

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXDBSCAN: EXPLAINING DBSCAN WITH COUNTERFACTUAL REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Clustering is an unsupervised technique for grouping data points by similarity. While explainability methods exist for supervised machine learning, they are not directly applicable to clustering, making it challenging to understand cluster assignments. This interpretability gap is evident in the popular density-based method DBSCAN, which assigns points as inliers (cluster members in dense regions) or outliers (noise points in sparse regions). DBSCAN does not provide insight into why a particular point receives its assignment or if it is robust to small changes in the data. To address the challenges, we introduce ExDBSCAN, a density-aware, post-hoc explanation method. ExDBSCAN offers actionable counterfactual explanations, with theoretical guarantees for validity. It generates multiple counterfactuals using a density-connected weighted graph while adopting a physics-inspired model that repels counterfactual candidates from one another (diversity) while pulling them toward the instance to explain (proximity). Empirical evaluation on 30 tabular datasets, confirms that ExDBSCAN attains perfect validity and shows that it retrieves diverse, proximal counterfactuals.

1 INTRODUCTION

Clustering is a cornerstone of unsupervised machine learning, enabling discovery of patterns and groupings in data without relying on predefined labels. Our work focuses on Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), an algorithm known for its ability to find clusters of arbitrary shape, and to identify outliers (also denoted as noise) in the process. DBSCAN is popular across domains ranging from computer vision (Figueiredo & Mendes, 2024), to bioinformatics (Francis et al., 2011), and fraud detection (Luo et al., 2024). Nevertheless, a limitation of DBSCAN (and generally clustering methods) is their lack of explanation, i.e., absence of information on why a particular point is belongs to a particular cluster or not, which is crucial for interpretability, user trust, and actionable insights (Miller, 2019; Molnar, 2020).

In supervised learning, counterfactual explanations (CEs) emerge as an impactful tool, identify minimal changes to an input that would alter the model’s prediction, offering intuitive “what-if” scenarios (Guidotti, 2024; Poyiadzi et al., 2020; Karimi et al., 2020; Mothilal et al., 2020). Counterfactual reasoning builds user trust in the model and reflects how human stakeholders formulate explanations, making counterfactuals easy to interpret (Miller, 2019). For classification tasks, a typical CE shows how a rejected loan application could be altered to become approved.

We claim that CEs for clustering bring important benefits. Beyond explaining individual points, multiple counterfactuals can reveal alternative ways in which a point could transition between clusters, offering complementary perspectives on the underlying structure. Furthermore, analysing how the set of counterfactual changes across several points enables the possibility of highlighting which features are most influential for cluster membership. For instance, we can identify if outliers systematically need to increase on a particular feature to become inliers, or if points from one cluster need to change a specific attribute to belong to another. These patterns not only enhance interpretability but also enable practitioners to make informed decisions about data preprocessing, feature engineering, and outlier treatment based on a deeper understanding of the clustering structure.

Devising CEs for DBSCAN presents major challenges. First, the cluster assignment process is not based on a differentiable loss function, preventing the counterfactual method from having access to model gradients, often used to guide counterfactual search (Mothilal et al., 2020; Wachter et al.,

054 2017). Moreover, while classification algorithms often produce class probabilities, a membership
 055 probability, used by several model-agnostic counterfactual methods (Mothilal et al., 2020; Yang
 056 et al., 2022), is difficult to define in hard clustering contexts. Furthermore, DBSCAN can label
 057 points as noise. Noise points can be far from each other, scattered across the whole feature space
 058 and share few similarities, having a boundary very different from classes in a classification scenario.

059 Model-agnostic Bayesian and genetic counterfactual methods for classification, do not generally
 060 need access to gradients or class probabilities. Their application though, is generally computa-
 061 tionally expensive (Romashov et al., 2022). Furthermore, different clustering algorithms rely on
 062 different concepts of similarity. This can impact counterfactual search for example when ensuring
 063 diversity, i.e., making sure that different counterfactuals for the same input are not repetitive but
 064 instead add meaningful actionable alternatives. In the DBSCAN case, two samples could be close
 065 in the traditional Euclidean distance leveraged by most model-agnostic methods; at the same time,
 066 they could be only connected by a long density-connected path making the two points effectively
 067 distant.

068 In this work, we address these challenges by leveraging counterfactual reasoning to explain density-
 069 based clustering. We propose **Explaining DBSCAN** with counterfactual reasoning (ExDBSCAN),
 070 the first method tailored to generate CEs for DBSCAN. Given a specific point, DBSCAN’s as-
 071 signments and its parameter settings, ExDBSCAN generates counterfactuals that are both proximal
 072 (close to the original instance for realistic changes) and diverse (providing multiple non-redundant
 073 alternatives), while accounting for DBSCAN’s similarity definition. To achieve this, ExDBSCAN
 074 models the problem as a physical optimisation system, as it defines an undirected weighted graph
 075 that captures DBSCAN’s density-based similarity structure. The system treats candidate counter-
 076 factuals as charged-like particles that repel each other to ensure diversity, and uses spring-like forces
 077 to maintain proximity to the explained instance. Our approach provably provides perfect valid-
 078 ity, i.e., every counterfactual attains the correct cluster assignment, for both noise-to-cluster and
 079 cluster-to-cluster transitions. Furthermore, ExDBSCAN respects feature constraints by handling
 080 non-actionable attributes, e.g., the number of previous hospital visits in a tabular dataset of clinical
 081 analysis, changing the non-actionable attributes can make the explanation unrealistic; ensuring the
 082 explanations remain practical and applicable. Our contributions are summarised as follows:

- We introduce ExDBSCAN, the first method to generate counterfactual explanations designed for DBSCAN, covering both noise-to-cluster and cluster-to-cluster transitions.
- ExDBSCAN generates diverse counterfactuals under our novel physics-inspired model that repels candidate counterfactuals from one another (diversity) while pulling them toward the point to explain (proximity), all while accounting for cluster structure captured in our graph representation.
- On 30 OpenML tabular datasets, ExDBSCAN outperforms a model-agnostic Bayesian baseline (BayCon) by obtaining lower proximity, higher multi-counterfactual diversity and perfect validity.

2 RELATED WORK

093 In the following related work we review supervised, model-agnostic counterfactuals; explainable
 094 clustering; and counterfactuals for clustering and outliers.

095 **Supervised Model-Agnostic Counterfactual Explanations.** In supervised learning, Wachter et al.
 096 (2017) formally introduce CEs as answers to “what is the smallest change to input x that would
 097 alter the model’s prediction?”, and subsequent work optimises criteria such as *proximity*, *validity*,
 098 *diversity*, and *actionability* (Guidotti, 2024; Mehdiyev et al., 2024; Yuan et al., 2024).

099 For model-agnostic methods, e.g. DiCE returns a set of diverse CEs (Mothilal et al., 2020). FACE
 100 follows data-supported feasible paths on the empirical manifold and returns a plausible path together
 101 with a counterfactual endpoint that alters model prediction (Poyiadzi et al., 2020). MACE uses a
 102 reinforcement-learning policy and returns one or more counterfactuals with minimal changes (Yang
 103 et al., 2022). All methods need to repeatedly query a supervised model for class probabilities at
 104 candidate points and then choose based on closeness to the target class. By contrast, DBSCAN pro-
 105 vides only discrete, connectivity-based memberships (core, border, noise) defined by ε and $minPts$,
 106 with no continuous quantity to optimise against. A workaround could be to fit a surrogate classifier
 107 to predict cluster memberships and then apply supervised CE methods; however, the surrogate’s
 108 decision regions would then reflect its own similarity notion rather than density-reachability.

108 To accurately compare ExDBSCAN with competitive methods, the method Model-Agnostic
 109 Bayesian Counterfactual Generator (BayCon) (Romashov et al., 2022) offers a more suitable and
 110 adaptable approach for clustering scenarios and thereby is a valid competitor. Unlike gradient-based
 111 methods, BayCon uses Bayesian optimisation with probabilistic feature sampling to explore the
 112 feature space without requiring differentiable model outputs. It treats the clustering algorithm as a black
 113 box, repeatedly querying it with candidate counterfactuals and using the discrete cluster assignments
 114 to guide its search. This sampling-based strategy aligns naturally with DBSCAN’s discrete mem-
 115 bership criteria. However, it does not exploit DBSCAN’s specific density-connectivity structure that
 116 ExDBSCAN leverages for efficient and theoretically grounded counterfactual generation.

117 **Explainable Clustering Analysis.** Explainable clustering methods span both global and local ex-
 118 plainability. Global approaches aim to summarise entire clusterings or cluster characteristics in
 119 human-understandable forms. Moshkovitz et al. (2020) introduce explainable k -means/ k -medians
 120 that replace clusters with compact decision trees. Similarly, Bandyapadhyay et al. (2023) formalise
 121 searching for small trees that closely match a given partition. Prototype-based methods characterise
 122 each cluster by representative examples or “criticism” points, e.g., Kim et al. (2016) propose MMD-
 123 Critic to select prototypical instances and outliers for each cluster. Such global explanations convey
 124 what defines each cluster overall, but they do not explain individual assignments.

125 In contrast, local explainability focuses on specific data points. Agnostic attribution frameworks
 126 like FACT (Scholbeck et al., 2023) quantify each feature’s influence on a points cluster assignment
 127 by perturbing features and observing changes in the clustering. Interactive tools like ClusterVi-
 128 sion (Kwon et al., 2018), let users vary clustering parameters and visualise effects on clusters and
 129 outliers, supporting sensitivity analysis and comparative explanation.

130 While global summaries, prototypes, feature attributions, and visual analytics improve understand-
 131 ing of clustering results, they do not provide actionable local changes for a given point. No existing
 132 method can suggest how a particular DBSCAN inlier or outlier could change its status through
 133 minimal feature changes, with guarantees of valid membership under DBSCAN’s density-reachability.
 134 This gap motivates ExDBSCAN, and focuses on local actionability which generates concrete per-
 135 turbations to an individual point guaranteeing a change in its DBSCAN assignment.

136 **Counterfactuals for Clustering or Outlier Detection.** Some recent work studies CEs for clus-
 137 tering. For prototype/mixture-style clustering, Vardakas et al. (2025) provide the first analytic for-
 138 mulations: for k -means, they derive a closed-form move that crosses the Voronoi boundary into a
 139 target cluster, and for Gaussian clustering, devise and solve a non-linear formulation. These methods
 140 leverage geometry and thus do not apply to density-based algorithms, where membership is defined
 141 by density-reachability rather than distances to prototypes. Spagnol et al. (2024) build on BayCon
 142 and propose model-specific scores: a distance-based score for k -means (scaled distance to the target
 143 centroid) and a membership-probability score for HDBSCAN (using the algorithm’s soft-clustering
 144 outputs). These scores guide a zero-order Bayesian optimisation loop to find CEs. While this makes
 145 BayCon-style search applicable to k -means and HDBSCAN¹, it provides no density-reachability
 146 guarantees and does not explain DBSCAN’s core/border/noise status.

147 Beyond clustering, counterfactuals have been explored for unsupervised outlier detection. Zhou
 148 et al. (2025) propose EACE, a method for explaining outliers by converting an outlier into a plausible
 149 inlier through minimal modifications. EACE generates one or more counterfactual samples that an
 150 anomaly detection model would classify as an inlier, effectively pointing to how an outlying instance
 151 could “behave” like the in-distribution data. Similarly, Angiulli et al. (2023) present a contrastive
 152 learning approach to repair outliers. Their technique identifies a subset of features and adjusted
 153 values (a “mask”) that would make an anomalous point no longer isolated, i.e., turn it into an inlier.

154 Both EACE (Zhou et al., 2025) and the density-contrastive “repair” (Angiulli et al., 2023) methods
 155 target outlier detection models that expose a continuous anomaly score (e.g., one-class SVM, kernel
 156 density estimators, autoencoders, Isolation Forest/LOF-style scores). Their goal is to decrease the
 157 anomaly score so that a point crosses a detector-specific decision threshold and becomes “normal,”
 158 which is highly relevant for detectors where “inlierness” is defined by that score. DBSCAN does
 159 not provide such a score, soft memberships, or gradients; it yields discrete core/border/noise assign-
 160 ments based on ε -reachability and $minPts$. Consequently, these counterfactual outlier detection
 161 methods optimise an objective that is orthogonal to ours, as they can make a point “less anomalous”

¹HDBSCAN uses soft memberships (McInnes et al., 2017; Campello et al., 2015) unlike original DBSCAN.

