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Abstract

Zero-shot reinforcement learning (RL) promises to provide agents that can per-
form any task in an environment after an offline, reward-free pre-training phase.
Methods leveraging successor measures and successor features have shown strong
performance in this setting, but require access to large heterogenous datasets
for pre-training which cannot be expected for most real problems. Here, we
explore how the performance of zero-shot RL methods degrades when trained
on small homogeneous datasets, and propose fixes inspired by conservatism, a
well-established feature of performant single-task offline RL algorithms. We
evaluate our proposals across various datasets, domains and tasks, and show
that conservative zero-shot RL algorithms outperform their non-conservative
counterparts on low quality datasets, and perform no worse on high quality
datasets. Somewhat surprisingly, our proposals also outperform baselines that
get to see the task during training. Our code is available via the project page
https://enjeeneer.io/projects/zero-shot-rl/.

1 Introduction

Today’s large pre-trained models generalise impressively to unseen vision [70] and language [9] tasks,
but not to sequential decision-making problems. Zero-shot reinforcement learning (RL) attempts to
correct this, asking, informally: can we pre-train an agent on a dataset of reward-free transitions such
that it can perform any downstream task in an environment? Recently, methods leveraging successor
features [5, 7] and successor measures [6, 82] have emerged as viable zero-shot RL candidates,
returning near-optimal policies for many unseen tasks [83].

These works have assumed access to a large heterogeneous dataset of transitions for pre-training. In
theory, such datasets could be curated by highly-exploratory agents during an upfront data collection
phase [32, 10, 18, 62, 63, 35, 48]. However, in practice, deploying such agents in real systems can be
time-consuming, costly or dangerous. To avoid these downsides, it would be convenient to skip the
data collection phase and pre-train on historical datasets. Whilst these are common in the real world,
they are usually produced by controllers that are not optimising for data heterogeneity [16], making
them smaller and less diverse than current zero-shot RL methods expect.

Can we still perform zero-shot RL using these datasets? This is the primary question this paper seeks
to answer, and one we address in four parts. First, we investigate the performance of existing methods
when trained on such datasets, finding their performance suffers because of out-of-distribution
state-action value overestimation, a well-observed phenomenon in single-task offline RL. Second,
we develop ideas from conservatism in single-task offline RL for use in the zero-shot RL setting,
introducing a straightforward regularizer of OOD values or measures that can be used by any zero-shot
RL algorithm (Figure 1). Third, we conduct experiments across varied domains, tasks and datasets,
showing our conservative zero-shot RL proposals outperform their non-conservative counterparts,
and surpass the performance of methods that get to see the task in advance. Finally, we establish
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Figure 1: Conservative zero-shot RL.. (Left) Zero-shot RL methods must train on a dataset collected by a
behaviour policy optimising against task zcollect, yet generalise to new tasks zeval. Both tasks have associated
optimal value functions Q∗

zcollect and Q∗
zeval for a given marginal state. (Middle) Existing methods, in this case

forward-backward representations (FB), overestimate the value of actions not in the dataset for all tasks. (Right)
Value-conservative forward-backward representations (VC-FB) suppress the value of actions not in the dataset
for all tasks. Black dots (•) represent state-action samples present in the dataset.

that our proposals do not hinder performance on large heterogeneous datasets, meaning adopting
them presents little downside. We believe the ideas explored in this paper represent a step toward
real-world deployment of zero-shot RL methods.

2 Preliminaries

Markov decision processes A reward-free Markov Decision Process (MDP) is defined byM =
{S,A, T , γ} where S is the state space, A is the action space, T : S ×A → ∆(S) is the transition
function, where ∆(X) denotes the set of possible distributions over X , and γ ∈ [0, 1) is the discount
factor [77]. Given (s0, a0) ∈ S × A and a policy π : S → ∆(A), we denote Pr(·|s0, a0, π) and
E[·|s0, a0, π] the probabilities and expectations under state-action sequences (st, at)t≥0 starting at
(s0, a0) and following policy π, with st ∼ T (·|st−1, at−1) and at ∼ π(·|st). Given a reward function
r : S → R≥0, the Q function of π for r is Qπ

r :=
∑

t≥0 γ
tE[r(st+1)|s0, a0, π].

Zero-shot RL For pre-training, the agent has access to a static offline dataset of reward-free
transitions D = {(si, ai, si+1)}|D|

i=1 generated by an unknown behaviour policy, and cannot interact
with the environment. At test time, a reward function reval specifying a task is revealed and the agent
must return a policy for the task without any further planning or learning. Ideally, the policy should
maximise the expected discounted return on the task E[

∑
t≥0 γ

treval(st+1)|s0, a0, π]. The reward
function is specified either via a small dataset of reward-labelled states Dlabelled = {(si, reval(si))}ki=1
with k ≤ 10, 000 or as an explicit function s 7→ reval(s) (like 1 at a goal state and 0 elsewhere).
Intuitively, the zero-shot RL problem asks: is it possible to train an agent using a pre-collected dataset
of transitions from an environment such that, at test time, it can return the optimal policy for any task
in that environment without any further planning or learning?

State-of-the-art zero-shot RL methods leverage either successor measures [6] or successor features
[5], with the former instantiated by forward backward representations [82] and the latter by universal
successor features [7]. The remainder of this section introduces these ideas.

Successor measures The successor measure Mπ(s0, a0, ·) over S is the cumulative discounted
time spent in each future state st+1 after starting in state s0, taking action a0, and following policy π
thereafter:

Mπ(s0, a0, X) :=
∑

t≥0γ
t Pr(st+1 ∈ X|s0, a0, π) ∀ X ⊂ S. (1)

The Q function of policy π for task r is the integral of r with respect to Mπ:

Qπ
r (s0, a0) :=

∫
s+∈S r(s+)M

π(s0, a0, s+). (2)

The forward-backward framework FB representations [82] approximate the successor measures of
near-optimal policies for any task. Let ρ be an arbitrary state distribution, and Rd be a representation
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space. FB representations are composed of a forward model F : S × A × Rd → Rd, a backward
model B : S → Rd, and set of polices (πz)z∈Rd . They are trained such that

Mπz (s0, a0, X) ≈
∫
X

F (s0, a0, z)
⊤B(s)ρ(ds) ∀ s0 ∈ S, a0 ∈ A, X ⊂ S, z ∈ Rd, (3)

and
πz(s) ≈ argmax

a
F (s, a, z)⊤z ∀ (s, a) ∈ S ×A, z ∈ Rd. (4)

Intuitively, Equation 3 says that the approximated successor measure under πz from (s0, a0) to s is
high if their respective forward and backward embeddings are similar i.e. have large dot product. By
comparing Equation 2 and Equation 3, we see that an FB representation can be used to approximate
the Q function of πz with respect to any reward function r as:

Qπz
r (s0, a0) ≈

∫
s∈S r(s)F (s0, a0, z)

⊤B(s)ρ(ds)

= F (s0, a0, z)
⊤Es∼ρ[r(s)B(s) ].

(5)

Training of F and B is done with TD learning [71, 78] using transition data sampled from D:

LFB = E(st,at,st+1,s+)∼D,z∼Z [(F (st, at, z)
⊤B(s+)− γF̄ (st+1, πz(st+1), z)

⊤B̄(s+))
2

− 2F (st, at, z)
⊤B(st+1)], (6)

where s+ is sampled independently of (st, at, st+1), F̄ and B̄ are lagging target networks, and Z is
a task sampling distribution. The policy is trained in an actor-critic formulation [47]. See [82] for a
full derivation of the TD update, and our Appendix B.1 for practical implementation details including
the specific choice of task sampling distribution Z .

By relating Equations 4 and 5, we find z = Es∼ρ[r(s)B(s)] for some reward function r. At test
time, we can use this property to perform zero-shot RL. Using Dlabelled, we estimate the task as
zeval ≈ Es∼Dlabelled [reval(s)B(s)] and pass it as an argument to πz . If zeval lies within the task sampling
distribution Z used during pre-training, then πz(s) ≈ argmaxaQ

πz
reval

(s, a), and hence this policy is
approximately optimal for reval.

(Universal) successor features Successor features assume access to a basic feature map φ : S 7→ Rd

that embeds states into a representation space, and are defined as the expected discounted sum of future
features ψπ(s0, a0) := E[

∑
t≥0 γ

tφ(st+1)|s0, a0, π] [5]. They are made universal by conditioning
their predictions on a family of policies πz

ψ(s0, a0, z) = E

∑
t≥0

γtφ(st+1)|s0, a0, πz

 ∀ s0 ∈ S, a0 ∈ A, z ∈ Rd, (7)

with
πz(s) ≈ argmax

a
ψ(s, a, z)⊤z, ∀ (s0, a0) ∈ S ×A, z ∈ Rd. (8)

Like FB, USFs are trained using TD learning on
LSF = E(st,at,st+1)∼D,z∼Z [(ψ(st, at, z)

⊤z − φ(st+1)
⊤z − γψ̄(st+1, πz(st+1), z)

⊤z)2], (9)

where ψ̄ is a lagging target network, and Z is the same z sampling distribution used for FB. We
refer the reader to [7] for a derivation of the TD update and full learning procedure. Test time policy
inference is performed similarly to FB. Using Dlabelled, the task is inferred by performing a linear
regression of reval onto the features: zeval := argminz Es∼Dlabelled [(reval(s) − φ(s)⊤z)2] before it is
passed as an argument to the policy.

3 Zero-Shot RL from Low Quality Data

In this section we introduce methods for improving the performance of zero-shot RL methods on low
quality datasets. In Section 3.1, we explore the failure mode of existing methods on such datasets.
Then, in Section 3.2, we propose straightforward amendments to these methods that address the failure
mode. Finally, in Section 3.3, we illustrate the usefulness of our proposals with a controlled example.
We develop our methods within the FB framework because of its superior empirical performance
[83], but our proposals are also compatible with USF. We push their derivation to Appendix D for
brevity.
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Figure 2: FB value overestimation with respect to dataset size n and quality. Log Q values and IQM of
rollout performance on all Maze tasks for datasets RND and RANDOM. Q values predicted during training
increase as both the size and “quality" of the dataset decrease. This contradicts the low return of all resultant
policies (note: a return of 1000 is the maximum achievable for this task). Informally, we say the RND dataset is
“high" quality, and the RANDOM dataset is “low" quality–see Appendix A.2 for more details.

3.1 Failure Mode of Existing Methods

To investigate the failure mode of existing methods we examine the FB loss (Equation 6) more
closely. The TD target includes an action produced by the current policy at+1 ∼ πz(st+1). Equation
4 shows this is the policy’s current best estimate of the Q-maximising action in state s for task z.
For finite datasets, this maximisation does not constrain the policy to actions observed in the dataset,
and so it can become biased towards out-of-distribution (OOD) actions thought to be of high value.
In such instances F and B are updated towards targets for which the dataset provides no support.
This distribution shift is a well-observed phenomenon in single-task offline RL [42, 46, 44], and is
exacerbated by small, low-diversity datasets as we explore in Figure 2.

3.2 Mitigating the Distribution Shift

In the single-task setting, the distribution shift is addressed by applying constraints to either the
policy, value function or model (see Section 6 for a summary of past work). Here we re-purpose
single-task value function and model regularisation for use in the zero-shot RL setting. To avoid
further complicating zero-shot RL methods, we only consider regularisation techniques that do not
introduce new parametric functions. We discuss the implications of this decision in Section 5.

Conservative Q-learning (CQL) [42, 44] regularises the Q function by querying OOD state-action
pairs and suppressing their value. This is achieved by adding new term to the usual Q loss function

LCQL = α · Es∼D,a∼µ(a|s)[Q(s, a)]− E(s,a)∼D[Q(s, a)]−H(µ) + LQ, (10)

where α is a scaling parameter, µ(a|s) is a policy distribution selected to find the maximum value
of the current Q function iterate, H(µ) is the entropy of µ used for regularisation, and LQ is the
normal TD loss on Q. Equation 10 has the dual effect of minimising the peaks in Q under µ whilst
maximising Q for state-action pairs in the dataset.

