al., 2018) 7 3 7

HQ SSL (Laine et al., 2019) 7 7 3

SURE (Soltanayev & Chun, 2018) 7 7 3

Ext. SURE (Zhussip et al., 2019) 7 3 3

GCBD (Chen et al., 2018) 3 7 7

N2V (Krull et al., 2019) 7 7 7

GAN2GAN (Ours) 7 7 7

(Chen et al., 2018) devised GCBD method to learn and generate noise in the given noisy images using W-GAN (Arjovsky
et al., 2017) and utilized the unpaired clean images to build a supervised training set. Our GAN2GAN is related to (Chen
et al., 2018), but we significantly improve their noise learning step and do not use the clean data at all. Table 1 summarizes
and compares the settings among the above mentioned recent baselines. We clearly see that only our GAN2GAN and N2V
do not utilize any “sidekicks” that other methods take advantage of.

More classical denoising methods typically are capable of denoising solely based on the single noisy images by applying
various principles, e.g., filtering-based (Buades et al., 2005; Dabov et al., 2007), optimization-based (Elad & Aharon, 2006;
Mairal et al., 2009), Wavelet-based (Donoho & Johnstone, 1995), and effective prior-based (Zoran & Weiss, 2011). Those
methods typically are, however, computationally intensive during the inference time and cannot be trained from a separate
set of noisy images, which limits their denoising performance. Another line of recent work worth mentioning is the deep
learning-based priors or regularizers, e.g., (Ulyanov et al., 2018; Yeh et al., 2018; Lunz et al., 2018), but their PSNRs still
fell short of the supervised trained CNN-based denoisers.

1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea 2School of Integrated Tech-
nology and Yonsei Institute of Convergence Technology, Yonsei University, Incheon, Korea 3Department of Artifical Intelligence,
Sungkyunkwan University, Suwon, Korea. Correspondence to: Taesup Moon <tsmoon@skku.edu>.
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2. Proof of Theorem 1
Theorem 1 Consider the single-letter Gaussian setting and fNoisy N2N(Z, y) obtained in (Eq.(2), manuscript). Also, assume
0 < y = σ2

0/σ
2
X < 1. Then, there exists some y0 s.t. ∀y ∈ (y0, 1), E(X − fNoisy N2N(Z, y))

2 < σ2
0 .

Proof: We consider the following chain of equalities:

σ2
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Now, by denoting the numerator of (5) as g(y), we have

g(y) = y
(
σ4
X(1 + y)2 + σ4

N + 2σ2
Xσ

2
N (1 + y)

)
− σ2

Nσ
2
X(y2 + 2y + 1)− σ4

N (6)

= σ4
Xy

3 + (2σ4
X + σ2

Nσ
2
X)y2 + (σ4

X + σ4
N )y − σ2

Nσ
2
X − σ4

N . (7)

Then, we can easily see that

g(0) = −σ2
Nσ

2
X − σ4

N < 0 (8)
g(1) = 4σ4

X > 0 (9)
g(y) = 3σ4

Xy
2 + 2(2σ4

X + σ2
Nσ

2
X)y + σ4

X + σ4
N > 0. (10)

Therefore, in 0 < y < 1, we can see g(y) is an increasing function and has a root y0 in the interval. Hence, the claim of
the theorem: for all y ∈ (y0, 1), E(X − fNoisy N2N(Z, y))

2 < σ2
0 holds.

3. The feasibility experiment on NoisyN2N
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Figure 1. Iterative Noisy N2N.

Figure 1 shows the denoising results on BSD68 (Roth & Black, 2009) for Gaussian noise with σ = 25. The blue line is the
PSNR of the N2N model trained with noisy observation pairs of the clean images in the BSD training set, serving as an
upper bound. The orange line, in contrast, is the PSNR of the Noisy N2N1 model that is trained with the noisy observation
pairs of the noisy estimates for the clean images, which were set to be another Gaussian noise-corrupted training images.
The standard deviations (σ0) of the Gaussian for generating the noisy estimates are given in the horizontal axis, and the
corresponding PSNRs of the estimates are given in the parentheses. Although Noisy N2N1 clearly lies much lower than the
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N2N upper bound, we note its PSNR is still higher than that of the initial noisy estimates, which is in line with Theorem 1.
Now, if we iterate the Noisy N2N with the previous step’s denoised images (i.e., Noisy-N2N2/Noisy-N2N3 for second/third
iterations, respectively), we observe that the PSNR significantly improves and approaches the ordinary N2N for most of
the initial σ0 values. Thus, we observe the intuition from Theorem 1 generalizes well to the image denoising case in an
ideal setting, where the noise can be perfectly simulated, and the initial noisy estimates are Gaussian corrupted versions.
The remaining question is whether we can also obtain similar results for the blind image denoising setting. We show our
generative model-based approach in details in the next section.