162 in a detector’s sense without guaranteeing that it becomes density-connected to a DBSCAN cluster.
 163 In contrast, ExDBSCAN includes both cluster-to-cluster and noise-to-cluster transitions.
 164

165 3 EXPLAINING DBSCAN WITH COUNTERFACTUAL REASONING

166 Consider data set $X = (x_1, \dots, x_l), x_i \in \mathbb{R}^n$ and cluster assignment from points $\mathcal{C} : X \rightarrow$
 167 $\{-1, 0, \dots, m - 1\}$ to one of m cluster labels, or to noise (-1). The popular density-based clus-
 168 tering approach DBSCAN (Ester et al., 1996) groups points based on a similarity notion mod-
 169 modelled as density-reachability. Clusters are maximal areas of density-connected points, sepa-
 170 rated from other clusters through sparse areas. It uses two parameters: ε , which defines the radius
 171 of local density assessment, and minPts , which specifies the minimum number of points re-
 172 quired to form a dense region. The ε -neighbourhood are the points within radius ε of a point p :
 173 $\mathcal{N}_\varepsilon(p) = \{q \mid \|p - q\|_2 \leq \varepsilon, \text{ with } p, q \in X\}$. DBSCAN distinguishes between dense *core points*,
 174 *border points* close to core points, and *noise points* or outliers, that do not belong to any cluster:
 175

176 **Definition 3.1** (Core, border, and noise points). The set of *core points* Q are points p that have at
 177 least minPts points in their ε -neighbourhood: $Q = \{p \in X \mid |\mathcal{N}_\varepsilon(p)| \geq \text{minPts}\}$. Points in
 178 $X \setminus Q$ are *border points* B , if they have at least one core point in their neighbourhood, else they are
 179 *noise*.

180 **Counterfactual Explanations (CEs).** CEs were first proposed as an optimisation problem
 181 by Wachter et al. (2017) for classification models:

182 **Definition 3.2** (Counterfactual Explanations). A set of k CEs for a point p under a classification
 183 model f , denoted as $C_k(p)$ minimises a cost function for which the classification outcome changes:

$$184 C_k(p) = \underset{p'_1, \dots, p'_k}{\operatorname{argmin}} \text{cost}(p, p') \text{ subject to } f(p) \neq f(p') \quad (1)$$

185 Counterfactual generation methods vary in the choice of cost function, typically balancing between
 186 desired properties, e.g., the distance between the original point p and the counterfactual p' or the
 187 pairwise distance between counterfactuals. In the conemph of density-based clustering, the cost
 188 function in Definition 3.2 takes into account the clustering algorithm’s concept of similarity.

189 3.1 COUNTERFACTUALS FOR DENSITY-BASED CLUSTERING

190 Counterfactual explanations provide value for clustering tasks by addressing the interpretability
 191 challenges in unsupervised learning. Unlike supervised learning where model decisions can be
 192 evaluated against known labels, clustering methods function without predefined classes. This leaves
 193 the task of understanding why certain groups are formed or why points are assigned to a particular
 194 cluster. CEs bridge this gap by revealing the minimal changes required to alter a point’s cluster as-
 195 signment, thus explaining group differences and influential features. Density-based clustering finds
 196 clusters of arbitrary shapes and can identify noise points. These capabilities can make the resulting
 197 clusterings difficult to interpret because the complex, non-convex cluster boundaries and the dis-
 198 tinction between core, border, and noise points are not immediately obvious. Users cannot easily
 199 identify which specific features or density thresholds have led to the assignments. Noise-to-cluster
 200 and cluster-to-cluster CEs reveal key features that determine density-based cluster membership.

201 **Cluster Assignment.** Counterfactual generation requires assigning out-of-dataset points so we can
 202 test whether a candidate lies in the target cluster. Because DBSCAN lacks a native assignment for
 203 new points, we keep the clustering fixed and define \mathcal{C} : point p belongs to cluster i iff there exists a
 204 core point q with $\mathcal{C}(q) = i$ within the ε -neighbourhood, such that $q \in \mathcal{N}_\varepsilon(p)$.

205 We restrict membership to core-point neighbourhoods, as placing a CE near a border does not ensure
 206 density-connectivity (and may violate DBSCAN’s membership definition). Fixing the clustering
 207 also avoids the computational and conceptual pitfalls of re-clustering (e.g., merges or new clusters),
 208 ensuring we explain the original structure rather than one altered by the CEs.

209 Generating multiple diverse CEs, rather than a single instance, enhances explanatory value by prob-
 210 ing cluster-assignment boundaries from different directions, giving stakeholders a thorough view
 211 of the clustering algorithm’s behaviour. Multiple examples help surface explanatory trends (e.g.,

216 features repeatedly changed likely matter for assignment) and reduce perceived arbitrariness, im-
 217 proving trust (Miller, 2019). Regarding actionability (feasibility of the proposed change), options
 218 differ by context, e.g., in a medical setting, changing the respiratory rate vs. the oxygen saturation
 219 may be more or less realistic for a given patient; thus, offering several paths raises the chance that at
 220 least one is realistic and acceptable (Stepin et al., 2021).

221 It is thus crucial that CEs demonstrate diversity (Laugel et al., 2023). CEs that differ only marginally
 222 are redundant and fail to highlight differences among clusters (Mothilal et al., 2020). High redun-
 223 dancy adds no valuable information, for example, two counterfactuals that vary by only 0.1 breaths
 224 per minute in respiratory rate are effectively indistinguishable and convey the same information.
 225 While diversity is essential, CEs that stray too far from the explained point risk suggesting unre-
 226 alistic changes. If a CE bears little in common to the point being explained, human stakeholders
 227 may struggle to relate the two and reason about their differences. Proximity therefore remains fun-
 228 damental to counterfactual reasoning, as it increases both the realism and feasibility while reducing
 229 cognitive load for stakeholders, as there are less overall changes (Miller, 2019).

230

231 3.2 ExDBSCAN: EXPLAINING DBSCAN WITH COUNTERFACTUAL REASONING

232

233 ExDBSCAN addresses these requirements by generating valid sets of counterfactuals that balance
 234 proximity and diversity. Users can specify their number and the target cluster to meet their needs.

235 **Inter-Cluster Concept of Distance.** In CE literature, density is used as a proxy for the ease of
 236 moving between points or feasibility (Poyiadzi et al., 2020; Zhou et al., 2025; Yamao et al., 2024;
 237 Kanamori et al., 2020). In DBSCAN, cluster members are density-connected, so a counterfactual
 238 that moves within a cluster stays in dense regions with similar neighbours, enabling realistic paths.
 239 However, because DBSCAN discovers arbitrary shapes, two points can be close in Euclidean² yet
 240 require a long density-connected path; straight-line distance can therefore overstate similarity.

241 CEs that look redundant under Euclidean distance, i.e., proposals close in straight-line distance,
 242 may still be meaningfully diverse once DBSCAN’s density structure is considered. Euclidean close
 243 points can lie in different density-reachable regions and thus represent distinct alternatives. Relying
 244 on Euclidean distance risks “cutting through” clusters and ignoring connectivity, yielding explana-
 245 tions that misstate feasibility. We illustrate this in Appendix A.6.

246 To address the challenge and incorporate DBSCAN’s notion of similarity, we define proximity as the
 247 length of the weighted density-connected path. For each cluster, we build an undirected weighted
 248 graph $G(V, E)$ whose vertices V are core points; edges connect two vertices if they are directly
 249 density-reachable (distance $< \varepsilon$) and edge weight is their distance. The distance between any two
 250 points is then the weighted shortest-path in G . Thus, instances are “close” only if an easy path
 251 connects them, letting us evaluate diversity while respecting the cluster’s internal structure; ignoring
 252 this structure can misrepresent separations and, consequently, diversity.

253 **Reference Core Point.** Given our definition of the assignment function, a CE is assigned to the
 254 target cluster iff it falls within the ε -neighbourhood of a cluster’s core points. When selecting a
 255 point in the space as a CE, we naturally associate it with its nearest core point. To properly leverage
 256 the weighted graph G that captures the cluster’s structure, we identify the most appropriate reference
 257 core point for each proposed CE and generate the CE example within its ε -neighbourhood. Hence, a
 258 set of ExDBSCAN CEs correspond directly to a set of vertices in graph G , namely the cluster’s core
 259 points. We denote the set of CEs for point p as $C_k(p)$, while $C'_k(p)$ represents the corresponding set
 260 of reference core points.

261 **Proximity Through Attraction.** By definition, the most proximal CEs are the ones closest to the
 262 point to explain p . Given k CEs, the set of core points $C'_k(p)$ maximising proximity will thus be
 263 composed of the k nearest core points of p . As p and candidate core points are not density connected,
 264 the distance metric used is the one employed for fitting DBSCAN.

265 **Diversity Through Repulsion.** In CEs, a set is diverse when its members are mutually dissimi-
 266 lar (Mothilal et al., 2020). One class of methods enforces this by maximising pairwise distances;
 267 variants of the maximum diversity problem (MDP) (Laugel et al., 2023; Ley et al., 2022). An-

268
 269 ²In this paper, we use the Euclidean distance as it is the most popular metric. A discussion on different
 metrics is in App. A.4

270 other models diversity via repulsion, minimising similarity between selected instances; determinantal point processes are common realisations, probabilistically favouring diverse subsets (Mothilal
 271 et al., 2020; Kulesza et al., 2012; Afrabandpey & Spranger, 2022).

272 We observe that simply adopting (Euclidean) distance falls short for DBSCAN: its very notion of
 273 similarity is density-connectivity. Thus, the challenge is to model proximity and diversity using
 274 density-connectivity. We adopt a repulsion-based approach that prevents redundant counterfactuals,
 275 as repulsion forces increase substantially as points converge. In contrast, maximising pairwise
 276 distances remains more forgiving toward closely positioned instances, provided that other point pairs
 277 maintain sufficient separation to preserve overall diversity. Also, repulsion interactions naturally
 278 produce more evenly distributed selections across the solution space. In our density-based setting,
 279 we implement this diversity measure using the weighted shortest path distance defined by graph G
 280 to evaluate pairwise distances in a cluster. This ensures that our diversity metric respects the cluster's
 281 density-connectivity structure rather than relying on simple Euclidean distances that could cut
 282 through the cluster and misrepresent the actual relationships between points.

283 **Balancing Proximity and Diversity.** ExDBSCAN generates multiple CEs that ensure both proximity
 284 and diversity; an inherent trade-off since closer alternatives are often less diverse. We resolve this
 285 by modelling a physical system and selecting its equilibrium (the minimum-energy configuration),
 286 where the proximity-diversity balance is optimal.

287 For diversity, we treat candidate core points as like-charged particles with Coulomb's electrostatic
 288 law (Halliday et al., 2013), pushing already selected cores apart so the minimum-energy set is max-
 289 imally spread; making the minimum energy configuration the most diverse.

290 For proximity, we bias chosen core points to be close to the original point, by connecting the latter
 291 with a spring to candidate core points. The further the candidate CE, the stronger the force pushing
 292 it closer to the original instance, the force scales linearly with the weighted path distance according
 293 to Hooke's law (Halliday et al., 2013). Proposition 1 states how the minimum energy configuration
 294 caused by the spring-like interactions, selects the closest core points, accounting for proximity.

295 The aim is to find the system's stable configuration, i.e., the one that minimises the energy of the
 296 physical system. Spring-like forces bias the system to select points closest to the original instance
 297 as springs push towards their rest state; i.e., when explained point and candidate core point have a
 298 null distance. Electrostatic-like repulsion favours core points to be pairwise distant (according to the
 299 shortest weighted path distance), as same-charged particles push each other away. The minimum
 300 energy configuration balances the springs' desire to go back to their rest configuration with the
 301 charges' desire to spread as much as possible. Hence, given a set $C'(p)$ of chosen core points, and
 302 point to explain p , the energy configuration of the system has the form:

$$E_{C'} = \sum_{V_i \in C'} \sum_{V_j \in C': j > i} \frac{1}{\mathcal{D}(V_i, V_j)} + \sum_{V_i \in C'} d^2(p, V_i) \quad (2)$$

303 V_i is the i th vertex of graph G , $\mathcal{D}(V_i, V_j)$ denotes the weighted shortest path distance between
 304 vertices V_i and V_j . Lastly, $d(p, V_i)$ is the Euclidean distance between the point to explain p and
 305 vertex V_i .³ We evaluate physical constants characterising spring and electrostatic terms in Eq. 2 as 1,
 306 as we are only interested in how energy terms scale with distance. To find the optimal configuration
 307 of the system and thus, the set of \mathcal{C} , we find the subset \mathcal{C}' of vertices V minimising system energy:

$$C'_k(p) = \underset{B \in V : |B|=k}{\operatorname{argmin}} E_B \quad . \quad (3)$$

308 The energy term in Eq. 2 can be seen as ExDBSCAN's cost function in the formalism introduced
 309 in Eq. 1. Fig. 1 shows how a solution of Eq. 3 looks like on a toy dataset where counterfactuals are
 310 produced for a noise point. On the left of Fig. 1, considering the electrostatic term only leads to
 311 maximally diverse counterfactuals. On the right, using just spring-like terms make counterfactuals
 312 maximally proximal. In the middle, balancing repulsion and attraction considering the cluster's
 313 density structure, prompts proximal and spread-out counterfactuals. We observe the following:

314 **Proposition 1.** Aligning with our desiderata on proximity, if considering only the spring-like term in
 315 Eq. 2, solving the optimisation problem in Eq. 3 is equivalent to selecting the k nearest neighbours
 316 of the point to explain p .