We can replicate a similar form of regularisation in the FB framework, substituting F (s, a, z)⊤z for
Q in Equation 10 and adding the normal FB loss (Equation 6)

LVC-FB = α · (Es∼D,a∼µ(a|s),z∼Z [F (s, a, z)
⊤z]−E(s,a)∼D,z∼Z [F (s, a, z)

⊤z]−H(µ)) + LFB.
(11)

The key difference between Equations 10 and 11 is that the former suppresses the value of OOD
actions for one task, whereas the latter does so for all task vectors drawn from Z . We call models
learnt with this loss value-conservative forward-backward representations (VC-FB).

Because FB derives Q functions from successor measures (Equation 5), and because (by assumption)
rewards are non-negative, suppressing the predicted measures for OOD actions provides an alternative
route to suppressing theirQ values. As we did with VC-FB, we can substitute FB’s successor measure
approximation F (s, a, z)⊤B(s+) into Equation 10, which yields:
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Figure 3: Ignoring out-of-distribution actions. The agents are tasked with learning separate policies for
reaching ⊛ and ⊛. (a) RND dataset with all “left" actions removed; quivers represent the mean action direction
in each state bin. (b) Best FB rollout after 1 million learning steps. (c) Best VC-FB performance after 1 million
learning steps. FB overestimates the value of OOD actions and cannot complete either task; VC-FB synthesises
the requisite information from the dataset and completes both tasks.

LMC-FB = α · (Es∼D,a∼µ(a|s),z∼Z,s+∼D[F (s, a, z)
⊤B(s+)]

−E(s,a)∼D,z∼Z,s+∼D[F (s, a, z)
⊤B(s+)]−H(µ)) + LFB. (12)

Equation 12 has the effect of suppressing the expected visitation count to goal state s+ when taking an
OOD action for all task vectors drawn from Z , which says, informally, if we don’t know where OOD
actions take us in the MDP, we assume they have low probability of taking us to any future states
for all tasks. This is analogous to works that regularise model predictions in the single-task offline
RL setting [37, 96, 69]. As such, we call this variant a measure-conservative forward-backward
representation (MC-FB). Since it is not obvious a priori whether the VC-FB or MC-FB form of
conservatism would be more effective in practice, we evaluate both in Section 4.

Implementing these proposals requires two new model components: 1) a conservative penalty scaling
factor α and 2) a way of obtaining policy distribution µ(a|s) that maximises the current value or
measure iterate. For 1), we observe fixed values of α leading to fragile performance, so dynamically
tune it at each learning–see Appendix B.1.4. For 2), the choice of maximum entropy regularisation
following [44]’s CQL(H) allows µ to be approximated conveniently with a log-sum exponential
across Q values derived from the current policy distribution and a uniform distribution. That this is
true is not obvious, so we refer the reader to the detail and derivations in Section 3.2, Appendix A,
and Appendix E of [44], as well as our adjustments to [44]’s theory in Appendix B.1.3. Code snippets
demonstrating the required changes to a vanilla FB implementation are provided in Appendix G.
We emphasise these additions represent only a small increase in the number of lines required to
implement existing methods.

3.3 A Didactic Example

To understand situations in which a conservative zero-shot RL methods may be useful, we introduce
a modified version of Maze from the ExORL benchmark [95]. Episodes begin with a point-mass
initialised in the upper left of the maze (⊚), and the agent is tasked with selecting x and y tilt
directions such that the mass is moved towards one of two goal locations (⊛ and ⊛). The action
space is two-dimensional and bounded in [−1, 1]. We take the RND dataset and remove all “left"
actions such that ax ∈ [0, 1] and ay ∈ [−1, 1], creating a dataset that has the necessary information
for solving the tasks, but is inexhaustive (Figure 3 (a)). We train FB and VC-FB on this dataset and
plot the highest-reward trajectories–Figure 3 (b) and (c). FB overestimates the value of OOD actions
and cannot complete either task. Conversely, VC-FB synthesises the requisite information from the
dataset and completes both tasks.

4 Experiments

In this section we perform an empirical study to evaluate our proposals. We seek answers to four
questions: (Q1) Can our proposals from Section 3 improve FB performance on small and/or low-
quality exploratory datasets? (Q2) How does the performance of VC-FB and MC-FB vary with
respect to task type and dataset diversity? (Q3) Do we sacrifice performance on full datasets for
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Figure 4: Aggregate zero-shot performance on ExORL. (Left) IQM of task scores across datasets and domains,
normalised against the performance of CQL, our baseline. (Right) Performance profiles showing the distribution
of scores across all tasks and domains. Both conservative FB variants stochastically dominate vanilla FB–see [1]
for performance profile exposition. The black dashed line represents the IQM of CQL performance across all
datasets, domains, tasks and seeds.
performance on small and/or low-quality datasets? (Q4) If our pre-training dataset only covers
behaviour related to one downstream task (i.e. the dataset distribution is narrow and not exploratory),
can our proposals from Section 3 improve FB performance on that task?

4.1 Setup

Domains We respond to Q1-Q3 using the ExORL benchmark [95]. ExORL provides datasets
collected by unsupervised exploratory algorithms on the DeepMind Control Suite [80]. We select
three of the same domains as [83]: Walker, Quadruped and Maze, but substitute Jaco for Cheetah.
This provides two locomotion domains and two goal-reaching domains. Within each domain, we
evaluate on all tasks provided by the DeepMind Control Suite for a total of 17 tasks across four
domains. Full details are provided in Appendix A.1. We respond to Q4 using the D4RL benchmark
[21]. We select the two MuJoCo [81] environments from the Open AI gym [8] that closest resemble
those from ExORL: Walker2D and HalfCheetah.

Datasets For Q1-Q3 we pre-train on three datasets of varying quality from ExORL. There is no
unambiguous metric for quantifying dataset quality, so we use the reported performance of offline
TD3 on Maze for each dataset as a proxy1. We choose datasets collected via Random Network
Distillation (RND) [10], Diversity is All You Need (DIAYN) [18], and RANDOM policies, where
agents trained on RND are the most performant, on DIAYN are median performers, and on RANDOM
are the least performant. As well as selecting for quality, we also select for size by uniformly sub-
sampling 100,000 transitions from each dataset. For Q4 we choose the “medium", “medium-replay",
and “medium-expert" datasets from D4RL, each providing different fractions of random, medium
and expert task-directed trajectories. More details on the datasets are provided in Appendix A.2.

4.2 Baselines

We compare our proposals to baselines from three categories: 1) zero-shot RL methods, 2) goal-
conditioned RL (GCRL) methods, and 3) single-task offline RL methods. From category 1), we use
the state-of-the-art successor measure based method, FB, and the state-of-the-art successor feature
based method, SF with features from Laplacian eigenfunctions (SF-LAP) [83]. From category 2), we
use goal-conditioned IQL (GC-IQL) [60], a state-of-the-art GCRL method that, like our proposals,
regularises the value function at OOD state-actions. We condition GC-IQL on the goal state on Maze
and Jaco, and on the state in Dlabelled with highest reward on Walker and Quadruped in lieu of a

1We note that [75] propose metrics that describe dataset quality as a function of the behaviour policy’s
exploration and exploitation w.r.t. one downstream task. However, since we are interested in generalising to any
downstream task we cannot use these proposals directly, nor can we easily re-purpose them. We acknowledge
that our proxy is imperfect, and that more work is required to better understand what dataset quality means in
the context of zero-shot RL.
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Figure 5: Performance by dataset/domain on ExORL. IQM scores across tasks/seeds with 95% conf. intervals.

well-defined goal state. From category 3), we use CQL and offline TD3 trained on the same datasets
relabelled with task rewards. CQL approximates what an algorithm with similar mechanistics can
achieve when optimising for one task in a domain rather than all tasks. Offline TD3 exhibits the
best aggregate single-task performance on the ExORL benchmark, so it should be indicative of the
maximum performance we could expect to extract from a dataset. Full implementation details for all
algorithms are provided in Appendix B. The full evaluation protocol is described in Appendix A.5.
Appendix A.6 provides a breakdown of the computational resources used in this work.

4.3 Results

Q1 We report the aggregate performance of our baselines and proposals on ExORL in Fig-
ure 4. Both MC-FB and VC-FB outperform the zero-shot RL and GCRL baselines, achiev-
ing 150% and 137% of FB’s IQM performance respectively. The performance gap between
FB and SF-LAP is consistent with the results in [83]. MC-FB and VC-FB outperform our
single-task baseline in expectation, reaching 111% and 120% of CQL’s IQM performance

Figure 6: Performance by dataset size. Aggregate
IQM scores across all domains and tasks as RND size
is varied. The performance delta between vanilla FB
and the conservative variants increases as dataset size
decreases.

respectively despite not having access to task-
specific reward labels and needing to fit policies
for all tasks. This is a surprising result, and to
the best of our knowledge, the first time a multi-
task offline agent has been shown to outperform
a single-task analogue. CQL outperforms offline
TD3 in aggregate, so we drop offline TD3 from
the core analysis, but report its full results in
Appendix C alongside all other methods. We
note FB achieves 80% of single-task offline TD3,
which roughly aligns with the 85% performance
on the full datasets reported by [83].

Q2 We decompose the methods’ performance
with respect to domain and dataset diversity in
Figure 5. The largest gap in performance be-
tween the conservative FB variants and FB is on
RND. VC-FB and MC-FB reach 2.5× and 1.8×
of FB performance respectively, and outperform
CQL on three of the four domains. On DIAYN,

the conservative variants outperform all methods and reach 1.3× CQL’s score. On the RANDOM
dataset, all methods perform similarly poorly, except for CQL on Jaco, which outperforms all meth-
ods. However, in general, these results suggest the RANDOM dataset is not informative enough to
extract valuable policies–discussed further in response to Q3. There appears to be little correlation
between the type of domain (Appendix A.1) and the score achieved by any method. GC-IQL performs
particularly well on the goal-reaching domains as expected, but worse than all zero-shot methods
on the locomotion tasks, irrespective of whether they are conservative or not. This is presumably
because the goal-state used to condition the policy (i.e. the state with highest reward in Dlabelled) is a
poor proxy for the true, dense reward function.
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Table 1: Aggregate performance on full ExORL datasets. IQM scores aggregated over domains and tasks for
all datasets, averaged across three seeds. Both VC-FB and MC-FB maintain the performance of FB; the largest
relative performance improvement is on RANDOM.

Dataset Domain Task FB VC-FB MC-FB
RND all all 389 390 396
DIAYN all all 269 280 283
RANDOM all all 111 131 133

ALL all all 256 267 271

Q3 We report the aggregated performance of all FB methods across domains when trained
on the full datasets in Table 1 (a full breakdown of results in provided in Appendix C). Both
conservative FB variants slightly exceed the performance of vanilla FB in expectation. The
largest relative performance improvement is on the RANDOM dataset–MC-FB performance is
20% higher than FB, compared to 5% higher on DIAYN and 2% higher on RND. This corrob-
orates the hypothesis that RANDOM-100K was not informative enough to extract valuable policies.

Figure 7: Aggregate zero-shot performance on D4RL.
Aggregate IQM scores across all domains and datasets,
normalised against the performance of CQL.

Table 1 and Figure 4 suggest the performance
gap between the conservative FB variants and
vanilla FB changes as dataset size is varied. We
further explore this effect in Figure 6 where we
scale the RND dataset size from 105 through 107

and plot aggregate IQM performance of FB, VC-
FB and MC-FB across all domains. We find that
the performance gap decreases as dataset size
increases. This result is to be expected: a larger
dataset size for a fixed exploration algorithm
means at+1 ∼ πz(st+1) in the FB TD update
(Equation 6) is more likely to be in the dataset,
the policy is less likely to become biased toward
OOD actions, and conservatism is less needed.

Q4 We report the aggregate performance of all
zero-shot RL methods and CQL on our D4RL
domains in Figure 7. FB fails all domain-dataset
tasks, and reaches only 10% of CQL’s aggregate
performance. MC-FB and VC-FB improve on FB’s considerably (by 5.6 × and 6.8 × respectively)
but under-perform CQL. SF-LAP outperforms FB, but under-performs VC-FB, MC-FB and CQL.