4. Overall structure of the W-GAN based generative model

Noisy image DB

Smooth noisy 
patch extraction

Random cropping

(a) Getting D & N

: Conv + BN + ReLU

: Conv + BN + LeakyReLU

: DeConv + BN + ReLU

(b) The model architecture with three generators and two critics.

Figure 2. Overall structure of the W-GAN based generative model.

5. Details on the experimental settings
5.1. Training details

For the generative model training, the patch size used for D and N was 96 × 96, and n and N were set to 20, 000 (BSD)
and 40, 000 (microscopy), respectively. For the iterative G2G training, the patch size forD was 120×120 and n = 20, 500,
and in every mini-batch, we generated new noisy pairs with gθ1 as in the noise augmentation of (Zhang et al., 2017). The
architecture of G2Gj was set to 17-layer DnCNN in (Zhang et al., 2017).

5.2. Baselines

The baselines were BM3D (Dabov et al., 2007), DnCNN-B (Zhang et al., 2018), N2N (Lehtinen et al., 2018), and N2V
(Krull et al., 2019). We reproduced and trained DnCNN-B, N2N and N2V using the publicly available source codes on
the exactly same training data as our iterative G2G training. For DnCNN-B and N2N, which use either clean targets or
two independent noisy image copies, we used 20-layers DnCNN model with composite additive white Gaussian noise with
σ ∈ [0, 55]. N2V considers the same setting as ours and uses the exact same architecture as G2Gj ; more details on N2V are
also given in the S.M. We could not compare with the scheme in (Laine et al., 2019), since their code cannot run beyond
white Gaussian noise case in our experiments and they had an unfair advantage: they newly generate noisy images by
corrupting given clean images for every mini-batch whereas we assume the given noisy images are fixed once for all. It is
known that such noise augmentation significantly can increase the performance, and their code could not run in our setting
in which the noisy images are fixed once given. As an upper bound, we implemented N2C(Eq.(4)), denoting a 17-layer
DnCNN trained with clean target images in BSD400 and their noisy counterpart, which is corrupted by our gθ1 learned
with Eq.(4) in the manuscript.
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5.3. Details on Mixture noise

For mixture noise, we tested with two cases. Case A corresponds to the same setting as given in (Chen et al., 2018), i.e.,
70% ∼ N (0, 0.12), 20% ∼ N (0, 1), and 10% ∼ Unif[−s, s] with s = 15, 25. For case B, we tested with larger variances,
i.e., 70% Gaussian N(0, 152), 20% Gaussian N(0, 252), and 10% Uniform [−s, s] with s = 30, 50.

5.4. Details on Correlated noise

For correlated noise, we generated a spatially correlated Gaussian noise, of which neighboring k× k blocks are correlated
and marginal standard deviation σ = 15, 25. For this, we generated the following noise for each `-th pixel,

N` = ηM` + (1− η)
( 1√
|NB`|

∑
m∈NB`

Mm

)
, ` = 1, 2, . . .

in which {M`} are white Gaussian N (0, σ2), NB` is the k × k neighborhood patch except for the pixel `, and η is a
mixture parameter. We set η = 1/

√
2 such that the marginal distribution of N` is also N (0, σ2) and set k = 16. Note in

this case, N` has a spatial correlation, and we tested with σ = 15, 25.

