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ABSTRACT

Clustering is an unsupervised technique for grouping data points by similarity.
While explainability methods exist for supervised machine learning, they are
not directly applicable to clustering, making it challenging to understand clus-
ter assignments. This interpretability gap is evident in the popular density-based
method DBSCAN, which assigns points as inliers (cluster members in dense re-
gions) or outliers (noise points in sparse regions). DBSCAN does not provide
insight into why a particular point receives its assignment or if it is robust to
small changes in the data. To address the challenges, we introduce ExDBSCAN, a
density-aware, post-hoc explanation method. ExDBSCAN offers actionable coun-
terfactual explanations, with theoretical guarantees for validity. It generates mul-
tiple counterfactuals using a density-connected weighted graph while adopting
a physics-inspired model that repels counterfactual candidates from one another
(diversity) while pulling them toward the instance to explain (proximity). Empir-
ical evaluation on 30 tabular datasets, confirms that ExDBSCAN attains perfect
validity and shows that it retrieves diverse, proximal counterfactuals.

1 INTRODUCTION

Clustering is a cornerstone of unsupervised machine learning, enabling discovery of patterns and
groupings in data without relying on predefined labels. Our work focuses on Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), an algorithm known for its
ability to find clusters of arbitrary shape, and to identify outliers (also denoted as noise) in the
process. DBSCAN is popular across domains ranging from computer vision (Figueiredo & Mendes,
2024), to bioinformatics (Francis et al., 2011), and fraud detection (Luo et al., 2024). Nevertheless, a
limitation of DBSCAN (and generally clustering methods) is their lack of explanation, i.e., absence
of information on why a particular point is belongs to a particular cluster or not, which is crucial for
interpretability, user trust, and actionable insights (Miller, 2019; Molnar, 2020).

In supervised learning, counterfactual explanations (CEs) emerge as an impactful tool, identify min-
imal changes to an input that would alter the model’s prediction, offering intuitive “what-if” scenar-
ios (Guidotti, 2024; Poyiadzi et al., 2020; Karimi et al., 2020; Mothilal et al., 2020). Counterfactual
reasoning builds user trust in the model and reflects how human stakeholders formulate explana-
tions, making counterfactuals easy to interpret (Miller, 2019). For classification tasks, a typical CE
shows how a rejected loan application could be altered to become approved.

We claim that CEs for clustering bring important benefits. Beyond explaining individual points,
multiple counterfactuals can reveal alternative ways in which a point could transition between clus-
ters, offering complementary perspectives on the underlying structure. Furthermore, analysing how
the set of counterfactual changes across several points enables the possibility of highlighting which
features are most influential for cluster membership. For instance, we can identify if outliers system-
atically need to increase on a particular feature to become inliers, or if points from one cluster need to
change a specific attribute to belong to another. These patterns not only enhance interpretability but
also enable practitioners to make informed decisions about data preprocessing, feature engineering,
and outlier treatment based on a deeper understanding of the clustering structure.

Devising CEs for DBSCAN presents major challenges. First, the cluster assignment process is not
based on a differentiable loss function, preventing the counterfactual method from having access
to model gradients, often used to guide counterfactual search (Mothilal et al., 2020; Wachter et al.,
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2017). Moreover, while classification algorithms often produce class probabilities, a membership
probability, used by several model-agnostic counterfactual methods (Mothilal et al., 2020; Yang
et al., 2022), is difficult to define in hard clustering contexts. Furthermore, DBSCAN can label
points as noise. Noise points can be far from each other, scattered across the whole feature space
and share few similarities, having a boundary very different from classes in a classification scenario.

Model-agnostic Bayesian and genetic counterfactual methods for classification, do not generally
need access to gradients or class probabilities. Their application though, is generally computa-
tionally expensive (Romashov et al., 2022). Furthermore, different clustering algorithms rely on
different concepts of similarity. This can impact counterfactual search for example when ensuring
diversity, i.e., making sure that different counterfactuals for the same input are not repetitive but
instead add meaningful actionable alternatives. In the DBSCAN case, two samples could be close
in the traditional Euclidean distance leveraged by most model-agnostic methods; at the same time,
they could be only connected by a long density-connected path making the two points effectively
distant.

In this work, we address these challenges by leveraging counterfactual reasoning to explain density-
based clustering. We propose Explaining DBSCAN with counterfactual reasoning (ExDBSCAN),
the first method tailored to generate CEs for DBSCAN. Given a specific point, DBSCAN’s as-
signments and its parameter settings, ExDBSCAN generates counterfactuals that are both proximal
(close to the original instance for realistic changes) and diverse (providing multiple non-redundant
alternatives), while accounting for DBSCAN’s similarity definition. To achieve this, ExDBSCAN
models the problem as a physical optimisation system, as it defines an undirected weighted graph
that captures DBSCAN’s density-based similarity structure. The system treats candidate counter-
factuals as charged-like particles that repel each other to ensure diversity, and uses spring-like forces
to maintain proximity to the explained instance. Our approach provably provides perfect valid-
ity, i.e., every counterfactual attains the correct cluster assignment, for both noise-to-cluster and
cluster-to-cluster transitions. Furthermore, ExDBSCAN respects feature constraints by handling
non-actionable attributes, e.g., the number of previous hospital visits in a tabular dataset of clinical
analysis, changing the non-actionable attributes can make the explanation unrealistic; ensuring the
explanations remain practical and applicable. Our contributions are summarised as follows:

• We introduce ExDBSCAN, the first method to generate counterfactual explanations designed for
DBSCAN, covering both noise-to-cluster and cluster-to-cluster transitions.

