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ABSTRACT

Dropout is a widely utilized regularization technique in the training of neural
networks, nevertheless, its underlying mechanism and impact on achieving good
generalization abilities remain to be further understood. In this work, we start by
undertaking a rigorous theoretical derivation of the stochastic modified equations,
with the primary aim of providing an effective approximation for the discrete
iterative process of dropout. Meanwhile, we experimentally verify SDE’s ability to
approximate dropout under a wider range of settings. Subsequently, we empirically
delve into the intricate mechanisms by which dropout facilitates the identification
of flatter minima. This exploration is conducted through intuitive approximations,
exploiting the structural analogies inherent in the Hessian of loss landscape and
the covariance of dropout. Our empirical findings substantiate the ubiquitous
presence of the Hessian-variance alignment relation throughout the training process
of dropout.

1 INTRODUCTION

Dropout is a technique integrated into gradient-based algorithms for training neural networks (NNs)
(Hinton et al., 2012; |Srivastava et al., 2014)). It constitutes a pivotal component contributing to the
attainment of state-of-the-art test performance in deep learning (Tan and Le, [2019; [Helmbold and
Long| [2015)). The key idea behind dropout is to randomly deactivate a subset of neurons during
the training process. Specifically, the output of each neuron is multiplied by a random variable that
takes the value 1/p with probability p and zero otherwise. This random variable is independently
sampled at each feedforward operation. Despite its widespread adoption and empirical success, the
mechanism by which dropout enhances generalization in deep learning remains an ongoing area of
research.

The noise structure introduced by stochastic algorithms plays a crucial role in understanding their
training behaviors. A series of recent works reveal that the noise structure inherent in stochastic
gradient descent (SGD) is vital for exploring flatter solutions (Keskar et al.| 2016}, Feng and Tul [2021}
Zhu et al.} 2018). Analogously, the dropout algorithm introduces a specific form of noise, acting as an
implicit regularizer that facilitates improved generalization abilities (Hinton et al., 2012} [Srivastava
et al.,[2014} [Wei et al.| |2020; |[Zhang and Xu, 2022} |Zhu et al., 2018)).

In this paper, we first employ the stochastic modified equations (SMEs) (Li et al.l 2017)) framework
to analyze the dynamics of the dropout algorithm applied to two-layer NNs. By application of SMEs,
we embark on an exhaustive quantification of the leading order dynamics governing dropout, and
we fortify this analytical approach through some empirical validations. In addition, we calculate the
covariance matrix associated with the noise introduced by dropout. Hence our analytical exploration
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is further enriched by an investigation of the alignment relation between this covariance matrix and the
Hessian matrix, a relationship conceptually framed as the Hessian-variance alignment relation (Zhu
et al., 2018; |Wu et al., [2022)). We emphasize that this alignment property occupies a central role in
sculpting the flatness attributes inherent in the solutions favored by NN models, and it has been firmly
established that flatter solutions tend to exhibit enhanced generalization capabilities (Keskar et al.,
2016; Neyshabur et al., 2017).

2 RELATED WORKS

A flurry of recent works aims to shed light on the regularization effect conferred by dropout. [Wager
et al.| (2013)) show that dropout performs a form of adaptive regularization in the context of linear
regression and logistic problems. McAllester (2013)) propose a PAC-Bayesian bound, whereas|Wan
et al.[(2013); Mou et al.|(2018) derive some Rademacher-complexity-type error bounds specifically
tailored for dropout. |Cavazza et al| (2018); [Mianjy and Aroral (2020); |Wei et al.| (2020); |Arora
et al.| (2021)) demonstrate that dropout regularizes the inductive bias under different settings. Jin
et al.[(2022)) try to explain the generalization ability of dropout from the new perspective of weight
expansion. Finally, Zhang and Xu|(2022) establish that dropout facilitates condensation (Luo et al.|
20215 Zhou et al., [2021}[2022)) through an additional regularization term endowed by dropout.

Continuous formulations have been extensively utilized to study the dynamical behavior of stochastic
algorithms. |Li et al.| (2017; 2019) present an entirely rigorous and self-contained mathematical
formulation of the SME framework that applies to a wide class of stochastic algorithms. Furthermore,
Feng et al|(2017) adopt a semigroup approach to investigate the dynamics of SGD and online PCA.
Malladi et al.|(2022) derive the SME approximations for the adaptive stochastic algorithms including
RMSprop and Adam, additionally, they provide efficient experimental verification of the validity of
square root scaling rules arising from the SMEs.