5.5. Smooth noisy patch extraction

5.5.1. GCBD (CHEN ET AL., 2018) RULE EQ.(3)

The original GCBD paper (Chen et al., 2018) did not provide any source code or training data, hence, we reproduced their
noisy patch extraction algorithm. There are six hyperparameters for the rule [Eq.(3), Manuscript], and we used the exact
same hyperparameters given in their paper, which are shown in Table 2. d and h denote the size of a patch, p, and its
sub-patches, qj , given in [Eq.(3), Manuscript], respectively. sp and sq are the stride sizes for extracting the patches, p and
{qj}, from a given image. µ and λ are the hyperparameters of the rule for selecting the smooth patches shown in [Eq.(3),
Manuscript].

Table 2. Hyperparameters for the patch extraction rule of GCBD

Hyperparameters d h sp sq µ γ
Values 64 16 32 16 0.1 0.25

5.5.2. G2G RULE EQ.(4)

There are three hyperparemeters for our extraction rule [Eq.(4 ), Manuscript], λ, d (the patch size), and sd (the stride size
for extracting patches from an image). The choices for our experiments are shown in Table 4. Moreover, we stress that we
did not tune λ using clean images, but the different λ values in the table are determined by the pre-determined number of
extracted patches by applying our rule [Eq.(4), Manuscript]. Moreover, as argued in Section 3.1 (manuscript), we do not
require any sub-patches to be extracted, hence, have only half the hyperparameters compared to the GCBD rule.

Table 3. Hyperparameters for the extraction rule of G2G

Gaussian
Noise

Mixture
Noise

Correlated
Noise WF Medical

λ 0.03 0.1 0.15 0.42 0.015
d 96
sp 24

5.5.3. EFFECT OF λ

Table 4 shows the effect of λ in [Eq.(4), Manuscript] on the final performance of G2G2. Note the smaller the λ, the
less number of patches are extracted, but the homogeneity increases. The table shows λ clearly affects the denoising
performance of gθ2 , but as the iterative G2G training continues, the performance of G2G2 becomes not very sensitive to λ.
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Hence, in our experiments, we did not optimize λ based on any clean validation set, but just set λ based on the number of
extracted patches and checking the visual qualities of the patches.

Table 4. Effects of varying λ on the denoising performance.
Gaussian Noise (σ = 25) Mixture Noise (s = 25) Correlated Gaussian Noise (σ = 25)

λ # of patches gθ2 G2G2 λ # of patches gθ2 G2G2 λ # of patches gθ2 G2G2

0.03 100,000 26.30/0.7123 28.93/0.8293 0.1 80,000 32.73/0.9478 40.30/0.9845 0.15 100,000 25.68/0.7606 27.85/0.8185
0.01 61,000 27.20/0.7159 28.84/0.8045 0.005 45,000 35.84/0.9588 40.16/0.9838 0.11 30,000 26.61/0.7566 27.67/0.8203

0.0075 32,000 26.44/0.7085 28.80/0.8060 0.025 23,000 34.20/0.9398 40.28/0.9848 0.1 11,000 26.30/0.7440 27.65/0.8203

5.6. Training a W-GAN based generative model

Here, we elaborate a couple of subtle points for training our generative model as mentioned in Section 3.2 (manuscript).

Firstly, given the overall optimization objective [Eq.(8), manuscript], we use (α, β, γ) = (1, 1, 0) for the inner maxi-
mization for critics, and use (α, β, γ) = (5, 1, 10) for the outer minimization for generators. The main intuition for using
different (α, β, γ) for training the generators is due to different levels of confidence in the generator loss terms. Namely, we
assign the largest weight to [Eq.(7), Manuscript] since it is a deterministic loss and its value has a clear meaning. The gen-
erator loss [Eq.(5), Manuscript], which is in the form of the standard W-GAN loss, gets the medium level weight since the
meaning of its value is less certain than [Eq.(6), Manuscript]. In contrast, the generator loss in [Eq.(5), Manuscript], which
consists of two generators, can become somewhat unstable during training, hence, it gets the least weight. Figure 10(a)
compares the performance of gθ2 ’s on BSD68 (σ = 25) when using (α, β, γ) = (5, 1, 10), for the outer minimization, as
proposed, and using (α, β, γ) = (1, 1, 1). We observe there is a significant gap between the two.
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Figure 3. Ablation study on (α, β, γ)

Secondly, the output layer of gθ2 must have the sigmoid activation function. Note gθ2 itself can be thought of another
denoiser, but since we are not training it with any target, we need to ensure the outputs of gθ2 have values between [0, 1] to
prevent from obvious errors of generating negative or out-of-bound pixel values. Without the sigmoid activation, it turned
out all the generators cannot be trained properly at all.