5 Discussion and Limitations

Performance discrepancy between conservative variants Why does VC-FB outperform MC-FB
on both ExORL and D4RL? To understand, we inspect the regularising effect of both models more
closely. VC-FB regularises OOD actions on F (s, a, z)⊤z, with s ∼ D, and z ∼ Z , whilst MC-FB
regularises OOD actions on F (s, a, z)⊤B(s+), with (s, s+) ∼ D and z ∼ Z . Note the trailing z in
VC-FB is replaced with B(s+) in MC-FB which ties its updates to D further. We hypothesised that
as |D| reduces, B(s+) provides poorer task coverage than z ∼ Z , hence the comparable performance
on full datasets and divergent performance on 100k datasets.

To test this, we evaluate a third conservative variant called directed (D)VC-FB which replaces all
z ∼ Z in VC-FB with B(s+) such that OOD actions are regularised on F (s, a,B(s+))

⊤B(s+) with
(s, s+) ∼ D. This ties conservative updates entirely to D, and according to our above hypothesis,
DVC-FB should perform worse than VC-FB and MC-FB on the 100k ExORL datasets. See Appendix
B.1.6 for implementation details. We evaluate this variant on all 100k ExORL datasets, domains and
tasks and compare with FB, VC-FB and MC-FB in Table 2. See Appendix C for a full breakdown.

We find the aggregate relative performance of each method is as expected i.e. DVC-FB < MC-FB
< VC-FB. As a consequence we conclude that VC-FB should be preferred for small datasets with
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Table 2: Aggregated performance of conservative variants employing differing z sampling procedures on
ExORL. DVC-FB derives all zs from the backward model; VC-FB derives all zs from Z; and MC-FB combines
both. Performance correlates with the degree to which z ∼ Z .

Dataset Domain Task FB DVC-FB MC-FB VC-FB
ALL (100k) all all 99 108 136 148

no prior knowledge of the dataset or test tasks. Of course, for a specific domain-dataset pair, B(s+)
with s+ ∼ D may happen to cover the tasks well, and MC-FB may outperform VC-FB. We suspect
this was the case for all datasets on the Jaco domain for example. Establishing whether this will be
true a priori requires either relaxing the restrictions imposed by the zero-shot RL setting, or better
understanding of the distribution of tasks in z-space and their relationship to pre-training datasets.
The latter is important future work.

Avoiding new parametric functions State-of-the-art zero-shot RL methods are complex, and we
wanted to avoid further complicating them with new parametric functions. This limited our solution-
space to CQL-style regularisation techniques, but had we relaxed this constraint, other options
become available. Methods like AWAC [58], IQL [40], and X-QL [25] all require an estimate of the
state-value function which is not immediately accessible in the FB or USF frameworks. In theory,
we could learn an action-independent USF of the form V (s, z) = E[

∑
t≥0 γ

tφ(st+1)|s0, πz] ∀ s0 ∈
S, z ∈ Rd concurrently to F and B (or ψ for USFs). If learnt with expectile regression, this function
could be used to implement IQL and X -QL style regularisation; without expectile regression it could
be used to compute the advantage weighting required for AWAC. It’s possible that implementing
these methods could improve downstream performance and reduce computational overhead at the
cost of increased training complexity. We leave this worthwhile investigation for future work. We
provide detail of negative results related to downstream finetuning of FB models in Appendix E to
help inform future research.

D4RL Performance Unlike the ExORL results, VC-FB and MC-FB do not outperform CQL on
the D4RL benchmark. We believe these narrower data distributions require a more careful selection
of the conservative penalty scaling factor α. We explore this further in Appendix F, and note this
is corroborated by findings in the original CQL paper [44]. Methods described above, like IQL,
have been shown to be more robust than CQL partly because they bypass α tuning. We expect that
exploring the integration of these methods may improve D4RL performance.

6 Related Work

Zero-shot RL Zero-shot RL methods build upon successor representations [15], universal value
function approximators [74], successor features [5] and successor measures [6]. The state-of-the-art
methods instantiate these ideas as either universal successor features (USFs) [7] or forward-backward
(FB) representations [82, 83], with recent work showing the latter can be used to perform a range
of imitation learning techniques efficiently [65]. A representation learning method is required to
learn the features for USFs, with past works using inverse curiosity modules [62], diversity methods
[49, 29], Laplacian eigenfunctions [87], or contrastive learning [13]. No works have yet explored
the issues arising when training these methods on low quality offline datasets, and only one has
investigated applying these ideas to real-world problems [34].

Goal-conditioned RL methods train policies to reach any goal state from any other state, and so
can be used to perform zero-shot RL in goal-reaching environments [60, 54, 93, 19, 85]. However,
they have no principled mechanism for conditioning policies on “dense” reward functions (as such
tasks are not solved by simply reaching a particular state), and so are not full zero-shot RL methods.
A concurrent line of work trains policies using sequence models conditioned on reward-labelled
histories [12, 33, 45, 68, 99, 11, 24, 76, 91, 90], but, unlike zero-shot RL methods, these works do
not have a robust mechanism for generalising to different reward functions as test-time.

Offline RL Offline RL algorithms require regularisation of policies, value functions, models, or a
combination to manage the offline-to-online distribution shift [46]. Past works regularise policies with
explicit constraints [88, 20, 23, 22, 27, 64, 43, 86, 94], via important sampling [66, 79, 50, 57, 26],
by leveraging uncertainty in predictions [89, 98, 4, 36], or by minimising OOD action queries
[84, 14, 40], a form of imitation learning [72, 73]. Other works constrain value function approximation
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so OOD action values are not overestimated [44, 42, 52, 53, 51, 92]. Offline model-based RL
methods use the model to identify OOD states and penalise predicted rollouts passing through them
[97, 37, 96, 2, 55, 67, 69]. All of these works have focused on regularising a finite number of policies;
in contrast we extend this line of work to the zero-shot RL setting which is concerned with learning
an infinite family of policies.

7 Conclusion

In this paper, we explored training agents to perform zero-shot reinforcement learning (RL) from
low quality data. We established that the existing methods suffer in this regime because they
overestimate the value of out-of-distribution state-action values, a well-observed pheneomena in
single-task offline RL. As a resolution, we proposed a family of conservative zero-shot RL algorithms
that regularise value functions or dynamics predictions on out-of-distribution state-action pairs. In
experiments across various domains, tasks and datasets, we showed our proposals outperform their
non-conservative counterparts in aggregate and sometimes surpass our task-specific baseline despite
lacking access to reward labels a priori. In addition to improving performance when trained on
sub-optimal datasets, we showed that performance on large, diverse datasets does not suffer as a
consequence of our design decisions. Our proposals represent a step towards the use of zero-shot RL
methods in the real world.

Acknowledgements

We thank Sergey Levine for helpful feedback on the core and finetuning experiments, and Alessandro
Abate and Yann Ollivier for reviewing earlier versions of this manuscript. We also thank the
anonymous reviewers whose suggestions significantly improved this work. Computational resources
were provided by the Cambridge Centre for Data-Driven Discovery (C2D3) and Bristol Advanced
Computing Research Centre (ACRC). This work was supported by an EPSRC DTP Studentship
(EP/T517847/1) and Emerson Electric.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304–29320, 2021.

[2] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.
arXiv preprint arXiv:2202.11566, 2022.

[5] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

[6] Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

[7] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

10



[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[10] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[11] Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar,
Tianhe Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement
learning via autoregressive q-functions. arXiv preprint arXiv:2309.10150, 2023.

[12] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[14] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

[15] Peter Dayan. Improving generalization for temporal difference learning: The successor repre-
sentation. Neural computation, 5(4):613–624, 1993.

[16] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[17] Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics:
Methodology and distribution, pages 569–593. Springer, 1992.

[18] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[19] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive
learning as goal-conditioned reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:35603–35620, 2022.

[20] Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola.
Continuous doubly constrained batch reinforcement learning. Advances in Neural Information
Processing Systems, 34:11260–11273, 2021.

[21] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[22] Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David
Meger. For sale: State-action representation learning for deep reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

[23] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[24] Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for
offline hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

[25] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent
rl without entropy. International Conference on Learning Representations, 2023.

[26] Carles Gelada and Marc G Bellemare. Off-policy deep reinforcement learning by bootstrapping
the covariate shift. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 3647–3655, 2019.

11



[27] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq:
Expected-max q-learning operator for simple yet effective offline and online rl. In International
Conference on Machine Learning, pages 3682–3691. PMLR, 2021.

[28] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870, 2018.

[29] Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

[30] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[31] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(03):90–95, 2007.

[32] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[33] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021.

[34] Scott Jeen, Alessandro Abate, and Jonathan M Cullen. Low emission building control with zero-
shot reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 14259–14267, 2023.

[35] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, pages 4870–4879, 13–18 Jul 2020.

[36] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[37] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. Advances in neural information processing systems,
33:21810–21823, 2020.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[39] Yehuda Koren. On spectral graph drawing. In International Computing and Combinatorics
Conference, pages 496–508. Springer, 2003.

[40] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on Machine
Learning, pages 5774–5783. PMLR, 2021.

[41] Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. arXiv preprint arXiv:2211.15144,
2022.

[42] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[43] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in Neural Information Processing
Systems, 32, 2019.

12



[44] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[45] Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Ser-
gio Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in neural information processing systems, 35, 2022.

[46] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[47] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In ICLR (Poster), 2016.

[48] Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736–6747. PMLR, 2021.

[49] Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736–6747. PMLR, 2021.

[50] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

[51] Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711–1724,
2022.

[52] Xiaoteng Ma, Yiqin Yang, Hao Hu, Qihan Liu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, and
Bin Liang. Offline reinforcement learning with value-based episodic memory. arXiv preprint
arXiv:2110.09796, 2021.

[53] Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional
reinforcement learning. Advances in Neural Information Processing Systems, 34:19235–19247,
2021.

[54] Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. How far i’ll go:
Offline goal-conditioned reinforcement learning via f -advantage regression. arXiv preprint
arXiv:2206.03023, 2022.

[55] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu.
Deployment-efficient reinforcement learning via model-based offline optimization. arXiv
preprint arXiv:2006.03647, 2020.

[56] Wes McKinney et al. pandas: a foundational python library for data analysis and statistics.
Python for high performance and scientific computing, 14(9):1–9, 2011.

[57] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation
of discounted stationary distribution corrections. Advances in neural information processing
systems, 32, 2019.

[58] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[59] Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn,
Aviral Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online
fine-tuning. arXiv preprint arXiv:2303.05479, 2023.

[60] Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
37, 2023.

[61] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

13



[62] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

[63] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. In International conference on machine learning, pages 5062–5071. PMLR, 2019.

[64] Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 9435–9443, 2023.

[65] Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast
imitation via behavior foundation models. In International Conference on Learning Representa-
tions, 2024.

[66] Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In ICML, pages 417–424, 2001.

[67] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement
learning from images with latent space models. In Learning for Dynamics and Control, pages
1154–1168. PMLR, 2021.

[68] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[69] Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based
offline reinforcement learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
16082–16097. Curran Associates, Inc., 2022.

[70] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[71] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210–229, 1959.

[72] Stefan Schaal. Learning from demonstration. Advances in neural information processing
systems, 9, 1996.

[73] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences,
3(6):233–242, 1999.

[74] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In International conference on machine learning, pages 1312–1320. PMLR,
2015.

[75] Kajetan Schweighofer, Andreas Radler, Marius-Constantin Dinu, Markus Hofmarcher, Vihang
Patil, Angela Bitto-Nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. A dataset perspective
on offline reinforcement learning. arXiv preprint arXiv:2111.04714, 2021.

[76] Max Siebenborn, Boris Belousov, Junning Huang, and Jan Peters. How crucial is transformer in
decision transformer? arXiv preprint arXiv:2211.14655, 2022.

[77] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

[78] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

[79] Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the
problem of off-policy temporal-difference learning. The Journal of Machine Learning Research,
17(1):2603–2631, 2016.

14



[80] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[81] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[82] Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances
in Neural Information Processing Systems, 34:13–23, 2021.

[83] Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
In The Eleventh International Conference on Learning Representations, 2023.

[84] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted
imitation learning for batched historical data. Advances in Neural Information Processing
Systems, 31, 2018.

[85] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching
reinforcement learning via quasimetric learning. In International Conference on Machine
Learning, pages 36411–36430. PMLR, 2023.

[86] Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy
optimization for offline reinforcement learning. Advances in Neural Information Processing
Systems, 35:31278–31291, 2022.

[87] Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

[88] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[89] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv
preprint arXiv:2105.08140, 2021.