317
 318
 319
 320
 321
 322
 323
³Depending on the dataset's and cluster's structure distances $d(p, V_i)$ and $\mathcal{D}(V_i, V_j)$ might have different
 scales. Because of this, we use a normalisation scheme introduced in Appendix A.3.

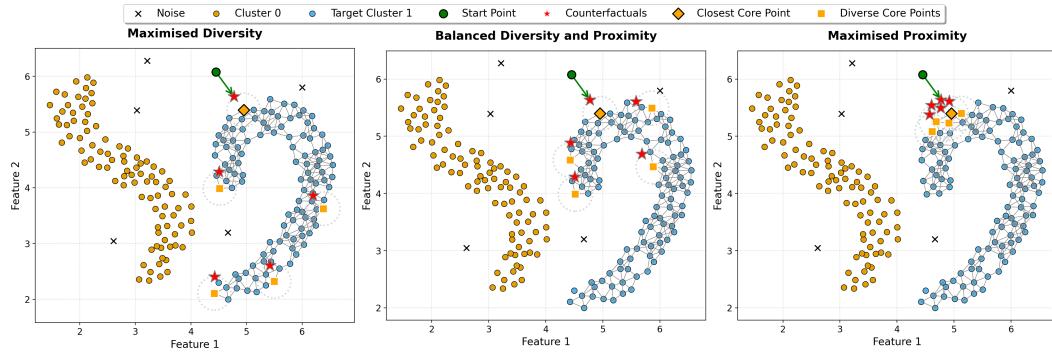


Figure 1: Optimising diversity (left), balanced (middle), optimising proximity (right). Cluster points in yellow and blue, resp.; noise marked with X; green point to be explained; red stars counterfactuals.

Proof. From Eq. 2, and by induction, when the set of core points is empty, the core minimising the elastic energy of the system is the closest to the point to explain p (minimum possible distance). As far as the induction step, given a set of $k' < k$ selected core points, the next core point to be selected, i.e., the one minimising the total elastic energy, is given by the closest non-selected core-point p . \square

Solving the optimisation problem in Eq. 3 is computationally challenging.

Proposition 2. *Solving Eq. 3, i.e. the energy minimisation problem with both attraction and repulsion, is an NP-hard problem.*

Proof. (Sketch, full in Appendix A.7) Maximum diversity problems are NP-hard (Parreño et al., 2021). Eq. 3 restricted to the electrostatic term can be mapped to the MDP. Adding springs does not change NP-hardness: If it did, the MDP could be solved in polynomial time sending spring constants to zero. \square

We approximate the solution using the following greedy algorithm. Given an incomplete set of selected core points C'_k with $k' < k$, the next cluster point is chosen as the one minimising the total energy of the system according to Eq. 2. When choosing the instance initialising the set of core points, C' is still empty and thus no repulsive electrostatic-like force influences the choice. C' will thus be initialised with the core point closest to the point to explain since it is the one greedily minimising the energy configuration, composed by a single spring-like term. **Note in the case with only one counterfactual, the greedy optimisation corresponds to the optimal one according to Eq. 2.**

Choosing the set of counterfactuals C . Our chosen set of core points C' leverages the clusters' density structure to optimally balancing proximity and diversity through the weighted undirected graph G . Given C' , we need to select where in each core point's ε neighbourhood the counterfactual is going to be placed, practically mapping C' to the final set of counterfactuals C . Given a single core point q in C' , to further improve proximity and respecting our assignment function definition, we position the counterfactual $p' \in C$, ε away in the direction of the original point p :

$$p' = p + (d_{pq} - \varepsilon)(q - p)/d_{pq} \cdot e \quad (4)$$

The counterfactual point p' is considered part of the cluster containing reference core point q , as it satisfies the density-based clustering criteria for the target cluster, effectively ensuring validity.

Theorem 3.1. *Every counterfactual point p' with reference core point q , such that $\mathcal{C}(q) = i$, $i \neq -1$, that is generated for a point $p \in X$: $\mathcal{C}(p) \neq i$ toward cluster i with the proposed method, is considered part of cluster i , implying that $\mathcal{C}(p') \neq \mathcal{C}(p)$ and $C(p') = i$, and thus valid counterfactual.*

Proof. (Sketch) The definition in Section 3.1 denotes that p' is in the same cluster as its reference core point q with $\mathcal{C}(q) = i$, therefore $\mathcal{C}(p') \neq \mathcal{C}(p)$ and specifically $\mathcal{C}(p') = i$. \blacksquare

378 How to retrieve the set of counterfactuals C when a set of features is non-actionable is detailed in
 379 Appendix A.5 where we show how ExDBSCAN creates a graph only considering reference core
 380 points whose ε neighbourhood is reachable without changing non-actionable features.
 381

382 4 EXPERIMENTS

383 **Experimental Setup.** We study 30 OpenML tabular datasets (Vanschoren et al., 2013)⁴ to assess
 384 counterfactuals in terms of being *valid*, *proximal*, and *diverse*. For each dataset we find the best
 385 (ε , minPts) by grid search wrt. DBCV score (Moulavi et al., 2014). Details in App. in Table 1.
 386 We compare ExDBSCAN to BAYCON, a model-agnostic counterfactual method. BAYCON treats
 387 the clustering as a black-box prediction task, repeatedly querying it with candidate points and using
 388 Bayesian optimisation to search the feature space. BAYCON finds counterfactuals, but does not
 389 utilise DBSCAN’s density-connectivity. BAYCON is a state-of-the-art model-agnostic competitor,
 390 but lacks the guarantees and structural awareness that ExDBSCAN provides for obtaining multiple
 391 CEs. For each cluster C_i or noise partition N , sample 10 points randomly. For each sampled point
 392 $p \in C_i$, create a target for every other cluster C_j with $j \neq i$ yielding $10 \times \sum_{i=1}^m (m-1) + 10 \times m$
 393 queries per dataset. Each query asks to produce a set of $k = 10$ CEs in the specified target cluster.
 394

- 395 1) **Validity (\uparrow)**: Proportion of returned k counterfactuals that reach the target cluster (i.e., the CE is
 396 part of the target cluster). When no CE is found, validity is zero for that query.
 397 2) **Average Proximity (\downarrow)**: Mean distance from original point p to each valid returned CE, measured
 398 in DBSCANS clustering feature space. Lower values indicate that the CE more closely resembles
 399 the explained point.
 400 3) **Average Diversity (\uparrow)**. We want k CEs to offer diverse solutions in the target cluster, not minor
 401 variants of the same information. We therefore measure the average similarity (defined as the
 402 inverse of the pairwise weighted shortest path distance), and use its inverse to report diversity.

403 For a compact, per-dataset comparison we visualise three stacked barbell plots (Fig. 2): *Validity* (top,
 404 higher is better), *Average Proximity* (middle, lower is better), and *Average Diversity* (bottom, higher
 405 is better). Datasets are ordered by BAYCON validity (descending). For each dataset, connectors link
 406 *BayCon* (red markers) and ExDBSCAN (blue markers) to emphasise within-dataset differences.
 407

408 **Validity Results.** In the top view in Figure 2, ExDBSCAN obtains perfect validity on all datasets,
 409 meaning every generated CE successfully attains the target cluster assignment. In contrast, BAY-
 410 CON shows substantial variability in validity, with scores ranging from near-zero on several datasets
 411 to ≈ 0.8 on the best-performing datasets. On the *census6* dataset, BAYCON even entirely fails
 412 to produce any valid counterfactual. These differences reflect the fundamental distinction in how
 413 the methods operate. ExDBSCAN’s validity guarantee stems from its construction by following
 414 density-reachable paths through the graph and positioning CEs within ε -neighbourhoods of target
 415 core points. The experiments thus empirically confirm the validity by design as stated in The-
 416 orem 3.1. Every step of the CE generation process respects DBSCAN’s density-connectivity struc-
 417 ture, guaranteeing that the final CE satisfies the cluster membership criteria.
 418

419 BAYCON, conversely, treats the clustering as a black-box prediction task and explores the feature
 420 space using Euclidean distance without awareness of DBSCAN’s connectivity requirements. It can
 421 propose changes that move points toward target clusters in a straight-line distance, but do not achieve
 422 the density-connectivity that DBSCAN requires for membership. This is precisely why a DBSCAN-
 423 specific method proves valuable, because model-agnostic approaches lack the structural knowledge
 424 to reliably generate valid density-based CEs. The inferior results from BAYCON are thus not due to
 425 poor optimisation, but rather due to a fundamental mismatch between the Euclidean search strategy
 426 and DBSCAN’s density-based decision boundaries.

427 **Proximity Results.** The middle view in Figure 2, reveals that ExDBSCAN consistently produces
 428 more proximal counterfactuals than BAYCON across all datasets. When comparing only valid CEs
 429 from both methods, ExDBSCAN achieves lower proximity scores in every case. The superiority in
 430 proximity is notable given ExDBSCAN’s perfect validity as this means that our method does not

431 ⁴Dataset details and reproducible code: Link to repository.

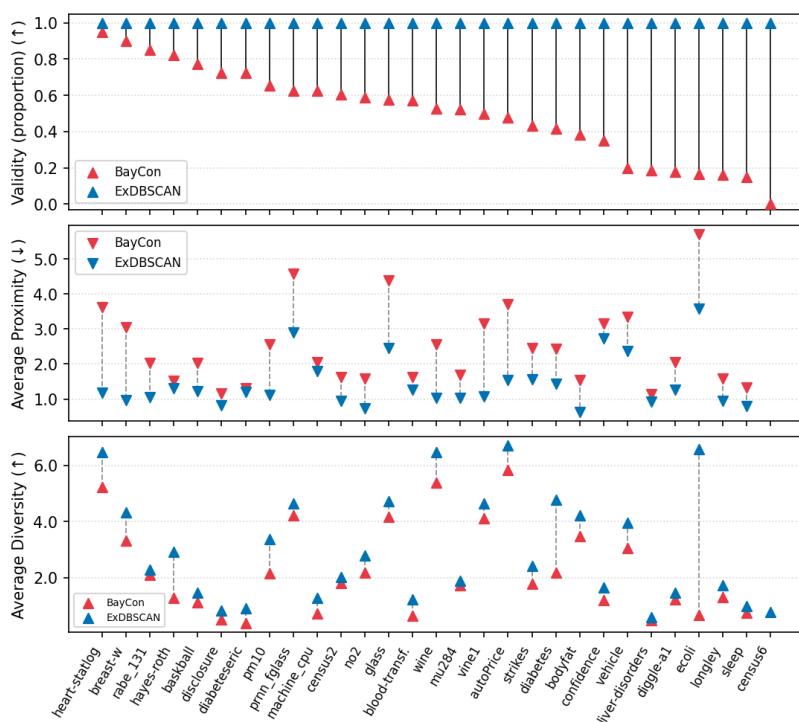


Figure 2: **CE quality metrics for 30 datasets (x-axis).** BAYCON (red) and ExDBSCAN (blue) barbells on same dataset. *Top:* Validity (proportion of counterfactuals that attain target; \blacktriangle better). *Middle:* Avg. proximity of valid CEs (\blacktriangledown better). *Bottom:* Avg. diversity as mean distance (\blacktriangle better).

sacrifice one for the other. The physics-inspired optimisation balances the spring-like forces pulling CEs toward the original point with the repulsion-like forces ensuring diversity. BAYCON’s higher proximity values suggest it often makes larger less targeted changes to achieve cluster reassignment, likely because it cannot leverage the density-connected pathways that ExDBSCAN does.

Diversity Results. The bottom view in Figure 2 shows that ExDBSCAN generates more diverse sets than BAYCON, as measured by mean pairwise distance within the density-reachability graph. This diversity advantage is meaningful because it indicates that EXDBSCAN’S CEs span different areas of the target cluster. The diversity arises from the repulsion component of the energy system, which pushes selected core points apart according to their graph-based distance. BAYCON’s lower diversity scores suggest its CEs tend to concentrate in limited areas of the feature space, providing more redundancy and thus less comprehensive exploration of alternative ways to achieve cluster membership. Note, ExDBSCAN achieves superior diversity, better proximity and perfect validity.

Due to lack of space, we defer additional experiments that demonstrate that ExDBSCAN also performs very well when a set of features is non-actionable and thus not helpful in CEs, to App. A.9.2.