Finally, using the right architectures for the generators and critics, e.g., number of layers and filters, was critical since the
training procedure got very sensitive to the architectural variations. Tables 5 shows the details on the architecture of our
first generator, gθ1 , which aims to generate noise patches. The dimension of r (the input random vector) was set to 128, and
C denotes the channel of the generated noise patch. The architectures of the gθ2 and gθ3 in our generative model are equal
to that of the DnCNN model (Zhang et al., 2018), however, gθ2 had 15 layers with sigmoid activation in the output layer,
and gθ3 had 17 layers and linear activation in the output layer. In addition, the architectures of the two critics, {fw1

,fw2
},

in our generative model are given in Table 6.

For training, we carry out the random cropping of the given patches to the size of 64 × 64, and the data augmentation
was done by flipping the cropped patches horizontally and vertically. For optimization, we used Adam (Kingma & Ba,
2015) optimizer for the three generators and RMSProp (Tieleman & Hinton, 2012) optimizer for the two critics. The initial
learning rates were set to 0.0004 and 0.0005 for Adam and RMSProp, respectively. Also, the learning rate decay, dropping
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Table 5. Architectural details on gθ1 .
Input shape : (128, ) Details of DeConv layer

Layer Num Layer composition Input channel Output channel Kernel size Stride Padding
1 DeConv + BatchNorm + ReLU 128 64 4 1 0
2 DeConv + BatchNorm + ReLU 64 32 4 2 1
3 DeConv + BatchNorm + ReLU 32 16 4 2 1
4 DeConv + BatchNorm + ReLU 16 8 4 1 1
5 Conv + Tanh 8 C 4 2 1

Output shape : (64x64xC) -

Table 6. Architectural details on the critics, {fw1 , fw2}.
Input shape : (64x64xC) Details of Conv layer Details of LeakyReLU

Layer Num Layer composition Input channel Output channel Kernel size Stride Padding α
1 Conv + BatchNorm + LeakyReLU C 128 4 2 1

0.22 Conv + BatchNorm + LeakyReLU 128 256 4 2 1
3 Conv + BatchNorm + LeakyReLU 256 512 4 2 1
4 Conv 512 1 4 1 0 -

Output shape : (64x64x1) - -

the learning rate linearly starting from epoch 10, is applied to the Adam optimizer. The parameter clipping was done for
the critics and the range was set to [−0.02, 0.02], and the number of training iterations for the critics was 5. The total
number of training epochs was 30 and the mini-batch size was 64. The pseudo algorithm for training a generative model is
in Algorithm 1

Algorithm 1 Training a generative model, all experiments in this paper used the defaults values, ncritic = 5, nepoch = 30,
m = 64, αg = 4e−4, αcritic = 5e−5, α = 5, β = 1, γ = 10

1: Require D, λ
2: N ← NoisePatchExtraction(D, λ)
3: for epGAN ← 1, nepoch do
4: Sample {n(i)}mi=1 ∼ N , {r(i)}mi=1 ∼ N(0, I), {Z(i)}mi=1 ∼ D
5: for epcritic ← 1, ncritic do
6: gw1

← ∇w1
[Ln(θ1, w1)]

7: gw2 ← ∇w2 [LZ(θ1, θ2, w2)]
8: w1 ← Clip(w1 + αcritic ·Adam(w1, gw1),−c, c)
9: w2 ← Clip(w2 + αcritic ·Adam(w2, gw2

),−c, c)
10: end for
11: gθ1 , gθ2 , gθ3 ← ∇θ1,θ2,θ3 [ αLn(θ1, w1) + βLZ(θ1, θ2, w2) + γLcyc(θ2, θ3) ]
12: θ1 ← θ1 − αg ·Adam(θ1, gθ1)
13: θ2 ← θ2 − αg ·Adam(θ2, gθ2)
14: θ3 ← θ3 − αg ·Adam(θ3, gθ3)
15: end for
16: return gθ1 , gθ2