One noteworthy observation is the association between the flatness of minima and improved gen-
eralization ability (L1 et al., 2017 Jastrzebski et al., 2017; 2018)). Specifically, SGD is shown to
preferentially select flat minima, especially under conditions of large learning rates and small batch
sizes (Jastrzebski et al.,[2017;|2018; ' Wu et al.| 2018). [Papyan| (2018} [2019) attribute such enhance-
ment of flatness by SGD to the similarity between covariance of the noise and Hessian of the loss
function. Furthermore, Zhu et al.|(2018); Wu et al.| (2022) unveil the Hessian-variance alignment
property of SGD noise, shedding light on the role of SGD in escaping from sharper minima and
locating flatter minima.

3 PRELIMINARY

In this section, we present the notations and definitions utilized in our theoretical analysis. We remark
that our experimental settings are more general than the counterparts in the theoretical analysis.

3.1 NOTATIONS

We set a special vector (1,1,1,...,1)T by 1 := (1,1,1,...,1)T whose dimension varies. We set
n for the number of input samples and m for the width of the NN. We let [n] = {1,2,...,n}. We
denote ® as the Kronecker tensor product, and (-, -) for standard inner product between two vectors.
We denote vector L? norm as ||||,, vector or function L., norm as ||-|| _. We also denote Tr() as the
trace of a square matrix, I; as the identity matrix of size d X d, and ||-|| signifies the Frobenius norm
of a matrix. Finally, we denote the set of continuous functions f(-) : R” — R possessing continuous
derivatives of order up to and including r by C"(R?), the space of bounded measurable functions by
By(RP), and the space of bounded continuous functions by Cj,(R?).

3.2 TWO-LAYER NEURAL NETWORKS AND LOSS FUNCTION

We consider the empirical risk minimization problem given by the quadratic loss:

. 1\
m;nRS(B) =3, ; (fo(x:) — Z/z‘)2 ) @
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where S := {(z;, y;)}_, is the training sample, fg () is the prediction function, 6 are the parame-
ters, and their dependence is modeled by a two-layer NN with m hidden neurons

=Y a,0(wlw), 2
r=1

where € R?, 8 = vec(8,, 0,,) € RP, where D := m(d+ 1) throughout this paper. We remark that
0 is the set of parameters with 8, = vec({a,}" 1), O = vec({w, }I- ), and we impose hereafther
that the activation function o () to be continuously differentiable up to order 6, i.e., o € CS(R).
More precisely, @ = vec({q,}™™ ), where for each r € [m], g, :== (a,,w])T, and the bias term b,
can be incorporated by expanding « and w,. to (z7,1)T and (w],b,)"

3.3 DROPOUT

For a fixed learning rate 7 > 0, then at the N-th iteration where ¢y := N7, a scaling vector d y € R™
is sampled with independent random coordinates: For each k € [m],

3

(B )i = - with probability p,
M 700 with probability 1 — p,

and we observe that {dy } y>1 is an i.i.d. Bernoulli sequence with Ed = 1. With slight abuse of
notations, the o-fields Fy := {o(d1, 82, - - dn)} forms a natural filtration. We then apply dropout
to the two-layer NNs by computing

m

fo(x;8) := Z(J)Tara(wlaz), 4)

r=1

and we denote the empirical risk associated with dropout by

2
1 n 1 n m
Rg“’p 0;9) := =5 Z fo(wi; ) —yi)* = o <Z(5)rar0(’w;mi) - yz> . ®)
i=1

i=1 \r=1

We remark that the parameters at the N-th step are updated as follows:
On = On_1 — VRS (On_1;0N), (6)

where 8, := 6(0). Finally, we denote hereafter that for all ¢ € [n],

eN = ei(On_1;0N) = fon_, (xi;ON) — Yi-

4 STOCHASTIC MODIFIED EQUATIONS FOR DROPOUT
In this section, we approximate the iterative process of dropout (6) in the weak sense (Definition [I)).