5 CONCLUSION AND FUTURE WORK

We proposed ExDBSCAN, a novel counterfactual reasoning framework for density-based clustering. In extensive experiments, we showcase that ExDBSCAN generates diverse, valid, and proximal counterfactuals. With our physics-inspired diversity model we balance diversity and proximity when generating sets of counterfactuals. ExDBSCAN enhances the application of DBSCAN to ensure interpretability and thus user trust. Future work concentrates on generating counterfactuals for incremental density-based clustering as necessary for, e.g., streaming data.

486 REPRODUCIBILITY STATEMENT
487488 We include an anonymised GitHub, including all code necessary to reproduce our experiments.
489490 REFERENCES
491492 Homayun Afrabandpey and Michael Spranger. Feasible and desirable counterfactual generation by
493 preserving human defined constraints. *arXiv preprint arXiv:2210.05993*, 2022.494 Fabrizio Angiulli, Fabio Fassetti, Simona Nisticò, and Luigi Palopoli. Counterfactuals explanations
495 for outliers via subspaces density contrastive loss. In Albert Bifet, Ana Carolina Lorena, Rita P.
496 Ribeiro, João Gama, and Pedro H. Abreu (eds.), *Discovery Science - 26th International Con-
497 ference, DS 2023, Porto, Portugal, October 9-11, 2023, Proceedings*, volume 14276 of *Lecture
498 Notes in Computer Science*, pp. 159–173, Porto, Portugal, 2023. Springer.499
500 Sayan Bandyapadhyay, Fedor V Fomin, Petr A Golovach, William Lochet, Nidhi Purohit, and Kirill
501 Simonov. How to find a good explanation for clustering? *Artificial Intelligence*, 322:103948,
502 2023.503 Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. Hierarchical density
504 estimates for data clustering, visualization, and outlier detection. *ACM Transactions on Knowl-
505 edge Discovery from Data*, 10(1):5:1–5:51, 2015. doi: 10.1145/2733381.506
507 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for dis-
508 covering clusters in large spatial databases with noise. In *Proceedings of the Second International
509 Conference on Knowledge Discovery and Data Mining (KDD-96)*, pp. 226–231, Portland, OR,
510 USA, 1996. AAAI Press.511 Ravi BD Figueiredo and Hugo A Mendes. Analyzing information leakage on video object detection
512 datasets by splitting images into clusters with high spatiotemporal correlation. *IEEE Access*,
513 2024.514 Ziad Francis, Carmen Villagrasa, and Isabelle Clairand. Simulation of dna damage clustering af-
515 ter proton irradiation using an adapted dbscan algorithm. *Computer methods and programs in
516 biomedicine*, 101(3):265–270, 2011.517
518 Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and bench-
519 marking. *Data Mining and Knowledge Discovery*, 38(5):2770–2824, 2024.520 David Halliday, Robert Resnick, and Jearl Walker. *Fundamentals of physics*. John Wiley & Sons,
521 2013.522
523 Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. Dace: Distribution-aware
524 counterfactual explanation by mixed-integer linear optimization. In *Proceedings of the 29th In-
525 ternational Joint Conference on Artificial Intelligence (IJCAI)*, pp. 2855–2862, Yokohama, Japan,
526 2020. IJCAI Organization.527
528 Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from coun-
529 terfactual explanations to interventions, 2020. URL <https://arxiv.org/abs/2002.06278>.530
531 Been Kim, Rajiv Khanna, and Oluwasanmi Koyejo. Examples are not enough, learn to criticize!
532 criticism for interpretability. In *Advances in Neural Information Processing Systems (NeurIPS
533 2016)*, pp. 2280–2288, 2016.534
535 Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. *Foundations
536 and Trends® in Machine Learning*, 5(2–3):123–286, 2012.537 Bum Chul Kwon, Ben Eysenbach, Janu Verma, Kenney Ng, Adam Perer, Christopher deFilippi, and
538 Walter F. Stewart. Clustervision: Visual supervision of unsupervised clustering. *IEEE Transac-
539 tions on Visualization and Computer Graphics*, 24(1):142–151, 2018. doi: 10.1109/TVCG.2017.
2744818.

- 540 Thibault Laugel, Adulam Jeyasothy, Marie-Jeanne Lesot, Christophe Marsala, and Marcin De-
 541 tyniecki. Achieving diversity in counterfactual explanations: a review and discussion. In *Proce-
 542 dings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, pp. 1859–1869,
 543 2023.
- 544 Dan Ley, Umang Bhatt, and Adrian Weller. Diverse, global and amortised counterfactual expla-
 545 nations for uncertainty estimates. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 546 volume 36, pp. 7390–7398, 2022.
- 547 Bingqiao Luo, Zhen Zhang, Qian Wang, Anli Ke, Shengliang Lu, and Bingsheng He. Ai-powered
 548 fraud detection in decentralized finance: A project life cycle perspective. *ACM Computing Sur-
 549 veys*, 57(4):1–38, 2024.
- 550 Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering.
 551 *Journal of Open Source Software*, 2(11):205, 2017. doi: 10.21105/joss.00205. URL <https://www.theoj.org/joss-papers/joss.00205/10.21105.joss.00205.pdf>.
- 552 Nijat Mehdiyev, Maxim Majlatow, and Peter Fettke. Counterfactual explanations in the big picture:
 553 An approach for process prediction-driven job-shop scheduling optimization. *Cogn. Comput.*,
 554 16(5):2674–2700, 2024. doi: 10.1007/S12559-024-10294-0. URL <https://doi.org/10.1007/s12559-024-10294-0>.
- 555 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. *Artificial intel-
 556 ligence*, 267:1–38, 2019.
- 557 Christoph Molnar. *Interpretable machine learning*. Lulu. com, 2020.
- 558 Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, and Nave Frost. Explainable k -means and
 559 k -medians clustering. In *Proceedings of the 37th International Conference on Machine Learning
 560 (ICML 2020)*, volume 119 of *Proceedings of Machine Learning Research*, pp. 7055–7065. PMLR,
 561 2020.
- 562 Ramaravind Kommiya Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning
 563 classifiers through diverse counterfactual explanations. In Mireille Hildebrandt, Carlos Castillo,
 564 L. Elisa Celis, Salvatore Ruggieri, Linnet Taylor, and Gabriela Zanfir-Fortuna (eds.), *FAT* '20:
 565 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, January 27-30,
 566 2020*, pp. 607–617. ACM, 2020. doi: 10.1145/3351095.3372850. URL <https://doi.org/10.1145/3351095.3372850>.
- 567 Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J. G. B. Campello, Arthur Zimek, and Jörg Sander.
 568 Density-based clustering validation. In *SDM*, 2014.
- 569 Francisco Parreño, Ramón Álvarez-Valdés, and Rafael Martí. Measuring diversity. a review and an
 570 empirical analysis. *European Journal of Operational Research*, 289(2):515–532, 2021.
- 571 Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: Feasible
 572 and actionable counterfactual explanations. In *Proceedings of the AAAI/ACM Conference on AI,
 573 Ethics, and Society*, AIES '20, pp. 344–350, New York, NY, USA, February 2020. ACM.
- 574 Piotr Romashov, Martin Gjoreski, Kacper Sokol, Maria Vanina Martinez, and Marc Langheinrich.
 575 Baycon: Model-agnostic bayesian counterfactual generator. In Luc De Raedt (ed.), *Proceedings
 576 of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
 577 Austria, 23-29 July 2022*, pp. 740–746. ijcai.org, 2022. doi: 10.24963/IJCAI.2022/104. URL
 578 <https://doi.org/10.24963/ijcai.2022/104>.
- 579 Fabian Scholbeck, Lukas Funk, and Giuseppe Casalicchio. Algorithm-agnostic feature attributions
 580 for clustering (fact). In *Explainable Artificial Intelligence*, Communications in Computer and
 581 Information Science. Springer, 2023. doi: 10.1007/978-3-031-44064-9_13. xAI 2023 Workshop
 582 Chapter.
- 583 Aurora Spagnol, Kacper Sokol, Pietro Barbiero, Marc Langheinrich, and Martin Gjoreski. Coun-
 584 terfactual explanations for clustering models. *arXiv preprint arXiv:2409.12632*, abs/2409.12632:
 585 1–12, 2024.

- 594 Ilia Stepin, Jose M Alonso, Alejandro Catala, and Martín Pereira-Fariña. A survey of contrastive and
 595 counterfactual explanation generation methods for explainable artificial intelligence. *Ieee Access*,
 596 9:11974–12001, 2021.
- 597
- 598 Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in
 599 machine learning. *SIGKDD Explorations*, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.
 600 URL <http://doi.acm.org/10.1145/2641190.2641198>.
- 601 Georgios Vardakas, Antonia Karra, Evangelia Pitoura, and Aristidis Likas. Counterfactual expla-
 602 nations for k-means and gaussian clustering. *arXiv preprint arXiv:2501.10234*, 2025. URL
 603 <https://arxiv.org/abs/2501.10234>.
- 604 Giorgio Visani, Enrico Bagli, Federico Chesani, Alessandro Poluzzi, and Davide Capuzzo. Sta-
 605 tistical stability indices for lime: Obtaining reliable explanations for machine learning models.
 606 *Journal of the Operational Research Society*, 73(1):91–101, 2022.
- 607
- 608 Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. Counterfactual explanations without open-
 609 ing the black box: Automated decisions and the GDPR. *CoRR*, abs/1711.00399, 2017. URL
 610 <http://arxiv.org/abs/1711.00399>.
- 611 Shoki Yamao, Ken Kobayashi, Kentaro Kanamori, Takuya Takagi, Yuichi Ike, and Kazuhide Nakata.
 612 Distribution-aligned sequential counterfactual explanation with local outlier factor. In *Pacific Rim
 613 International Conference on Artificial Intelligence*, pp. 243–256, Nagoya, Japan, 2024. Springer.
- 614
- 615 Wenzhuo Yang, Jia Li, Caiming Xiong, and Steven C. H. Hoi. MACE: an efficient model-agnostic
 616 framework for counterfactual explanation. *CoRR*, abs/2205.15540, 2022. doi: 10.48550/ARXIV.
 617 2205.15540. URL <https://doi.org/10.48550/arXiv.2205.15540>.
- 618 Yining Yuan, Kevin McAreavey, Shujun Li, and Weiru Liu. Multi-granular evaluation of diverse
 619 counterfactual explanations. In Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik (eds.),
 620 *Proceedings of the 16th International Conference on Agents and Artificial Intelligence, ICAART
 621 2024, Volume 2, Rome, Italy, February 24-26, 2024*, pp. 186–197. SCITEPRESS, 2024. doi:
 622 10.5220/0012349900003636. URL <https://doi.org/10.5220/0012349900003636>.
- 623 Peng Zhou, Qihui Tong, Shiji Chen, Yunyun Zhang, and Xindong Wu. Eace: Explain anomaly via
 624 counterfactual explanations. *Pattern Recognition*, 164:111532, 2025.
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 **A APPENDIX**649 **A.1 LLM STATEMENT**650
651 No generative AI tools were used in the writing of the paper and at any stage of this research.
652
653654 **A.2 ALGORITHM PSEUDOCODE**655
656 To complement Section 3.2 we include full pseudocode for the following two components of ExDB-
657 SCAN:
658

- 659 1. Selection of
- k
- reference core points via greedy minimisation of energy function in Eq. 3.
-
- 660 2. Generation of counterfactual examples from the selected core points using Eq. 4
-
- 661

662 These algorithms make explicit the operations described in the main text and show how proximity
663 and diversity are jointly optimised.
664665 **A.2.1 GREEDY SELECTION OF CORE POINTS**
666667 Given a point p to be explained and a target cluster, the first step of ExDBSCAN is to select a set of
668 k core points whose ε -neighbourhoods will serve as the basis for constructing counterfactuals. The
669 energy of a candidate set C' is:
670

671
$$E_{C'} = \sum_{V_i \in C'} \sum_{V_j \in C': j > i} \frac{1}{\mathcal{D}(V_i, V_j)} + \sum_{V_i \in C'} d^2(p, V_i).$$

672
673

674 The optimisation problem in Eq. 3 is NP-hard (Proposition 2), so we use a greedy approximation.
675 For $k = 1$, this procedure returns the optimal solution.
676677 **Algorithm 1** Greedy Selection of Core Points

678 **Require:** Point to explain p ; set of core points V ; number of counterfactuals k ; weighted graph
679 distance $\mathcal{D}(\cdot, \cdot)$; feature-space distance $d(\cdot, \cdot)$; target cluster t .

