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ABSTRACT

Choice of training data distribution greatly influences model behavior. Yet, in large-scale
settings, precisely characterizing how changes in training data affects predictions is often
difficult due to model training costs. Current practice is to instead extrapolate from scaled
down, inexpensive-to-train proxy models. However, changes in data do not influence
smaller and larger models identically. Therefore, understanding how choice of data af-
fects large-scale models raises the question: how does training data distribution influence
model behavior across compute scale? We find that small- and large-scale language model
predictions (generally) do highly correlate across choice of training data. Equipped with
these findings, we characterize how proxy scale affects effectiveness in two downstream
proxy model applications: data attribution and dataset selection.

1 INTRODUCTION

When training large-scale models, we often want to understand how changing the training data distribution
influences model behavior. For example, we may ask: does adding a data source improve accuracy? Does
removing a data source increase toxicity? However, answering such questions is difficult in practice as
the cost of model training makes training on each data distribution (and comparing the resulting models)
infeasible.

To overcome compute costs, current practice is to approximate large-scale model behavior with that of
small-scale models. In this approach, one (a) calculates how a given change in data distribution changes
small-scale (low-cost) models (e.g., by retraining small models with and without the change), then (b) ex-
trapolates the corresponding influence for large-scale model predictions using insights from (a). Indeed,
small-scale proxy models are a standard primitive in methods for dataset selection and cleaning (Engstrom
et al., 2024; MosaicML, 2023a; Xie et al., 2023a; Chen et al., 2023).

Nevertheless, there is yet no precise characterization of when proxy models are effective. After all, model
behavior often changes across scale (Wei et al., 2022b); thus, changes in data may not influence small-
and large-scale models identically. Understanding how training data changes large-scale model behavior
therefore hinges on the question: how does training data influence model behavior across compute scale?

Contributions. After training language models (LMs) on a diverse set of training data distributions at
different scales, we find that the answer is nuanced. On one hand, choice of training data distribution
generally affects model predictions (very) similarly along compute scale (down to 175× smaller than the
large-scale reference model, cf. Figure 1). Indeed, such a relationship even holds when proxy models are so
small that their predictions are as accurate as randomly guessing.

On the other hand, however, our results also indicate that proxy models are not a panacea: we identify
setups for which proxy model predictions do not correlate well with larger models. We find that only (very)
small proxy models—those 370× smaller than the large-model class of interest—tend to predict larger-scale
model behavior poorly.

Equipped with these findings, we then characterize the relationship between proxy model scale and per-
formance in two downstream proxy model applications: data attribution (in vision settings) and dataset se-
lection (in an LM setting) for large models. In both applications, we find that orders-of-magnitude smaller
proxy-models can be as effective as using the original, larger-scale model of interest directly—but also that
there is a clear trade-off between performance and proxy-model size at the smallest scales we study.
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2 DATA INFLUENCE ACROSS SCALE
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Figure 1: Proxy-model test loss highly correlates with large-model test loss across choice of training data
distribution, even across a large gap in scale. Above, we plot the losses of a small-scale proxy (57M param-
eters) compared to that of the reference model (760M parameters). Here, the small scale model trains with
175× less compare than the reference model. Each column represents model loss on a different test distri-
bution, ranging from LM benchmarks (SQuAD/HellaSwag) to pretraining data distributions (the Pile).

We seek to characterize how choice of training data influences model behavior across compute scale (i.e., the
amount of compute used to train a model). To do so, we compare how changes in training data distribution
affect large-scale model predictions compared to those of small-scale proxy models trained on the same
data distributions. Correlating these differences across a diverse set of training data distributions, we find
that training data generally influences model predictions similarly across scale—but that the degree of
correlation depends on both the exact choice of test distribution and proxy model scale. In what follows,
we first describe our experimental setup, then detail results (see Appendix B for additional details).

2.1 SETUP

We study how changes in data distribution affect the behavior of small proxy models compared to the be-
havior of a larger reference model class. We select 760M parameter language models as the reference model
class (the largest setting that we can study in our available, academic-level compute budget). Our proxy
models range in size from 40M parameters to 760M parameters, with each model training on a number of
tokens determined by Chinchilla-optimal token-to-parameter ratios (Kaplan et al., 2020). In relative terms,
these model train with down to 370× less compute than the reference model despite only having (at most)
19× fewer parameters (as they are trained with chinchilla-optimal token-to-parameter ratios).

We measure how model behavior changes across 10 separate training distributions: 6 data-sources (i.e.,
sampled from a single data source like Wikipedia (Foundation, 2022)) and 4 selection-induced distributions
(i.e., data selected with one of three dataset selection methods: DSDM (Engstrom et al., 2024), DSIR (Xie
et al., 2023b) and Classifier-based approach (Brown et al., 2020) using various target tasks). After training
(separate) models on each of these training datasets, we compare the resulting model behavior (losses) on 6
test datasets: C4 (Raffel et al., 2020), the Pile (Gao et al., 2020), SQuAD (Rajpurkar et al., 2016), LAMBADA
(Paperno et al., 2016), HellaSwag (Zellers et al., 2018) and TriviaQA (Joshi et al., 2017).
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2.2 RESULTS

At a high level, we find that changes in training data distribution (generally) affect small- and large-scale
model predictions similarly—even when the small proxy model is trained with much less compute than the
large reference model in relative terms. We use the following basic primitive to study the effect of training
data distribution: given downstream task, we measure the correlation of small- and large-scale losses across
training data distributions. To obtain these results, we train small- and large-scale models on each training
data distribution (one for each scale of model), and record the empirical loss of each of these models on
downstream tasks.

We begin by studying the behavior of a single proxy model scale: 57M parameter proxy models. We relate
in Figure 1 the losses of 57M parameter proxy models to those of the reference model class across different
training data distributions, while varying (in each panel) the choice of downstream task. These proxy
model losses (generally) highly correlate with those of large-scale models across training dataset, implying
that choice of training dataset similarly changes both 57M and large (760M) model predictions—despite the
proxy models training with 175× less compute.

To further study the role of proxy model scale, we relate in Figure 2 proxy model scale with the correlation
between proxy and reference model predictions. We find that, as in the case of the 57M proxy model, losses
are highly correlated. In general, losses are more correlated for proxy models that are closer in scale to the
reference model.

However, our results also indicate that proxy models are not always reliable: the correlation between ref-
erence and proxy model predictions is highly dependent on (a) the gap in scale between the proxy and
reference models (much smaller proxies are more mismatched) and (b) the exact choice of downstream task
(proxy predictions are less correlated with reference model predictions on specific test distributions). For
example, consider the smallest proxy model in Figure 2 (40M models, which use 370× less compute than
the large model of interest). This class of model is highly correlated with the reference model on all the
downstream tasks except two: SQuAD and TriviaQA (cf. Figure 2 for a detailed view).
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Figure 2: Correlation between large- and small-scale model predictions is consistently high, even across
large gaps (orders of magnitude) in training compute scale. We plot small- to large-scale correlation against
small-scale proxy model compute. There is also large variation across choice of test set: correlation is
consistently high on four of six tasks, while losses on SQuAD and TriviaQA correlate less.

2.3 INTRIGUING PROPERTIES OF PROXY MODELS

We observe two additional properties of the relationship between proxy and reference models.

Proxy models are effective regardless of accuracy. We find that proxy model predictions for a given task
can highly correlate with those of large-scale reference models even when the proxy models predict near
the level of random guessing on that task. Indeed, relating proxy model accuracy against correlation with
reference model predictions in Figure 3, we find that in two tasks—HellaSwag and COPA—small-scale
proxy models achieve random-guessing level (or worse) accuracy while still highly correlating with large-
scale models.
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Figure 3: Proxy models can be highly predictive of large-scale model predictions even when predicting as
well as randomly on a given test set. We plot small- to large-scale loss correlation against small-scale proxy
model accuracy on the given task, normalized to show improvement over outputting a random guess (in
absolute accuracy). On a number of test sets, proxy models perform no better than random guessing, but
still highly correlate with the reference model (which always achieves significantly better than random
guessing).

Proxy models are (often) effective at a per-sample level. We have thus far only studied the relationship
between average losses achieved by proxy and reference models on each test task. To better characterize
when proxy models match the reference model, we inspect similarity between small- and large-scale model
predictions on individual samples—for individual test samples—in Figure 4. Our results indicate that proxy
model predictions on individual samples can highly correlate with those of large models, depending on
the choice of test dataset. On a population view, however, the picture is more nuanced: while proxy model
predictions highly correlate with reference model predictions on the great majority of HellaSwag samples,
they do not correlate as well on SQuAD samples (cf. Figure 5).

3 4 5
Loss of Small Model

1

2

SQuAD

R2 = 0.65

10 15
Loss of Small Model

2.5

5.0

7.5

LAMBADA

R2 = 0.91

4 5 6
Loss of Small Model

3

4

HellaSwag

R2 = 0.97

Lo
ss

 o
f L

ar
ge

 M
od

el
(1

75
x 

M
or

e 
C

om
pu

te
)

Training Data Distribution
Classifier (SQuAD)
Bot-DsDm (SQuAD)

DsDm (SQuAD)
DSIR (SQuAD)

Random
RedPajama-ArXiV

RedPajama-Books
RedPajama-Wiki

Semantic Scholar
Stack-Markdown

Figure 4: Proxy model predictions can highly correlate with those of the reference model on individual test
samples. We visualize loss on individual samples for each scale model across varying training datasets.
The proxy model here is 57M parameters, training with around 175× the compute of the 760M reference
model. See a distributional plot (showing the correlation across all samples on each test set) in Figure 5.

3 PROXY MODELS IN DOWNSTREAM APPLICATIONS

Proxy model predictions generally highly correlate with reference model predictions across training dis-
tribution choice. However, at small proxy model scales this relationship can break down, suggesting that
there is a fundamental trade-off between proxy compute scale and effectiveness. To understand how the
proxy scale affects the utility of proxy models in downstream tasks, we characterize the role of proxy model
scale in two downstream applications: attributing training data and selecting training data.

4



Published as a conference paper at ICLR 2025

0.50 0.25 0.00 0.25 0.50 0.75 1.00
R2(small, large)

0.0

0.5

1.0

1.5

D
en

si
ty

SQuAD

0.5 0.0 0.5 1.0
R2(small, large)

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

LAMBADA

0.5 0.0 0.5 1.0
R2(small, large)

0

2

4

6

8

D
en

si
ty

HellaSwag

Figure 5: The correlation between large- and small-scale model losses on individual samples is highly
dependent on the test distribution. We show a histogram of the correlation between large model and proxy
model predictions on individual test samples for the test distribution in each column. We plot the coefficient
of determination (R2) between the losses of the small and large models on all examples in the downstream
task.

3.1 ATTRIBUTING TRAINING DATA WITH PROXY MODELS

Data attribution methods analyze model behavior in terms of the training data (Koh & Liang, 2017; Ilyas
et al., 2022). While these methods are helpful in tasks like dataset selection (Engstrom et al., 2024) and
model debugging (Ilyas et al., 2022), they also tend to require compute that scales with the model size
and the training dataset size. This requirement often makes data attribution prohibitively expensive in
large-scale settings (Koh & Liang, 2017; Schioppa et al., 2022; Grosse et al., 2023). To make data attribution
feasible at this scale, common practice is to instead attribute for a smaller proxy model, then use the result
to attribute for the original model of interest (Engstrom et al., 2024).

3.1.1 PRELIMINARIES

We start by defining data attribution within the datamodeling framework (Ilyas et al., 2022). Consider
a training dataset S = {(x1, y1), . . . , (xn, yn)} of n input-label pairs, and let θ(D) be the parameters of a
classifier trained on subset D of S. Then, given a sample z = (x, y), let f (z; θ(D)) be the loss of the classifier
on z after training on subset D of the training set.

A datamodel for heldout sample z is a simple (learned) function that estimates the final model loss on z as a
function of the subset D used to train the model. For convenience, this is the function

f̂z(D) ≈ f (z; θ(D)),

which maps choice of training dataset to the loss of the resulting model on z. Intuitively, a datamodel f̂z
should accurately predict model loss after training on any given train subset D.

Previous work has found that the loss f (z; θ(D)) can be approximated by linear datamodels, or datamodels
that parameterize each training datapoint as contributing a fixed amount to the loss when included in
the training dataset. That is, we can approximate the model loss reliably using the linear datamodel f̂z
parameterized as:

f̂z(D) := ∑
i∈D

τ(z)i, (1)

where τ(z)i is a weight representing the “importance” of training example i on predicting the heldout
sample z correctly.

Estimating datamodel weights. Families of approaches for estimating datamodel weights range from in-
fluence functions (Koh & Liang, 2017; Grosse et al., 2023) to resampling estimators (Feldman, 2019; Ilyas
et al., 2022). In this work, we estimate datamodels using an influence function-based method called
TRAK (Park et al., 2023). Briefly: TRAK estimates datamodel weights by (a) linearizing (trained) model
output with respect to the model weights and then (b) calculating influences for this linearization (Koh &
Liang, 2017). See Appendix A for full details and setup.