4.1 MODIFIED LOSS

As the dropout iteration (6] reads
0N - 01\[ 1= —’I7V Rdrop (91\[ 1,6]\[ = —*ZGNV()G

Since 6 = vec({q,}™,) = vec ({(ar, w;)}™ ), then given Ox_1, for each k € [m], the expecta-
tion of the increment restricted to q;, reads

n
N N
E €; Vg€

i=1

]EGN—l

=Eoy_, [Z&@N)k%m (aro(wizi))
i=1

n 1 o

= eiVq, (aro(w]z;)) + - Z aro(wlx;) Vg, (aro(wlz;)),

=1 i=1
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where we denote for simplicity that e; := ¢;(0) :== > a,0(w]x;) — y;. Compared with e, e;
does not depend on the random variable d . Hence, as we define the modified loss Ls(-) : RP 5 R
for dropout:

_ 1 ~ o l-paxe o 2
Ls(0):= g it 5, 2 2 atolwle’ ™
We observe that for each k € [m], the gradient of Ls restricted to gy, reads
1 — 1—p—
VaLs(0) = ; €V, (aro(wi;)) + o Z; aro(wizi) Vg, (aro(wiz)),

which indicates that given @ _1, the conditional expectation of the increment of the parameter at the
N-th step reads

Ox — Ox_1 = —1Eo, |, [nggmp (On_1: JN)] = —1VoLs(6)|,_, -

Then in the sense of expectations, {@x } y>o follows close to the gradient descent (GD) trajectory of
Ls(0) with fixed learning rate 7). In the above procedure, we focus on the drift term of dropout and
disregard its fluctuation term as we merely consider the first conditional moment of the parameter
increment. Please refer to Appendix [G.T]for the detailed derivation of L.

4.2 STOCHASTIC MODIFIED EQUATIONS

In pursuit of a more comprehensive understanding of the dynamics of dropout, we integrate the
fluctuation term of dropout into our analysis. Firstly, as shown above, we observe that given O _1,

On —On-1=—1VoLs(8)|,_o  + VIV (On-1), (®)

where Ls(-) : RP — R is the modified loss defined in (7), and V' (-) : RP — RP represents the
fluctuation term of dropout. When given 81, V(6 y_1) has mean 0 and covariance n3(0x_1),
where 3(-) : RP — RP*D_whose expression is deferred to Section

Consider the stochastic differential equation (SDE),
dO; =b(0;)dt + o (0;)dW;, Oy =06(0), &)

where W, is a standard D-dimensional Brownian motion. Its Euler—-Maruyama discretization with
step size 7 > 0 at the [N-th step reads

Oyn = Opn-1) +1b (Oyv-1)) + V117 (Oyv-1)) Zn,
where Zy ~ N (0, Ip) and Oy = ©(0). Thus, if we set
b(0):=-VeLs(®),
1
o (@) :=yn(%(0))*, (10)
@0 = 00,
then we would expect (9) to be a “good” approximation of (8) with time identification ¢ = nN. Based
on the previous work (Li et al.| [2017), we use approximations in the weak sense (Kloeden and Platen)

2011}, Section 9.7) since the path of dropout and the corresponding SDE are driven by noises sampled
in different spaces.

To compare different discrete time approximations, we need to take the rate of weak convergence
into consideration, and we also need to choose an appropriate class of functions as the space of test
functions. We introduce the following set of smooth functions:

C) (RP) =< feC™ (RP)|[Ifllen == > D], <oop. (11)

[BI<M

where D is the usual differential operator. We remark that CM (R?) is a subset of G(RP), the class
of functions with polynomial growth, which is chosen to be the space of test functions in previous
works (Li et al., [2017; Kloeden and Platen, 2011). To ensure validity of our analysis, we assume that
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Assumption 1. There exists T* > 0, such that for any t € [0, T*], there exists a unique t-continuous
solution ©y to SDE (). Furthermore, for eachl € [3], there exists C(T*,®q) > 0, such that

sup E (]|0,()]3) < C(T, ). (12)

0<s<T*

Moreover, for the dropout iterations @, let0 <1 <1, T>0andset Np, := L%J There exists