[90] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In Proceedings of the
39th International Conference on Machine Learning, pages 24631–24645, 17–23 Jul 2022.

[91] Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline RL. In
Proceedings of the 40th International Conference on Machine Learning, volume 202, pages
38989–39007, 23–29 Jul 2023.

[92] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Ro-
bust offline reinforcement learning via conservative smoothing. Advances in Neural Information
Processing Systems, 35:23851–23866, 2022.

[93] Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential
for unseen goal generalization of offline goal-conditioned rl? In International Conference on
Machine Learning, pages 39543–39571. PMLR, 2023.

[94] Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A behavior
regularized implicit policy for offline reinforcement learning. arXiv preprint arXiv:2202.09673,
2022.

[95] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro
Lazaric, and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for
offline reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

[96] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. Advances in neural
information processing systems, 34:28954–28967, 2021.

15



[97] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

[98] Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic
methods for offline reinforcement learning. Advances in neural information processing systems,
34:13626–13640, 2021.

[99] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pages 27042–27059. PMLR, 2022.

16



Appendices

A Experimental Details 18

A.1 ExORL Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2 ExORL Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3 D4RL Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.4 D4RL Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.5 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.6 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B Implementation Details 20

B.1 Forward-Backward Representations . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.2 Universal Successor Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.3 GC-IQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.4 CQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.5 TD3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.6 Code References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C Extended Results 25

D Value Conservative Universal Successor Features 28

E Negative Results 29

E.1 Downstream Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F Learning Curves & Hyperparameter Sensitivity 31

G Code Snippets 37

G.1 Update Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

G.2 Value-Conservative Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

G.3 Measure-Conservative Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

G.4 α Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

H NeurIPS Paper Checklist 43

17



A Experimental Details

A.1 ExORL Domains

We consider two locomotion and two goal-directed domains from the ExORL benchmark [95]
which is built atop the DeepMind Control Suite [80]. Environments are visualised here: https:
//www.youtube.com/watch?v=rAai4QzcYbs. The domains are summarised in Table 3.

Walker. A two-legged robot required to perform locomotion starting from bent-kneed position. The
state and action spaces are 24 and 6-dimensional respectively, consisting of joint torques, velocities
and positions. ExORL provides four tasks stand, walk, run and flip. The reward function
for stand motivates straightened legs and an upright torse; walk and run are supersets of stand
including reward for small and large degrees of forward velocity; and flip motivates angular velocity
of the torso after standing. Rewards are dense.

Quadruped. A four-legged robot required to perform locomotion inside a 3D maze. The state and
action spaces are 78 and 12-dimensional respectively, consisting of joint torques, velocities and
positions. ExORL provides five tasks stand, roll, roll fast, jump and escape. The reward
function for stand motivates a minimum torse height and straightened legs; roll and roll fast
require the robot to flip from a position on its back with varying speed; jump adds a term motivating
vertical displacement to stand; and escape requires the agent to escape from a 3D maze. Rewards
are dense.

Maze. A 2D maze with four rooms where the task is to move a point-mass to one of the rooms. The
state and action spaces are 4 and 2-dimensional respectively; the state space consists of x, y positions
and velocities of the mass, the action space is the x, y tilt angle. ExORL provides four reaching
tasks top left, top right, bottom left and bottom right. The mass is always initialised
in the top left and the reward is proportional to the distance from the goal, though is sparse i.e. it only
registers once the agent is reasonably close to the goal.

Jaco. A 3D robotic arm tasked with reaching an object. The state and action spaces are 55 and
6-dimensional respectively and consist of joint torques, velocities and positions. ExORL provides
four reaching tasks top left, top right, bottom left and bottom right. The reward is
proportional to the distance from the goal object, though is sparse i.e. it only registers once the agent
is reasonably close to the goal object.

A.2 ExORL Datasets

We train on 100,000 transitions uniformly sampled from three datasets on the ExORL benchmark
collected by different unsupervised agents: RANDOM, DIAYN, and RND. The state coverage on
Maze is depicted in Figure 8. Though harder to visualise, we found that state marginals on higher-
dimensional tasks (e.g. Walker) showed a similar diversity in state coverage.

RND. An agent whose exploration is directed by the predicted error in its ensemble of dynamics
models. Informally, we say RND datasets exhibit high state diversity.

DIAYN. An agent that attempts to sequentially learn a set of skills. Informally, we say DIAYN datasets
exhibit medium state diversity.

Table 3: ExORL domain summary. Dimensionality refers to the relative size of state and action spaces. Type is
the task categorisation, either locomotion (satisfy a prescribed behaviour until the episode ends) or goal-reaching
(achieve a specific task to terminate the episode). Reward is the frequency with which non-zero rewards are
provided, where dense refers to non-zero rewards at every timestep and sparse refers to non-zero rewards only at
positions close to the goal. Green and red colours reflect the relative difficulty of these settings.

Domain Dimensionality Type Reward
Walker Low Locomotion Dense
Quadruped High Locomotion Dense
Maze Low Goal-reaching Sparse
Jaco High Goal-reaching Sparse

18

https://www.youtube.com/watch?v=rAai4QzcYbs
https://www.youtube.com/watch?v=rAai4QzcYbs


RANDOM. A agent that selects actions uniformly at random from the action space. Informally, we
say RANDOM datasets exhibit low state diversity.

Figure 8: Maze state coverage by dataset. (left) RANDOM; (middle) DIAYN; (right) RND.

A.3 D4RL Domains

We consider two MuJoCo [81] locomotion tasks from the D4RL benchmark [21], which is built atop
the v2 Open AI Gym [8]. The below environment descriptions are taken from [8].

Walker2D-v2. A two-dimensional two-legged figure that consist of seven main body parts - a single
torso at the top (with the two legs splitting after the torso), two thighs in the middle below the torso,
two legs in the bottom below the thighs, and two feet attached to the legs on which the entire body
rests. The goal is to walk in the in the forward (right) direction by applying torques on the six hinges
connecting the seven body parts.

HalfCheetah-v2. A 2-dimensional robot consisting of 9 body parts and 8 joints connecting them
(including two paws). The goal is to apply a torque on the joints to make the cheetah run forward
(right) as fast as possible, with a positive reward allocated based on the distance moved forward and a
negative reward allocated for moving backward.

A.4 D4RL Datasets

We consider three goal-directed datasets from D4RL, each providing a different proportion of expert
trajectories. The below dataset descriptions are taken from [21].

Medium. Generated by training an SAC policy, early-stopping the training, and collecting 1M
samples from this partially-trained policy.

Medium-replay. Generated by recording all samples in the replay buffer observed during training
until the policy reaches the “medium” level of performance.

Medium-expert. Generated by mixing equal amounts of expert demonstrations and suboptimal data,
either from a partially trained policy or by unrolling a uniform-at-random policy.

A.5 Evaluation Protocol

We evaluate the cumulative reward (hereafter called score) achieved by VC-FB, MC-FB and our
baselines on each task across five seeds. We report task scores as per the best practice recommenda-
tions of [1]. Concretely, we run each algorithm for 1 million learning steps, evaluating task scores at
checkpoints of 20,000 steps. At each checkpoint, we perform 10 rollouts, record the score of each,
and find the interquartile mean (IQM). We average across seeds at each checkpoint to create the
learning curves reported in Appendix F. From each learning curve, we extract task scores from the
learning step for which the all-task IQM is maximised across seeds. Results are reported with 95%
confidence intervals obtained via stratified bootstrapping [17]. Aggregation across tasks, domains
and datasets is always performed by evaluating the IQM. Full implementation details are provided in
Appendix B.1.
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A.6 Computational Resources

We train our models on NVIDIA A100 GPUs. Training a single-task offline RL method to solve
one task on one GPU takes approximately 4 hours. FB and SF solve one domain (for all tasks) on
one GPU in approximately 4 hours. Conservative FB variants solve one domain (for all tasks) on
one GPU in approximately 12 hours. As a result, our core experiments on the 100k datasets used
approximately 110 GPU days of compute.

B Implementation Details

Here we detail implementations for all methods discussed in this paper. The code required to
reproduce our experiments is available via https://github.com/enjeeneer/zero-shot-rl.

B.1 Forward-Backward Representations

B.1.1 Architecture

The forward-backward architecture described below follows the implementation by [83] exactly,
other than the batch size which we reduce from 1024 to 512. We did this to reduce the computational
expense of each run without limiting performance. The hyperparameter study in Appendix J of [83]
shows this choice is unlikely to affect FB performance. All other hyperparameters are reported in
Table 4.

Forward Representation F (s, a, z). The input to the forward representation F is always prepro-
cessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which are
feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are con-
catenated and passed through a third feedforward MLP F which outputs a d-dimensional embedding
vector. Note: the forward representation F is identical to ψ used by USF so their implementations
are identical (see Table 4).

Backward Representation B(s). The backward representation B is a feedforward MLP that takes a
state as input and outputs a d-dimensional embedding vector.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly
preprocessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which
feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are
concatenated and passed through a third feedforward MLP which outputs a a-dimensional vector,
where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise
their scale. As per [23]’s recommendations, the policy is smoothed by adding Gaussian noise σ to the
actions during training. Note the actors used by FB and USFs are identical (see Table 4).

Misc. Layer normalisation [3] and Tanh activations are used in the first layer of all MLPs to
standardise the inputs.

B.1.2 Task Sampling Distribution Z

FB representations require a method for sampling the task vector z at each learning step. [83] employ
a mix of two methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,

2. Biased sampling of z by passing states s ∼ D through the backward representation z = B(s).
This also yields vectors on the hypersphere surface due to the L2 normalisation described
above, but the distribution is non-uniform.

We sample z 50:50 from these methods at each learning step.

B.1.3 Maximum Value Approximator µ

The conservative variants of FB require access to a policy distribution µ(a|s) that maximises the
value of the current Q iterate in expectation. Recall the standard CQL loss
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Table 4: Hyperparameters for zero-shot RL methods. The additional hyperparameters for Conservative FB
representations are highlighted in blue .

Hyperparameter Value
Latent dimension d 50 (100 for maze)
F / ψ dimensions (1024, 1024)
B / φ dimensions (256, 256, 256)
Preprocessor dimensions (1024, 1024)
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 512
Optimiser Adam [38]
Learning rate 0.0001
Discount γ 0.98 (0.99 for maze)
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 10,000
z mixing ratio 0.5
Conservative budget τ 50 (45 for D4RL)
OOD action samples per policy N 3

LCQL = α ·
(
Es∼D,a∼µ(a|s)[Q(s, a)]− E(s,a)∼D[Q(s, a)]−R(µ)

)
+ LQ, (13)

where α is a scaling parameter, µ(a|s) the policy distribution we seek, R regularises µ and LQ
represents the normal TD loss onQ. [44]’s most performant CQL variant (CQL(H)) utilises maximum
entropy regularisation on µ i.e. R = H(µ). They show that obtaining µ can be cast as a closed-form
optimisation problem of the form:

max
µ

Ex∼µ(x)[f(x)] +H(µ) s.t.
∑
x

µ(x) = 1, µ(x) ≥ 0 ∀x, (14)

and has optimal solution µ∗(x) = 1
Z exp(f(x)), where Z is a normalising factor. Plugging Equation

14 into Equation 13 we obtain:

LCQL = α ·

(
Es∼D[log

∑
a

exp(Q(s, a))]− E(s,a)∼D[Q(s, a)]

)
+ LQ. (15)

In discrete action spaces the logsumexp can be computed exactly; in continuous action spaces [44]
approximate it via importance sampling using actions sampled uniformly at random, actions from the
current policy conditioned on st ∼ D, and from the current policy conditioned on st+1 ∼ D2:

2Conditioning on next states st+1 ∼ D is not mentioned in the paper, but is present in their official
implementation.
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log
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a

expQ(st, at) = log(
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3

∑
a
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1

3

∑
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a
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= log(
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]
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]
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π(at+1|st+1)

]
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= log(
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[
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]
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[
exp(Q(st, at))
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]
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N∑
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[
exp(Q(st, at))
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]
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(16)

with N a hyperparameter defining the number of actions to sample across the action-space. We can
substitute F (s, a, z)⊤z for Q(s, a) in the final expression of Equation 17 to obtain the equivalent for
VC-FB:

log
∑
a

expF (st, ai, z)
⊤z = log(

1

3N

N∑
ai∼Unif(A)

[
exp(F (st, ai, z)

⊤z)

Unif(A)

]
+

1

6N

2N∑
ai∼π(at|st)

[
exp(F (st, ai, z

⊤z)

π(ai|st)

]
1

3N

N∑
ai∼π(at+1|st+1)

[
exp(F (st, ai, z)

⊤z)

π(ai|st+1)

]
).