5.6.1. ABLATION STUDY ON LCYC

As shown in the synthetic noise case of Figure 6(b) (manuscript), the iterative G2G training is powerful such that there is a
negligible performance difference between the schemes with and without gθ2 , when the number of iterations is sufficiently
large. Consequently, the cycle loss Lcyc also does not have significant effect in the final performance for the synthetic noise
case. However, for the real noise case, Lcyc becomes more critical. As shown in Figure 4(a) and 4(b), on WF(Avg= 1)
dataset, we observe that when there is no Lcyc in our generative model, the final PSNR or SSIM performances cannot reach
the model with Lcyc even after many iterations of G2G training. Hence, this result shows the necessity of Lcyc.
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Figure 4. Figure (a) and (b) compares the PSNR and SSIM performances between starting from gθ2 and gθ2(No Lcyc), respectively.

5.7. Iterative GAN2GAN training of a denoiser

We do the same random cropping and data augmentation as in the generative model training. Moreover, for every minibatch
in the G2G training, we generated new synthetic noisy image pairs using our trained generators as was done in the noise
augmentation of (Zhang et al., 2017). Adam optimizer with an initial learning rate 0.001 was used, and the learning rate
scheduling, which halves the learning rate every 20 epochs, was applied. The total number of training epochs was 50, and
the mini-batch size was 4. We also stress that we set the architecture of X̂θ(Z) identical to that of 17-layers DnCNN in
(Zhang et al., 2017) to make a fair comparison. The pseudo algorithm for training a generative model is in Algorithm 2

Algorithm 2 Training G2G, all experiments in this paper used the defaults values, nepoch = 50, αG2G = 1e−3

1: Require D, gθ1 , gθ2 , φ, num iter, m
2: for j ← 1, num iter do
3: for ep← 1, nepoch do
4: Sample {r(i)j,1, r

(i)
j,2}mi=1 ∼ N(0, I), {Z(i)}mi=1 ∼ D

5: φj ← argminφ LG2G(φ, D̂j),
6: end for
7: end for
8: return φnumiter

5.8. Noise2Void (Krull et al., 2019)

We used the publicly available source code of Noise2Void (N2V) (Krull et al., 2019) to obtain the denoising results of N2V.
Most of the hyperparameters were set to the default ones, but we changed three things to make a fair comparison with our
method.

Firstly, while the CNN architecture for the original N2V was a UNet3, we used the DnCNN (Zhang et al., 2018) with 17
layers such that it has the same structure as our G2G model. Secondly, as also is done in (Krull et al., 2019), we had to
use a validation set to do a proper model selection for N2V (i.e., the best epoch), while our G2G does not require any
validation set (since we always use a model at the last epoch). The reason why N2V needs a validation is that its learning
curve is very unstable and a proper model selection greatly affects the final denoising performance. To that end, since
we used 20,500 patches with 120 × 120 size for training our G2G and other baselines, we divided the 20,500 patches
into 18,000 training patches and 2,500 validation patches for training and selecting the best N2V model. Thirdly, we set
’mini batch size’ to 4 (as our G2G) and ’train steps per epoch’ to ’num of training data / mini batch size’, hence, 4,500.
Other hyperparameters are given in Table 7.
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Table 7. Hyperparameters for N2V

Hyperparameter Value
train steps per epoch 4,500

train loss ’mse’
train scheme ’Noise2Void’

train batch size 4
n2v num pix 64

n2v patch shape (64,64)
n2v manupulator ’uniform withCP’

n2v neighborhood radious ’5’

6. Comparison of the patch extraction rules
Here, we make a further, thorough comparison between the GCBD smooth patch extraction rule [Eq.(3), manuscript] and
ours [Eq.(4), manuscript]. We selected three noisy patches from [Figure 2(b), manuscript] and show the decision criterion
of each rule for each image Figure 5. From the figure, we can observe that while our G2G rule correctly excludes the patches
in Figure 5(b) and 5(c) as non-homogeneous patches, the GCBD rule wrongly determines them also as homogeneous
patches. That is, we note that since the DWT transform used in our rule can successfully disaggregate the high and low
frequency components in the patches, the patches with self-similar repeating patterns would have significantly varying
sub-band coefficient variances as shown in the figures. Hence, our rule can exclude those patches. However, in the GCBD
rule, there may exist a sub-patch qj that has similar empirical mean and variance as the original patch p, thus, it may
determine the patches with the self-similar repeating patterns as homogeneous as well. We believe these examples clearly
show the stark difference between our rule and the GBCD rule for smooth patch extraction.
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Figure 5. Noise patch extractions of GCBD (3) and G2G (4) rules.
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7. Result table for real microscopy noise
We report the detailed experimental results on the real microscopy images in Table 8. We observe that Iterative G2G
increases PSNR/SSIM in WF.