680 **Ensure:** Set C' of k selected core points

681 1: $C' \leftarrow \emptyset$
 2: $V^t = \{V_j : V_j \in t\}$
 3: **while** $|C'| < k$ **do**
 4: $best_core \leftarrow \text{None}$, $best_energy \leftarrow +\infty$
 5: **for** each core point $V_j \in V \setminus C'$ **do**
 6: $S \leftarrow C' \cup \{V_j\}$
 7: $E_S \leftarrow 0$ ▷ Repulsion term (graph distances)
 8: **for** all pairs (V_i, V_ℓ) in S with $\ell > i$ **do**
 9: $E_S \leftarrow E_S + \frac{1}{\mathcal{D}(V_i, V_\ell)}$
 10: **end for** ▷ Attraction term (feature-space distance)
 11: **for** all $V_i \in S$ **do**
 12: $E_S \leftarrow E_S + d^2(p, V_i)$
 13: **end for**
 14: **if** $E_S < best_energy$ **then**
 15: $best_energy \leftarrow E_S$
 16: $best_core \leftarrow V_j$
 17: **end if**
 18: **end for**
 19: $C' \leftarrow C' \cup \{best_core\}$
 20: **end while**
 21: **return** C'

All shortest-path distances $\mathcal{D}(V_i, V_j)$ are precomputed once for the target cluster. Evaluating each candidate core point requires $O(|C'|)$, yielding a total complexity of $O(km)$ where $m = |V|$.

A.2.2 CONSTRUCTING COUNTERFACTUALS

Once the set of reference core points $C' = \{q_1, \dots, q_k\}$ has been selected, each counterfactual p' is placed inside the ε -neighbourhood of its corresponding core point q . To maximise proximity to the original point p , we move away from p towards q and stop at distance ε from q . This corresponds exactly to Eq. 4 in the main text. Because each constructed point lies within ε of a core point in the target cluster, Theorem 3.1 guarantees that all counterfactuals are valid. Algorithm 2 summarises the procedure through pseudocode.

Algorithm 2 Generate Counterfactuals from Selected Core Points

Require: Point p ; selected core points $C' = \{q_1, \dots, q_k\}$; DBSCAN radius ε ; feature-space metric $d(\cdot, \cdot)$

Ensure: Set C of k counterfactuals

1: $C \leftarrow \emptyset$

```

2: for all  $q_j \in C'$  do
3:    $d_{pq} \leftarrow d(p, q_j)$        $\triangleright$  By construction,  $d_{pq} > 0$  since  $p$  and  $q_j$  belong to different clusters
4:   direction  $\leftarrow (q_j - p)/d_{pq}$ 
5:    $p' \leftarrow p + (d_{pq} - \varepsilon) \cdot \text{direction}$            $\triangleright$  Eq. 4
6:    $C \leftarrow C \cup \{p'\}$ 
7: end for
8: return  $C$ 

```

Because each p' lies within distance ε of a core point in the target cluster, the construction ensures all counterfactuals are valid.

A.2.3 TARGET CLUSTER NOT SPECIFIED

Pseudocode 1 requires the target cluster in input. The user could prefer not to specify a certain target cluster, e.g. if the user wants to convert a noise point to a generic non-noise instance. In this case, pseudocode 1 would need to be slightly changed on line 8. Specifically, instead of adding a repulsion term for each pair of core points already selected unconditionally, we add it only if they belong to the same cluster. Points belonging to different cluster are indeed already diverse by construction and they are not connected through any density connected path according to DBSCAN's algorithm.

A.3 NORMALISATION SCHEME

The distance $d(p, V_i)$ from candidate core points V_i to the explained point p and the distances between candidate core points $\mathcal{D}(V_i, V_j)$, could have different scales depending on the the dataset, with $d(p, V_i)$ potentially being bigger as it connects points that are not in a cluster. In order to prevent the spring-like term to dominate, given the distance d_c from p to the closest core point, and the average graph weight $\bar{\mathcal{D}}$, we scale distances $\mathcal{D}(V_i, V_j)$ by $d_c/\bar{\mathcal{D}}$.

A.4 METRIC

By design, ExDBSCAN is agnostic to metrics. That being said, if DBSCAN is fit on a metric different to euclidean, e.g., Minkowski, cosine, Mahalanobis, or mixed-type metrics, ExDBSCAN can be easily adjusted to this. Instead of using euclidean distance, we can employ any other distance metric to determine reference core-points as well as solving the energy-minimisation to produce diverse and proximal counterfactuals. We also highly advise, to then also use the same metric in ExDBSCAN that was selected for DBSCAN clustering to maintain consistency in the concepts of density-reachability and graph connectivity. Furthermore, we advise employing this chosen metric to evaluate proximity and diversity, as the underlying structure of the data and clustering depends on it.

756 A.5 NON-ACTIONABLE FEATURES
757

758 Actionability ensures that the generated CEs are actionable, i.e., a user can actually realistically
759 change the features. Non-actionable features as genetic information or inherent personal attributes,
760 including age and gender, make explanations unrealistic and prevent human stake-holders to simu-
761 late and apply the proposed changes.

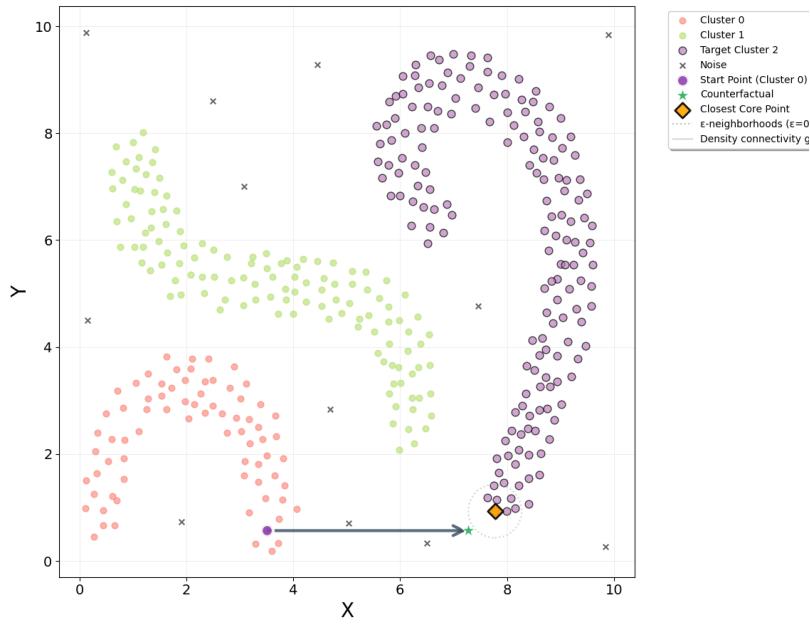
762

763 A.5.1 NON-ACTIONABLE FEATURES IN EXDBSCAN
764

765 To account for non-actionable features, we restrict the set of core points to consider, when iden-
766 tifying the set C' . The constrained set of core points includes all core points that are not further
767 than ε away from the original point when measuring distances in the subspace defined by the non-
768 actionable features $\mathbb{R}^{n'}$, with $n' < n$ the number of non-actionable features. In this way, we take
769 into consideration only core points whose ε neighbourhood is reachable without changing any of the
770 non-actionable features.

771 The undirected weighted graph G is then built and the set of reference core points chosen C' as
772 described in Section 3.2. When moving from the set of core points C' to the set of counterfactuals
773 C , it is not guaranteed that we can move in the direction of the point to explain p , as we now have
774 the constraint given by the non-actionable features. Therefore, we move toward point p only in the
775 subspace $\mathbb{R}^{n-n'}$ formed by the actionable features, still putting the counterfactual ε away from the
776 reference core point, which is always possible given our core point filtering procedure. We visualise
777 the approach in Figure 3 where we show how a single counterfactual is produced for a toy dataset
778 when feature Y is non-actionable.

779



799

800 Figure 3: Conceptual Figure illustrating actionability. Coloured points denote cluster points assigned
801 to different clusters. The x-axis shows the actionable and y-axis shows non-actionable feature. The
802 orange rhombus shows the closest core point, that is in the non-actionable direction not further than
803 ε away from the point to explain (purple). The green star is the identified counterfactual.

804

805

806 A.5.2 REAL-WORLD CONSTRAINTS
807

808 There are different strategies to account for real-world constraints. First of all, if the non-actionable
809 features include categorical features, we suggest changing the metric employed in DBSCAN as well
as ExDBSCAN, for more details to employing different metrics see Section A.4.

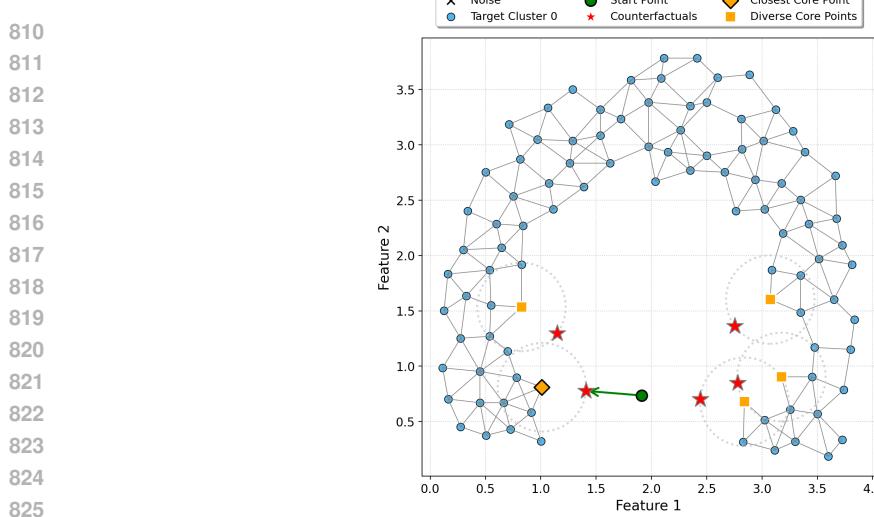


Figure 4: Counterfactuals (red stars) with their closest core point (orange squares) for a noise point (green) toward a half circle cluster. Counterfactuals near the opposite ends of the half circle are Euclidean near, moving between the two arcs ends would instead require many intermediate steps, as they are far in terms of DBSCAN’s density-connected path

Other constraints, i.e., monotonicity or feature bounds can be easily incorporated through further filtering of the core point set. Instead of restricting the set of reference core points to actionable dimensions only, we can additionally restrict this to be a specific direction or range depending on the constraints defined by the user. This allows us to also incorporate already known domain knowledge into our model.

A.6 EUCLIDEAN DISTANCE’S LIMITATIONS

Instances that appear redundant based on Euclidean distance, might add valuable diversity when considering the cluster’s structure. Using our shortest path weighted distance properly takes into account the clusters’ structure. We exemplify this in Figure 4, where counterfactuals are proposed for a noise point toward a half-circle cluster. Points near the opposite ends of the arc appear close in the Euclidean space, but under DBSCAN they are density distant; a critical distinction when evaluating diversity for CEs.

A.7 NP-HARDNESS

Proposition 2, states that the optimisation problem in Equation 3 is *NP-hard*, we present here a more extended proof.

Proof. Consider the energy landscape in Equation 2, the electrostatic term reads (in contracted notation) $\sum_{i,j>i} \frac{1}{\mathcal{D}(V_i, V_j)}$, which needs to be minimised to find the optimal energy configuration. Minimising the sum of the energy terms is equivalent to maximise their negative. Thus, the problem can be mapped to a maximum diversity problem where the object summed is the inverse distance, MDP optimisation is known to be NP-hard (Parreño et al., 2021). Consider now adding the spring terms, considering Equation 2 in full. We can again map the minimisation problem to a maximisation one by taking the negative energy. If this new optimisation problem would be solvable in polynomial time, we could move the spring constants (which we consider equal to 1) to 0. In this limit, the MDP could be also solved in polynomial time, contradicting its NP-hardness. ■

864 A.8 EXPERIMENTAL SETUP
865866 A.8.1 SURROGATE MODELS
867868 While training surrogate classifiers on DBSCAN labels might seem like the straightforward baseline,
869 we decided to not include this due to the following reasons:

- 871 • **Noise handling:** DBSCAN does not only group the points into clusters, but it additionally
872 defines points that do not belong to a cluster as noise points. The assigned noise points
873 do not form a coherent “class” with meaningful decision boundaries, they maybe scattered
874 around the complete dataset. Consequently, any surrogate classifier would need to learn
875 from highly irregular or disconnected regions, which would likely result in poor fidelity.
- 876 • **Surrogate complexity:** Constructing a surrogate introduces drawbacks and uncertainty
877 on its own, additional hyperparameters, tuning steps, and optimisation challenges. As a
878 consequence, the comparison between the models is less controlled and less interpretable.
- 879 • **Lack of fidelity guarantees:** Even if the surrogate would have a high accuracy, there is no
880 guarantee that it reproduces DBSCAN’s density-reachability criteria reliably. Incorrectly
881 learned boundaries would lead to counterfactuals that are “valid” for the surrogate but not
882 for DBSCAN. While the CEs would explain the classifiers / surrogates decision boundaries,
883 this is not directly transferable and therefore also not applicable as an evaluation strategy.
- 884 • **Instability concerns:** Prior work Visani et al. (2022) shows that surrogate models trained
885 on synthetic or held-out data can be unstable, especially in settings with complex or non-
886 convex decision boundaries such as density-based clustering.