(17)

In Appendix F, Figure 16 we show how the performance of VC-FB varies with the number of
action samples. In general, performance improves with the number of action samples, but we limit
N = 3 to limit computational burden. The formulation for MC-FB is identical other than each value
F (s, a, z)T z being replaced with measures F (s, a, z)TB(s+).

B.1.4 Dynamically Tuning α

A critical hyperparameter is α which weights the conservative penalty with respect to other losses
during each update. We initially trialled constant values of α, but found performance to be fragile to
this selection, and lacking robustness across environments. Instead, we follow [44] once again, and
instantiate their algorithm for dynamically tuning α, which they call Lagrangian dual gradient-descent
on α. We introduce a conservative budget parameterised by τ , and set α with respect to this budget:

min
FB

max
α≥0

α ·
(
Es∼D,a∼µ(a|s)z∼Z [F (s, a, z)

⊤z]− E(s,a)∼D,z∼Z [F (s, a, z)
⊤z]− τ

)
+ LFB. (18)

Intuitively, this implies that if the scale of overestimation ≤ τ then α is set close to 0, and the
conservative penalty does not affect the updates. If the scale of overestimation ≥ τ then α is
set proportionally to this gap, and thus the conservative penalty is proportional to the degree of
overestimation above τ . As above, for the MC-FB variant values F (s, a, z)⊤z are replaced with
measures F (s, a, z)⊤B(s+).

B.1.5 Algorithm

We summarise the end-to-end implementation of VC-FB as pseudo-code in Algorithm 1. MC-FB
representations are trained identically other than at line 10 where the conservative penalty is computed
for M instead of Q, and in line 12 where Ms are lower bounded via Equation 12.
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Algorithm 1 Pre-training value-conservative forward-backward representations

Require: D: dataset of trajectories
FθF , BθB , π: randomly initialised networks
N , Z , ν, b: learning steps, z-sampling distribution, polyak momentum, batch size

1: for learning step n = 1...N do
2: {(si, ai, si+1)} ∼ Di∈|b| ◁ Sample mini-batch of transitions
3: {zi}i∈|b| ∼ Z ◁ Sample zs (Appendix B.1.2)
4:
5: // FB Update
6: {ai+1} ∼ π(si+1, zi) ◁ Sample batch of actions at next states from policy
7: Update FB given {(si, ai, si+1, ai+1, zi)} ◁ Equation 6
8:
9: // Conservative Update

10: Qmax(si, ai) ≈ log
∑

a expF (si, ai, zi)
⊤zi ◁ Compute conservative penalty (Equation 17)

11: Compute α given Qmax via Lagrangian dual gradient-descent ◁ Equation 18
12: Lower bound Q ◁ Equation 11
13:
14: // Actor Update
15: {ai} ∼ π(si, zi) ◁ Sample actions from policy
16: Update actor to maximise E[F (si, ai, zi)⊤zi] ◁ Standard actor-critic formulation

17:
18: // Update target networks via polyak averaging
19: θ−F ← νθ−F +(1− ν)θF ◁ Forward target network
20: θ−B ← νθ−B + (1− ν)θB ◁ Backward target network
21: end for

B.1.6 Directed Value-Conservative Forward Backward Representations

VC-FB applies conservative updates using task vectors z sampled from Z (which in practice is a
uniform distribution over the

√
d-hypersphere). This will include many vectors corresponding to tasks

that are never evaluated in practice in downstream applications. Intuitively, it may seem reasonable
to direct conservative updates to focus on tasks that are likely to be encountered downstream. One
simple way of doing this would be consider the set of all goal-reaching tasks for goal states in the
training distribution, which corresponds to sampling z = B(sg) for some sg ∼ D. This leads to the
following conservative loss function:

LDVC-FB = α ·
(
Es∼D,a∼µ(a|s),sg∼D[F (s, a,B(sg))

⊤B(sg)]

− E(s,a)∼D,sg∼D[F (s, a,B(sg))
⊤B(sg)]−H(µ)

)
+ LFB. (19)

We call models learnt via this loss directed-VC-FB (DVC-FB). While we were initially open to the
possibility that DVC-FB updates would be better targeted than those of VC-FB, and would lead to
improved downstream task performance, this turns out not to be the case in our experimental settings
as discussed in Section 5. We report scores obtained by the DVC-FB method across all 100k datasets,
domains and tasks in Appendix C.

B.2 Universal Successor Features

We directly reimplement USFs, with basic features φ(s) provided by Laplacian eigenfunctions [87],
from [83].

B.2.1 Architecture

USF ψ(s, a, z). The input to the USF ψ is always preprocessed. State-action pairs (s, a) and
state-task pairs (s, z) have their own preprocessors which are feedforward MLPs that embed their
inputs into a 512-dimensional space. These embeddings are concatenated and passed through a third
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feedforward MLP ψ which outputs a d-dimensional embedding vector. Note this is identical to the
implementation of F as described in Appendix B.1. All other hyperparameters are reported in Table
4.

Feature Embedding φ(s). The feature map φ(s) is a feedforward MLP that takes a state as input
and outputs a d-dimensional embedding vector. The loss function for learning the feature embedding
is provided in Appendix B.2.2.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly
preprocessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which
are feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are
concatenated and passed through a third feedforward MLP which outputs a a-dimensional vector,
where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise
their scale. As per [23]’s recommendations, the policy is smoothed by adding Gaussian noise σ to
the actions during training. Note this is identical to the implementation of π(s, z) as described in
Appendix B.1.

Misc. Layer normalisation [3] and Tanh activations are used in the first layer of all MLPs to
standardise the inputs. z sampling distribution Z is identical to FB’s (Appendix B.1.2).

B.2.2 Laplacian Eigenfunctions Loss

Laplacian eigenfunction features φ(s) are learned as per [87]. They consider the symmetrized MDP
graph Laplacian created by some policy π, defined as L = Id − 1

2 (Pπdiagρ−1 + diagρ−1(Pπ)
T ).

They learn the eigenfunctions of L with the following:

min
φ

E(st,st+1)∼D
[
||φ(st)− φ(st+1)||2

]
+λE(st,s+)∼D

[
(φ(s)⊤φ(s+))

2 − ||φ(s)||22 − ||φ(s+)||22
]
,

(20)
which comes from [39].

B.3 GC-IQL

B.3.1 Architecture

We implement GC-IQL following [60]’s codebase. GC-IQL inherits all functionality from a base soft
actor-critic agent [28], but adds a soft conservative penalty to the goal-conditioned critic’s V (s, g)
updates. We refer the reader to paper that introduces GC-IQL [60] for details on the loss function
used to train V (s, g). Hyperparameters are reported in Table 5.

Critic(s). GC-IQL trains double goal-conditioned value functions V (s, g). The critics are feedforward
MLPs that take a state-goal pair (s, g) as input and output a value ∈ R1. During training the goals
are sampled from the prior G described in Section B.3.2.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an 2a-
dimensional vector, where a is the action-space dimensionality. The actor predicts the mean and
standard deviation of a Gaussian distribution for each action dimension; during training a value is
sampled at random, during evaluation the mean is used.

B.3.2 Goal Sampling Distribution G

Following [60], goals are sampled from either random states, future states, or the current state with
probabilities 0.3, 0.5 and 0.2 respectively. A geometric distribution Geom(1 − γ) is used for the
future state distribution, and the uniform distribution over the offline dataset is used for sampling
random states.

B.4 CQL

B.4.1 Architecture

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark. CQL
inherits all functionality from a base soft actor-critic agent [28], but adds a conservative penalty to
the critic updates (Equation 10). Hyperparameters are reported in Table 5.
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Critic(s). CQL employs double Q networks, where the target network is updated with Polyak
averaging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an 2a-
dimensional vector, where a is the action-space dimensionality. The actor predicts the mean and
standard deviation of a Gaussian distribution for each action dimension; during training a value is
sampled at random, during evaluation the mean is used.

B.5 TD3

B.5.1 Architecture

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark.
Hyperparameters are reported in Table 5.

Critic(s). TD3 employs double Q networks, where the target network is updated with Polyak
averaging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an a-
dimensional vector, where a is the action-space dimensionality. The policy is smoothed by adding
Gaussian noise σ to the actions during training.

Misc. As is usual with TD3, layer normalisation [3] is applied to the inputs of all networks.

Table 5: Hyperparameters for Non-zero-shot RL.

Hyperparameter CQL Offline TD3 GC-IQL
Critic dimensions (1024, 1024) (1024, 1024) (1024, 1024)
Actor dimensions (1024, 1024) (1024, 1024) (1024, 1024)
Learning steps 1,000,000 1,000,000 1,000,000
Batch size 1024 1024 1024
Optimiser Adam Adam Adam
Learning rate 0.0001 0.0001 0.0001
Discount γ 0.98 (0.99 for maze) 0.98 (0.99 for maze) 0.98 (0.99 for maze)
Activations ReLU ReLU ReLU
Target network Polyak smoothing coefficient 0.01 0.01 0.01
Sampled Actions Number 3 - -
CQL α 0.01 - -
CQL Lagrange False - -
Std. deviation for policy smoothing σ - 0.2 -
Truncation level for policy smoothing - 0.3 -
IQL temperature - - 1
IQL Expectile - - 0.7

B.6 Code References

This work was enabled by: NumPy [30], PyTorch [61], Pandas [56] and Matplotlib [31].

C Extended Results

In this section we report a full breakdown of our experimental results on the ExORL benchmark
by dataset, domain and task. Table 6 reports results for methods trained on the 100k sub-sampled
datasets, and Table 7 reports results for methods trained on the full datasets.
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Table 6: 100k dataset experimental results on ExORL. For each dataset-domain pair, we report the score at the step for which the
all-task IQM is maximised when averaging across 5 seeds, and the constituent task scores at that step. Bracketed numbers represent
the 95% confidence interval obtained by a stratified bootstrap.

Dataset Domain Task CQL Offline TD3 GC-IQL SF-LAP FB VC-FB (ours) DVC-FB (ours) MC-FB (ours)

RND-100k

Walker

Walk 138 (122 − 140) 210 (205 − 231) 118 (114 − 126) 58 (33 − 104) 184 (123 − 278) 446 (435 − 460) 394 (166 − 512) 247 (164 − 299)

Stand 386 (375 − 391) 362 (335 − 378) 284 (260 − 313) 190 (128 − 233) 558 (498 − 637) 624 (604 − 639) 590 (557 − 622) 480 (402 − 517)

Run 71 (64 − 75) 84 (79 − 88) 51 (42 − 56) 34 (27 − 41) 101 (90 − 135) 179 (165 − 197) 134 (77 − 191) 106 (72 − 137)

Flip 153 (135 − 174) 162 (148 − 171) 157 (152 − 173) 70 (56 − 84) 163 (90 − 212) 325 (292 − 350) 250 (215 − 286) 164 (131 − 192)

Quadruped

Stand 167 (73 − 268) 119 (9 − 338) 43 (14 − 173) 108 (51 − 192) 134 (86 − 176) 331 (190 − 410) 269 (152 − 385) 171 (71 − 372)

Roll Fast 93 (27 − 219) 63 (4 − 223) 66 (14 − 92) 80 (21 − 169) 83 (55 − 127) 141 (87 − 182) 146 (85 − 207) 81 (19 − 199)

Roll 251 (147 − 320) 96 (8 − 272) 224 (123 − 399) 100 (22 − 277) 139 (71 − 224) 141 (107 − 212) 209 (123 − 295) 132 (40 − 267)

Jump 128 (82 − 223) 85 (6 − 248) 152 (39 − 247) 94 (28 − 189) 121 (78 − 186) 159 (110 − 212) 167 (100 − 234) 97 (41 − 172)

Escape 3 (2 − 4) 3 (0 − 9) 1 (0 − 3) 1 (1 − 4) 7 (3 − 12) 8 (4 − 14) 13 (6 − 19) 5 (1 − 12)