1o > 0, such that given any learning rate 1 < 1y, then for all N € [0 : Ny« ,] and for each | € [3],
there exists C(T*,0q,m9) > 0, such that

s E(0w]3) < C(T*,60,m0). (13)
0<N<[Npx

)

We remark that local existence of the solution to SDE and estimates of all 2/-moments of the solution
to SDE can be guaranteed for smooth coefficients and sufficiently small time 7* > 0. Moreover, as
the constants C(T*, ©,) and C(T*, 8y, o) are exponential in time, the 2/-moments of the solution
might blow up for large enough 7™, which is unavoidable since we are unable to impose the uniform
Lipschitz condition on VLs and ¥. However, our empirical findings suggest that the SME still
possess the desired approximation ability to dropout even for a large learning rate, as shown in Fig.[I]
(a). We also remark that if G (RD ) is chosen to be the test functions in|Li et al.[(2019), then similar
relations to (12) and (T3] shall be imposed, except that in our cases, we only require the second,
fourth and sixth moments to be uniformly bounded.

Definition 1. The SDE @) is an order a weak approximation to the dropout (6), if for every
gE< Cé\/[ (RD), there exists C > 0 and 19 > 0, such that given any n < ng and T' < T, then for all
N € [NTJ]],

[Eg(Onn) —Eg(On)] < C(T7, g,m0)n"- (14)
We now state formally our approximation results.

Theorem 1. Fix time T < T* and learning rate n > 0. If o € C(R), then for all t € [0,T), the
stochastic processes Oy satisfying

4O, = b, (©,)dt + o1 (©,) dW,, (15)
is an order-1 approximation of dropout (6)), where
b1(®) = —VeLs(®),
01(©) = Vi (3(8))*,
and the expression of Ls(+) is located in (7)), and the expression of 3(-) can be found in Appendix
Moreover; if o € CS(R), then for all t € [0, T), the stochastic processes © satisfying
A0, = by (©,) dt + o5 (©;) AW, (16)

is an order-2 approximation of dropout (6)), where
b2(0) = ~Ve (Ls(©) + 1| VeLs(®O)])
1
02(0) = V1 (2(0))* .

It is noteworthy that our findings reproduce the explicit regularization effect attributed to dropout (Wei
et al., [2020; |[Zhang and Xul [2022). This regularization effect modifies the expected training objective
from the empirical risk Rs(0) to Ls(8), and it stems from the inherent stochastic nature of dropout.
Unlike SGD, where the noise arises from the stochasticity involved in the selection of training
samples, dropout introduces noise by means of the stochastic removal of parameters.

4.3 NUMERICAL SIMULATION OF STOCHASTIC MODIFIED EQUATIONS

In this subsection, we conduct an empirical validation of the effectiveness of SMEs for dropout. This
validation is conducted through an exploration of the resemblance between the numerical simulation
of the SME and the real-time training process of dropout. For the numerical simulation of the SME,
unless otherwise specified, we employ the Euler-Maruyama method to approximate its dynamic
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evolution by the order-1 approximation. It is worth noting that the noise term o (0) in Equ. (I0)
involves the computation of the square root of the covariance matrix (). Consequently, the size
of the covariance matrix significantly affects the speed and accuracy of the numerical simulation
process. To mitigate the computational demands associated with the covariance matrix, we resize the
MNIST data to 7 x 7, thereby reducing the number of network parameters involved in the simulations.
Additional details of the experimental setup can be found in Appendix [A]

N 0.9 10! . 0.9
—— SDE,n=1,p=0.3 ' 4 °
SDE, n . 100 ; $
10° —— dropout, n=1,p=0.3 N 0.7 Lo 0.7
—— dropout, =1, p=0.5 = = °
< D 10-1
= T 10
2 107 0sa 1 i 052
2 0.06 = =
) 4 @102
o . i o
- 0.04- 7 T107? 0.3 - 0.3
1071 | 5700 9900/ 10 % slope = 1 02| i slope = 2
- . 103t . . . 01 04 . 01
0 2000 4000 6000 8000 10000 10 To= ToT 100 To= ToT 100
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(a) loss trajectory (b) order-1 approximation (c) order-2 approximation

Figure 1: We train two-layer fully connected networks on MNIST. The curves and points are derived
from the average results of individual trials, each of which utilized the same initialization distribution.
(a) The training loss trajectory obtained by SME simulation or dropout training under four cases
of different learning rates and dropout rates. The error bands, portrayed with greater transparency,
are derived from the maximum and minimum loss values observed across these six random trials
at each training step. (b, ¢c) Convergence-order verification of first-order and second-order SME
approximations. Each point represents the value of ||E(®;) — E(6;)||, under a given learning rate
(abscissa) and dropout rate (color).