887 We see that comparing to a surrogate model poses an interesting question, regarding the differences
888 in information extracted between the surrogate model and DBSCAN itself. While we do not see this
889 as an evaluation framework, we plan future work employing ExDBSCAN as a tool to investigate
890 those differences.891
892 A.9 EXPERIMENTAL RESULTS
893894 The following sections present the complete numerical results in tables, thereby we distinguish
895 between results regarding actionability (Sect. A.9.2) and results without non-actionable features
896 (Sect. A.9.1).897 A.9.1 ALL FEATURES ARE ACTIONABLE
898899 **Validity** Given a point to explain, a method produces a valid outcome if it returns a counterfactual,
900 and the counterfactual actually belongs to the cluster. High validity is thus a proxy of how a method
901 effectively deals with challenging scenarios where a counterfactual is difficult to retrieve.902 To evaluate validity we take the results used to assess proximity in the following paragraph and
903 compute the proportion of valid counterfactuals. Results are displayed in Table 1.904 **Proximity** Table 1 shows how ExDBSCAN consistently outperforms BAYCON in terms of prox-
905 imity. Leveraging DBSCAN’s structure, ExDBSCAN is able to find the best counterfactual across
906 all datasets. The more proximal the counterfactual, the more the counterfactual probes the local de-
907 cision boundary of the model, increasing the probability the the explanation reflects the real reason
908 why the model made its decision.909
910 **Diversity** Table 1 showcases how ExDBSCAN outperforms BAYCON regarding diversity.911 A.9.2 NON-ACTIONABLE FEATURES
912913 We here evaluate ExDBSCAN in the setting where a subset of features are non-actionable. We
914 utilise the experimental pipeline used in Section 4, additionally choosing a random set of features
915 as non actionable. How many features are non actionable is a parameter chosen at random between
916 one 1 and $\frac{n}{2}$ features, with n the total number of features. Figure 5 and Table 2 showcase results.

918
 919 Table 1: Complete results regarding *Proximity*, *Validity*, and *Diversity* for ExDBSCAN (ours) and
 920 BayCon. Across all experiments ExDBSCAN achieved better (higher) validity and diversity, and
 921 better (lower) proximity. Mean and standard error of the mean are reported. The standard error of the
 922 mean is not reported for validity as it is a metric characterising the whole set of counterfactuals and
 923 not each counterfactual. We write n.a. when there are not enough samples to estimate the standard
 924 error of the mean.

925	Dataset	Method	Proximity	Validity	Diversity
926	autoPrice	ExDBSCAN	1.5 ± 0.2	1.00	6.71 ± 0.003
927	autoPrice	BayCon	3.7 ± 0.2	0.48	5.85 ± 0.007
928	basketball	ExDBSCAN	1.2 ± 0.1	1.00	1.47 ± 0.02
929	basketball	BayCon	2.0 ± 0.1	0.78	1.13 ± 0.03
930	blood-transfusion-service-center	ExDBSCAN	1.3 ± 0.2	1.00	1.23 ± 0.04
931	blood-transfusion-service-center	BayCon	1.6 ± 0.3	0.57	0.66 ± 0.1
932	bodyfat	ExDBSCAN	0.6 ± 0.4	1.00	4.23 ± 0.009
933	bodyfat	BayCon	1.5 ± 0.3	0.38	3.47 ± 0.01
934	breast-w	ExDBSCAN	1.0 ± 0.1	1.00	4.32 ± 0.01
935	breast-w	BayCon	3.0 ± 0.2	0.90	3.31 ± 0.01
936	chscase_census2	ExDBSCAN	1.0 ± 0.1	1.00	2.02 ± 0.01
937	chscase_census2	BayCon	1.6 ± 0.1	0.61	1.81 ± 0.01
938	chscase_census6	ExDBSCAN	1.1 ± 0.1	1.00	0.78 ± 0.04
939	chscase_census6	BayCon	-	0.00	-
940	chscase_vine1	ExDBSCAN	1.1 ± 0.2	1.00	4.642 ± 0.008
941	chscase_vine1	BayCon	3.2 ± 0.3	0.50	4.114 ± 0.009
942	confidence	ExDBSCAN	2.73 ± 0.05	1.00	1.64 ± 0.01
943	confidence	BayCon	3.15 ± 0.05	0.35	1.20 ± 0.07
944	diabetes	ExDBSCAN	1.4 ± 0.2	1.00	4.792 ± 0.005
945	diabetes	BayCon	2.4 ± 0.1	0.42	2.17 ± 0.04
946	diabetes_numeric	ExDBSCAN	1.2 ± 0.1	1.00	0.90 ± 0.08
947	diabetes_numeric	BayCon	1.3 ± 0.1	0.72	0.38 ± 0.2
948	diggle_table_a1	ExDBSCAN	1.3 ± 0.1	1.00	1.46 ± 0.02
949	diggle_table_a1	BayCon	2.1 ± 0.4	0.18	1.22 ± 0.03
950	disclosure_x_noise	ExDBSCAN	0.8 ± 0.1	1.00	0.82 ± 0.08
951	disclosure_x_noise	BayCon	1.2 ± 0.1	0.72	0.50 ± 0.2
952	ecoli	ExDBSCAN	3.6 ± 0.1	1.00	6.59 ± 0.003
953	ecoli	BayCon	$5.7 \pm n.a.$	0.17	0.67 ± 0.5
954	glass	ExDBSCAN	2.5 ± 0.3	1.00	4.734 ± 0.008
955	glass	BayCon	4.4 ± 0.5	0.57	4.166 ± 0.008
956	hayes-roth	ExDBSCAN	1.30 ± 0.05	1.00	2.92 ± 0.01
957	hayes-roth	BayCon	1.53 ± 0.09	0.82	1.28 ± 0.06
958	heart-statlog	ExDBSCAN	1.2 ± 0.1	1.00	6.488 ± 0.009
959	heart-statlog	BayCon	3.6 ± 0.2	0.95	5.224 ± 0.004
960	iris	ExDBSCAN	1.2 ± 0.2	1.0	2.774 ± 0.005
961	iris	BayCon	2.7 ± 0.2	0.75	1.82 ± 0.03
962	liver-disorders	ExDBSCAN	0.9 ± 0.3	1.00	0.59 ± 0.07
963	liver-disorders	BayCon	1.1 ± 0.2	0.19	0.49 ± 0.07
964	longley	ExDBSCAN	1.0 ± 0.2	1.00	1.74 ± 0.04
965	longley	BayCon	1.6 ± 0.2	0.16	1.31 ± 0.05
966	machine_cpu	ExDBSCAN	1.8 ± 0.3	1.00	1.27 ± 0.05
967	machine_cpu	BayCon	2.0 ± 0.2	0.62	0.73 ± 0.1
968	mu284	ExDBSCAN	1.0 ± 0.1	1.00	1.89 ± 0.2
969	mu284	BayCon	1.7 ± 0.1	0.52	1.74 ± 0.2
970	no2	ExDBSCAN	0.7 ± 0.2	1.00	2.78 ± 0.03
971	no2	BayCon	1.6 ± 0.2	0.59	2.17 ± 0.04
972	pm10	ExDBSCAN	1.1 ± 0.1	1.00	3.369 ± 0.009
973	pm10	BayCon	2.6 ± 0.2	0.66	2.15 ± 0.1
974	prnn_fglass	ExDBSCAN	2.9 ± 0.4	1.00	4.647 ± 0.009
975	prnn_fglass	BayCon	4.6 ± 0.6	0.62	4.238 ± 0.007
976	rabe_131	ExDBSCAN	1.1 ± 0.1	1.00	2.29 ± 0.01
977	rabe_131	BayCon	2.0 ± 0.1	0.85	2.11 ± 0.01
978	sleep	ExDBSCAN	0.8 ± 0.2	1.00	0.98 ± 0.04
979	sleep	BayCon	1.34 ± 0.09	0.15	0.76 ± 0.03
980	strikes	ExDBSCAN	1.57 ± 0.03	1.00	2.431 ± 0.003
981	strikes	BayCon	2.45 ± 0.04	0.43	1.77 ± 0.006
982	vehicle	ExDBSCAN	2.4 ± 0.7	1.00	3.95 ± 0.01
983	vehicle	BayCon	3 ± 2	0.20	3.05 ± 0.04
984	wine	ExDBSCAN	1.0 ± 0.2	1.00	6.476 ± 0.009
985	wine	BayCon	2.6 ± 0.4	0.53	5.397 ± 0.008

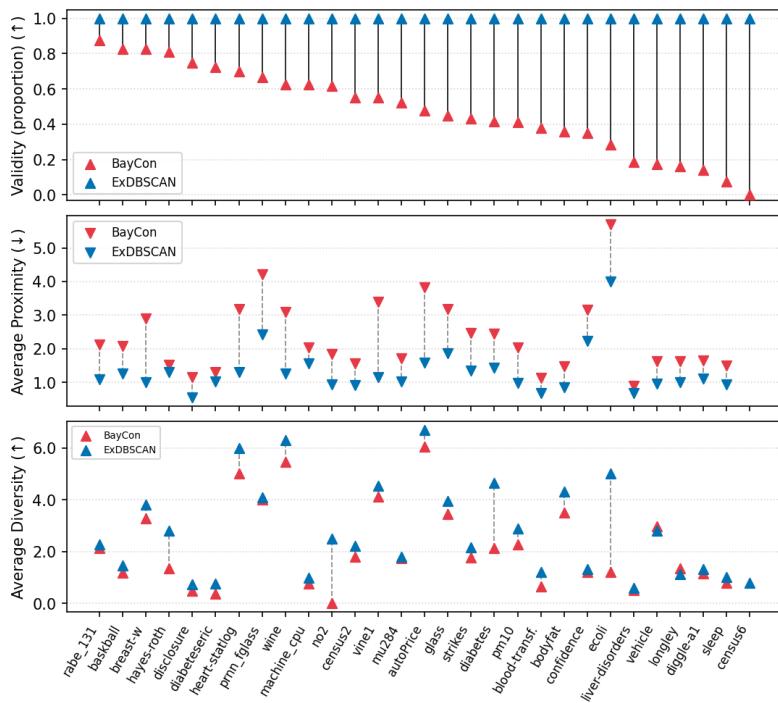


Figure 5: **CE quality metrics for 30 datasets (x-axis).** BAYCON (red) and ExDBSCAN (blue) barbells on same dataset. *Top*: Validity (proportion of counterfactuals that attain target; \blacktriangle better). *Middle*: Avg. proximity of valid CEs (\blacktriangledown better). *Bottom*: Avg. diversity as mean distance (\blacktriangle better).

ExDBSCAN demonstrates perfect validity of 1.00 across all experiments, indicating that our approach always generates a CE whenever a valid counterfactual exists. This is not always guaranteed, as there may be instances, where no actionable feature can be changed to alter the cluster assignment. Furthermore, we observe that the produced counterfactuals are generally more proximal than the ones identified with BAYCON. Finally, the lower section of Figure 5, as well as the most right column in Table 2 provide details regarding diversity. ExDBSCAN performs better, with the sole exceptions being the vehicle and longley datasets, where the differences are minimal. In these cases ExDBSCAN still achieves superior results for proximity and validity.

A.10 RUN-TIME ANALYSIS

To show ExDBSCAN’s superior run-time performance over BayCon we run both methods and measure the average time in seconds per-dataset needed to find counterfactuals. Table 3 testifies how ExDBSCAN is significantly faster than BayCon on the tested datasets. In fairness to BayCon, the Bayesian method produces more than the 10 counterfactuals considered but the inability to restrict the counterfactual search is a feature of Baycon.

B SURROGATES

As an additional benchmark we take into consideration the following scenario. A surrogate model is fitted to the DBSCAN clustering assignment using DBSCAN’s cluster labels. Then, a state-of-the-art counterfactual generator, i.e. DiCE is tasked to produce 10 counterfactuals. The surrogate chosen is a feed-forward neural network: a differentiable model allowing gradient-based optimisations. Results displayed in Table 4 show how, compared with ExDBSCAN’s, DiCE’s counterfactuals are on average significantly more distant to the original instance as showed by the proximity values. DiCE’s worse proximity is not balanced by a better diversity than ExDBSCAN, with the two methods performing similarly across datasets.