Maze

Reach Top Right 433 (275 − 558) 457 (0 − 728) 308 (123 − 494) 1 (0 − 368) 0 (0 − 26) 0 (0 − 406) 0 (0 − 0) 99 (16 − 432)

Reach Top Left 561 (503 − 758) 921 (897 − 936) 628 (384 − 872) 302 (18 − 602) 384 (0 − 735) 662 (218 − 899) 244 (10 − 477) 723 (363 − 895)

Reach Bottom Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Bottom Left 253 (69 − 419) 85 (22 − 295) 25 (4 − 46) 0 (0 − 34) 0 (0 − 0) 479 (56 − 725) 250 (0 − 501) 384 (125 − 653)

Jaco

Reach Top Right 37 (21 − 54) 0 (0 − 1) 0 (0 − 0) 0 (0 − 1) 0 (0 − 3) 1 (0 − 4) 6 (3 − 9) 17 (8 − 29)

Reach Top Left 21 (12 − 33) 0 (0 − 0) 0 (0 − 1) 2 (0 − 5) 2 (1 − 4) 2 (1 − 2) 11 (7 − 16) 9 (2 − 21)

Reach Bottom Right 37 (21 − 53) 0 (0 − 0) 0 (0 − 2) 0 (0 − 0) 0 (0 − 12) 5 (2 − 21) 7 (3 − 11) 16 (7 − 23)

Reach Bottom Left 20 (18 − 28) 0 (0 − 0) 0 (0 − 1) 1 (0 − 4) 7 (4 − 15) 4 (1 − 21) 3 (1 − 5) 11 (1 − 41)

RANDOM-100k

Walker

Walk 126 (112 − 139) 132 (105 − 166) 24 (21 − 26) 129 (118 − 139) 76 (55 − 116) 122 (86 − 140) 38 (32 − 43) 119 (58 − 210)

Stand 246 (199 − 287) 295 (251 − 326) 141 (115 − 162) 206 (161 − 266) 237 (212 − 278) 223 (206 − 241) 223 (201 − 246) 209 (190 − 239)

Run 31 (23 − 47) 57 (38 − 65) 20 (16 − 23) 49 (38 − 62) 37 (33 − 48) 40 (36 − 46) 31 (25 − 36) 32 (27 − 37)

Flip 115 (102 − 128) 72 (47 − 83) 22 (19 − 24) 100 (82 − 119) 47 (40 − 62) 62 (40 − 99) 47 (43 − 52) 44 (40 − 55)

Quadruped

Stand 186 (70 − 294) 264 (68 − 472) 76 (16 − 235) 285 (146 − 432) 278 (154 − 440) 269 (48 − 618) 196 (100 − 284) 172 (78 − 284)

Roll Fast 161 (99 − 223) 151 (31 − 283) 99 (71 − 103) 64 (26 − 112) 96 (16 − 195) 43 (17 − 132) 155 (89 − 220) 78 (53 − 126)

Roll 326 (218 − 430) 260 (41 − 463) 165 (37 − 264) 111 (66 − 169) 105 (63 − 185) 130 (74 − 185) 183 (120 − 246) 178 (115 − 452)

Jump 213 (136 − 293) 189 (82 − 380) 139 (18 − 397) 128 (14 − 221) 75 (33 − 155) 78 (23 − 226) 94 (67 − 121) 147 (53 − 261)

Escape 6 (2 − 8) 4 (2 − 9) 1 (0 − 5) 2 (0 − 5) 5 (3 − 7) 2 (1 − 11) 3 (2 − 5) 6 (1 − 10)

Maze

Reach Top Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Top Left 0 (0 − 0) 0 (0 − 2) 925 (915 − 929) 3 (0 − 5) 18 (0 − 54) 26 (4 − 129) 52 (0 − 104) 10 (0 − 32)

Reach Bottom Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Bottom Left 0 (0 − 0) 0 (0 − 4) 37 (0 − 233) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Jaco

Reach Top Right 53 (47 − 60) 34 (17 − 89) 0 (0 − 0) 0 (0 − 0) 3 (0 − 15) 0 (0 − 8) 0 (0 − 0) 4 (0 − 11)

Reach Top Left 52 (34 − 88) 2 (1 − 5) 4 (2 − 5) 2 (0 − 5) 0 (0 − 0) 12 (7 − 25) 26 (10 − 42) 23 (11 − 53)

Reach Bottom Right 53 (45 − 60) 34 (15 − 78) 0 (0 − 0) 0 (0 − 0) 0 (0 − 4) 1 (0 − 1) 30 (0 − 59) 1 (0 − 6)

Reach Bottom Left 32 (19 − 37) 3 (1 − 4) 0 (0 − 0) 0 (0 − 0) 2 (1 − 12) 0 (0 − 0) 16 (0 − 33) 0 (0 − 8)

DIAYN-100k

Walker

Walk 147 (123 − 198) 150 (132 − 164) 23 (21 − 26) 93 (61 − 106) 251 (132 − 299) 262 (174 − 344) 248 (243 − 255) 260 (175 − 347)

Stand 406 (365 − 441) 262 (234 − 300) 142 (117 − 173) 276 (189 − 292) 497 (381 − 651) 455 (401 − 491) 387 (352 − 423) 423 (370 − 594)

Run 38 (33 − 42) 45 (44 − 47) 19 (15 − 23) 53 (37 − 59) 98 (79 − 114) 82 (76 − 96) 87 (82 − 92) 81 (71 − 107)

Flip 149 (116 − 178) 163 (152 − 179) 23 (20 − 32) 144 (89 − 159) 193 (136 − 205) 228 (193 − 244) 180 (155 − 205) 182 (151 − 237)

Quadruped

Stand 299 (160 − 435) 848 (722 − 885) 251 (213 − 404) 313 (167 − 492) 459 (396 − 525) 430 (393 − 481) 447 (413 − 482) 457 (396 − 511)

Roll Fast 164 (75 − 195) 446 (350 − 499) 111 (84 − 160) 185 (162 − 319) 287 (256 − 328) 260 (232 − 280) 290 (285 − 296) 293 (275 − 299)

Roll 264 (126 − 369) 709 (619 − 799) 117 (41 − 209) 189 (98 − 306) 460 (411 − 485) 415 (396 − 434) 429 (407 − 452) 456 (408 − 490)

Jump 196 (135 − 267) 410 (350 − 517) 171 (141 − 213) 240 (102 − 350) 363 (337 − 418) 357 (324 − 397) 391 (371 − 411) 372 (329 − 403)

Escape 6 (3 − 11) 23 (15 − 32) 6 (3 − 9) 16 (6 − 28) 45 (35 − 56) 31 (24 − 43) 45 (42 − 48) 42 (37 − 50)

Maze

Reach Top Right 760 (494 − 787) 796 (520 − 799) 705 (402 − 777) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 27 (0 − 97)

Reach Top Left 943 (941 − 950) 943 (941 − 945) 901 (889 − 915) 764 (383 − 940) 576 (156 − 876) 910 (620 − 928) 557 (270 − 887) 853 (580 − 906)

Reach Bottom Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 18) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Bottom Left 0 (0 − 0) 799 (537 − 806) 139 (0 − 288) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Jaco

Reach Top Right 17 (10 − 29) 0 (0 − 0) 0 (0 − 0) 8 (1 − 21) 2 (0 − 8) 5 (2 − 11) 0 (0 − 0) 9 (6 − 19)

Reach Top Left 10 (5 − 18) 0 (0 − 0) 0 (0 − 0) 0 (0 − 1) 2 (0 − 5) 7 (0 − 14) 27 (2 − 53) 0 (0 − 0)

Reach Bottom Right 17 (11 − 33) 0 (0 − 0) 0 (0 − 0) 3 (2 − 7) 4 (2 − 13) 5 (2 − 14) 0 (0 − 0) 11 (1 − 36)

Reach Bottom Left 2 (0 − 12) 0 (0 − 0) 0 (0 − 0) 2 (0 − 3) 10 (5 − 19) 5 (0 − 8) 15 (0 − 39) 9 (4 − 16)
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Table 7: Full dataset experimental results on ExORL. For each dataset-domain pair, we report the score at the step
for which the all-task IQM is maximised when averaging across 5 seeds, and the constituent task scores at that step.
Bracketed numbers represent the 95% confidence interval obtained by a stratified bootstrap.

Dataset Domain Task FB VC-FB (ours) MC-FB (ours)

RND

Walker

Walk 821 (758 − 883) 864 (850 − 879) 792 (728 − 857)

Stand 928 (925 − 930) 878 (854 − 903) 873 (812 − 934)

Run 281 (242 − 320) 351 (328 − 374) 343 (323 − 366)

Flip 525 (452 − 598) 542 (513 − 571) 598 (538 − 657)

Quadruped

Stand 957 (952 − 963) 863 (777 − 950) 949 (939 − 958)

Roll Fast 574 (553 − 599) 512 (471 − 553) 565 (555 − 575)

Roll 920 (895 − 944) 831 (741 − 920) 890 (874 − 906)

Jump 736 (721 − 751) 630 (570 − 690) 705 (703 − 707)

Escape 94 (63 − 125) 59 (50 − 68) 66 (56 − 86)

Maze

Reach Top Right 0 (0 − 0) 425 (153 − 698) 270 (9 − 533)

Reach Top Left 612 (313 − 911) 454 (138 − 769) 773 (611 − 934)

Reach Bottom Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Bottom Left 268 (0 − 536) 270 (2 − 539) 1 (0 − 2)

Jaco

Reach Top Right 48 (39 − 56) 24 (0 − 47) 51 (23 − 79)

Reach Top Left 23 (6 − 40) 14 (4 − 25) 20 (7 − 33)

Reach Bottom Right 60 (56 − 65) 5 (0 − 10) 47 (15 − 79)

Reach Bottom Left 27 (12 − 42) 88 (33 − 143) 20 (9 − 30)

RANDOM

Walker

Walk 148 (70 − 225) 145 (109 − 182) 129 (80 − 178)

Stand 318 (281 − 355) 255 (202 − 308) 285 (262 − 309)

Run 51 (45 − 60) 47 (44 − 50) 45 (36 − 55)

Flip 57 (49 − 67) 83 (49 − 117) 103 (65 − 140)

Quadruped

Stand 417 (393 − 453) 295 (165 − 424) 210 (153 − 267)

Roll Fast 110 (51 − 170) 271 (252 − 290) 215 (139 − 292)

Roll 231 (116 − 346) 154 (53 − 255) 303 (160 − 530)

Jump 287 (123 − 450) 67 (44 − 90) 164 (135 − 194)

Escape 10 (6 − 14) 7 (4 − 10) 12 (9 − 17)

Maze

Reach Top Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Top Left 309 (4 − 615) 317 (5 − 629) 307 (0 − 614)

Reach Bottom Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Bottom Left 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Jaco

Reach Top Right 1 (1 − 1) 2 (0 − 4) 5 (0 − 10)

Reach Top Left 50 (0 − 100) 9 (0 − 18) 16 (0 − 31)

Reach Bottom Right 0 (0 − 0) 15 (5 − 25) 21 (0 − 42)

Reach Bottom Left 3 (1 − 6) 18 (2 − 34) 1 (0 − 3)

DIAYN

Walker

Walk 459 (278 − 652) 536 (305 − 766) 519 (315 − 722)

Stand 478 (463 − 494) 447 (422 − 472) 517 (433 − 602)

Run 87 (81 − 93) 84 (78 − 89) 87 (65 − 110)

Flip 235 (151 − 319) 251 (151 − 352) 301 (213 − 388)

Quadruped

Stand 763 (725 − 814) 432 (176 − 688) 804 (756 − 851)

Roll Fast 497 (480 − 514) 293 (179 − 407) 495 (491 − 498)

Roll 767 (726 − 808) 350 (152 − 650) 761 (736 − 786)

Jump 628 (587 − 669) 234 (89 − 379) 608 (594 − 622)

Escape 65 (62 − 69) 21 (14 − 27) 67 (55 − 79)

Maze

Reach Top Right 0 (0 − 0) 0 (0 − 0) 0 (0 − 0)

Reach Top Left 654 (565 − 742) 928 (907 − 950) 814 (725 − 903)

Reach Bottom Right 0 (0 − 0) 0 (0 − 0) 8 (0 − 16)

Reach Bottom Left 169 (0 − 506) 7 (0 − 14) 49 (0 − 98)

Jaco

Reach Top Right 4 (2 − 7) 10 (5 − 15) 4 (1 − 8)

Reach Top Left 5 (1 − 10) 1 (0 − 2) 2 (0 − 3)

Reach Bottom Right 9 (4 − 13) 6 (3 − 8) 7 (0 − 14)

Reach Bottom Left 25 (2 − 47) 12 (6 − 18) 25 (3 − 47)
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Table 8: Aggregate zero-shot performance on ExORL for all evaluation statistics recommended by [1]. VC-FB
outperforms all methods across all evaluation statistics. ↑ means a higher score is better; ↓ means a lower score is
better. Note that the optimality gap is large because we set γ = 1000 and for many dataset-domain-tasks the maximum
achievable score is far from 1000.