Table 8. Experimental results on the real microscopy dataset
Data
Type

Noise
Type DnCNN-S DnCNNB BM3D

N2V
(DnCNN) gθ2 G2G1 G2G2 G2G3 G2G4 G2G5 G2G6 G2G7

N2C
(GCBD)

N2C
((Eq.(4))

WF

Raw
35.39

/0.8738
25.43

/0.3702
26.32

/0.4012
25.31

/0.3411
28.40

/0.5261
30.63

/0.6407
32.03

/0.6889
32.21

/0.7114
32.30

/0.7253
32.56

/0.7672
32.62

/0.7910
32.74

/0.8158
31.16

/0.7493
32.26

/0.8205

Avg = 2
36.11

/0.8969
28.36

/0.5292
29.21

/0.5642
28.23

/0.4500
29.73

/0.5844
31.84

/0.6717
32.41

/0.6920
32.80

/0.7161
32.85

/0.7500
32.90

/0.7697
32.92

/0.7783
32.85

/0.7808
31.88

/0.7575
33.23

/0.8218

Avg = 4
37.46

/0.9182
31.32

/0.6910
32.19

/0.7202
31.28

/0.6676
31.41

/0.6580
33.32

/0.7728
33.52

/0.7974
33.71

/0.8079
33.68

/0.8091
33.85

/0.8140
33.69

/0.8088
33.79

/0.8135
34.42

/0.8665
34.79

/0.8559

Avg = 8
39.81

/0.9374
34.63

/0.8218
35.76

/0.8444
34.85

/0.8097
34.81

/0.8084
35.16

/0.8315
35.16

/0.8315
35.27

/0.8325
35.21

/0.8321
35.27

/0.8333
35.25

/0.8330
35.22

/0.8316
36.92

/0.9126
36.86

/0.8800

Avg = 16
42.10

/0.9569
37.82

/0.9136
39.67

/0.9293
38.75

/0.9094
36.97

/0.9086
38.97

/0.9153
38.98

/0.9174
38.84

/0.9172
38.84

/0.9170
38.87

/0.9175
38.82

/0.9181
38.82

/0.9178
38.72

/0.9110
38.92

/0.9181

Average
38.17

/0.9166
31.52

/0.6652
32.63

/0.6919
31.68

/0.6365
32.26

/0.6971
33.98

/0.7664
34.41

/0.7855
34.57

/0.7970
34.58

/0.8067
34.69

/0.8203
34.66

/0.8258
34.68

/0.8324
34.62

/0.8394
35.21

/0.8592

8. Description and the result table on Reconstructed CT dataset
The reconstructed CT dataset consists of chest and head parts of 27 pediatric extended cardiac-torso phantoms (Segars
et al., 2015), which provide a highly realistic model of the human anatomy. We extracted 60 image slices from each
phantom, leading to 1620 image slices in total. The dataset was generated in the following procedure. First, noiseless
projection data were acquired in a parallel-beam geometry with Siddon’s ray-driven algorithm (Sidky & Pan, 2008). To
reduce view aliasing artifacts, the detector quarter-offset was used during a CT scan. Second, Poisson noise was generated
and added to the noiseless projection data. Note that the mean number of detected photons was set to 2,500, 5,000, 7,500,
and 10,000 to simulate 25%, 50%, 75%, and 100% of a normal dose, respectively. Finally, the images were reconstructed
by filtered backprojection (Hsieh, 2003). To preserve fine anatomical structures in the images, the Ram-Lak filter was used
as a reconstruction filter. Detailed simulation parameters are summarized in Table 9.