1026
 1027 Table 2: Complete results with non-actionable features regarding *Proximity*, *Validity*, and *Diversity*
 1028 for ExDBSCAN (ours) and BayCon. Across all experiments ExDBSCAN achieved better (higher)
 1029 validity and diversity, and better (lower) proximity. Mean and standard error of the mean are re-
 1030 ported. The standard error of the mean is not reported for validity as it is a metric characterising the
 1031 whole set of counterfactuals and not each counterfactual. We write n.a. when there are not enough
 1032 samples to estimate the standard error of the mean.

1033	Dataset	Method	Proximity	Validity	Diversity
1034	autoPrice	ExDBSCAN	1.6 ± 0.2	1.00	6.701 ± 0.003
1035	autoPrice	BayCon	3.8 ± 0.2	0.48	6.069 ± 0.007
1036	basketball	ExDBSCAN	1.26 ± 0.08	1.00	1.47 ± 0.02
1037	basketball	BayCon	2.1 ± 0.1	0.82	1.17 ± 0.03
1038	blood-transfusion-service-center	ExDBSCAN	0.67 ± 0.09	1.00	1.21 ± 0.07
1039	blood-transfusion-service-center	BayCon	1.1 ± 0.1	0.38	0.7 ± 0.4
1040	bodyfat	ExDBSCAN	0.9 ± 0.2	1.00	4.31 ± 0.01
1041	bodyfat	BayCon	1.5 ± 0.3	0.36	3.50 ± 0.01
1042	breast-w	ExDBSCAN	1.0 ± 0.1	1.00	3.80 ± 0.01
1043	breast-w	BayCon	2.9 ± 0.2	0.82	3.27 ± 0.01
1044	chscase_census2	ExDBSCAN	0.9 ± 0.1	1.00	2.21 ± 0.01
1045	chscase_census2	BayCon	1.6 ± 0.1	0.55	1.81 ± 0.01
1046	chscase_census6	ExDBSCAN	1.5 ± 0.2	1.00	0.78 ± 0.07
1047	chscase_census6	BayCon	-	0.00	-
1048	chscase_vine1	ExDBSCAN	1.2 ± 0.2	1.00	4.55 ± 0.09
1049	chscase_vine1	BayCon	3.4 ± 0.4	0.55	4.11 ± 0.01
1050	confidence	ExDBSCAN	2.24 ± 0.04	1.00	1.33 ± 0.01
1051	confidence	BayCon	3.17 ± 0.05	0.35	1.20 ± 0.07
1052	diabetes	ExDBSCAN	1.4 ± 0.1	1.00	4.66 ± 0.09
1053	diabetes	BayCon	2.4 ± 0.4	0.42	2.13 ± n.a.
1054	diabetes_numeric	ExDBSCAN	1.0 ± 0.1	1.00	0.77 ± 0.06
1055	diabetes_numeric	BayCon	1.3 ± 0.1	0.72	0.4 ± 0.2
1056	diggle_table_a1	ExDBSCAN	1.1 ± 0.1	1.00	1.32 ± 0.04
1057	diggle_table_a1	BayCon	1.7 ± 0.3	0.14	1.14 ± 0.02
1058	disclosure_x_noise	ExDBSCAN	0.6 ± 0.1	1.00	0.72 ± 0.09
1059	disclosure_x_noise	BayCon	1.2 ± 0.1	0.75	0.5 ± 0.2
1060	ecoli	ExDBSCAN	4.0 ± 0.1	1.00	5.034 ± 0.004
1061	ecoli	BayCon	5.71 ± n.a.	0.29	1.2 ± 0.5
1062	glass	ExDBSCAN	1.9 ± 0.3	1.00	3.954 ± 0.007
1063	glass	BayCon	3.2 ± 0.6	0.45	3.5 ± 0.1
1064	hayes-roth	ExDBSCAN	1.30 ± 0.06	1.00	2.79 ± 0.02
1065	hayes-roth	BayCon	1.51 ± 0.08	0.81	1.35 ± n.a.
1066	heart-statlog	ExDBSCAN	1.3 ± 0.1	1.00	6.014 ± 0.008
1067	heart-statlog	BayCon	3.2 ± 0.2	0.70	5.013 ± 0.006
1068	iris	ExDBSCAN	1.1 ± 0.2	1.00	2.847 ± 0.005
1069	iris	BayCon	2.7 ± 0.2	0.75	1.8 ± 0.3
1070	liver-disorders	ExDBSCAN	0.67 ± 0.08	1.00	0.59 ± 0.06
1071	liver-disorders	BayCon	0.9 ± 0.1	0.19	0.5 ± 0.8
1072	longley	ExDBSCAN	1.0 ± 0.2	1.00	1.12 ± 0.02
1073	longley	BayCon	1.63 ± n.a.	0.16	1.34 ± n.a.
1074	machine_cpu	ExDBSCAN	1.6 ± 0.8	1.00	1.0 ± 0.1
1075	machine_cpu	BayCon	2 ± 1	0.62	0.8 ± 0.2
1076	mu284	ExDBSCAN	1.02 ± 0.08	1.00	1.79 ± 0.02
1077	mu284	BayCon	1.7 ± 0.1	0.52	1.74 ± 0.02
1078	no2	ExDBSCAN	0.9 ± 0.2	1.00	2.49 ± 0.03
1079	no2	BayCon	1.9 ± 0.2	0.62	0.01 ± 0.04
1080	pm10	ExDBSCAN	1.0 ± 0.1	1.00	2.892 ± 0.007
1081	pm10	BayCon	2.1 ± 0.2	0.41	2.26 ± 0.01
1082	prnn_fglass	ExDBSCAN	2.4 ± 0.4	1.00	4.103 ± 0.008
1083	prnn_fglass	BayCon	4.2 ± 0.3	0.67	4.0 ± 0.1
1084	rabe_131	ExDBSCAN	1.10 ± 0.09	1.00	2.28 ± 0.02
1085	rabe_131	BayCon	2.1 ± 0.2	0.88	2.1 ± 0.2
1086	sleep	ExDBSCAN	0.9 ± 0.2	1.00	1.01 ± 0.04
1087	sleep	BayCon	1.50 ± 0.09	0.07	0.78 ± 0.03
1088	strikes	ExDBSCAN	1.3 ± 0.1	1.00	2.2 ± 0.3
1089	strikes	BayCon	2.5 ± 0.2	0.43	1.8 ± 0.4
1090	vehicle	ExDBSCAN	1.0 ± 0.7	1.00	2.80 ± 0.01
1091	vehicle	BayCon	1.6 ± 2	0.17	2.98 ± 0.04
1092	wine	ExDBSCAN	1.3 ± 0.2	1.00	6.313 ± 0.007
1093	wine	BayCon	3.1 ± 0.4	0.62	5.474 ± 0.008

1080 Table 3: Run-time analysis comparing ExDBSCAN with BayCon. Running times (in seconds) show
 1081 ExDBSCAN’s being faster than BayCon.

1082

1083	Dataset	Method	Run-time (s)
1084	autoPrice	ExDBSCAN	1.9 ± 0.5
1085	autoPrice	BayCon	17 ± 1
1086	basketball	ExDBSCAN	0.010 ± 0.001
1087	basketball	BayCon	10 ± 1
1088	blood-transfusion-service-center	ExDBSCAN	19 ± 3
1089	blood-transfusion-service-center	BayCon	10 ± 1
1090	bodyfat	ExDBSCAN	1.5 ± 0.3
1091	bodyfat	BayCon	20 ± 2
1092	breast-w	ExDBSCAN	58 ± 9
1093	breast-w	BayCon	10 ± 1
1094	chscase census2	ExDBSCAN	0.010 ± 0.001
1095	chscase census2	BayCon	15 ± 1
1096	chscase census6	ExDBSCAN	0.010 ± 0.001
1097	chscase census6	BayCon	23.3 ± 0.1
1098	chscase vine1	ExDBSCAN	0.040 ± 0.001
1099	chscase vine1	BayCon	18 ± 1
1100	confidence	ExDBSCAN	0.20 ± 0.01
1101	confidence	BayCon	123 ± 2
1102	diabetes	ExDBSCAN	128 ± 20
1103	diabetes	BayCon	16 ± 1
1104	diabetes numeric	ExDBSCAN	0.010 ± 0.001
1105	diabetes numeric	BayCon	1.6 ± 0.1
1106	diggle table a1	ExDBSCAN	0.010 ± 0.001
1107	diggle table a1	BayCon	19 ± 1
1108	disclosure x noise	ExDBSCAN	5.0 ± 0.8
1109	disclosure x noise	BayCon	89 ± 1
1110	ecoli	ExDBSCAN	21 ± 11
1111	ecoli	BayCon	19 ± 3
1112	glass	ExDBSCAN	11 ± 2
1113	glass	BayCon	15 ± 2
1114	hayes-roth	ExDBSCAN	0.040 ± 0.001
1115	hayes-roth	BayCon	6.4 ± 0.7
1116	heart-statlog	ExDBSCAN	1.1 ± 0.2
1117	heart-statlog	BayCon	14 ± 1
1118	iris	ExDBSCAN	2.2 ± 0.4
1119	iris	BayCon	9 ± 1
1120	liver-disorders	ExDBSCAN	2.89 ± 0.04
1121	liver-disorders	BayCon	6 ± 2
1122	longley	ExDBSCAN	0.010 ± 0.001
1123	longley	BayCon	21 ± 1
1124	machine cpu	ExDBSCAN	2.1 ± 0.3
1125	machine cpu	BayCon	11 ± 2
1126	mu284	ExDBSCAN	3.6 ± 0.7
1127	mu284	BayCon	17 ± 1
1128	no2	ExDBSCAN	15 ± 2
1129	no2	BayCon	12 ± 2
1130	pm10	ExDBSCAN	4.1 ± 0.6
1131	pm10	BayCon	13 ± 1
1132	prnn fglass	ExDBSCAN	11 ± 2
1133	prnn fglass	BayCon	14 ± 2
1134	rabe 131	ExDBSCAN	0.010 ± 0.001
1135	rabe 131	BayCon	9 ± 1
1136	sleep	ExDBSCAN	0.010 ± 0.001
1137	sleep	BayCon	23 ± 1
1138	strikes	ExDBSCAN	0.24 ± 0.01
1139	strikes	BayCon	17.6 ± 0.2
1140	vehicle	ExDBSCAN	72 ± 12
1141	vehicle	BayCon	29 ± 1
1142	wine	ExDBSCAN	0.66 ± 0.08
1143	wine	BayCon	17 ± 2

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147

Table 4: Proximity diversity and validity for DiCE. A feed-forward neural network is fitted as a surrogate on DBSCAN’s cluster labels. The neural network is differentiable allowing DiCE to be applied. Compared to ExDBSCAN’s results DiCE achieves significantly worse proximity and similar diversity.

Dataset	ProximityRand	DiversityRand
autoPrice	4.8 ± 0.3	4.4 ± 0.2
basketball	2.3 ± 0.1	1.7 ± 0.05
blood-transfusion-service-center	3.6 ± 0.2	3.3 ± 0.2
bodyfat	4.9 ± 0.3	4.6 ± 0.2
breast-w	3.0 ± 0.2	1.90 ± 0.09
chscase census2	5.2 ± 0.4	3.1 ± 0.2
chscase census6	7.6 ± 0.6	3.5 ± 0.3
chscase vine1	3.0 ± 0.2	2.4 ± 0.1
confidence	2.50 ± 0.08	1.6 ± 0.2
diabetes	4.3 ± 0.1	3.1 ± 0.2
diabetes numeric	1.9 ± 0.2	0.99 ± 0.03
diggle table a1	2.4 ± 0.1	1.08 ± 0.06
disclosure x noise	1.50 ± 0.07	1.04 ± 0.03
ecoli	6.7 ± 0.5	5.3 ± 0.7
glass	4.4 ± 0.3	4.2 ± 0.2
hayes-roth	1.94 ± 0.06	1.22 ± 0.05
heart-statlog	3.7 ± 0.2	2.9 ± 0.2
iris	2.2 ± 0.1	2.10 ± 0.1
liver-disorders	2.9 ± 0.4	2.6 ± 0.3
longley	2.2 ± 0.2	1.7 ± 0.2
machine cpu	4.6 ± 0.3	3.3 ± 0.1
mu284	7.5 ± 0.2	5.3 ± 0.2
no2	2.7 ± 0.2	2.4 ± 0.1
pm10	2.29 ± 0.09	2.52 ± 0.05
prnnfglass	5.2 ± 0.3	4.6 ± 0.2
rabe 131	2.7 ± 0.2	2.1 ± 0.1
sleep	4.2 ± 0.3	2.8 ± 0.1
strikes	2.91 ± 0.03	1.55 ± 0.02
vehicle	3.7 ± 0.5	3.8 ± 0.2
wine	3.3 ± 0.2	3.7 ± 0.2
wine-quality-red	7.3 ± 0.6	5.2 ± 0.2
wine-quality-white	7.1 ± 0.4	4.5 ± 0.2