Evaluating datamodels. We evaluate datamodels with the Linear Datamodeling Score, or LDS (Ilyas et al.,
2022; Park et al., 2023), a standard approach for evaluating data attribution methods (Bae et al., 2024; Zheng
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Figure 6: In both plots, the x-axis represents the amount of compute required to get the attribution scores
of a given model, compared to the large model, and the y-axis represents how well the attribution scores
of a given model size can predict the output of the largest model on (a) CIFAR-10 and (b) CIFAR-100
respectively (Krizhevsky, 2009) (see Section 3 for details on the metric).

et al., 2024; Choe et al., 2024; Lin et al., 2024; Georgiev et al., 2023; Deng et al., 2024). For a heldout sample z,
LDS measures the correlation between datamodel prediction of model loss and the actual model loss across
m randomly sampled training subsets Di (e.g., a common choice is to randomly choose fixed-size subsets
of the training set). Specifically, the LDS for our linear datamodels is exactly the (Spearman) correlation:

LDS(τ(z), z) := ρspearman
(

f (z; θ(Di)) : i ∈ [m]︸ ︷︷ ︸
actual model loss

, ∑k∈Di
τ(z)k : i ∈ [m]︸ ︷︷ ︸

datamodel-predicted loss

)
. (2)

Intuitively, a datamodel that perfectly captures model loss would have an LDS of 1, and a datamodel that
does not correlate with the model loss would have an LDS of 0. In this work, we measure the expected LDS
over a given test distribution (by averaging LDS over test samples).

3.1.2 EXPERIMENTAL RESULTS

We study how well datamodels computed from smaller proxy models approximate the actual loss of the
reference model in two supervised computer vision settings: ImageNet-1k (Russakovsky et al., 2015) and
CIFAR-10 (Krizhevsky, 2009).

Setup. We estimate datamodels for ResNets (He et al., 2015) across a variety of model widths (ImageNet:
the largest model class has a width 104 times larger than the smallest; in CIFAR-10 this relative range is
105). We then evaluate these datamodels by measuring the LDS with respect to the predictions of the largest
model class (a 108 parameter ResNet for ImageNet and 109 for CIFAR-10). For additional details and results,
see Appendix C.1.

Results. Small proxy models yield datamodel estimates that are similar in effectiveness to those calculated
with the actual, large-scale model reference model. Relating proxy model size to LDS in Figure 6 (left) in the
ImageNet setting, we find that LDS decreases in relative terms by (at most) 10% (from 0.21 to 0.19) across
all proxy models, even those that are 1,000× smaller than the reference model. In the CIFAR-10 setting (cf.
Figure 6 right), the LDS only greatly degrades after proxy models are more than 1,000× smaller than the
reference model.

More qualitatively, we also compare the “top” and “bottom” training examples (by datamodel weight) for
a given test sample in Figure 7 across proxy model sizes. Intuitively, these examples are the ones that (ac-
cording to the datamodels and by linearity) most improve and most hurt, respectively, model performance
if included in the training set. We find that, qualitatively, these top and bottom examples generally overlap
across model scales and often have visually similar attributes. See more examples in Appendix D.

Limitations. We note that all the measured LDS correlations are seemingly small. The peak LDS measured
in this work is roughly 0.21 for ImageNet, which indicates that we cannot exactly predict model outputs
for a given training set. These LDS numbers are primarily due to (a) limitations in current datamodel
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Figure 7: Most helpful (left) and most detrimental (right) examples for the outputs of models of different
sizes are similar. The most helpful and most detrimental examples for the given target example (center)
are shown according to each model size (row). We observe a large overlap between these examples. More
examples in Appendix D.1.1.

estimation methods (e.g., state-of-the-art methods achieve similar LDS for CIFAR-10 (Bae et al., 2024)) and
(b) inherent randomness during training1. The room for improvement indicates that it is possible that
future, more effective datamodel estimators will behave qualitatively differently from current estimators—
and that the precise trade-off between model scale and datamodel quality could change as well.

3.2 SELECTING TRAINING DATA WITH PROXY MODELS

In dataset selection, the goal is to choose the best possible training dataset out of a larger pool of candidate
data. In this work we focus on model-aware dataset selection methods, which use the learning algorithm to
select data (Xie et al., 2023a; Engstrom et al., 2024; Xia et al., 2024). Consequently, the compute cost of these
methods typically grows with the cost of the learning algorithm itself2. As a result, model-aware dataset
selection often leverage smaller proxy models for selection in place of the original (more expensive) model.
In this section, we characterize the relationship between dataset selection effectiveness and proxy model
size.

3.2.1 PRELIMINARIES

Following previous work, we formalize data selection as the problem of finding the subset of data, out of
a larger pool of candidate data, that maximizes downstream trained model accuracy on a given task (En-
gstrom et al., 2024; Xia et al., 2024). Here, selecting training data is a supervised learning task: given (maybe
only a few) samples from the test distribution, choose the data that maximizes trained model performance.
In this work, we select training data with (Engstrom et al., 2024), a method that uses datamodels to select
data (Ilyas et al., 2022). We refer the reader to Appendix A.4 for more details on .

A major challenge with this approach is the compute required to calculate the datamodels for langugage
models with even as few as 1B parameters. To reduce the compute cost, Engstrom et al. (2024) computed
the datamodels for a smaller proxy model and used these datamodels to select the training subset. We
explore in this section the tradeoff between the scale of the proxy model to attribute and the performance of
the large reference model trained on the training subset selected using the datamodels of the proxy model.

1Computing LDS requires retraining models on different subsets, and the inherent randomness involved in retrain-
ing models results in an irreducible error.

2In comparison, model-free dataset selection methods clean data without considering the model, instead using e.g.,
heuristics that capture intuitive notions of data quality (Li et al., 2024).
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Figure 8: In both plots, the x-axis represents the amount of compute required to train a given proxy model
(relative to training the large model) and the y-axis represents the accuracy on (a) LAMBADA (Paperno
et al., 2016) and (b) SQuAD (Rajpurkar et al., 2016) of a large model trained on a subset of the MPT dataset
(MosaicML, 2023a) selected using the attribution scores of a smaller model. The dashed line corresponds
to the accuracy of a large model trained on a random subset of the same size as the selected dataset. Note
that the training cost is only a fraction of the total attribution cost; see Appendix A.3.

3.2.2 EXPERIMENTAL RESULTS

We study how the size of the small proxy model used for dataset selection affects model performance on
two downstream tasks, SQuAD and LAMBADA.

Setup. We consider a language modeling (LM) setting where GPT-2 style LMs (Radford et al., 2019) are
pretrained on subsets of the MPT dataset (MosaicML, 2023a)3 and evaluated on two popular zero/few-shot
classification tasks: SQuAD (Rajpurkar et al., 2016) and LAMBADA (Paperno et al., 2016).

Our large reference model is a 760M parameter LM4, and our proxy model sizes range from 125M param-
eters to 760M parameters. We train all models on datasets sized according to Chinchilla-optimal token-to-
parameter ratio (Hoffmann et al., 2022)5. We calculate the datamodels for each of our proxy models, then
select a subset of the training dataset (using DSDM (Engstrom et al., 2024)) to pretrain the 760M param-
eter reference model. As selection baselines, we consider reference models trained on randomly-selected
subsets with size dictated by the Chinchilla-optimal token-to-parameter ratio. More details are included in
Appendix C.2.

Results. Models trained on data selected with DSDM greatly improves over those trained on randomly
selected data, regardless of proxy model size (see Figure 8). We find that this improvement in downstream
performance does not drop until the proxy model training scale reduces to 4x less compute than the refer-
ence model. Our results indicate that smaller proxy models mimic the behavior of reference models enough
to effectively select data, while simultaneously reducing the compute cost.

4 RELATED WORK

Using smaller proxy models. Small-scale proxy models are a standard building block in approaches that
require understanding the role of data in large-scale models. Proxy models are used to select and clean
data (Xie et al., 2023a; Engstrom et al., 2024; Chen et al., 2023; Yu et al., 2024; Li et al., 2024). At a high level,
these approachs train small-scale proxy models on candidate data distributions, then analyze the resulting
behavior to select the training data for the large-scale models.

3Our subset of the MPT dataset contains 160B tokens.
4This model is the largest we can study in our available, academic-level compute budget.
5We use the llm-foundry repository (MosaicML, 2023b) for training and evaluating our models.
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Data attribution. Data attribution has received increased interest lately. We discuss a few of these ap-
proaches in this section. For an extensive survey of prior work, we refer the reader to (Hammoudeh &
Lowd, 2022b). Some of the earliest approaches proposed the use of influence functions to approximate the
effect of removing data points from the training dataset on a given parameter, without re-estimating the
parameter (Hampel et al., 2011; Koh & Liang, 2017). Feldman & Zhang (2020); Ilyas et al. (2022) propose
instead estimating empirically the effect of training data points on the model output by training several
models on different subsets of the data and observing how the model output changes. Few other works
have proposed different approaches to estimating these influences such as using Shapley values (Ghorbani
& Zou, 2019; Jia et al., 2019; Wang et al., 2021; Shapley, 1951), gradient-based approaches (Park et al., 2023;
Pruthi et al., 2020) or representational similarity (Yeh et al., 2018; Charpiat et al., 2019).

Similarities between models trained on the same dataset. A recent line of work argued that the data has
a strong role in shaping the behavior of the trained models. Li et al. (2015) measured the extent to which
multiple networks learn the same set of features, while Hermann & Lampinen (2020) studied how different
models learn easy and hard features from a given dataset. Nguyen et al. (2021) on the other hand focused
on how increasing the width of a network affects the learned representations. More recently, Vyas et al.
(2023) investigated how increasing the width changes the properties of a model and its predictions at the
example level.

Relation between model behavior and size. Recent work argued that the behavior of large models is
predictable from smaller models under certain conditions (Yang & Hu, 2020; Yang et al., 2023). Specifically,
Yang & Hu (2020) propose a parameterization of models, called µP that guarantees the output of a model
converges as its size increases. µP has been very useful in practical setups, especially in ensuring good
hyperparameters found using small models can be transferred to large models (Yang et al., 2022). Another
work has argued that “emergent” abilities of large models are a mirage (Schaeffer et al., 2023) and that the
reason behind the emergence can be attributed to using hard metrics to measure emergence (e.g., accuracy)
rather than softer metrics (e.g., loss).

5 CONCLUSION

In this work, we argue that the the choice of training data distribution generally affects models across scale
similarly, even when the difference in compute is large (175× in our experiments). This trend, however,
does not always hold. In particular, given a large reference model and a much smaller proxy model, we
identify settings where the proxy model predictions do not correlate well with the predictions of the refer-
ence model. We then study the role of proxy model size in two downstream applications: data attribution
(vision setting) and dataset selection (language setting). In both settings, proxy models are (up to a certain
relative scale) effective at approximating the behavior of larger models.

Taking a broader view, many important questions in machine learning reduce to understanding how
changes in training setup (such as training dataset) affect the behvaior of large scale models. Small proxy
models can be a powerful tool for practically and effectively answering such questions.
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A ADDITIONAL BACKGROUND

In this appendix, we present a more extensive background on datamodels (Ilyas et al., 2022) and the corre-
sponding TRAK estimator (Park et al., 2023). We also present an extensive analysis of the compute require-
ment for attributing models using TRAK (Park et al., 2023). We finally present how datamodels (Ilyas et al.,
2022) could be used to select optimal training sets (Engstrom et al., 2024).

Notation. Recall that the training set S = {z1, . . . , zn} ⊂ Z is a collection of training examples zi that
could be image-label pairs or text samples. Let L(z; θ) represent the loss of a model with parameters θ on
the example zi. Our models are trained to minimize the empirical risk on the training set, i.e., the parameters
θ∗(S) are computed as follows:

θ∗(S) := arg min
θ

∑
zi∈S

L(zi; θ). (3)

The goal of data attribution is to trace back a model’s prediction to the training data points. Formally, given
an example z, a training dataset S, and a model output function f (z; θ), a data attribution function τ(z; S)
is function τ : Z × Zn → Rn that maps the example z and the training dataset S to a real-valued score
vector, called the attribution scores, where the ith entry corresponds to the overall importance of the training
example zi on the model output f (z; θ∗(S)).

A.1 DATAMODELS

A.1.1 INTUITION

As presented in Section 3.1.1 of the main paper, datamodels are a tool to approximate how the model output
changes when trained on some subset S′ of the training set S (Ilyas et al., 2022). Specifically, given a model
with parameters θ∗(S′) trained on a training subset S′, the goal of datamodels is to approximate how the
model output f (z; θ∗(S′)) on example z changes for different subsets S′ of the training set S. The model
output function could represent the loss of the model on the example z or any other metric of interest6.