Statistic SF-LAP GC-IQL FB CQL MC-FB (ours) VC-FB (ours)
IQM ↑ 92 95 99 128 136 148
Mean ↑ 87 126 118 138 142 154
Median ↑ 108 104 104 132 133 144
Optimality Gap ↓ 0.92 0.88 0.89 0.87 0.86 0.84

Table 9: D4RL experimental results. For each dataset-domain pair, we report the score at the step for which the IQM
is maximised when averaging across 3 seeds. Bracketed numbers represent the 95% confidence interval obtained by a
stratified bootstrap..

Domain Dataset CQL SF-LAP FB VC-FB (ours) MC-FB (ours)

HalfCheetah
medium 36 (36-36) 4 (1-7) 3 (-1-8) 39 (38-40) 32 (28-36)

medium-expert 43 (37-51) 26 (20-32) 3 (0-6) 27 (24-28) 24 (21-30)

medium-replay 42 (42-42) 29 (29-30) 7 (2-11) 31 (26-36) 20 (18-22)

Walker2d
medium 70 (68-73) 7 (1-13) 7 (0-14) 42 (37-45) 36 (33-40)

medium-expert 102 (97-107) 15 (0-31) 3 (1-5) 82 (72-92) 74 (66-77)

medium-replay 13 (11-14) 11 (8-15) 12 (7-17) 20 (19-21) 22 (19-24)

All All 48 15 5 34 28

D Value Conservative Universal Successor Features

In this section, we develop value conservative regularisation for use by Universal Successor Features (USF)
[5, 7], the primary alternative to FB for zero-shot RL.

Recall from Section 2 that successor features require a state-feature mapping φ : S → Rd which is
usually obtained by some representation learning method [5]. Universal successor features are the expected
discounted sum of these features, starting in state s0, taking action a0 and following the task-dependent policy
πz thereafter

ψ(s0, a0, z) := E

∑
t≥0

γtφ(st+1)|s0, a0, πz

 . (21)

USFs satisfy a Bellman equation [7] and so can be trained using TD-learning on the Bellman residuals:

LSF = E(st,at,st+1)∼D,z∼Z
(
ψ(st, at, z)

⊤z − φ(st+1)
⊤z − γψ̄(st+1, πz(st+1), z)

⊤z
)2
, (22)

where ψ̄ is a lagging target network updated via Polyak averaging, and Z is identical to that used for FB
training (Appendix B.1.2). As with FB representations, the policy maximises the Q function defined by ψ:

πz(s) := argmaxaψ(s, a, z)
⊤z, (23)
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and for continuous state and action spaces is trained in an actor critic formulation. Like FB, USF training
requires next action samples at+1 ∼ πz(st+1) for the TD targets. We therefore expect SFs to suffer the same
failure mode discussed in Section 3 (OOD state-action value overestimation) and to benefit from the same
remedial measures (value conservatism). Training value-conservative successor features (VC-SF) amounts to
substituting the USF Q function definition and loss for FB’s in Equation 11:

LVC-SF = α ·
(
Es∼D,a∼µ(a|s),z∼Z [ψ(s, a, z)

⊤z]− E(s,a)∼D,z∼Z [ψ(s, a, z)
⊤z]
)
+ LSF. (24)

Both the maximum value approximator µ(a|s) (Equation 17, Section B.1.3) and α-tuning (Equation 18,
Section B.1.4) can be extracted identically to the FB case with any occurrence of F (s, a, z)⊤z substituted
with ψ(s, a, z)⊤z. As USFs do not predict successor measures we cannot formulate measure-conservative
USFs.

E Negative Results

In this section we provide detail on experiments we attempted, but which did not provide results significant
enough to be included in the main body.

E.1 Downstream Finetuning

If we relax the zero-shot requirement, could pre-trained conservative FB representations be finetuned on new
tasks or domains? Base CQL models have been finetuned effectively on unseen tasks using both online and
offline data [41], and we had hoped to replicate similar results with VC-FB and MC-FB. We ran offline and
online finetuning experiments and provide details on their setups and results below. All experiments were
conducted on the Walker domain.

Offline finetuning. We considered a setting where models are trained on a low quality dataset initially, before
a high quality dataset becomes available downstream. We used models trained on the RANDOM-100k dataset
and finetuned them on both the full RND and RND-100k datasets, with models trained from scratch used as
our baseline. Finetuning involved the usual training protocol as described in Algorithm 1, but we limited the
number of learning steps to 250k.

We found that though performance improved during finetuning, it improved no quicker than the models
trained from scratch. This held for both the full RND and RND-100k datasets. We conclude that the parameter
initialisation delivered after training on a low quality dataset does not obviously expedite learning when high
quality data becomes available.

Online finetuning. We considered the online finetuning setup where a trained representation is deployed
in the target environment, required to complete a specified task, and allowed to collect a replay buffer of
reward-labelled online experience. We followed a standard online RL protocol where a batch of transitions
was sampled from the online replay buffer after each environment step for use in updating the model’s
parameters. We experimented with fixing z to the target task during in the actor updates (Line 16, Algorithm
1), but found it caused a quick, irrecoverable collapse in actor performance. This suggested uniform samples
from Z provide a form of regularisation. We granted the agents 500k steps of interaction for online finetuning.

We found that performance never improved beyond the pre-trained (init) performance during finetuning.
We speculated that this was similar to the well-documented failure mode of online finetuning of CQL [59],
namely taking sub-optimal actions in the real env, observing unexpectedly high reward, and updating their
policy toward these sub-optimal actions. But we note that FB representations do not update w.r.t observed
rewards, and so conclude this cannot be the failure mode. Instead it seems likely that FB algorithms cannot
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Figure 9: Learning curves for methods finetuned on the full RND dataset. Solid lines represent base models trained
on RANDOM-100k, then finetuned; dashed lines represent models trained from scratch. The finetuned models perform
no better than models trained from scratch after 250k learning steps, suggesting model re-training is currently a better
strategy than offline finetuning.

use the narrow, unexploratory experience obtained from attempting to perform a specific task to improve
model performance.

We believe resolving issues associated with finetuning conservative FB algorithms once the zero-shot
requirement is relaxed is an important future direction and hope that details of our negative attempts to this
end help facilitate future research.
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Figure 10: Learning curves for online finetuning. The performance at the end of pre-training (init performance) is
plotted as a dashed line for each method. None of the methods consistently outperform their init performance after 250k
online transitions.

F Learning Curves & Hyperparameter Sensitivity

ExORL Learning Curves. We report the learning curves for all zero-shot RL methods and CQL in Figures
11, 12, and 13. For all domains except Jaco, the y-axis limit is fixed at 1000 as that is the maximum score
achievable in the DeepMind Control Suite. For Jaco-related figures, the y-axis limits is fixed at 100 as no
method achieves a score higher than this.

Hyperparameter Sensitivity. We report the sensitivity of VC-FB and MC-FB to the choice of two new
hyperparameters: conservative budget τ and action samples per policy N on the ExORL benchmark. Figure
14 plots the sensitivity of VC-FB to the choice of τ on Walker and Maze domains across RND and RANDOM
datasets. Figure 15 plots the sensitivity of MC-FB to the choice of τ on Walker and Maze domains across
RND and RANDOM datasets. Figure 16 plots the sensitivity of MC-FB to the choice of N on Walker and
Maze domains across RND and RANDOM datasets.

We further explore the sensitivity of VC-FB performance on Walker2D from the D4RL benchmark w.r.t.
the choice of conservative budget τ . Figure 17 plots this relationship when trained on the “medium-expert"
dataset from D4RL.
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Figure 11: Learning Curves (1/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts and
record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 12: Learning Curves (2/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts and
record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 13: Learning Curves (3/3). Models are evaluated every 20,000 timesteps where we perform 10 rollouts and
record the IQM. Curves are the IQM of this value across 5 seeds; shaded areas are one standard deviation.
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Figure 14: VC-FB sensitivity to conservative budget τ on Walker and Maze. Top: RND dataset; bottom: RANDOM
dataset. Maximum IQM return across the training run averaged over 3 random seeds

Figure 15: MC-FB sensitivity to conservative budget τ on Walker and Maze. Top: RND dataset; bottom: RANDOM
dataset. Maximum IQM return across the training run averaged over 3 random seeds
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Figure 16: MC-FB sensitivity to action samples per policy N on Walker and Maze. Top: RND dataset; bottom:
RANDOM dataset. Maximum IQM return across the training run averaged over 3 random seeds.

Figure 17: VC-FB sensitivity to choice of conservative budget τ on Walker2D from the D4RL benchmark.
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G Code Snippets

G.1 Update Step

1 def update_fb(
2 self ,
3 observations: torch.Tensor ,
4 actions: torch.Tensor ,
5 next_observations: torch.Tensor ,
6 discounts: torch.Tensor ,
7 zs: torch.Tensor ,
8 step: int ,
9 ) -> Dict[str , float]:

10 """
11 Calculates the loss for the forward -backward representation network.
12 Loss contains two components:
13 1. Forward -backward representation (core) loss: a Bellman update
14 on the successor measure (equation 24, Appendix B)
15 2. Conservative loss: penalises out -of-distribution actions
16 Args:
17 observations: observation tensor of shape [batch_size , observation_length]
18 actions: action tensor of shape [batch_size , action_length]
19 next_observations: next observation tensor of
20 shape [batch_size , observation_length]
21 discounts: discount tensor of shape [batch_size , 1]
22 zs: policy tensor of shape [batch_size , z_dimension]
23 step: current training step
24 Returns:
25 metrics: dictionary of metrics for logging
26 """
27
28 # update step common to all FB models
29 (
30 core_loss ,
31 core_metrics ,
32 F1 ,
33 F2 ,
34 B_next ,
35 M1_next ,
36 M2_next ,
37 _,
38 _,
39 actor_std_dev ,
40 ) = self._update_fb_inner(
41 observations=observations ,
42 actions=actions ,
43 next_observations=next_observations ,
44 discounts=discounts ,
45 zs=zs ,
46 step=step ,
47 )
48
49 # calculate MC or VC penalty
50 if self.mcfb:
51 (
52 conservative_penalty ,
53 conservative_metrics ,
54 ) = self._measure_conservative_penalty(
55 observations=observations ,
56 next_observations=next_observations ,
57 zs=zs ,
58 actor_std_dev=actor_std_dev ,
59 F1=F1 ,
60 F2=F2 ,
61 B_next=B_next ,
62 M1_next=M1_next ,
63 M2_next=M2_next ,
64 )
65 # VCFB
66 else:
67 (
68 conservative_penalty ,
69 conservative_metrics ,
70 ) = self._value_conservative_penalty(
71 observations=observations ,
72 next_observations=next_observations ,
73 zs=zs ,
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74 actor_std_dev=actor_std_dev ,
75 F1=F1 ,
76 F2=F2 ,
77 )
78
79 # tune alpha from conservative penalty
80 alpha , alpha_metrics = self._tune_alpha(
81 conservative_penalty=conservative_penalty
82 )
83 conservative_loss = alpha * conservative_penalty
84
85 total_loss = core_loss + conservative_loss
86
87 # step optimiser
88 self.FB_optimiser.zero_grad(set_to_none=True)
89 total_loss.backward ()
90 for param in self.FB.parameters ():
91 if param.grad is not None:
92 param.grad.data.clamp_(-1, 1)
93 self.FB_optimiser.step()
94
95 return metrics