Table 9. Simulation parameters

Parameters Values
Source to iso-center distance 595 mm
Source to detector distance mm

Detector cell size 0.7 mm
Detector array size 736 x 1

Data acquisition angle 360 dares
Number of projection views 736
Reconstructed pixel width 0.67 mm
Reconstructed matrix size 512x512

We divided 27 phantoms into training and test data and the phantom number for each dataset is in Fig 10. Also, We
visualized the first image of Female 1 in Fig 6. We can clearly see that each dose has a different noise level, and the noise
is source independent and correlated. Finally, Table 11 shows the details of experimental results on Reconstructed CT
dataset.
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Table 10. Training and test data information of Reconstructed CT dataset

Training data Test data
Female 1,3,4,5,6,7,8,9,10,11 13,14,15
Male 1,2,3,4,5,6,7,8,9,10,11 12,13

# of images 21x60 = 1260 60x5 = 300

Table 11. Experimental results on the reconstructed CT
Data
Type

Noise
Type

N2C
(UNnet) DnCNNB BM3D

N2V
(UNet) gθ2 G2G1 G2G2 G2G3

Reconstructed
CT

Dose 25
48.43

/0.9609
35.50

/0.6055
42.40

/0.7575
31.57

/0.5416
34.66

/0.5759
40.49

/0.8301
46.04

/0.9579
47.47

/0.9707

Dose 50
49.07

/0.9600
38.48

/0.7440
45.14

/0.8510
34.17

/0.6931
37.70

/0.7202
43.38

/0.9063
47.78

/0.9702
48.06

/0.9705

Dose 75
49.45

/0.9591
40.09

/0.8111
46.55

/0.8929
35.90

/0.7756
39.49

/0.7919
44.96

/0.9320
48.80

/0.9744
49.20

/0.9733

Dose 100
49.63

/0.9565
41.19

/0.8513
47.48

/0.9169
37.26

/0.8118
40.75

/0.9350
46.11

/0.9492
49.19

/0.9760
48.83

/0.9718

Average
49.15

/0.9591
38.82

/0.5730
45.39

/0.8546
34.73

/0.7055
38.15

/0.7558
43.74

/0.9044
47.95

/0.9696
48.39

/0.9715

Figure 6. Clean, noisy and noise images from Reconstructed CT
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9. Analysis on real microscopy image
In this section, we analyze why our G2G also works well on the real microscopy image dataset (WF) (Zhang et al., 2019).
although the source-dependent noise does not satisfy our assumption on the noise. The real microscopy image dataset
consists of three different types of dataset, which are Wide-Focal(WF), Two-Photon(TP) and Con-Focal(CF), and It is
generally known that the real noise follows the Poisson-Gaussian model (Zhang et al., 2019),

Zi = xi +Ni, i = 1, 2, . . . , (11)

in which Ni ∼ N (0, σ2
i ) and

σ2
i = αxi + σ2 (12)

with a scaling factor α > 0. Thus, the noise variance depends on the underlying clean source pixel value, and α determines
the level of the dependence.

Clean image Corrupt image Noise
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Figure 7. Clean, noisy and noise images from the WF set. (Best viewed in PDF.)

In Table 8, we observe that our G2G performs well for WF compared to other baselines, hence, we visualize clean, noisy,
noise images from each set and examine if there are any notable difference in the noise distributions. Figure 7 shows two
image samples (Avg= 1 cases) from the Wide-Focal (WF) set. The noise images are obtained by subtracting the clean
images from its noisy versions. Note even though the intensities in the source images change significantly among pixels
(particularly for the top image), the noise images do not show any source-dependent patterns. Hence, we can deduce that
α may be small for the WF images. Also, we could see that there is a correlated pattern in the noise. We belive that these
back the good performance of G2G for the WF set.

Figure 8, on the other hand, visualizes an image from TP set for Avg= {1, 16} cases. Comparing with Figure 7, we can
clearly see the source-dependent patterns in the noise images, particularly severely for the Avg = 1 case. Also, CP set
showed the similar source-dependent noise patterns. This source-dependent noise is not in our assumption so we did not
apply GAN2GAN to TP and CP. However, we want to stress out that the source independent real noise also exists and
GAN2GAN shows the best result compared to any other baselines.
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Figure 8. Clean, noisy and noise images from the TP set. (Best viewed in PDF.)