The model output function f (z; θ∗(S′)) is complex to analyze as it involves training a model on the subset S′

and then evaluating the resulting model on the example z. Instead, Ilyas et al. (2022) propose approximating
this complex function f (z; θ∗(S′)) using a simpler surrogate function g(S′) (Sacks et al., 1989) that doesn’t
involve training a new model. In practice, linear surrogate functions of the form provided a reasonable
approximation of the model output (Ilyas et al., 2022; Saunshi et al., 2023). In particular, for a subset S′ of
S, let 1S′ ∈ Rn be the indicator vector of S′ in S, i.e.,(

1(S′)
)

j =

{
1 if zj ∈ S′

0 otherwise
(4)

and let wDM ∈ Rn be a datamodel vector (which we explain later how to compute). Ilyas et al. (2022) propose
the linear surrogate function

g(S′) := 1⊤S′wDM (5)

to approximate the model output function f (z; θ∗(S′)). The attribution scores are defined as τDM(z; S) =
wDM.

A.1.2 COMPUTING THE DATAMODEL VECTOR wDM

A good datamodel vector wDM is one that leads to a surrogate function that approximates well the model
output function f (z; θ∗(S′)). When a compute is not an issue, we can search for such a vector using an op-
timization program that optimizes directly for our goal (good output predictability). This can be achieved
as follows:

Step 1. Sample at random M training subsets {Si : Si ⊂ S}M
i=1 and collect their indicator vectors {1Si}

M
i=1.

Step 2. Train a model on each subset Si and collect model parameters {θ∗(Si)}M
i=1.

Step 3. Compute the output of each model for example z, i.e., { f (z; θ∗(Si))}M
i=1.

6We have presented two different examples of model output functions in the main paper.
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Step 4. Compute the datamodel vector wDM by regression on the dataset
{(

1Si , f (z; θ∗(Si))
)}M

i=1.

The regression over the dataset
{(

1Si , f (z; θ∗(Si))
)}M

i=1 is usually performed using LASSO (Ilyas et al., 2022;
Tibshirani, 1994), i.e.,

wDM = arg min
w

1
M

M

∑
i=1

(
1⊤Si

wDM − f (z; θ∗(Si))
)2

+ β · ∥w∥1. (6)

This procedure produces a datamodel vector wDM that could be used in the context of the surrogate func-
tion g to estimate the output f (z; θ∗(S′)) of a model trained on the subset S′, without training the model on
S′. In the context of data attribution, the datamodels attribution scores correspond to the datamodel vector,
i.e., τDM(z, S) = wDM. We present the full procedure in Algorithm 1.

Algorithm 1 Computing the datamodel vector wDM

Require: Target example z, dataset S = {zi}n
i=1 with n samples, subset ratio α, number of models M,

regularization parameter β
1: Sample M random subsets S1, S2, . . . , SM ⊂ S of size ⌊α · n⌋
2: for i ∈ 1 to M do
3: Record indicator vector 1Si
4: Train model on Si and collect parameters θ∗(Si)
5: Record the model output function f (z; θ∗(Si))
6: end for
7: Compute datamodel vector wDM as:

wDM = arg min
w

1
M

M

∑
i=1

(
1⊤Si

wDM − f (z; θ∗(Si))
)2

+ β · ∥w∥1.

8: return wDM

A.2 APPROXIMATING DATAMODELS WITH TRAK

In the following section, we present how TRAK (Park et al., 2023) provides an efficient estimate of data-
models (Ilyas et al., 2022). For a more extensive analysis, please refer to the TRAK paper (Park et al., 2023).

A.2.1 INTUITION

Computing the attribution scores using datamodels is an expensive process (Ilyas et al., 2022) as it involves
training a large number of models M on subsets of the training dataset. This approach is not feasible beyond
simple toy settings. To reduce the computational requirement, Park et al. (2023) propose approximating
datamodels by first casting the problem into a logistic regression setup, and then computing the attribution
scores efficiently in this new regime. At a high level, casting the original problem into a regression setup can
be done by representing the model at hand using a kernel machine (Jacot et al., 2018). Once the problem is
cast into this simple form, prior work has developed a closed-form solution for data attribution in a logistic
regressing setup (Pregibon, 1981). Below, we first present the solution for the logistic regression setup and
then present how to cast classification with neural networks into this linear setup.

A.2.2 APPROXIMATING DATAMODELS IN A LOGISTIC REGRESSION SETUP

We borrow notation from (Park et al., 2023) and refer the readers to the paper for a more extensive analysis.
Consider a logistic regression setup where we have a dataset S = {z1, . . . , zn} where each example zi =
(xi, bi, yi) is triple of an input xi ∈ Rd, a bias term bi ∈ R and a label yi ∈ {−1, 1}.

In this setup, we can formulate the logistic regression problem:

θ∗(S) := arg min
θ

∑
i

log
[
1 + exp(−yi · (x⊤i θ + bi))

]
. (7)
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In this simple setup, we define our model output function as the logit function: f (z; θ) := x⊤θ + b, where
z = (x, b, y).

The problem of data attribution in this simple setup is well-studied in literature, and prior work has de-
veloped a closed-form solution for it (Pregibon, 1981). In particular, the contribution of a training example
zi to the model output function f (z; θ) can be measured using the leave-one-out influence (LOO) (Pregibon,
1981), described below:

τLOO(z, S) :=
x⊤(X⊤RX)−1xi

1 − x⊤i (X⊤RX)−1xi · p∗i · (1 − p∗i )
· (1 − p∗i ) ≈ f (z; θ∗(S))− f (z, θ∗(S\{zi})) , (8)

where X ∈ Rn×d is the matrix of stacked inputs xi, and p∗i = [1 + exp(−yi · f (zi; θ∗))]−1 is predicted
probability of the correct class, R ∈ Rn×n is a diagonal matrix where Rii = p∗i · (1 − p∗i ), and S\{zi} is the
training set without example zi. This influence score approximates the effect of removing training example
zi from the training dataset.

In practice, computing the attribution scores in a logistic regression setup using this closed-form solution
is efficient and fast. Many interesting problems in ML, however, are highly non-linear. In the next section,
we show how we can cast a non-linear problem using neural networks into linear regression problems.

A.2.3 CASTING NON-LINEAR PROBLEMS INTO LOGISTIC REGRESSION

In this section, we first start by considering a non-linear binary regression setup. We then present how to
generalize the approach to multi-class classification and language modeling.

Given a non-linear binary regression setup, we can express the parameters of the model trained on the
dataset as:

θ∗(S) := arg min
θ

∑
i

log [1 + exp(−yi · f (zi; θ))] . (9)

The main challenge in this setup is the non-linearity in the model output function f (z; θ). Park et al. (2023)
propose to solve this problem by casting the problem at hand into a linear problem. Specifically, given a
neural network with model output function f (z; θ), the authors approximate the model output function
around the parameters θ∗ of the optimal model using a Taylor’s approximation:

f̂ (z; θ) := f (z; θ∗) +∇θ f (z; θ∗)⊤(θ − θ∗). (10)

This step corresponds in the literature to replacing the binary classifier with its eNTK approximation (Ja-
cobsen et al., 2018; Atanasov et al., 2022; Wei et al., 2022a). Given this linearization, we adapt Equation (9)
and write instead:

θ∗(S) := arg min
θ

∑
i

log [1 + exp(−yi · f (zi; θ))] (11)

:= arg min
θ

∑
i

log
[
1 + exp

(
−yi ·

(
f (zi; θ∗) +∇θ f (zi; θ∗)⊤(θ − θ∗)

))]
(12)

:= arg min
θ

∑
i

log
[
1 + exp

(
−yi ·

(
∇θ f (zi; θ∗)⊤θ + f (zi; θ∗)−∇θ f (zi; θ∗)⊤θ∗

))]
(13)

:= arg min
θ

∑
i

log
[
1 + exp

(
−yi ·

(
g⊤i θ + bi

))]
, (14)

where the vector gi := ∇θ f (zi; θ∗) corresponds to the model gradients and we define the bias term bi :=
f (zi; θ∗)−∇θ f (zi; θ∗)⊤θ∗.

The form we observe in Equation (14) is reminiscent of Equation (7). In fact, given our examples zi =
(gi, bi, yi), we can apply in closed-form the solution from Equation (8) to compute the attribution scores.
However, one big issue in practice is the large dimensionality of the vector gi, which corresponds to the
number of model parameters. This value could be in the billions for the largest available models and as
such estimating the attribution scores using Equation (8) is intractable.
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A.2.4 REDUCING THE DIMENSIONALITY AND ESTIMATING DATAMODELS

Given the intractability of the problem, Park et al. (2023) propose reducing the dimensionality of the gradi-
ent vectors gi using random projections (Johnson & Lindenstrauss, 1984). While many techniques exist for
reducing the dimensionality of a vector, the authors choose random projections since they preserve some
desired properties in the logistic regression problem. We refer the readers to (Park et al., 2023) and (Malladi
et al., 2022) for more details on this choice.

Given a vector g ∈ Rp and a random matrix P ∈ Rk×p, where k ≪ p, we define the feature map ϕ :
Rp → Rk as ϕ(g) = P⊤g. With this feature map, we project all gradients gi to obtain feature vectors
ϕi = ϕ(gi) = P⊤gi, and stack them into the matrix Φ := [ϕ1, . . . , ϕn] ∈ Rn×k. Notice how this matrix is
much smaller than the original matrix X = [g1, . . . , gn] ∈ Rn×p.

Using the matrix Φ of stacked gradients, we can compute the attribution scores as:

τTRAK(z, S) = ϕ(z)⊤(Φ⊤Φ)−1Φ⊤Q, (15)

where ϕ(z) = P⊤∇θ f (z; θ∗) corresponds to the projected gradient of the target example z, and the
matrix Q := diag({1 − p∗i }i) is a diagonal matrix with the probabilities of the correct class p∗i =

[1 + exp(−yi · f (zi; θ∗))]−1. Park et al. (2023) find that dropping the matrix R and the denominator do
not affect the predictiveness of the attribution scores. For more details, we refer the readers to the paper
(Park et al., 2023).

A.2.5 IMPROVING THE DATAMODELS ESTIMATION USING ADDITIONAL MODELS

One main challenge with the previous approach is the stochastic nature of training models. In particular,
changing the random seed and training the same model on the same dataset can lead to widely different
results across multiple runs (Nguyen et al., 2021; D’Amour et al., 2020). To solve this problem, Park et al.
(2023) propose training M models and then averaging across multiple runs as follows:

τTRAK(z, S) =

(
1
M

M

∑
m=1

ϕm(z)⊤(Φ⊤
mΦm)

−1Φ⊤
m

)
·
(

1
M

M

∑
m=1

Qm

)
, (16)

where the feature map and vectors are different for each of the M runs. Notice that the authors average
across the feature maps rather than over attribution scores for numerical stability reasons (Park et al., 2023).

In this work, we propose a further modification where we drop the term corresponding to the matrix Qm
from our estimator. Specifically, we compute the attribution scores as:

τTRAK(z, S) =
1
M

M

∑
m=1

ϕm(z)⊤(Φ⊤
mΦm)

−1Φ⊤
m (17)

=
1
M

M

∑
m=1

τ
(m)
TRAK(z, S). (18)

We notice that dropping the last term does not affect negatively the predictiveness of the attribution scores,
and can in many cases in practice improve it. In particular, for many models, the pre-softmax logit can
be very large and saturates the softmax when computing probabilities, which in turn leads to multiple 0
entries in the matrix Qm and consequently the attribution scores. This behavior reduces drastically the
counterfactual predictability, measured using the LDS.

A.2.6 GENERALIZING TO MULTI-CLASS CLASSIFICATION

In the previous sections, we presented how to cast general non-linear binary classification problems into a
linear regression setup in order to estimate the attribution scores efficiently. In this section, we show how
Park et al. (2023) extended the previous approach to support general multi-class classification setups.

Given a multi-class classification problem over c classes, let p(z; θ) be the probability assigned by the model
to the correct class. Park et al. (2023) define the model output function in this setup to be:

f (z; θ) =
p(z; θ)

1 − p(z; θ)
. (19)
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This model output function essentially measures whether the correct class is more likely than any other
class7. One nice property of this model output function is that it allows to write the loss function L(z; θ) as
follows:

L(z; θ) = − log(p(z; θ)) (20)
= log [1 + exp (− f (z; θ))] , (21)

which is reminiscent of Equation (9) (with yi = 1). As such, we can make the same approximations made
in the binary case setup and apply the same results and derivations to compute the attribution scores. We
present the full procedure in Algorithm 2.