• ExDBSCAN generates diverse counterfactuals under our novel physics-inspired model that repels
candidate counterfactuals from one another (diversity) while pulling them toward the point to ex-
plain (proximity), all while accounting for cluster structure captured in our graph representation.

• On 30 OpenML tabular datasets, ExDBSCAN outperforms a model-agnostic Bayesian baseline
(BayCon) by obtaining lower proximity, higher multi-counterfactual diversity and perfect validity.

2 RELATED WORK

In the following related work we review supervised, model-agnostic counterfactuals; explainable
clustering; and counterfactuals for clustering and outliers.

Supervised Model-Agnostic Counterfactual Explanations. In supervised learning, Wachter et al.
(2017) formally introduce CEs as answers to “what is the smallest change to input x that would
alter the model’s prediction?”, and subsequent work optimises criteria such as proximity, validity,
diversity, and actionability (Guidotti, 2024; Mehdiyev et al., 2024; Yuan et al., 2024).

For model-agnostic methods, e.g. DiCE returns a set of diverse CEs (Mothilal et al., 2020). FACE
follows data-supported feasible paths on the empirical manifold and returns a plausible path together
with a counterfactual endpoint that alters model prediction (Poyiadzi et al., 2020). MACE uses a
reinforcement-learning policy and returns one or more counterfactuals with minimal changes (Yang
et al., 2022). All methods need to repeatedly query a supervised model for class probabilities at
candidate points and then choose based on closeness to the target class. By contrast, DBSCAN pro-
vides only discrete, connectivity-based memberships (core, border, noise) defined by ε and minPts,
with no continuous quantity to optimise against. A workaround could be to fit a surrogate classifier
to predict cluster memberships and then apply supervised CE methods; however, the surrogate’s
decision regions would then reflect its own similarity notion rather than density-reachability.
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To accurately compare ExDBSCAN with competitive methods, the method Model-Agnostic
Bayesian Counterfactual Generator (BayCon) (Romashov et al., 2022) offers a more suitable and
adaptable approach for clustering scenarios and thereby is a valid competitor. Unlike gradient-based
methods, BayCon uses Bayesian optimisation with probabilistic feature sampling to explore the fea-
ture space without requiring differentiable model outputs. It treats the clustering algorithm as a black
box, repeatedly querying it with candidate counterfactuals and using the discrete cluster assignments
to guide its search. This sampling-based strategy aligns naturally with DBSCAN’s discrete mem-
bership criteria. However, it does not exploit DBSCAN’s specific density-connectivity structure that
ExDBSCAN leverages for efficient and theoretically grounded counterfactual generation.

Explainable Clustering Analysis. Explainable clustering methods span both global and local ex-
plainability. Global approaches aim to summarise entire clusterings or cluster characteristics in
human-understandable forms. Moshkovitz et al. (2020) introduce explainable k-means/k-medians
that replace clusters with compact decision trees. Similarly, Bandyapadhyay et al. (2023) formalise
searching for small trees that closely match a given partition. Prototype-based methods characterise
each cluster by representative examples or “criticism” points, e.g., Kim et al. (2016) propose MMD-
Critic to select prototypical instances and outliers for each cluster. Such global explanations convey
what defines each cluster overall, but they do not explain individual assignments.

In contrast, local explainability focuses on specific data points. Agnostic attribution frameworks
like FACT (Scholbeck et al., 2023) quantify each feature’s influence on a points cluster assignment
by perturbing features and observing changes in the clustering. Interactive tools like ClusterVi-
sion (Kwon et al., 2018), let users vary clustering parameters and visualise effects on clusters and
outliers, supporting sensitivity analysis and comparative explanation.

While global summaries, prototypes, feature attributions, and visual analytics improve understand-
ing of clustering results, they do not provide actionable local changes for a given point. No existing
method can suggest how a particular DBSCAN inlier or outlier could change its status through min-
imal feature changes, with guarantees of valid membership under DBSCAN’s density-reachability.
This gap motivates ExDBSCAN, and focuses on local actionability which generates concrete per-
turbations to an individual point guaranteeing a change in its DBSCAN assignment.

Counterfactuals for Clustering or Outlier Detection. Some recent work studies CEs for clus-
tering. For prototype/mixture-style clustering, Vardakas et al. (2025) provide the first analytic for-
mulations: for k-means, they derive a closed-form move that crosses the Voronoi boundary into a
target cluster, and for Gaussian clustering, devise and solve a non-linear formulation. These methods
leverage geometry and thus do not apply to density-based algorithms, where membership is defined
by density-reachability rather than distances to prototypes. Spagnol et al. (2024) build on BayCon
and propose model-specific scores: a distance-based score for k-means (scaled distance to the target
centroid) and a membership-probability score for HDBSCAN (using the algorithm’s soft-clustering
outputs). These scores guide a zero-order Bayesian optimisation loop to find CEs. While this makes
BayCon-style search applicable to k-means and HDBSCAN 1, it provides no density-reachability
guarantees and does not explain DBSCAN’s core/border/noise status.