G.2 Value-Conservative Penalty

1 def _value_conservative_penalty(
2 self ,
3 observations: torch.Tensor ,
4 next_observations: torch.Tensor ,
5 zs: torch.Tensor ,
6 actor_std_dev: torch.Tensor ,
7 F1: torch.Tensor ,
8 F2: torch.Tensor ,
9 ) -> torch.Tensor:

10 """
11 Calculates the value conservative penalty for FB.
12 Args:
13 observations: observation tensor of shape [batch_size , observation_length]
14 next_observations: next observation tensor of shape
15 [batch_size , observation_length]
16 zs: task tensor of shape [batch_size , z_dimension]
17 actor_std_dev: standard deviation of the actor
18 F1: forward embedding no. 1
19 F2: forward embedding no. 2
20 Returns:
21 conservative_penalty: the value conservative penalty
22 """
23
24 with torch.no_grad ():
25 # repeat observations , next_observations , zs, and Bs
26 # we fold the action sample dimension into the batch dimension
27 # to allow the tensors to be passed through F and B; we then
28 # reshape the output back to maintain the action sample dimension
29 repeated_observations_ood = observations.repeat(
30 self.ood_action_samples , 1, 1
31 ).reshape(self.ood_action_samples * self.batch_size , -1)
32 repeated_zs_ood = zs.repeat(self.ood_action_samples , 1, 1).reshape(
33 self.ood_action_samples * self.batch_size , -1
34 )
35 ood_actions = torch.empty(
36 size=(self.ood_action_samples * self.batch_size , self.action_length),
37 device=self._device ,
38 ).uniform_(-1, 1)
39
40 repeated_observations_actor = observations.repeat(
41 self.actor_action_samples , 1, 1
42 ).reshape(self.actor_action_samples * self.batch_size , -1)
43 repeated_next_observations_actor = next_observations.repeat(
44 self.actor_action_samples , 1, 1
45 ).reshape(self.actor_action_samples * self.batch_size , -1)
46 repeated_zs_actor = zs.repeat(self.actor_action_samples , 1, 1).reshape(
47 self.actor_action_samples * self.batch_size , -1
48 )
49 actor_current_actions , _ = self.actor(
50 repeated_observations_actor ,
51 repeated_zs_actor ,
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52 std=actor_std_dev ,
53 sample=True ,
54 ) # [actor_action_samples * batch_size , action_length]
55
56 actor_next_actions , _ = self.actor(
57 repeated_next_observations_actor ,
58 z=repeated_zs_actor ,
59 std=actor_std_dev ,
60 sample=True ,
61 ) # [actor_action_samples * batch_size , action_length]
62
63 # get Fs
64 ood_F1 , ood_F2 = self.FB.forward_representation(
65 repeated_observations_ood , ood_actions , repeated_zs_ood
66 ) # [ood_action_samples * batch_size , latent_dim]
67
68 actor_current_F1 , actor_current_F2 = self.FB.forward_representation(
69 repeated_observations_actor , actor_current_actions , repeated_zs_actor
70 ) # [actor_action_samples * batch_size , latent_dim]
71 actor_next_F1 , actor_next_F2 = self.FB.forward_representation(
72 repeated_next_observations_actor , actor_next_actions , repeated_zs_actor
73 ) # [actor_action_samples * batch_size , latent_dim]
74 repeated_F1 , repeated_F2 = F1.repeat(
75 self.actor_action_samples , 1, 1
76 ).reshape(self.actor_action_samples * self.batch_size , -1), F2.repeat(
77 self.actor_action_samples , 1, 1
78 ).reshape(
79 self.actor_action_samples * self.batch_size , -1
80 )
81 cat_F1 = torch.cat(
82 [
83 ood_F1 ,
84 actor_current_F1 ,
85 actor_next_F1 ,
86 repeated_F1 ,
87 ],
88 dim=0,
89 )
90 cat_F2 = torch.cat(
91 [
92 ood_F2 ,
93 actor_current_F2 ,
94 actor_next_F2 ,
95 repeated_F2 ,
96 ],
97 dim=0,
98 )
99

100 repeated_zs = zs.repeat(self.total_action_samples , 1, 1).reshape(
101 self.total_action_samples * self.batch_size , -1
102 )
103
104 # convert to Qs
105 cql_cat_Q1 = torch.einsum("sd , sd -> s", cat_F1 , repeated_zs).reshape(
106 self.total_action_samples , self.batch_size , -1
107 )
108 cql_cat_Q2 = torch.einsum("sd , sd -> s", cat_F2 , repeated_zs).reshape(
109 self.total_action_samples , self.batch_size , -1
110 )
111
112 cql_logsumexp = (
113 torch.logsumexp(cql_cat_Q1 , dim=0).mean()
114 + torch.logsumexp(cql_cat_Q2 , dim=0).mean()
115 )
116
117 # get existing Qs
118 Q1, Q2 = [torch.einsum("sd , sd -> s", F, zs) for F in [F1, F2]]
119
120 conservative_penalty = cql_logsumexp - (Q1 + Q2).mean()
121
122 return conservative_penalty

G.3 Measure-Conservative Penalty

1 def _measure_conservative_penalty(
2 self ,
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3 observations: torch.Tensor ,
4 next_observations: torch.Tensor ,
5 zs: torch.Tensor ,
6 actor_std_dev: torch.Tensor ,
7 F1: torch.Tensor ,
8 F2: torch.Tensor ,
9 B_next: torch.Tensor ,

10 M1_next: torch.Tensor ,
11 M2_next: torch.Tensor ,
12 ) -> torch.Tensor:
13 """
14 Calculates the measure conservative penalty.
15 Args:
16 observations: observation tensor of shape [batch_size , observation_length]
17 next_observations: next observation tensor of shape
18 [batch_size , observation_length]
19 zs: task tensor of shape [batch_size , z_dimension]
20 actor_std_dev: standard deviation of the actor
21 F1: forward embedding no. 1
22 F2: forward embedding no. 2
23 B_next: backward embedding
24 M1_next: successor measure no. 1
25 M2_next: successor measure no. 2
26 Returns:
27 conservative_penalty: the measure conservative penalty
28 """
29
30 with torch.no_grad ():
31 # repeat observations , next_observations , zs, and Bs
32 # we fold the action sample dimension into the batch dimension
33 # to allow the tensors to be passed through F and B; we then
34 # reshape the output back to maintain the action sample dimension
35 repeated_observations_ood = observations.repeat(
36 self.ood_action_samples , 1, 1
37 ).reshape(self.ood_action_samples * self.batch_size , -1)
38 repeated_zs_ood = zs.repeat(self.ood_action_samples , 1, 1).reshape(
39 self.ood_action_samples * self.batch_size , -1
40 )
41 ood_actions = torch.empty(
42 size=(self.ood_action_samples * self.batch_size , self.action_length),
43 device=self._device ,
44 ).uniform_(-1, 1)
45
46 repeated_observations_actor = observations.repeat(
47 self.actor_action_samples , 1, 1
48 ).reshape(self.actor_action_samples * self.batch_size , -1)
49 repeated_next_observations_actor = next_observations.repeat(
50 self.actor_action_samples , 1, 1
51 ).reshape(self.actor_action_samples * self.batch_size , -1)
52 repeated_zs_actor = zs.repeat(self.actor_action_samples , 1, 1).reshape(
53 self.actor_action_samples * self.batch_size , -1
54 )
55 actor_current_actions , _ = self.actor(
56 repeated_observations_actor ,
57 repeated_zs_actor ,
58 std=actor_std_dev ,
59 sample=True ,
60 ) # [actor_action_samples * batch_size , action_length]
61
62 actor_next_actions , _ = self.actor(
63 repeated_next_observations_actor ,
64 z=repeated_zs_actor ,
65 std=actor_std_dev ,
66 sample=True ,
67 ) # [actor_action_samples * batch_size , action_length]
68
69 # get Fs
70 ood_F1 , ood_F2 = self.FB.forward_representation(
71 repeated_observations_ood , ood_actions , repeated_zs_ood
72 ) # [ood_action_samples * batch_size , latent_dim]
73
74 actor_current_F1 , actor_current_F2 = self.FB.forward_representation(
75 repeated_observations_actor , actor_current_actions , repeated_zs_actor
76 ) # [actor_action_samples * batch_size , latent_dim]
77 actor_next_F1 , actor_next_F2 = self.FB.forward_representation(
78 repeated_next_observations_actor , actor_next_actions , repeated_zs_actor
79 ) # [actor_action_samples * batch_size , latent_dim]
80 repeated_F1 , repeated_F2 = F1.repeat(
81 self.actor_action_samples , 1, 1
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82 ).reshape(self.actor_action_samples * self.batch_size , -1), F2.repeat(
83 self.actor_action_samples , 1, 1
84 ).reshape(
85 self.actor_action_samples * self.batch_size , -1
86 )
87 cat_F1 = torch.cat(
88 [
89 ood_F1 ,
90 actor_current_F1 ,
91 actor_next_F1 ,
92 repeated_F1 ,
93 ],
94 dim=0,
95 )
96 cat_F2 = torch.cat(
97 [
98 ood_F2 ,
99 actor_current_F2 ,

100 actor_next_F2 ,
101 repeated_F2 ,
102 ],
103 dim=0,
104 )
105
106 cml_cat_M1 = torch.einsum("sd , td -> st", cat_F1 , B_next).reshape(
107 self.total_action_samples , self.batch_size , -1
108 )
109 cml_cat_M2 = torch.einsum("sd , td -> st", cat_F2 , B_next).reshape(
110 self.total_action_samples , self.batch_size , -1
111 )
112
113 cml_logsumexp = (
114 torch.logsumexp(cml_cat_M1 , dim=0).mean()
115 + torch.logsumexp(cml_cat_M2 , dim=0).mean()
116 )
117
118 conservative_penalty = cml_logsumexp - (M1_next + M2_next).mean()
119
120 return conservative_penalty

41



G.4 α Tuning

1 def _tune_alpha(
2 self ,
3 conservative_penalty: torch.Tensor ,
4 ) -> torch.Tensor:
5 """
6 Tunes the conservative penalty weight (alpha) w.r.t. target penalty.
7 Discussed in Appendix B.1.4
8 Args:
9 conservative_penalty: the current conservative penalty

10 Returns:
11 alpha: the updated alpha
12 """
13
14 # alpha auto -tuning
15 alpha = torch.clamp(self.critic_log_alpha.exp(), min=0.0, max=1e6)
16 alpha_loss = (
17 -0.5 * alpha * (conservative_penalty - self.target_conservative_penalty)
18 )
19
20 self.critic_alpha_optimiser.zero_grad ()
21 alpha_loss.backward(retain_graph=True)
22 self.critic_alpha_optimiser.step()
23 alpha = torch.clamp(self.critic_log_alpha.exp(), min=0.0, max=1e6).detach ()
24
25 return alpha
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H NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimen-
tal results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code and hyperparameters are provided; datasets and environments are open-source.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: See Appendix A and B, and https://github.com/enjeeneer/zero-shot-rl.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Appendix A and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
Answer: [Yes]
Justification: See Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimen-

tal runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This paper discusses methods for improving the performance of zero-shot RL methods
when trained on low quality offline datasets. We do not expect this work to directly impact society
positively or negatively.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: https://github.com/enjeeneer/zero-shot-rl.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details
about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

49


	Introduction
	Preliminaries
	Zero-Shot RL from Low Quality Data
	Failure Mode of Existing Methods
	Mitigating the Distribution Shift
	A Didactic Example

	Experiments
	Setup
	Baselines
	Results

	Discussion and Limitations
	Related Work
	Conclusion
	Experimental Details
	ExORL Domains
	ExORL Datasets
	D4RL Domains
	D4RL Datasets
	Evaluation Protocol
	Computational Resources

	Implementation Details
	Forward-Backward Representations
	Universal Successor Features
	GC-IQL
	CQL
	TD3
	Code References

	Extended Results
	Value Conservative Universal Successor Features
	Negative Results
	Downstream Finetuning

	Learning Curves & Hyperparameter Sensitivity
	Code Snippets
	Update Step
	Value-Conservative Penalty
	Measure-Conservative Penalty
	alpha Tuning

	NeurIPS Paper Checklist