Algorithm 2 Approximating the datamodel vector using TRAK for multi-class classification

Require: Target example z, dataset S = {zi}n
i=1 with n samples, number of models M, correct-class likeli-

hood p(z; θ), projection dimension k ∈ N

1: Define model output function: f (z; θ) := p(z;θ)
1−p(z;θ)

2: for m ∈ 1 to M do
3: Train model with parameters θ∗m(S) on dataset S
4: Sample projection matrix Pm ∼ N (0, 1)n×k

5: for i ∈ 1 to n do
6: Compute gradient and project: ϕi = P⊤

m∇θ f (zi; θ∗m(S))
7: end for
8: Stack projected gradients: Φm = [ϕ1, . . . , ϕn]⊤

9: end for
10: Compute the attribution scores using:

τTRAK(z, S) =
1
M

M

∑
m=1

ϕm(z)⊤(Φ⊤
mΦm)

−1Φ⊤
m

11: return τTRAK(z, S)

A.2.7 ADAPTING THE TRAK ESTIMATOR TO LANGUAGE MODELS

So far, we have presented how TRAK (Park et al., 2023) could be applied for classification setups. We now
present how TRAK could be extended to support language models, as presented in (Engstrom et al., 2024).

Recall that for multi-class classification, Park et al. (2023) define the model output function to be:

f (z; θ) =
p(z; θ)

1 − p(z; θ)
, (22)

where p(z; θ) is the probability of the correct class. This setup can be naturally extended to language models
trained based on next-token prediction (Sutskever et al., 2014; Vaswani et al., 2017) where the goal is to
iteratively predict out of many tokens the correct token to continue the sentence. Specifically, given a
sequence z = {z1, . . . , zT} of context length T, let p(zj | z<j; θ) be the probability of predicting the correct
token at position j of the sequence, given the previously predicted tokens z1, . . . , zj−1. This prediction is
applied T − 1 times, with each occurrence being its own classification problem. We can then define the
it language-modeling model output function as the average model output function across all classification
tasks (Engstrom et al., 2024):

f (z; θ) =
1
T

T

∑
j=2

p(zj | z<j; θ)

1 − p(zj | z<j; θ)
. (23)

With this new definition, we can apply the TRAK framework (Park et al., 2023) as outlined in Algorithm 2.

7This is more tractable than defining c2 classification problems between all pairs of classes.

21



Published as a conference paper at ICLR 2025

A.3 ESTIMATING COMPUTE REQUIREMENT

In this section, we give an overview of the overall compute requirement. Our analysis focuses mostly on
the language setup, where we have observed that compute is a bigger bottleneck. A similar analysis could
be done for our vision setup.

A.3.1 COST TO TRAIN A SINGLE MODEL

We assume the models being trained are transformers (Vaswani et al., 2017) and leverage the compute ap-
proximations presented in (Kaplan et al., 2020)8. Specifically, given a transformer model with p parameters
and a dataset composed of D tokens (ntrain examples9 with T tokens each), the total cost (measured in
FLOPS) for training the transformer on the dataset can be approximated as

Ctrain = C f orward + Cbackward (24)
= 2pD + 4pD (25)
= 6p · T · ntrain. (26)

A.3.2 COST TO ATTRIBUTE A SINGLE MODEL

As outlined in the previous sections, the attribution scores (using a single model) on a single target example
can be computed using:

ϕ(z)⊤(Φ⊤Φ)−1Φ⊤, (27)

where ϕ(z) ∈ Rk is the projected gradient of the target example z and Φ ∈ Rn×k is the stacked matrix of
projected inputs, n is the total number of training examples and k is the projection dimension. We assume
the cost for multiplying matrices A ∈ Ra×b and B ∈ Rb×c to be a · c · (2b − 1) FLOPS.

We can break down our costs as follows:

1. The cost to compute the gradients for the training set is 6pD = 6p · T · n.

2. The cost to compute the gradients for the target example is 6p. When dealing with a target dataset
with ntest examples, this cost is 6p · T · ntest.

3. The cost to randomly project the gradients of the training examples is n · k · (2p − 1).

4. The cost to randomly project the gradients of the test examples is ntest · k · (2p − 1).

5. The product Φ⊤Φ requires k2 · (2n − 1) FLOPS.

6. The inverse operation (Φ⊤Φ)−1 costs around k3 FLOPS.

7. The product (Φ⊤Φ)−1Φ⊤ costs n · k · (2k − 1) FLOPS.

8. The final product ϕ(z)⊤(Φ⊤Φ)−1Φ⊤ costs n · (2k − 1) FLOPS for a single target example z, and
ntest · n · (2k − 1) for attributing over ntest target examples.

The total attribution cost is then the sum of the above terms:

Cattrib = (6pT + 4k2 + 2k · p − 2k + 2k · ntest − ntest) · n (28)

+ 6p · T · ntest + k · (2p − 1) · ntest − k2 + k3 (29)

≈ (6p · T + 4k2 + 2k · p) · n + 2p · (3T + k) · ntest + k3. (30)

8Better approximations exist (Hoffmann et al., 2022), but they do not lead to substantially different approximations.
9Given a very large dataset with a total of n examples, compute optimal models can usually be trained using a much

smaller number of training examples ntrain(Hoffmann et al., 2022).
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A.3.3 OVERALL COST

Using our previous estimates, we can estimate the overall cost as:

Ctotal = Ctrain + Cattrib (31)

= 6p · T · ntrain + (6p · T + 4k2 + 2k · p) · n + 2p · (3T + k) · ntest + k3 (32)

=
(

6p · T ·
(

1 +
ntrain

n

)
+ 4k2 + 2k · p

)
· n + 2p · (3T + k) · ntest + k3. (33)

Asymptotically, we find that the ratio of the training cost to the overall cost is:

Ctrain

Ctotal =
6p · ntrain · T(

6p · T ·
(
1 + ntrain

n
)
+ 4k2 + 2k · p

)
· n + 2p · (3T + k) · ntest + k3 (34)

→ 3 · T
6 · T + k

(35)

≈ 22.22% (for our setup), (36)

assuming very large compute-optimal models where ntrain = n (Hoffmann et al., 2022). We present an
example of our compute estimates in Table 9.

Note that we use M models to improve our attribution scores computed using TRAK (Park et al., 2023).
This increases all our cost estimates by a factor of M.

Table 9: Compute requirement for attributing our different MPT models (MosaicML, 2023b).

Parameter MPT-125M MPT-350M MPT-760M MPT-8B10

p (×106 params) 125 350 760 8000
ntrain (×106 examples) 1.33 3.68 7.47 80

n (×106 examples) 80 80 80 80
ntest (examples) 1,000 1,000 1,000 1,000

T (tokens) 2,048 2,048 2,048 2,048
k (proj dim) 15,360 15,360 15,360 15,360

Ctrain (FLOPS) 2.04 × 1018 1.58 × 1019 6.97 × 1019 7.86 × 1021

Cattrib (FLOPS) 4.30 × 1020 1.20 × 1021 2.62 × 1021 2.75 × 1022

Coverall (FLOPS) 4.32 × 1020 1.22 × 1021 2.68 × 1021 3.53 × 1022

Ctrain

Coverall (%) 0.47 1.29 2.60 22.22
p

p (MPT-125M) 1.00 2.80 6.08 64.00
Coverall

Coverall (MPT-125M)
1.00 2.82 6.21 81.88

A.3.4 PRACTICAL CONSIDERATIONS

In the previous section, we focused solely on the asymptotic behavior. Even in that regime, the boost from
using smaller models is already super-linear. In real life, other practical considerations would emerge. For
example, models of different sizes might require different amounts of GPU memory, which in turn affects
the number of parallel operations within the TRAK framework (Park et al., 2023). Other considerations
include the network bandwidth, especially since we are dealing with massive datasets of several terabytes.
All these factors affect our compute estimates and the speedup. The results in Table 9 merely reflect a lower
bound on the speedups in realistic setups.

23



Published as a conference paper at ICLR 2025

A.4 DATASET SELECTION WITH DATAMODELS (DSDM)

In this section, we present additional background on the downstream application of data attribution that
we consider: dataset selection (Brown et al., 2020; Xie et al., 2023b; Engstrom et al., 2024). We focus on the
setup adopted in (Engstrom et al., 2024). For more details, we refer the reader to the paper (Engstrom et al.,
2024).

A.4.1 PROBLEM SETUP

Dataset selection refers to the task of selecting from a large pool of data a training set that leads to the “best”
performance on a given target task. Engstrom et al. (2024) cast the dataset selection task into an optimization
problem where the objective function is the model loss on a target task and the decision variable is the
dataset selected from a large pool of data.

More precisely, given a large pool of data Z , a target distribution Dtarg (e.g., a language modeling task) and
a target dataset size n, we can formulate the dataset selection task as:

S∗ := arg min
S⊂Z
|S|=n

LDtarg(S) (37)

:= arg min
S⊂Z
|S|=n

Ez∼Dtarg [L(z; θ∗(S))] (38)

where θ∗(S) are the parameters of the model trained on S, L(z; θ∗(S)) is the loss achieved by the model on
target example z ∼ Dtarg and LDtarg(S) is the expected loss of the models trained on S on samples from the
target distribution Dtarg.

A.4.2 APPROXIMATING SOLUTION WITH DATAMODELS

The optimization problem in Equation (38) is generally hard to solve as it involves a combinatorial search

over
(
| Z |

n

)
possible solutions. Furthermore, evaluating each candidate solution S requires training a new

model on the chosen training set S then measuring the model’s loss on the target task.

To circumvent this problem, Engstrom et al. (2024) propose using datamodels (Ilyas et al., 2022) to approxi-
mate the loss of the model trained on the candidate solution S. An additional advantage of this approach is
the linear relationship between the indicator vector of the set S and the target loss (see Equation (5)), which
makes the optimization problem easier.

Recall that for a given example z, datamodels approximate the complex model output function f (z; θ∗(S))
using a linear surrogate function g(S) = 1⊤S wz, where wz ∈ R|Z| is the datamodel vector corresponding
to target example z11. Using the linear surrogate function, we can approximate for a candidate set S the
model’s expected loss as:

Ez∼Dtarg [L(z; θ∗(S))] ≈ Ez∼Dtarg

[
1⊤S wz

]
(39)

= 1⊤S Ez∼Dtarg [wz] (40)

≈ 1⊤S

(
1
m

m

∑
i=1

wzi

)
(41)

11We refer to the datamodel vector wDM as w for ease of notation.
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where we assume we have access to m samples from the target distribution Dtarg. With this approximation,
we rewrite the optimization program from Equation (38) as:

S∗ := arg min
S⊂Z
|S|=n

Ez∼Dtarg [L(z; θ∗(S))] (42)

≈ arg min
S⊂Z
|S|=n

1⊤S

(
1
m

m

∑
i=1

wzi

)
(43)

= arg bot-n

(
1
m

m

∑
i=1

wzi

)
(44)

which corresponds to choosing the indices corresponding to the bottom n values of the vector
(

1
m ∑m

i=1 wzi

)
.

With this new formulation, the task of dataset selection reduces to estimating the datamodels vectors for a
given downstream task and then finding the indices corresponding to the bottom n values of the average
datamodels vector.

In practice, computing datamodels (Ilyas et al., 2022) is expensive, so Engstrom et al. (2024) approximate
them using the TRAK framework (Park et al., 2023). We present an overview of the procedure in Algo-
rithm 3.

Algorithm 3 Dataset selection using datamodels (DSDM)

Require: Large pool of data Z , selected dataset size n, m target examples {z1, . . . , zm} from distribution
Dtarg

1: Estimate datamodels vectors {wzi}m
i=1 from Z using TRAK

2: Compute average datamodel vector wtarg =
(

1
m ∑m

i=1 wzi

)
3: Collect indices I = arg bot-n

(
wtarg

)
4: return optimal set S∗ of training examples from pool Z at indices I
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B SIMILARITY BETWEEN SMALL AND LARGE MODELS

In the main paper, we demonstrated that when models of different sizes are trained on the same data
distribution, their losses are surprisingly linear (see Figure 1). In this section, we present additional details
on the experimental setup of our result from Figure 1, and then present more results in the vision setting.

B.1 LANGUAGE SETTING

B.1.1 EXPERIMENTAL SETUP

Models. In this setting, we consider two models based on the MPT architecture (MosaicML, 2023b): a
small model with 80M parameters and a larger one with 760M parameters. The small model is trained on
1.67B tokens while the large model is trained on 15.3B tokens12. This makes the small model require 85x
less compute than the larger model. Both models have a context length of 1,024. More architectural details
in Table 10 below.

Table 10: The architecture of our small and large MPT models (MosaicML, 2023b) used for Figure 1.

Model Dim Heads Layers Parameters Train Tokens (B)

MPT-80M (small) 640 10 10 82,127,360 1.67
MPT-760M (large) 1,536 12 24 760,470,528 15.3

Data distributions. We train several copies of the small and large models, each on a different data distri-
bution. Some of our distributions are natural while the rest are induced by algorithms.

• Natural distributions:
– MPT dataset (MosaicML, 2023a): The MPT dataset is a collection of examples from several

online sources such as CommonCrawl, RedPajama, etc.13 We train our models on random
subsets from the MPT dataset.

– RedPajama-ArXiV (Computer, 2023): The data consists of ArXiV articles and is extracted from
the MPT subset.

– RedPajama-Books (Computer, 2023): The data consists of subsets of books and is extracted
from the MPT subset.