Fig. [T)illustrates the close correspondence between the dynamics of the SME and dropout throughout
the training process. This similarity is examined from two perspectives: the trajectory of loss
functions and the approximation order. In Fig. [2| we emphasize that although dropout introduces a
noise component that modifies the loss function from Rs(6) to Ls(@), when contrasted with SMEs,
the training behavior of gradient descent utilizing Ls(8) as the loss function is distinct from dropout.
This distinction becomes apparent when large learning rates are employed in the optimization process.

To comprehensively assess the similarity between dropout and SME simulations, we first consider
four distinct cases, each characterized by various dropout rates and learning rates shown in Fig.[T|(a).
Fig. [T(a) depicts the evolution of loss values under these distinct settings for both dropout and
SME simulations. To ensure the robustness of our analysis, for each configuration, we conduct six
independent trials of dropout and SME simulations, all initialized with identical distribution. The
displayed curves represent the means of these six random trials. Moreover, the error band, indicated
by lighter colors, covers the range between the maximum and minimum loss values obtained from
the six trials. The observed alignment of loss trajectories between the SME simulation and dropout,
as evident in Fig. [I(a), underscores a prominent resemblance in their respective loss trajectories.

To further evaluate the similarity of their parameters, we verify the approximation orders of different
SME simulations. Figs. [T[b, ¢) numerically verify the approximation orders of the first-order and the
second-order approximation equation in Theorem|I|respectively. Each point represents the value of
|IE(®;) — E(6)||, under a given learning rate (abscissa) and dropout rate (color). The expectation
is obtained by calculating the mean of 10 independent experiments with the same initialization for
both dropout and SME simulation. The logarithmic plots clearly illustrate the experimental validation
of the theoretical approximation order of SME, for both order-1, shown in Fig. Ekb), and order-2,
shown in Fig. [T{c). Additionally, under the same learning rate, larger values of p exhibit enhanced
approximation capabilities. This improvement is attributed to the reduction in noise with increasing
p, consequently minimizing the impact of noise on the training process.

We also conduct experiments to validate the applicability of the SME approximation in complex
networks and SGD settings. In the former, we simulate complex networks through numerical
approximation of the drift term, while in the latter, we rely on the fact that SGD noise is unbiased.
For a thorough discussion and detailed numerical results, please refer to Appendix
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Figure 2: The test loss and test accuracy trajectory obtained by SME simulation, dropout training, and
gradient descent training with loss function Ls(0) under two settings. The curves are derived from
the average results of six individual trials, each of which utilized the same initialization distribution.
The error bands, portrayed with greater transparency, are derived from the maximum and minimum
loss values observed across these six random trials at each training step.

Fig. 2] depicts the test loss and test accuracy associated with 7 = 0.005, p = 0.9 andn = 1, p = 0.3.
In Fig. 2Ja), the trajectories of loss and accuracy, generated using three different training methods,
exhibit a remarkable degree of concurrence. This phenomenon can be primarily attributed to
the utilization of a small learning rate, where the diffusion component significantly diminishes,
consequently endowing the drift term Ls(€) with a dominant influence. In contrast, as illustrated in
Fig. 2[b), a notable divergence becomes evident in the loss and accuracy trajectories. This discrepancy
arises from the impact of the diffusion term during training, particularly with the application of large
learning rates. Notably, in contrast to the training behavior of gradient descent utilizing Ls(6) as
the loss function, the trajectory generated by SME simulation exhibits a closer alignment with the
trajectory of dropout.

It is noteworthy that as large learning rate and dropout rate contribute to an increased amplitude
of diffusion, methods incorporating noise such as SME and dropout tend to exhibit enhanced
generalization performance. As demonstrated in Figure b), the test accuracy attained by Ls(0)
consistently remains below the lower threshold of test accuracy attained by noise-inclusive methods
for the major portion of the training duration. In the sequel, we delve into an in-depth exploration of
the influence exerted by noise on our learning outcomes.