10. Ablation study
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Figure 9. Effect of noise patch extraction rule.

Noise patch extraction Here, we evaluate the effect of the noisy patch extraction rules (3) and (4) (in the manuscript) in
the final denoising performance. Figure 9 compares the PSNR of N2C(GCBD Eq.(3)), a re-implementation of (Chen et al.,
2018), N2C(Ours Eq.(4)) and the best G2G, for each dataset.

We note neither source code nor training data of (Chen et al., 2018) is publicly available, and the PSNR in (Chen et al.,
2018) could not be reproduced (with the exact same η and γ as in (Chen et al., 2018)). From the figure, we clearly observe
the significant gap between N2C(Our Eq.(4)) and N2C(GCBD Eq.(3)), particularly when the noise is not white Gaussian.
Moreover, our pure unsupervised G2G with (4) even outperforms N2C(GCBD Eq.(3)) that utilizes the clean target images.
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Generative model and iterative G2G training Figure 10(a) shows the PSNRs of gθ2 on BSD68/Gaussian(σ = 25)
trained with three variations; “No LZ” for no fw2 , “No Lcyc” for no (7) in the manuscript and gθ3 , and “No sigmoid” for
no sigmoid activation at the output layer of gθ2 . We confirm that our proposed architecture achieves the highest PSNR for
gθ2 , the sigmoid activation and fw2

are essential, and the cylce loss (7) in the manuscript is also important. Achieving a
decent PSNR for gθ2 is beneficial for saving the number of G2G iterations and achieving high final PSNR. More detailed
analyses on the generative model architecture are in the S.M. Figure 10(b) and 10(c) show the effect of the quality of the
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Figure 10. Ablation studies. (b) and (c) compare the performances between starting from gθ2 and Z.

initial estimate for the iterative G2G training. From Figure 1, one may ask whether gθ2 is indeed necessary, since even
when σ0 ≈ σ, the iterating the Noisy N2N can mostly achieve the upper bound. Hence, for samples of synthetic and real
microscopy data, we evaluate how G2Gj performs when the iteration simply starts with Z. Figure 10(b) shows a somewhat
surprising result that for synthetic noises, starting from Z achieves essentially the same performance as starting from gθ2
with a couple more G2G iterations. However, for real microscopy noise case in Figure 10(c), WF(Avg= 1) in which
starting from Z achieves far lower performance than starting from gθ2 , justifying our generative model for attaining the
initial noisy estimate.

11. Visualizations
11.1. Visualization of Z̃

Figure 11 and 12 visualize the simulated noisy image pairs (Ẑ1, Ẑ2), generated from our generative model, for synthetic
and real noise cases, respectively. A close examination shows that the images are not simple copies of the original noisy
image Z but are successfully synthesized with the independent noise processes.
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Figure 11. Visualizations of synthesized synthetic noisy image pairs.
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Figure 12. Visualizations of synthesized real noise image pairs.
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11.2. Visualization of denoised images on BSD68

Figure 13 visualizes the denoising results of a BSD68 image for different types of noise. Note the clear difference in the
noise characteristics for Gaussian, mixture, and correlated noises. The visualization of G2G3 certiainly seems better than
N2V and BM3D, in line with the PSNR results. DnCNN-B and Noise2Noise use more information than G2G3, but the
visualzation as well as the PSNR of G2G3 are comparable to those of the two methods.
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Figure 13. Denoising results on the synthetic noise images.
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11.3. Additional visualizations on the real microscopy images

We also visualize additional denoised images of WF images in Figure 14. We can see that the denoising results of the
baselines for WF (Avg = 1) are very noisy, but G2G3 shows relatively clean denoising results than others.
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Figure 14. Denoising results on the real noisy microscopy images.
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11.4. Additional visualizations on the Reconstructed CT

We visualize the denoising result of a Reconstructed CT image in Figure 15. We observed that BM3D and N2V shows a
still noisy result on this image but G2G3 shows a clearly denoised result.

Clean BM3D N2V G2G𝟑
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Figure 15. Denoising results on Reconstructed CT images.
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