– RedPajama-Wiki (Computer, 2023): The data consists of Wikipedia articles and is extracted
from the MPT subset.

– Semantic Scholar (Lo et al., 2020): The data consists of Semantic Scholar articles and is ex-
tracted from the MPT subset.

– Stack-Markdown (Kocetkov et al., 2022): The data consists of Markdown code from the Stack
dataset and is extracted from the MPT subset.

• Algorithm-induced distributions14:
– DsDm (Engstrom et al., 2024): DSDM is a method for selecting pretraining examples that im-

prove the downstream performance. We reuse the outcomes of this method when applied to
the C4 dataset (Raffel et al., 2020) as presented in (Engstrom et al., 2024).

– Bot-DsDm (Engstrom et al., 2024): This method is simply the reverse of DSDM. Specifically,
we choose the pretraining examples that hurt performance the most. While this distribution
is not particularly useful practically, it is helpful insofar as it reflects how language models
behave at the other end of the spectrum.

– DSIR (Xie et al., 2023b): DSIR is a method to choose pretraining examples that improve perfor-
mance through importance resampling. We reuse the outcomes of this method when applied
to the C4 dataset (Raffel et al., 2020) as presented in (Engstrom et al., 2024).

12The number of tokens was chosen to optimize for the compute level, as described in (Hoffmann et al., 2022).
13An extensive list of sources can be found at (MosaicML, 2023a).
14The data can be found at https://github.com/MadryLab/DsDm.
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– Classifier (Brown et al., 2020): Classifier is a method to choose pretraining examples that im-
prove performance by using a classifier that predicts whether the pretraining examples are
similar to the downstream examples or not. We reuse the outcomes of this method when ap-
plied to the C4 dataset (Raffel et al., 2020) as presented in (Engstrom et al., 2024).

Downstream datasets. After training our models on each of the data distributions highlighted above, we
measure their losses on several datasets. The goal is to reflect the linearity over multiple data distributions.

• C4 (Raffel et al., 2020): This dataset consists of web-extracted text from Common Crawl during
April 2019.

• The Pile (Gao et al., 2020): This dataset consists of text extracted from multiple sources, including
Common Crawl, Books, etc. More details can be found in the paper.

• SQuAD (Rajpurkar et al., 2016): Stanford Question Answering Dataset (Rajpurkar et al., 2016) is
a reading comprehension dataset composed of excerpts from Wikipedia articles. The task in this
dataset is answering questions given some context.

• LAMBADA (Paperno et al., 2016): LAnguage Modeling Broadened to Account for Discourse As-
pects (Paperno et al., 2016) is a dataset that measures broad context understanding through the
means of word prediction. Paperno et al. (2016) collected text narratives where human annotators
are able to predict the last word in a sentence when they have seen the whole passage but not when
they only see the last sentence before the text completion. We use the version of the dataset cleaned
by EleutherAI15.

• HellaSwag (Zellers et al., 2019): HellaSwag is multiple-choice dataset extracted from the SWAG
dataset (Zellers et al., 2018). The dataset is extracted using Adversarial Filtering (AF) and is chal-
lenging to language models while being almost trivial for humans.

For the downstream datasets SQuAD, LAMBADA and HellaSwag, we measure the models’ losses only
over their predictions, while for the pretraining datasets C4 and The Pile, we measure their losses over the
whole sequence.

B.1.2 CORRELATION AT THE EXAMPLE LEVEL

In Figure 1, we show that the losses achieved by the small and large models on a target distribution are
linear. We extend this result and show that for some sequences, in the downstream tasks, the losses achieved
at the example level are also linear (see Figure 4).

We then plot the coefficient of determination (R2) between the losses achieved by the small and large models
on target examples in each downstream task (see Figure 5). We can see that a significant proportion of the
target examples have a positive R2.

B.1.3 CORRELATION FOR LARGER COMPUTE GAP

We now investigate how our results change when we increase the compute gap. To that end, we consider a
smaller model consisting of 37 million parameters and trained on 840 million tokens. We consider the same
large model of 760 million parameters. The difference in compute in this case is 370x. For more architectural
details, check Table 11.

Table 11: The architecture of our small and large MPT models (MosaicML, 2023b) used for Figure 1.

Model Dim Heads Layers Parameters Train Tokens (B)

MPT-37M (small) 384 6 10 37,479,936 0.84
MPT-760M (large) 1,536 12 24 760,470,528 15.9

When the compute gap is larger, we still observe a very strong correlation between small and large models,
albeit slightly weaker on some downstream tasks, e.g., SQuAD (Rajpurkar et al., 2016) (see Figure 12).

15The dataset can be found on: https://huggingface.co/datasets/EleutherAI/lambada_openai/
viewer/en.
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Figure 12: Small models are reliable proxies of large models. In all plots, the x-axis represents the loss
achieved by a small MPT model of 37 million parameters trained on 0.84B tokens and the y-axis represents
the loss achieved by a larger MPT model of 760 million parameters trained on 15.9B tokens. Each plot
corresponds to a different target distribution, and within each plot, each point corresponds to a different
training distribution.

We next investigate how this correlation changes at the example level. Similar to the earlier setting, we
observe a strong (still weaker) correlation (see Figure 13 and Figure 4). These results indicate that small
models can still be reliable proxies of large models, even when the difference in compute is different by
orders of magnitude.
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Figure 13: Small models are reliable proxies of large models. We plot the coefficient of determination (R2)
between the losses of the small and large models for all examples.

B.1.4 HOW CORRELATION CHANGES WITH COMPUTE

We observe a large correlation between the losses achieved by our small and large models over multiple
tasks. To test the extent of this correlation, we train several other models of different sizes (125M, 220M
and 350M) with different compute budgets, measure the coefficient of determination between their losses
and the loss of the large model (760M) and then plot how this correlation (averaged over multiple tasks)
changes as a function of the training compute budget. We see in Figure 2 that the correlation increases as
the training compute increases.

B.2 VISION SETTING

We show in this section that our results still hold across the vision setting.

B.2.1 EXPERIMENTAL SETUP

Models. We consider variants of the ResNet-18 architecture (He et al., 2015) where we vary the width by
a multiplicative factor. Specifically, our small model is ResNet-18 where the width is multiplied by 1

4 and
our large model is a ResNet-18 where the width is multiplied by 2. We provide more information on the
architecture in Table 15.
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Data distributions. The dataset we consider for the vision setting is the CIFAR-10 dataset (Krizhevsky,
2009). We track in this setting the margin (instead of the loss) of the small and large model on a specific
example (rather than the average margin over the dataset). We choose 4 test examples at random, and for
each example, we train and average 8 models on each of the following distributions:

• Random: We remove at random up to 10% of the training examples.
• Top Infl: We estimate using TRAK the influence of every training example on the selected test

example (Park et al., 2023; Ilyas et al., 2022), then we create several training datasets where we
remove at random up to 10% of the training examples with the top datamodels score.

• Bot Infl: We estimate using TRAK the influence of every training example on the selected test
example (Park et al., 2023; Ilyas et al., 2022), then we create several training datasets where we
remove at random up to 10% of the training examples with the bottom datamodels score.

• Most Sim: We compute the similarity (in feature space) of each training example and the selected
test example, then we create several training datasets where we remove at random up to 10% of the
training examples the most similar to the selected test examples.

• Least Sim: We compute the similarity (in feature space) of each training example and the selected
test example, then we create several training datasets where we remove at random up to 10% of the
training examples the least similar to the selected test examples.

• Same Class: For each test example, we remove at random up to {25% – 50% – 75%} of the training
examples from the same class.

B.2.2 RESULTS

For each test example and each training distribution, we train 8 of the small and large models and record
their margins on the selected test example. We see in Figure 14 that the margins of the small and large
models are linear over the different training distributions.
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C EXPERIMENTAL SETUP

In this appendix, we present additional details about our experimental setup.

C.1 VISION SETUP

C.1.1 DATASETS

In the vision setup, we consider two small datasets: CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) and a
larger dataset: ImageNet (Krizhevsky et al., 2012). Both CIFAR datasets are composed of 50,000 training ex-
amples and 10,000 test examples belonging to 10 and 100 classes respectively, while ImageNet (Krizhevsky
et al., 2012) contains 1.2M training examples and 50,000 test examples belonging to 1,000 classes.

C.1.2 MODELS

As presented in the main paper, we consider in the vision setup ResNet-18 models (He et al., 2015) where
we multiply the width of each layer by a factor k and refer to the resulting model as RN-k. In the context of
ResNets (He et al., 2015), the width of a layer refers to the number of output channels in this layer. When
the factor k is larger than 1, the model at hand corresponds to a WideResNet-18 (Zagoruyko & Komodakis,
2016). We present in Table 15 how the model size changes as we increase the width of the network.

Table 15: Number of parameters in each of our models RN-k. The difference observed between the CIFAR
(Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015) datasets corresponds to the difference in the
input image size (32 and 224 respectively).

1/16 1/8 1/4 1/2 1 2 4 8

CIFAR 44,622 176,402 701,466 2,797,610 11,173,962 44,662,922 178,585,866 714,421,850
ImageNet - 241,712 831,096 3,055,880 11,689,512 45,693,032 180,645,096 -

C.1.3 TRAINING DETAILS

We train all our models using the same set of hyperparameters, presented in Table 16. To ensure that
our hyperparameters are compatible with all our models of different sizes, we leverage the µP framework
(Yang et al., 2022) in our implementation16. We refer the readers to (Yang et al., 2022) for more details on
how the µP framework works. We show how the accuracy of our model changes as we increase the width
in Figure 17

Table 16: Hyperparameters used to train our RN-k models. We leverage the µP framework (Yang et al.,
2022) in order to use the same hyperparameters for all our models of different sizes.

Hyperparameter CIFAR (Krizhevsky, 2009) ImageNet (Krizhevsky et al., 2012)

Optimizer SGD SGD
LR Scheduler OneCycle OneCycle
Max LR 0.1 0.5
Initial LR 0.001 0.005
LR Decay Linear Cosine
Warmup (%) 0.05 0.05
Epochs 30 20
Batch Size 512 512
Weight Decay 0.0005 0.0005

16We integrate the µP GitHub library in our code: https://github.com/microsoft/mup.
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Figure 17: Performance of our models on CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and ImageNet
(Krizhevsky et al., 2012) for different widths.

C.1.4 TRAK DETAILS

In this setup, we train 8 independent models RN-k models for each multiplicative factor k. We then pass
the model checkpoints {20 . . . 30} for CIFAR (Krizhevsky, 2009) and checkpoints {10 . . . 20} for ImageNet
(Krizhevsky et al., 2012) to the TRAK code. As presented in Appendix A, one important parameter of
TRAK (Park et al., 2023) is the projection dimension that corresponds to the dimension of the subspace
onto a model’s gradients are mapped. The choice of this parameter presents naturally a trade-off between
thq quality of the attribution scores and throughput (Park et al., 2023): increasing the projection dimen-
sion increases simultaneously the quality of the attribution scores and the time to compute them. For our
setup, we choose projection dimensions of 2,048, 4,096 and 15,360 on CIFAR-10, CIFAR-100 and ImageNet
respectively (Krizhevsky, 2009; Russakovsky et al., 2015).

The attribution scores that we compute are matrices of 50, 000 × 10, 000 for CIFAR (Krizhevsky, 2009) and
1.2M × 50, 000 for ImageNet (Krizhevsky et al., 2012).

C.2 LANGUAGE SETUP

C.2.1 DATASETS

Pretraining dataset. In the language setup, we consider a large pretraining dataset composed of 80 million
samples (subset of the MPT dataset introduced in (MosaicML, 2023a)). We pre-tokenize this dataset before
training using the GPT-NeoX tokenizer (Andonian et al., 2023) (with a vocabulary size of 50,368 tokens).
The resulting pre-tokenized dataset contains 160B tokens.

Downstream datasets. We consider two downstream datasets for our application: LAMBADA (Paperno
et al., 2016) and SQuAD (Rajpurkar et al., 2016):

• LAMBADA: LAnguage Modeling Broadened to Account for Discourse Aspects (Paperno et al.,
2016) is a dataset that measures broad context understanding through the means of word predic-
tion. (Paperno et al., 2016) collected text narratives where human annotators are able to predict the
last word in a sentence when they have seen the whole passage but not when they only see the
last sentence before the text completion. We use the version of the dataset cleaned by EleutherAI17.
Similar to (Engstrom et al., 2024), we split the dataset into a holdout set of 2,570 samples and a
target set of 2,577 samples.

• SQuAD: Stanford Question Answering Dataset (Rajpurkar et al., 2016) is a reading comprehension
dataset composed of excerpts from Wikipedia articles. The task in this dataset is answering ques-
tions given some context. Similar to (Engstrom et al., 2024), we split the dataset into a holdout set
of 10,557 samples (corresponding to the SQuAD validation set) and a target set of 23,107 examples
(corresponding to 25% of the SQuAD training set).