5 THE EFFECT OF DROPOUT NOISE STRUCTURE

‘We begin this section by examining the noise structure of dropout.

5.1 EXPLICIT FORM OF THE NOISE STRUCTURE OF DROPOUT

In this subsection, we present the expression for the covariance 3(0). Once again, as 0 =

vec({g-}™,) = vec ({(ar, w,)}™,), then as we denote covariance of Vg REP (O _1;dx) by
E(ON_l), i.e.,

E}W(BN,I) = COV (qu RdSTOP (0]\],1; 5]\]) ,Vq,,_Rg-rOp (9]\[,1; JN)) ,

then
X 3 Yim
o1 X Yom
3= . . .
St Boma S

Such expression of 3 arises from the inherent decoupling properties among neurons within the
two-layer neural network. Due to space limitation, we defer the detailed expression of 3, to

Appendix
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5.2 INTUITIVE EXPLANATION FOR THE HESSIAN-VARIANCE ALIGNMENT RELATIONS

In this subsection, we endeavor to show the structural similarity between the covariance and the
Hessian in terms of Hessian-variance alignment relations. Under the assumption that 0 is close
to a global minimum, we intuitively derive the structural similarity between the Hessian and the
covariance at the final stage of the training process as follows:

H(6 %Z [Vefe (x:) @V fo (zi) + Z q, (aro(wlx;)) @V, (ar0 (wlmi))] 7
i=1 r=1
5(6) ~ %Z 11V fo(:)2 Ve fo(x:) +li721p%pzvqr( o(wlz;)) ®Vg, (ar (wlmi))]
i=1 =t
(17)

where H(0) := VZLs(0), and l; 1 := (e;)* + 1_71’ Yo ato(wlx;)?, Lo = (e;)?. A detailed
derivation of (I7) is provided in Appendix [K] With the establishment of structural similarity through
the aforementioned intuitive approximations outlined in (I7), we proceed to empirically investigate
the intricate relationship between the Hessian and the covariance, and details of the experimental
settings can be found in Appendix [A]

5.3 EXPERIMENTAL RESULTS ON THE HESSTAN-VARIANCE ALIGNMENT RELATIONS

Motivated by the relation (T7), we empirically demonstrate the structural similarity between the
Hessian and the covariance of dropout, and this demonstration serves to validate the Hessian-variance
alignment relation. Based on this relation, the introduction of dropout noise has the potential to
expedite the escape of the model from locating sharp minima, thereby effectively enhancing the
flatness of the solution. Furthermore, in Appendix [B} we also explore another relationship between
the Hessian and the covariance known as the inverse variance-flatness relation (Feng and Tu, 2021,
which also contributes to aiding the model in avoidance of the sharp minima during its optimization
process.

1.0

0.9
0.8
- =0.7
€09 %

0.6 — p=08n=01

p=0.6,n=0.1

0.51 —— p=08,10=0.02

—— p=08,7=0.05 — p=0.6,n=0.02
0.8 0.4

0 1000 2000 3000 0 50 100 150
epoch epoch
(a) FNN, MNIST (b) VGG16, CIFAR-10

Figure 3: The cosine similarity c:(6;) between the Hessian of the loss function and the covariance of
the dropout noise at each training epoch ¢ for different choices of dropout rate and learning rate. (a)
The FNN with size 784-50-50-10 is trained on the MNIST dataset using the first 10000 examples
as the training dataset. The dropout layer is added after the first hidden layer. (b) The VGG16 is
trained on the CFIAR-10 dataset using the full examples as the training dataset. The dropout layers
are added after the first two convolutional layers of each block and the first fully-connected layer.
The calculation of () is performed every five epochs.