1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **C EXTENDED BAYCON**
11891190 In the experimental evaluation, comparison with BayCon was made choosing, for each instance, 10
1191 counterfactuals for both ExDBSCAN and BayCon. Due to the nature of the method, BayCon does
1192 not allow to set a specific number of counterfactuals giving the user several alternatives, the first 10
1193 proposed where chosen for evaluation an comparison with ExDBSCAN. For a more comprehensive
1194 analysis, we add here two ways to subset BayCon counterfactuals. Respectively, we choose 10
1195 random options and the 10 closest to the original instance. The random choice favours diversity
1196 neglecting proximity while the proximity-oriented choice does not take into account diversity, as
1197 testified by the results in Table 5 showing inferior results to ExDBSCAN.1198 **C.1 RANDOM BENCHMARK**
11991200 To further benchmark ExDBSCAN perform, we select 10 random core points from the target cluster
1201 and generate counterfactuals according to Eq. 4. The random benchmark does not take into account
1202 proximity but does not bias any counterfactual to be closer to a second one making it thus a good op-
1203 tion for diversity. This intuition is confirmed by the results (Table 6) showing competitive diversitive
1204 w.r.t. to ExDBSCAN while providing worse proximity.1205 **C.2 QUALITATIVE EXAMPLE**
12061208 To better showcase ExDBSCAN’s real-world applications we designed a small qualitative example
1209 reproducing data coming from different sensors. Specifically we generate a dataset of 100 instances
1210 having 4 features: *temperature*, *pressure*, *humidity* and *voltage*. The data is organised into 3 compact
1211 normally distributes clusters. One outlier is created with temperature and pressure being out-of-
1212 distribution for every cluster. We generate counterfactuals toward each of the 3 clusters for the
1213 outlying instance which is labelled as noise by DBSCAN.1214 The outlying instance is $(85, 110, 70, 5)$ with features indicating temperature in Celsius, pres-
1215 sure in kiloPascal, percentage of humidity and voltage in Volt respectively. We generate with
1216 ExDBSCAN the initial counterfactual (maximally proximal) for each of the 3 clusters which read
1217 $(27.4, 101.6, 57.4, 5.05,)$, $(37.2, 102.9, 48.5, 5.1)$ and $(21.0, 99.8, 69.0, 4.8)$ respectively.1218 Analysing the proposed counterfactuals, it’s clear that temperature is an outlying feature of the
1219 anomaly, as it significantly drops for all ExDBSCAN’s output. Pressure as well is dropped in every
1220 counterfactual. Percentage of humidity is in line with cluster 3’s counterfactuals while proposed CEs
1221 do not significantly modify voltage. Thus, the outlier wasn’t assigned to cluster 1 and 2 because of
1222 temperature, pressure and voltage while it wasn’t assigned to cluster 3 because of its temperature
1223 and pressure.1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 Table 5: Proximity diversity and validity for BayCon. Random refers to choosing the 10 counterfac-
 1243 tuals randomly from the proposed one. Closest refers to selecting the 10 closest counterfactuals.
 1244

1245	Dataset	Method	Proximity	Diversity	Validity
1246	autoPrice	BayCon (Random)	3.45 ± 0.17	6.4 ± 0.3	0.46
1247	autoPrice	BayCon (Closest)	2.67 ± 0.14	0.18 ± 0.01	0.46
1248	basketball	BayCon (Random)	1.92 ± 0.09	1.42 ± 0.02	0.78
1249	basketball	BayCon (Closest)	1.29 ± 0.09	0.83 ± 0.04	0.78
1250	blood-transfusion-service-center	BayCon (Random)	1.8 ± 0.2	1.19 ± 0.08	0.55
1251	blood-transfusion-service-center	BayCon (Closest)	1.2 ± 0.2	1.62 ± 0.18	0.55
1252	bodyfat	BayCon (Random)	1.7 ± 0.2	3.8 ± 0.1	0.40
1253	bodyfat	BayCon (Closest)	0.9 ± 0.2	0.29 ± 0.01	0.40
1254	breast-w	BayCon (Random)	3.0 ± 0.2	3.6 ± 0.1	0.90
1255	breast-w	BayCon (Closest)	2.3 ± 0.2	0.31 ± 0.01	0.90
1256	chscase census2	BayCon (Random)	1.6 ± 0.1	1.86 ± 0.06	0.58
1257	chscase census2	BayCon (Closest)	1.1 ± 0.1	0.58 ± 0.02	0.58
1258	chscase census6	BayCon (Random)	—	—	0
1259	chscase census6	BayCon (Closest)	—	—	0
1260	chscase vine1	BayCon (Random)	3.3 ± 0.3	4.2 ± 0.1	0.63
1261	chscase vine1	BayCon (Closest)	2.7 ± 0.3	0.26 ± 0.01	0.63
1262	confidence	BayCon (Random)	3.09 ± 0.04	1.23 ± 0.08	0.35
1263	confidence	BayCon (Closest)	2.76 ± 0.07	0.73 ± 0.02	0.35
1264	diabetes	BayCon (Random)	3.3 ± 0.2	3.7 ± 0.2	0.42
1265	diabetes	BayCon (Closest)	1.8 ± 0.2	0.35 ± 0.03	0.42
1266	diabetes numeric	BayCon (Random)	1.5 ± 0.1	0.7 ± 0.1	0.72
1267	diabetes numeric	BayCon (Closest)	1.0 ± 0.1	2.9 ± 0.5	0.72
1268	diggle table a1	BayCon (Random)	1.9 ± 0.3	1.5 ± 0.1	0.18
1269	diggle table a1	BayCon (Closest)	1.5 ± 0.3	0.68 ± 0.05	0.18
1270	disclosure x noise	BayCon (Random)	1.4 ± 0.1	1.11 ± 0.09	0.70
1271	disclosure x noise	BayCon (Closest)	0.8 ± 0.1	2.4 ± 0.2	0.70
1272	ecoli	BayCon (Random)	5.90 ± 0.08	2.5 ± 0.5	0.17
1273	ecoli	BayCon (Closest)	5.71 ± 0.01	0.6 ± 0.2	0.17
1274	glass	BayCon (Random)	3.9 ± 0.4	4.5 ± 0.2	0.58
1275	glass	BayCon (Closest)	3.3 ± 0.5	0.27 ± 0.01	0.58
1276	hayes-roth	BayCon (Random)	1.75 ± 0.06	2.6 ± 0.1	0.81
1277	hayes-roth	BayCon (Closest)	1.02 ± 0.06	0.65 ± 0.03	0.81
1278	heart-statlog	BayCon (Random)	3.4 ± 0.2	5.4 ± 0.1	0.93
1279	heart-statlog	BayCon (Closest)	2.6 ± 0.2	0.20 ± 0.01	0.93
1280	iris	BayCon (Random)	2.4 ± 0.1	2.2 ± 0.1	0.80
1281	iris	BayCon (Closest)	2.2 ± 0.1	0.50 ± 0.02	0.80
1282	liver-disorders	BayCon (Random)	2.5 ± 0.5	1.8 ± 0.1	0.90
1283	liver-disorders	BayCon (Closest)	1.7 ± 0.5	0.91 ± 0.09	0.90
1284	longley	BayCon (Random)	1.7 ± 0.2	1.5 ± 0.1	0.16
1285	longley	BayCon (Closest)	1.4 ± 0.2	0.68 ± 0.09	0.16
1286	machine cpu	BayCon (Random)	2.2 ± 0.2	1.28 ± 0.04	0.63
1287	machine cpu	BayCon (Closest)	1.5 ± 0.2	1.2 ± 0.1	0.63
1288	mu284	BayCon (Random)	1.67 ± 0.09	1.96 ± 0.08	0.48
1289	mu284	BayCon (Closest)	1.2 ± 0.1	0.61 ± 0.02	0.48
1290	no2	BayCon (Random)	1.9 ± 0.2	3.6 ± 0.3	0.59
1291	no2	BayCon (Closest)	1.0 ± 0.2	0.49 ± 0.05	0.59
1292	pm10	BayCon (Random)	2.4 ± 0.1	2.7 ± 0.1	0.61
1293	pm10	BayCon (Closest)	1.6 ± 0.1	0.46 ± 0.01	0.61
1294	prnn fglass	BayCon (Random)	4.5 ± 0.5	4.7 ± 0.3	0.67
1295	prnn fglass	BayCon (Closest)	4.0 ± 0.6	0.26 ± 0.01	0.67
1296	rabe 131	BayCon (Random)	2.0 ± 0.1	2.31 ± 0.06	0.85
1297	rabe 131	BayCon (Closest)	1.4 ± 0.1	0.49 ± 0.02	0.85
1298	sleep	BayCon (Random)	1.9 ± 0.6	0.8 ± 0.03	0.18
1299	sleep	BayCon (Closest)	1.8 ± 0.6	1.3 ± 0.1	0.18
1300	strikes	BayCon (Random)	2.38 ± 0.04	2.07 ± 0.02	0.42
1301	strikes	BayCon (Closest)	1.84 ± 0.04	0.59 ± 0.01	0.42
1302	vehicle	BayCon (Random)	4 ± 2	3.8 ± 0.5	0.20
1303	vehicle	BayCon (Closest)	3 ± 2	0.36 ± 0.04	0.20
1304	wine	BayCon (Random)	2.6 ± 0.3	5.6 ± 0.2	0.55
1305	wine	BayCon (Closest)	1.9 ± 0.3	0.20 ± 0.01	0.55

1296
1297
1298
1299
1300
1301
1302
1303

1304
1305 Table 6: Proximity diversity for the random benchmark. Specifically, 10 random core points are
1306 chosen from the DBSCAN clusters and the counterfactuals are placed ε away in the direction of
1307 the original instance, analogously as the ExDBSCAN case. The random benchmark is competitive
1308 when looking at diversity, as the random choice doesn't bias any counterfactual to be closer to others.
1309 Conversely, the random benchmark doesn't perform at the same level as ExDBSCAN when looking
1310 at proximity as counterfactuals are not attracted toward the original instance.

1311	Dataset	ProximityRand	DiversityRand	ValidityRand
1312	autoPrice	4.8 ± 0.3	4.4 ± 0.2	1
1313	basketball	2.3 ± 0.1	1.67 ± 0.05	1
1314	blood-transfusion-service-center	3.6 ± 0.2	3.31 ± 0.18	1
1315	bodyfat	4.9 ± 0.3	4.6 ± 0.2	1
1316	breast-w	3.0 ± 0.2	1.90 ± 0.09	1
1317	chscase census2	5.2 ± 0.4	3.1 ± 0.2	1
1318	chscase census6	7.6 ± 0.6	3.5 ± 0.3	1
1319	chscase vine1	3.0 ± 0.2	2.4 ± 0.1	1
1320	confidence	2.50 ± 0.08	1.6 ± 0.2	1
1321	diabetes	4.3 ± 0.1	3.1 ± 0.2	1
1322	diabetes numeric	1.9 ± 0.2	0.99 ± 0.03	1
1323	diggle table a1	2.4 ± 0.1	1.08 ± 0.06	1
1324	disclosure x noise	1.49 ± 0.07	1.04 ± 0.03	1
1325	ecoli	6.7 ± 0.5	5.3 ± 0.7	1
1326	glass	4.4 ± 0.3	4.2 ± 0.2	1
1327	hayes-roth	1.94 ± 0.06	1.22 ± 0.05	1
1328	heart-statlog	3.7 ± 0.2	2.9 ± 0.2	1
1329	iris	2.2 ± 0.1	2.1 ± 0.1	1
1330	liver-disorders	2.9 ± 0.4	2.6 ± 0.3	1
1331	longley	2.2 ± 0.2	1.7 ± 0.2	1
1332	machine cpu	4.6 ± 0.3	3.3 ± 0.1	1
1333	mu284	7.5 ± 0.2	5.3 ± 0.2	1
1334	no2	2.7 ± 0.2	2.4 ± 0.1	1
1335	pm10	2.29 ± 0.09	2.52 ± 0.05	1
1336	prnn fglass	5.2 ± 0.3	4.6 ± 0.2	1
1337	rabe 131	2.7 ± 0.2	2.1 ± 0.1	1
1338	sleep	4.2 ± 0.3	2.8 ± 0.1	1
1339	strikes	2.91 ± 0.03	1.55 ± 0.02	1
1340	vehicle	3.7 ± 0.5	3.8 ± 0.2	1
1341	wine	3.3 ± 0.2	3.7 ± 0.2	1
1342	wine-quality-red	7.3 ± 0.6	5.2 ± 0.2	1
1343	wine-quality-white	7.1 ± 0.4	4.5 ± 0.2	1

1343
1344
1345
1346
1347
1348
1349