17The dataset can be found on: https://huggingface.co/datasets/EleutherAI/lambada_openai/
viewer/en.
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1. Context: Formed in 1946, Sierra Sky Park Airport is a residential airport community born of a unique
agreement in transportation law to allow personal aircraft and automobiles to share certain roads. Sierra Sky
Park was the first aviation community to be built[citation needed] and there are now numerous such
communities across the United States and around the world. Developer William Smilie created the nation’s
first planned aviation community. Still in operation today, the public use airport provides a unique
neighborhood that spawned interest and similar communities nationwide.
Question: What is the name of the first aviation community built?
Answer: Sierra Sky Park

2. Context: The Newcastle Beer Festival, organized by CAMRA, takes place in April. In May, Newcastle and
Gateshead host the Evolution Festival, a music festival held on the Newcastle and Gateshead Quaysides over
the Spring bank holiday, with performances by acts from the world of Rock, Indie and Dance music. The
biennial AV Festival of international electronic art, featuring exhibitions, concerts, conferences and film
screenings, is held in March. The North East Art Expo, a festival of art and design from the regions
professional artists, is held in late May. EAT! NewcastleGateshead, a festival of food and drink, runs for 2
weeks each year in mid June.
Question: What festival takes place in April in Newcastle?
Answer: The Newcastle Beer Festival

Figure 18: Random SQuAD samples (Rajpurkar et al., 2016). Context is normal text, and the continuation
label is hightlighted.

1. Context: In 1854 at Ballarat there was an armed rebellion against the government of Victoria by miners
protesting against mining taxes (the "Eureka Stockade"). This was crushed by British troops, but the
discontents prompted colonial authorities to reform the administration (particularly reducing the hated
mining licence fees) and extend the franchise. Within a short time, the Imperial Parliament granted Victoria
responsible government with the passage of the Colony of Victoria Act 1855. Some of the leaders of the
Eureka rebellion went on to become members of the Victorian Parliament.
Question: What did colonial authorities reduce because of the Ballarat revolt?
Answer: mining licence fees

2. Context: Within southern California are two major cities, Los Angeles and San Diego, as well as three of the
country’s largest metropolitan areas. With a population of 3,792,621, Los Angeles is the most populous city in
California and the second most populous in the United States. To the south and with a population of
1,307,402 is San Diego, the second most populous city in the state and the eighth most populous in the nation.
Question: What is the population of Los Angeles?
Answer: 3,792,621

Figure 19: Random LAMBADA samples (Paperno et al., 2016). Context is normal text, and the continuation
label is hightlighted.

C.2.2 MODELS

In this setup, we consider three MPT models presented in (MosaicML, 2023b)18. Our three models are of
sizes 125M, 350M and 760M parameters respectively. We present the architecture of the models in Table 20.

Table 20: The architecture and hyperparameters of our three MPT models (MosaicML, 2023b).

Model Dim Heads Layers Parameters LR wd Batch Total (tokens)

MPT-125M 768 12 12 125,311,488 6 × 104 4 × 10−4 2M 2.7B
MPT-350M 1,024 16 24 355,985,408 6 × 104 4 × 10−4 2M 7.5B
MPT-760M 1,536 12 24 760,470,528 6 × 104 4 × 10−4 2M 15.3B

C.2.3 TRAINING DETAILS

We train our MPT models using the llm-foundry repository19 developed by MosaicML on our subset of the
MPT dataset (MosaicML, 2023a). We present some of the hyperparameters used for training our models in

18We use the code provided in https://github.com/mosaicml/llm-foundry.
19https://github.com/mosaicml/llm-foundry.
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Table 20. When training, our models, we pack the tokens from our pre-tokenized dataset into samples of
context length 2,048. For the rest of the training hyperparameters, we keep the original values used in the
GitHub repository. We show the three training curves of our models in Figure 21.
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Figure 21: Performance of our three compute-optimal MPT models (MosaicML, 2023b; Hoffmann et al.,
2022).

C.2.4 TRAK DETAILS

In this setup, the computational requirement is much higher. For that reason, we only train three different
models of each size on different random subsets of the training dataset (see Table 20 for the total number of
tokens of each model). We then pass to TRAK these three checkpoints in order to compute the attribution
scores of all our training examples. In this setup, we use a projection dimension of 15,360.

In the language setup, TRAK produces for each of our three models two sets of attribution scores: one
for LAMBADA (Paperno et al., 2016) and the other for SQuAD (Rajpurkar et al., 2016), each computed
using the samples from the target set (see Appendix C.2.1). The attribution scores we compute are vectors
containing 80 million entries (one for each training example).

C.3 DATASET SELECTION

For this downstream application, we compute the attribution scores as outlined in Appendix C.2.4 (based
on the target set of each dataset) and then we train our large models (MPT-760M (MosaicML, 2023b)) on
the selected dataset, using the recipe described in Appendix C.2.3. We test the performance of our models
on the holdout sets of each dataset.
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D ADDITIONAL RESULTS

D.1 QUALITATIVE SIMILARITY

D.1.1 VISION SETUP
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Figure 22: Most helpful and detrimental examples for the outputs of models of different sizes are similar.
We observe a large overlap between the examples that are most helpful (and most detrimental) for the
models predictions on the target example.

Target 
Example

WhippetWhippet Whippet Whippet Whippet Great Dane

More positive More negative

Great Dane Great Dane Great Dane

Whippet Whippet Whippet Whippet

Whippet Whippet Whippet Whippet Weimaraner Great Dane Great Dane St. Bernard

Whippet Whippet Whippet Whippet

RN-18-
1

4

RN-18-1

RN-18-4

Figure 23: Most helpful and detrimental examples for the outputs of models of different sizes are similar.
We observe a large overlap between the examples that are most helpful (and most detrimental) for the
models predictions on the target example.
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D.1.2 LANGUAGE SETUP

MPT-125M. density. They call it the contemplation density. That’s where you go,
and you get to review the life you have had, and learn from it, and decide what it is
you want to do next when you incarnate next. In the chain of densities, one through
seven, the souls exist in one through four and in sixth, actively, and in fifth density
passively. Did I get that right?\nQ: (Aud.) What energy are they using to create the
conduit?\nA: Open frequency EM wave.\nQ: (Aud.) Is there a mathematical
formula for creating the cond

MPT-350M. .\nAnswer: Tim Low.\n(5) True or false?: Cane toads were introduced
to Australia by the CSIRO.\nAnswer: False: Cane toads were introduced by the
Bureau of Sugar Experiment Stations.\nNRMjobs Quiz answers 7-Jan-2021\nThis
week’s theme: ‘Roots’\n(1) What is a murnong?\nAnswer: Yam daisy (Microseris
sp.)\n(2) Which politician is known colloquially as ‘The Beetrooter’?\nAnswer:
Barnaby Joyce.\n(3) In which State or Territory is the Canning Stock Route
located?\nAnswer: Western Australia.\n(4) What is a pig-root?\nAnswer: Wh

MPT-760M. answers pertaining to the City of Carmel and the actions taken by
this...\nIn the debate over incentives to attract jobs, Iv́e heard the term "multiplier
effect". What does that mean?\nIn the debate over incentives to attract jobs, Iv́e
heard the term "multiplier effect". What does that mean? This term is often used in
economic development discussions and it refers to the number of jobs created
whenever a single high-paying job is added to the local...\nWhy is the City Council
redistricting?\nWhy is the City C

(a) Most helpful for SQuAD

MPT-125M. and testimonials). Thereby, Tarija can reclaim and increase its natural
patrimony and Bolivia can reduce the vulnerability of this threatened species to the
unorganized grown of agricultural lands.\nThe success of the project led by the
biologist Ximena Velez – Liendo, has awarded her the Whitley Award, one of the
most prestigious in the world which was announced on May 18th 2017 in London
and presented by members of the British Royal Family. Also in this topic we must
point out the important work of the co

MPT-350M. increasing number of civil cases as well. In 1931, he unsuccessful
defended William Herbert Wallace on a charge of murder, although the jury verdict
was exceptionally quashed on appeal. In the 1933 "fire-rising" case, he led for the
Crown in the prosecution of Leopold Harris, as well as the subsequent prosecution of
Captain Brymore Eric Miles of the London Salvage Corps. In 1932, he appeared in
the consistory court for the Bishop of Norwich in the action against the Rev. Harold
Davidson, which led to his d

MPT-760M. Q: Does negative vote count in score gained in tags after deletion If the
post got negative votes and is deleted, does that negative vote after deletion count in
the score of tags.(Reputation lost is credited back but what about the score of the tags
involved in them) .\n\nA: It’s not. It’s as if the answer never existed in the first
place, so none of the votes on it count at all.\n\nA: The scores(negative or positive)
on deleted answers will not be calculated on tag scores.\nThe tag scores are
calculated on dai

(b) Most detrimental for SQuAD

Figure 24: Random samples of (a) the most helpful and (b) most detrimental examples on SQuAD (Ra-
jpurkar et al., 2016) according to each of our MPT models. The samples are truncated to 512 characters.
"\n" denotes a newline. More examples in Appendix D.1.2.
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MPT-125M. know - and ways to have more fun on the Davy Crockett Explorer
Canoes at Disneyland in California\nSplash Mountain at Disneyland: 10 Things You
Need to KnowWhat you need to know - and ways to have more fun on Splash
Mountain at Disneyland in California. Page 3.\nCritter Country at Disneyland in
CaliforniaInsider tips, fun facts and everything you need to know about the rides,
shows and attractions\nDisneyland Paint the Night ParadeGuide to watching
Disneyland’s night time\nCity Hall at Disneyland: What You Nee
8.2.4. I haven’t received any email after having submitted the registration form: what
should I do?\n- Please click on the “temple” icon at the top-right corner, - Click on
“forgot password”, - Indicate your email (the main contact email provided in the
form you submitted) and click on “Email new password”.\nIf you still have trouble,
please use the contact form available at the bottom of each page of the Portal,
indicating as subject “ISSN assignment”.\n8.3.1. What is the use of my personal
area?\n- ISSN assig
successful completion of these discussions could result in Flextronics undertaking
and managing in excess of US$2bn of Nortel Networksánnual cost of sales on a
go-forward basis and involve the transfer from Nortel Networks to Flextronics of
more than US$500m of manufacturing and inventory assets.\nAs well as this, Nortel
Networks anticipates receiving from Flextronics proceeds in excess of US$500m in
cash over a nine-month period for primarily inventory and certain intangible
assets.\n"At this stage, howev
adaxa Corps. COVID-19 vaccines, the U. The Office for Civil Rights (OCR) at the U.
COVID-19 vaccines, the U. The Office for Civil Rights (OCR) at the U.\nRemarks by
the Surgeon pradaxa inr testing General to the founding members
http://hcs.qa/can-you-get-a-blood-clot-while-on-pradaxa/ of the COVID-19
Community Corps. Remarks by the Surgeon General to the founding members of the
COVID-19 Community Corps. Remarks by the Surgeon pradaxa inr testing General
to the founding members of the COVID-19 Community Corps

MPT-350M. arkhand Government.\nQuestion No (50) Who assumed the additional
charge of Central Reserve Police Force (CRPF) director general (DG)?\nAnswer:
Kuldiep Singh.\nQuestion No (51) Sadak Suraksha (Road Safety) is the theme of
which day in India?\nAnswer: National Safety Day 2021.\nQuestion No (52)
Starship prototype rocket ’SN10’ tested by which space launch company?\nQuestion
No (53) 2020-21 Indian Super League (ISL) Winners Shield won by which
team?\nQuestion No (54) Which company has India’s 1st policy to provide 10
from 39.78€ to 97.99€.\nPLAYSTATION ACCOUNT : You will receive a Playstation
account to download and play One Piece World Seeker PS4. Once downloaded you
can play with your own account. Follow the instructions given by the seller and read
carefully the store description about any language and region
restrictions.\nEUROPEAN BOX GAME : This is an European version for One Piece
World Seeker PS4 in Box Edition (DVD-CD ROM). This is not a downloadable
product. Please read the sellers page for any additional costs
money belongs to the teacher that earned it. It is up to them to contribute based on
personal choice, not because the school district extracts it from paychecks and
deposits it in the hands of the union bosses.\nYet, as Richardville notes, Michigan’s
teachers have faced “salary reductions, concessions, paying more in health care costs,
and in some cases, lay-offs” over the past year. But what he doesn’t say is that much
of this pain teachers in the state have faced come from none other than himself, his
con
X-Ray helps you to analyze and debug applications. \nB: Creates a service map of
the services used by your application. \nC: Identifies bugs and errors in your
application and automatically highlights them. \nD: Enables you to build your own
analysis and visualization apps. \nE: All of the above.\n\n 20. What is true about
the X-Ray daemon?\n\nA: The X-Ray daemon is an application that listens for
traffic on the UDP port. \nB: The X-Ray daemon is an open source project. \nC:
Lambda and Elastic Beanstalk can u