To investigate the Hessian-Variance alignment relation, we study the cosine similarity quantity a(Ot
between the covariance matrix 3; := 3(6;) and the Hessian matrix H; := H (6;) at each time step
t. 3; is the covariance matrix of Dyaq, a collection of gradients calculated with different dropout
variables & sampled at the ¢th step, whose detailed definition can be found in Section[B.1} On the
other hand, H; is the Hessian of the loss function evaluated at the tth iteration. Then the crucial

'This variable is also used in[Wu et al|(2022) for studying SGD.
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cosine similarity metric «(0;) is formally expressed as:
o TI'(HtEt)
[ H[|e |20

As depicted in Fig. [3] it is evident that throughout the training process, «(0;) consistently attains
values surpassing 0.85 in Fig. 3(a) and 0.7 in Fig. [3[b), and these observations hold true across varying
learning rates and dropout rates. It’s worth noting that, based on 100 samples, the average cosine
similarity between the two random matrices based on the selected parameters is only 7.8 x 104,
The eigenvalues of the two random matrices are derived from the eigenvalues of the Hessian matrix
and covariance matrix of the selected parameters, and the corresponding eigenvectors are sampled
from a normal distribution and normalized. The model parameters are derived from the final model
represented by the blue line in Fig. 3[a). Consequently, the introduced noise is highly anisotropic
in that it aligns well with the Hessian matrix across all directions. We acknowledged that due to
computational constraints, this experiment limits the trace calculation to a subset of parameters.

a(6:) (18)

6 CONCLUSIONS AND DISCUSSIONS

Our main contribution comprises two key aspects. First, we derive the SMEs that provide a weak
approximation to the dynamics of the dropout algorithm applied to two-layer NNs. Second, we con-
duct an empirical inquiry that demonstrates the persistent validity of the Hessian-variance alignment
relation throughout the training process of dropout. The Hessian-variance alignment relation has
been established to be beneficial for the model to locate flatter minima, thus indicating that dropout
acts as an implicit regularizer that enhances the generalization power possessed by the model.

Extension of the SME framework to multi-layer networks and SGD. While our theoretical analysis
has predominantly centered around the dropout algorithm applied to two-layer neural networks and
GD, it is important to note that the derivation of SMEs is not confined exclusively to two-layer neural
networks, GD, or even to the dropout algorithm. For various types of neural networks, the feasibility
of constructing such modified equations remains viable, provided that the stochastic algorithm
iteratively updates the parameters in a recursive manner, i.e., iterations form a time-homogeneous
Markov chain. Furthermore, this applicability holds as long as Taylor’s theorem with the Lagrange
form of the remainder remains valid for sufficiently small learning rates. It is worth acknowledging
that the complexity introduced by multi-layer networks primarily arises from the presence of dropout
layers within the activation functions. This introduces a high degree of non-linearity to the loss
with respect to the dropout variable, rendering it challenging to explicitly calculate the drift and
diffusion components of the SME. We numerically verify the SDE approximation capability of
complex network structures and SGD in Appendix [C]

The effect of learning rate on dropout. In the small learning rate regime, wherein the noise

term exerts slight influence, the loss trajectories of Ls () and R °"(8; &) exhibit a notable degree

of congruence. This observation has been affirmed through theoretical and empirical validations.
However, it remains imperative to maintain the diffusion term is important if we aspire to gain
deeper insights into the nature of dropout algorithms or other stochastic algorithms. As illustrated in
Fig.[2[b), in the large learning rate regime, the trajectory derived from the SME simulation aligns
more closely with its dropout counterpart, in stark contrast to the trajectory arising from GD training
on Ls(60). Furthermore, SMEs consistently exhibit better generalization capability in comparison
to GD. Therefore, a comprehensive analytical framework that duly accommodates both drift and
diffusion terms stands as a more informative tool for the insightful analysis of dropout algorithms.

More refined analysis of noise structures. In addition to the Hessian-Variance alignment relation,
the structural similarity between the Hessian and the covariance engenders yet another intriguing
relationship known as the inverse variance-flatness relation (Feng and Tul 2021)). Different from the
Hessian-Variance alignment relation, it focuses more on the similarity of the two feature directions.
In Appendix [B] an investigation has been conducted to examine the correlation between the noise
structure introduced by dropout and the nature of the loss landscape. This relationship also plays
a pivotal role in assisting the model to steer clear of sharp minima. The high similarity of the
eigenvectors of two matrices is a natural extension of the inverse variance-flatness relation, please
refer to Appendix B for detailed validation results. In Appendix [D] we compare the effect of noise on
the model in three training strategies, dropout, SGD, and parametric noise injection (Orvieto et al.|
2023)), which all appear to be helpful for flatness.
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