MPT-760M. W installed so-called defeat devices in 11 milllion diesel vehicles
worldwide aimed at cheating emissions regulations.\nFrench rival Renault said
Tuesday it was recalling thousands of vehicles to make engine tweaks as it grapples
with emission levels found to exceed anti-pollution norms in some of its cars.\nThe
service update carried out on the Zafira Tourer model "had nothing to do with a
change in the emissions values," Opel insisted, without specifying what the update
was for.<|endoftext|>Sermons by Pasto
numbering scheme for some whereby the least significant (non-zero) digit signifies
the geographic region ("3" signifying Japan) the device is sold in. This leads to a large
number of models, all belonging to the same family, but possibly incompatible to
some degree, and also makes it difficult to ascertain whether a device is unique or
part of an existing family. The software driver filename will often use the family
designation.\n\nSome MP devices have fax capability (MP740).\nR=remote\n\n
Canon PIXMA G1000\n C
ercus petraea with Ash Fraxinus excelsior as a codominant. Hazel Corylus avellana,
Holly Ilex aquifolium and occasional Hawthorn Crataegus monogyna occur in the
understorey, with some Honeysuckle Lonicera periclymenum. The ground flora
includes Primrose Primula vulgaris, Wood Avens Geum urbanum, Wood Anemone
Anemone nemorosa and Dog’s Mercury Mercurialis perennis. Some areas of the
wood have been invaded by Sycamore Acer pseudoplatanus and Beech Fagus
sylvatica. Here Bramble Rubus fruticosus and Ivy Hedera
’now’ stand part of the question. unchanged from previous\n14 December 1967
When an amendment has been moved, the question to be proposed thereon shall be,
that the amendment be made, except that, when to the question that a bill be now
read a second time or the third time an amendment has been moved to leave out the
word ’now’, the question shall be, that the word ’now’ stand part of the question.
unchanged from previous\n22 February 1968 When an amendment has been moved,
the question to be proposed thereon

(a) Most helpful for SQuAD

MPT-125M. to soak each wick for at least a few minutes in your firespinning fuel,
just for the first ignition. Every other time, you are free to dip your wick for as long
or as short as you wish. But it is a good idea for the first ever fuel submersion to be
for 1 - 2 minutes, this will fully soak your wick ensuring the entire wick is fuelled up
right through and the flame will not degrade the kevlar or cotton. This will make
your wicks last a lot longer and save you money and precious time.<|endoftext|>I
think of y
and/or backgrounds. They’re on the ‘variants‘ directory.\n\nIf you want to make a
variant, **please do not edit the css files directly**, go to ‘src/variants‘, make a
copy\nof an existing one, and edit as you please.\n\nIf you want to share a variant
you made, go ahead! I’ll accept most PRs as long as they don’t break the
build.\n\n## Building\n\nBuilds are automatically done after each PR, but if you
want to do it locally, follow these steps: (You’ll need Node.js)\n\n“‘bash\nnpm
install -g stylus svg-stylus # depend
time come or holidays. Typing your keyword such as N into Google search and
looking for promotion or special program.Looking for discount code or "deal of the
day" may help. Recommended This Shopping store for all Acquire more facts
Acquire online website N Acquire more facts Acquire online website N.\nCheck out
this sale N looking for special discount N<|endoftext|>opalduck\nopalduck
2/2/2019 2 5 ##HD\nruler of the flame\nThere is a giant purple lion. the mane of
the lion is orange. a purple dragon is 3 feet
any valid string, but must be unique for every request. |
\n\n\n<|endoftext|>—\nlayout: post\ncomments: true\ncategories:
Other\n—\n\n## Download Me and my likker popcorn sutton book\n\n"I’ll try to
shout me and my likker popcorn sutton. They’re The _Ostrogs_ (fortified places)
lying in the neighbourhood of their meat on one half of the bun. umbrella, 1768. She
was perhaps thirty paces from me when something happened to her? natural and
convincing they had sounded-when in fact he believed in neither The closet wa

MPT-350M. , said the argument comes down to "basic honesty for the
consumer."\n"They can call it healthy protein, they can call it lots of glamour things.
They just cant́ call it meat," Palmer said.\nThe only opponent to the bill was Zuri
Moreno, with the ACLU of Montana. Moreno said commercial speech is protected by
the First Amendment and called the bill an "unconstitutional solution in search of a
problem."\nNear the end of last year, the U.S. Department of Agriculture and the
Food and Drug Administration said they w
the hope of giving his driver, Matt Kenseth, a chance at a respectable finish. His
outstanding effort, along with his calculated racing strategy, won Reiser the
WYPALL* Wipers Crew Chief of the Race.\n’Car sharing’ fight goes from bad to
worse\nSpyker wants ’b’ car debut in July\nBoss exit not death knell for Aus
GP\nSchu’still part’ of Ferrari - Massa\nGroup wants Ferrari sponsor butted
out\nBMW has ’fixed’ gearbox flaw - Theissen\nSpyker scraps Friday driver
plans\nBerger saves hype for another charger\nMcLaren p
. COVID-19 vaccines, the U. COVID-19 vaccines, purchase prandin the U.\nRemarks
by the Surgeon prandin drug General to the founding members have a peek at this
website of the COVID-19 Community Corps. Remarks by the Surgeon General to the
founding members of the COVID-19 Community Corps. Remarks by the Surgeon
General prandin drug to the founding members of the COVID-19 Community Corps.
Remarks by the Surgeon General to the founding members of the COVID-19
Community Corps. Remarks by the Surgeon prandin drug
a couple hundred thousand dollars worth of jewelry stolen. » i’m still – i can’t think
of how many people must have taken to steal that. » what are you going to do with
that? put it on your lawn? » true. » i’m just saying. an oklahoma woman came to the
rescue of a skunk in real trouble. its head was stuck inside a peanut butter jar. the
woman called for help. here the poor little guy is. an expert called the skunk
whisperer. there’s somebody named the skupg whisperer. he managed to free the
stuck skun

MPT-760M. accuracy: 99% | Relation accuracy: 93% | Tricky accuracy: 0% \n Test
set after epoch 468 : Non-relation accuracy: 99% | Relation accuracy: 93% | Tricky
accuracy: 0% \n Test set after epoch 469 : Non-relation accuracy: 99% | Relation
accuracy: 93% | Tricky accuracy: 0% \n Test set after epoch 470 : Non-relation
accuracy: 99% | Relation accuracy: 93% | Tricky accuracy: 0% \n Test set after epoch
471 : Non-relation accuracy: 99% | Relation accuracy: 93% | Tricky accuracy: 0% \n
Test set after epoch 472 : Non-
KADIAN and green opaque body printed with 100 mg. Capsules are supplied
in:bottles of 10 (NDC 54868-4573-2)bottles of 30 (NDC 54868-4573-1)bottles of 60
(NDC 54868-4573-0).Store at 25°C (77°F); excursions permitted to 15°-30°C (59°-86°F).
Protect from light and moisture.Dispense in a sealed tamper-evident, childproof,
light-resistant container.CAUTION: DEA Order Form Required.Rx OnlyKADIAN®
capsules contain white to off-white or tan colored polymer coated extended-release
pellets of morphine sulfate and ar
building skills, get in touch.<|endoftext|>Honoree Mark Abood (center) with
Crain’s Cleveland Business publisher Brian Tucker (left) and Ohio.net’s Alex Desberg
(right).\nHonoree Nicole Bell (center) with Crain’s Cleveland Business publisher
Brian Tucker (left) and Ohio.net’s Alex Desberg (right).\nHonoree Stephane Biban
(center) with Crain’s Cleveland Business publisher Brian Tucker (left) and Ohio.net’s
Alex Desberg (right).\nHonoree Dr. Aparna Bole (center) with Crain’s Cleveland
Business publisher Brian T
the skirmishes to end the system espoused by the Twelfth Amendment have not
progressed beyond wishful thinking. Unless consensus develops to eliminate this
method, future challenges will continue with some regularity. Early State Records
provided numerous examples of these encounters, all to no avail.\nEarly State
Records is one of LLMC’s most substantial initiatives, thanks to the patronage of
several libraries which are listed here, as well as a grant award from the Council on
Library and Information Reso

(b) Most detrimental for SQuAD

Figure 25: Random samples of (a) the most helpful and (b) most detrimental examples on SQuAD (Ra-
jpurkar et al., 2016) according to each model. The figure shows a 512-character slice from the training
example. "\n" denotes a newline.
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MPT-125M. attention. Take Legolas (Bloom), for example; we never get to know
him. Or consider Aragorn: Mortensen is perfect as the noble warrior, but in the
ENTIRE trilogy he probably only has like two full pages of dialog, maybe three.
Also, I found the story generally disengaging. I was never much enthralled by the
characters and their pursuits, although devotees of Tolkien might be. Then there are
WAY too many “looks of love” between characters, particularly Frodo and Sam (I
was so happy to see one character get
good. Even if it is the same as last night it is positive.\nHang in there, they will live
together happily.\nSapphire was pretty playful and happy this afternoon so we
brought Fluffy out of the bedroom upstairs and while my partner held fluffy in the
hallway I sat with Sapphire in her room. She seemed pretty scared. She was hunched
down with her side facing him, growling, hissing, and her ears were down but to the
side rather than back. Fluffy was being held a few feet away so he was getting
excited but coul’
.\nThe high cost associated with these devices and cybersecurity issues are
hampering the growth for the public safety LTE market.\nAsia Pacific region is a
massive untapped market for the growth of public safety LTE devices. Increased
crime rates, trafficking, and growing terrorist activities have accelerated demand for
the public safety LTE devices.\nThe report on the global public safety LTE market
includes an assessment of the market, trends, segments, and regional markets.
Overview and dynamics have also
match Estero’s design standards, board members said.\nArena representatives
ended up revising the design, which the board approved at another meeting later in
the same month.\n"Hertz is no different than anybody else that comes to us," Boesch
said "We don’t give exceptions to give people special consideration. They have to go
by the requirements that are necessary for the village."\nMore: Germain Arena to be
renamed Hertz Arena\nAt the first public meeting on Hertz’s plans, most Design
Review Board members sai

MPT-350M. just to survive, but, to thrive!\nRefund policy No refunds\nThe
Travelling FreakShow\nhttps://www.travellingfreakshow.com\nEvent has
finished\nSELL TICKETS CONTACT HELP © Quicket. All Rights Reserved. Terms
of use Privacy Policy\nHow to buy a ticket with a credit card?\nHow to buy a ticket
using SID Instant EFT?\nHow to apply a discount or access code?\nIs it really sold
out?\nContact us for the other Quicket related queries +27 21 424 9308 [email
protected] Support center<|endoftext|>Erika Calvin\nChild Protective
and purple). Any time a student breaks a rule, he or she must change the strip in his
or her pocket to the next color.\nGreen – great behavior, no issues that day\nYellow
– verbal warning that behavior is unacceptable\nRed – time out, behavior is out of
hand\nPurple – note home to parents\nFor kindergarten, a modified stoplight is
employed. It contains a smiley face, a green light, a yellow light, a red light and a sad
face. Each child has a clip with his or her number on it and all clips start on the
smiley fa
the little round doorway where he had last seen Danny. But old Granny\nFox knew
all about those little tunnels, and she didn’t waste any time\ndigging at the
doorways. Instead she cocked her sharp little ears and\nlistened with all her might.
Now Granny Fox has very keen ears, oh,\nvery keen ears, and she heard just what
she hoped she would hear. She\nheard Danny Meadow Mouse running along one of
his little tunnels under\nthe snow.\n\nPlunge! Old Granny Fox dived right into the
snow and right through into\nthe tunne
feeling, as though she had run into an alternate Lennie, not the girl who had become
her best friend. Lennie looked tired; her eyes were small. She smelled like drink and
her lipstick was smeared.\n\n"I’m going to bed," Lennie said. "Forget you ever saw
me here, Frieda."\n\nLennie was acting as though she were embarrassed at being
found out, but at what, Frieda had no idea. Was there some fellow Lennie had fallen
for? Could she really be as foolish as Frieda and have gotten involved with one of the
guests? Tha

MPT-760M. and Family Mart.\nBut still, Hatsune Miku nikuman! Mikuman!?
Miku-niku!? It sounds great on paper, but it’s the middle of August and who wants
eat steaming hot meat buns in this sweltering heat?\nHachune Miku Nikuman
(green onion and salt flavor, go figure) are available for at Family Mart stores across
the country for a limited time only while supplies last.\nThe promotion itself, titled
“Hatsune Miku 5th Anniversary Miku LOVES Famima Campaign,” will last until
September 10. There are plenty of sweet Miku go
its. Unlike his father, Kylen and Rylan are heavily immersed in the more magical and
spiritual elements of sulani. Their attire reflects their preference for their merform.
Kylen and Rylan have also begun to tap into their mermadic powers. While reef took
advantage of the physical abilities of a merform, Kylen and Rylan use mermadic
magic like controlling the weather and summoning creatures from the deep.\nReef
showed Kylen where Dylan’s Urn could be found. Much like how Reef needed to
become a Curator and C
). Contact tri-senior housing for complete details on the current vacancies and
housing applications.\nTri-block houses is a family low income housing apartment
subsidized by the federal governments hud (housing and urban development
division). Contact tri-block houses for complete details on the current vacancies and
housing applications.\nTilden apartments is a family low income housing apartment
subsidized by the federal governments hud (housing and urban development
division). Contact tilden apartments fo
to the author, there are four basic strategies that will help an HSC to become a happy
adult: parents should foster their child’s self-esteem, try to reduce the feelings of
shame HSCs may develop because they are different, employ only mild positive
discipline and learn how to talk positively to teachers and friends about their HSC so
that interactions will be productive. (Oct.)\n"Aron offers helpful advice that will
assist both nonsensitive and highly sensitive parents through all stages of their
child’s d

(a) Most helpful for LAMBADA

MPT-125M. ets like us. Truth is, we would’ve been disappointed if you’d done it
any other way. You’re a chip off the old block, Holland."\n\n"Thank you, sir. You
couldn’t pay me a higher compliment."\n\n"I know." He glanced toward the
kitchen. "You think about what it would do to him if something happens to you. It’d
be the end of him. You think about that."\n\n"Yes, sir," she whispered as she
watched him go down the ramp.\nChapter Twenty-Three\n\nWith Nick outside on
the phone, Sam went into the kitchen where her dad was rea
Tomjon_ Les Dennis, _Additional voices of unspecified characters_ Andy Hockley,
David Holt, Jimmy Hibbert, Rob Rackstraw, Melissa Sinden, Taff
Girdlestone.\n\nCrew:\n\n_Executive producer_ Mark Hall, _Associate producer
for Carrington Productions International_ Craig Hemmings, _Music_ Keith
Hopwood and Phil Bush, _Production manager_ Laura Cosgrove, _Digital colour
designers_ Joan Jones, Jackie Mitchell, _Background_ _designer/character designer_
Steve Maher, _Background designers_ John Millington, Peter Hiller
Crime and Punishment through the ages (including an investigation of Whitechapel
1870-1900)\nEarly Elizabethan England, 1558- 1588\nWeimar and Nazi Germany,
1918- 1938\nThe Cold War, 1914-1991\nHistory textbooks and revision
guides\nWebsite with key information about the topics\nFilm documentaries
including:\nCrime and Punishment with Tony
Robinson<|endoftext|>BLACKBOARD ON SUNREFERENCE
ARCHITECTUREOPTIMIZING eLEARNINGWhite PaperOctober 2007 2.\nSun
Microsystems, Inc.Table of ContentsExecutive Summary..............
, that nobody has yet tried to set up a spot focused on adult content.\nSo what has
surprised Lu since Fanpop launched in early August? He says that sports fans
haven’t been as keen to set up spots as expected, possibly because they’re well
catered for elsewhere online. However, he’s been pleased and surprised at the sheer
diversity of spots that have popped up, from rats through to Philip Pullman’s ‘His
Dark Materials’ books, and British bands like the Kaiser Chiefs and, er, Cud. The
Web 2.0 and viral video

MPT-350M. erosmith cancels second Las Vegas show, Steven Tyler needs “more
time to rest”\nBono discusses the origin of his nickname\nThe Head and the Heart,
Spoon headlining 2023 Bear Shadow festival<|endoftext|>Complexity Bias: Why
We Prefer Complicated to Simple\nComplexity bias is a logical fallacy that leads us
to give undue credence to complex concepts.\nFaced with two competing
hypotheses, we are likely to choose the most complex one. That’s usually the option
with the most assumptions and regressions. As a result,
, the total amount of voting securities that would result from the exercise of all
outstanding warrants, options and rights, together with any restricted stock issued
by the Company, at the time of issuance may not exceed 20% of the outstanding
voting securities of the Company.\nThe shares issuable under the Company’s Equity
Incentive Plan may be issued in the form of options, restricted stock or other
stock-based awards. The shares issuable under the Company’s Non-Employee
Director Plan may currently be iss
hunt down that cemetery and see if Lydia Dupree is there?"\n"We need more salt
first." Sam glanced around at the dark yard. "And flashlights would be
good."\nDeanś teeth flashed white as he grinned. "Wimp. I told you you needed to
eat your carrots when you were little."\nSam snorted. "I seem to remember you
hiding them under your bowl whenever Dad made that stew."\n"Those were
cooked," Dean said as if it explained everything.\n"And you call me a wimp."\n"As
much as I can work into the conversation, yes."\nSam si
. Dixon couldn’t contain his enthusiasm and was called for a technical for
taunting.\nPark View made a valiant effort and pulled back to within three points
with 53 seconds left to play, but they just couldn’t get a trey to drop and ended up
losing a tight one, 45-40.\nAfterwards Dragon head coach Danny Watkins struck an
upbeat note. “If we keep fighting hard and continue to come together as a team we
will be okay.\nComet head coach Sterling Williams expressed pride in his team: “We
fought hard for this win, w

MPT-760M. or in relation to such petition ; but it may be read by the clerk at the
table, if required. unchanged from previous\n09 March 1945 Every such petition not
containing matter in breach of the privileges of this House, and which, according to
the rules or usual practice of this House, can be received, shall be brought to the table
by the direction of Mr. Speaker, who shall not allow any debate, or any member to
speak upon, or in relation to such petition ; but it may be read by the clerk at the
table, if requ
bituary: McGill prof Desmond Morton remembered as ’a historian of the
people’\nMcGill Redmen hockey coach Kelly Nobes dead at age 45\nAllison Hanes:
Yet another family grieving a pedestrian killed in Montreal\nWoman, 84, dies after
being struck by truck in N.D.G.\n\ue221 Confusion reigns as Quebec schools apply
religious symbols ban \ue221 Brownstein: Montreal actress steps forward in Harvey
Weinstein documentary<|endoftext|>Cardiac Anesthesia\nAllied
Physicians\nYour Care & Safety Comes First\nPerry Chu, M.D.\nGeorge Kanaly
for lovers of beautiful things, crafts, gifts, teas and cakes.\nAs part of the ticket for
this walk you will receive tea or coffee and a slice of cake at the shop at the end of the
tour.\nThis special Debbie Bryan edition includes Tea or Coffee and a piece of cake
at Debbie Bryan in the Lace Market. The walk will conclude at Debbie Bryan. Vegan
and Gluten Free options are available please let us know in advance about any
special dietary requirements.<|endoftext|>Farfalle pasta with Greek olives,
tomatoes, cu
your woodwork precise in place while gluing. Made with chrome vanadium tool
steel for strength, BICMTE Cable Clips with Strong Self-Adhesive Pads. Padded
bikini top and low waist triangle bikini bottom. Move Roma Bloody Leather Top
Hat. Washing notice: the best way is wash by hand below 30 °C water, Make sure the
transformer is plugged into a 20 V AC outlet.\nMove Roma Bloody Leather Top Hat
Hats & Caps Men nsml.net Move Roma Bloody Leather Top Hat Hats & Caps Men
nsml.net Move Roma Bloody Leather Top Hat H

(b) Most detrimental for LAMBADA

Figure 26: Random samples of (a) the most helpful and (b) most detrimental examples on LAMBADA
(Paperno et al., 2016) according to each model. The figure shows a 512-character slice from the training
example. "\n" denotes a newline. 37
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D.2 QUANTITATIVE SIMILARITY

D.2.1 COUNTERFACTUAL SIMILARITY
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Figure 27: The x-axis represents the amount of compute required to get the attribution scores of a given
model, compared to the large model, and the y-axis represents how well the attribution scores of a given
model size can predict the output of the largest model on CIFAR-100 (Krizhevsky, 2009) (see Section 3 for
details on the metric). The shaded area corresponds to the 95% confidence interval when bootstrapping the
average TRAK matrix computation over our models for 1000 iterations.

D.2.2 ORDER SIMILARITY

Vision setup. In the vision setup, we compute the order similarity as the rank correlation between the
attribution scores of a target example by the two models of different sizes, averaged across all target exam-
ples.
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Figure 28: Each heatmap represents the Spearman rank correlation (Spearman, 1904) between the attribu-
tion scores of every pair of models. The rank correlation is computed using (a) the CIFAR-10 attribution
scores and (b) the CIFAR-100 scores (Krizhevsky, 2009).

Language setup. In the language setup, we compute the order similarity as the rank correlation between
the attribution scores by the two models of different sizes. In this setting, the attribution scores represent
the influence of a training data point on the overall downstream performance.

38



Published as a conference paper at ICLR 2025

MPT-125M MPT-350M MPT-760M

MPT-125M

MPT-350M

MPT-760M

1 0.22 0.16

0.22 1 0.28

0.16 0.28 1

0.2

0.4

0.6

0.8

1.0
Sp

ea
rm

an
 C

or
re

la
tio

n 
(

)

(a) LAMBADA

MPT-125M MPT-350M MPT-760M

MPT-125M

MPT-350M

MPT-760M

- 0.087 0.054

0.087 - 0.089

0.054 0.089 - 0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n 

(
)

(b) SQuAD

Figure 29: The heatmap represents the Spearman rank correlation (Spearman, 1904) between the attribution
scores of every pair of models. The rank correlation is computed using LAMBADA (Paperno et al., 2016)
(left) and SQuAD (Rajpurkar et al., 2016) (right) attribution scores.
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E EXTENDED RELATED WORK

Data attribution. Data attribution has received increased interest lately. We discuss a few of these ap-
proaches in this section. For an extensive survey of prior work, we refer the reader to (Hammoudeh &
Lowd, 2022b).One of the earliest approaches proposed the use of influence functions to approximate the ef-
fect of removing data points from the training dataset on a given parameter, without re-estimating the pa-
rameter (Hampel et al., 2011). Later works leveraged influence functions to trace a model’s predictions back
to the training dataset (Koh & Liang, 2017). This work applied influence functions to the penultimate layer
of a model. Feldman & Zhang (2020) argue that computing the influence function from a model’s penul-
timate layer is not enough and propose instead estimating empirically the effect of training data points by
computing how the average model output changes when the training data point is included or excluded
from the training set. Few other works have proposed different approaches to estimating these empirical
influences such as using Shapley values (Ghorbani & Zou, 2019; Jia et al., 2019; Wang et al., 2021; Shapley,
1951), gradient-based approaches (Park et al., 2023; Pruthi et al., 2020) or representational similarity (Yeh
et al., 2018; Charpiat et al., 2019).

Recently, Ilyas et al. (2022) proposed datamodels to estimate reliably empirical influences. The authors pro-
posed training a large number of models on different subsets of the training dataset and then estimating
empirically the effect of each training data point on the average model output. While the proposed ap-
proach led to high-quality attribution scores, the cost of training many models is prohibitive beyond simple
tasks. To decrease the computational cost, Park et al. (2023) proposed TRAK as an approach to estimate
efficiently datamodels using a kernel machine (Jacot et al., 2018). Our work extends the intuition presented
in TRAK and suggests that models of smaller sizes could be used to estimate the datamodels vector even
faster.

Applications of data attribution. Data attribution has been useful in many applications such as explain-
ing a model’s predictions (Koh & Liang, 2017; Feldman, 2019), identifying subpopulations where two learn-
ing algorithms disagree (Shah et al., 2022), improving model performance (Jain et al., 2022; 2023; Marion
et al., 2023; Engstrom et al., 2024), cleaning a dataset from potential backdoors (Khaddaj et al., 2022; Ham-
moudeh & Lowd, 2022a; Razeghi et al., 2023). Closest to our approach is the work presented in (Engstrom
et al., 2024) where the authors use a small language model to select a training subset in order to improve
the performance of larger models trained on this subset.

Similarities between models trained on the same dataset. While models of different architectures exhibit
different downstream performances, a recent line of work has argued that the data has a strong role in
shaping the behavior of the trained models. Li et al. (2015) measured the extent to which multiple networks
learn the same set of features, while Hermann & Lampinen (2020) studied how different models learn easy
and hard features from a given dataset. Nguyen et al. (2021) on the other hand focused on how increasing
the width of a network affects the learned representations. More recently, Vyas et al. (2023) investigated
how increasing the width changes the properties of a model and its predictions at the example level.

Relation between model behavior and size. Recent work has argued that as the size of a network in-
creases, its behavior becomes predictable (Yang & Hu, 2020; Yang et al., 2023). For this phenomenon to
happen, Yang & Hu (2020) propose a parameterization of neural networks, called µP, that ensures the
infinite-width model can learn features. µP has been very useful in practical setups, especially in ensuring
good hyperparameters found using small models can be transferred to large models (Yang et al., 2022).
More recently, Vyas et al. (2023) argued that models of different sizes agree in their loss curve and their
point-wise predictions. Another work has argued that “emergent” abilities of large models are a mirage
(Schaeffer et al., 2023) and that the reason behind the emergence can be attributed to using hard metrics to
measure emergence (such as accuracy) rather than softer metrics (loss).
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