Beyond clustering, counterfactuals have been explored for unsupervised outlier detection. Zhou
et al. (2025) propose EACE, a method for explaining outliers by converting an outlier into a plausible
inlier through minimal modifications. EACE generates one or more counterfactual samples that an
anomaly detection model would classify as an inlier, effectively pointing to how an outlying instance
could “behave” like the in-distribution data. Similarly, Angiulli et al. (2023) present a contrastive
learning approach to repair outliers. Their technique identifies a subset of features and adjusted
values (a “mask”) that would make an anomalous point no longer isolated, i.e., turn it into an inlier.

Both EACE (Zhou et al., 2025) and the density-contrastive “repair” (Angiulli et al., 2023) methods
target outlier detection models that expose a continuous anomaly score (e.g., one-class SVM, kernel
density estimators, autoencoders, Isolation Forest/LOF-style scores). Their goal is to decrease the
anomaly score so that a point crosses a detector-specific decision threshold and becomes “normal,”
which is highly relevant for detectors where “inlierness” is defined by that score. DBSCAN does
not provide such a score, soft memberships, or gradients; it yields discrete core/border/noise assign-
ments based on ε-reachability and minPts. Consequently, these counterfactual outlier detection
methods optimise an objective that is orthogonal to ours, as they can make a point “less anomalous”

1HDBSCAN uses soft memberships (McInnes et al., 2017; Campello et al., 2015) unlike original DBSCAN.
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in a detector’s sense without guaranteeing that it becomes density-connected to a DBSCAN cluster.
In contrast, ExDBSCAN includes both cluster-to-cluster and noise-to-cluster transitions.

3 EXPLAINING DBSCAN WITH COUNTERFACTUAL REASONING

Consider data set X = (x1, . . . , xl), xi ∈ Rn and cluster assignment from points C : X →
{−1, 0, . . . ,m− 1} to one of m cluster labels, or to noise (−1). The popular density-based clus-
tering approach DBSCAN (Ester et al., 1996) groups points based on a similarity notion mod-
elled as density-reachability. Clusters are maximal areas of density-connected points, separated
from other clusters through sparse areas. It uses two parameters: ε, which defines the radius
of local density assessment, and minPts, which specifies the minimum number of points re-
quired to form a dense region. The ε-neighbourhood are the points within radius ε of a point p:
Nε(p) = {q | ∥p − q∥2 ≤ ε, with p, q ∈ X}. DBSCAN distinguishes between dense core points,
border points close to core points, and noise points or outliers, that do not belong to any cluster:

Definition 3.1 (Core, border, and noise points). The set of core points Q are points p that have at
least minPts points in their ε-neighbourhood: Q = {p ∈ X | |Nε(p)| ≥ minPts}.Points in
X \Q are border points B, if they have at least one core point in their neighbourhood, else they are
noise.

Counterfactual Explanations (CEs). CEs were first proposed as an optimisation problem
by Wachter et al. (2017) for classification models:

Definition 3.2 (Counterfactual Explanations). A set of k CEs for a point p under a classification
model f , denoted as Ck(p) minimises a cost function for which the classification outcome changes:

Ck(p) = argmin
p′
1,...,p

′
k

cost(p, p′) subject to f(p) ̸= f(p′) (1)

Counterfactual generation methods vary in the choice of cost function, typically balancing between
desired properties, e.g., the distance between the original point p and the counterfactual p′ or the
pairwise distance between counterfactuals. In the conemph of density-based clustering, the cost
function in Definition 3.2 takes into account the clustering algorithm’s concept of similarity.

3.1 COUNTERFACTUALS FOR DENSITY-BASED CLUSTERING

Counterfactual explanations provide value for clustering tasks by addressing the interpretability
challenges in unsupervised learning. Unlike supervised learning where model decisions can be
evaluated against known labels, clustering methods function without predefined classes. This leaves
the task of understanding why certain groups are formed or why points are assigned to a particular
cluster. CEs bridge this gap by revealing the minimal changes required to alter a point’s cluster as-
signment, thus explaining group differences and influential features. Density-based clustering finds
clusters of arbitrary shapes and can identify noise points. These capabilities can make the resulting
clusterings difficult to interpret because the complex, non-convex cluster boundaries and the dis-
tinction between core, border, and noise points are not immediately obvious. Users cannot easily
identify which specific features or density thresholds have led to the assignments. Noise-to-cluster
and cluster-to-cluster CEs reveal key features that determine density-based cluster membership.

Cluster Assignment. Counterfactual generation requires assigning out-of-dataset points so we can
test whether a candidate lies in the target cluster. Because DBSCAN lacks a native assignment for
new points, we keep the clustering fixed and define C : point p belongs to cluster i iff there exists a
core point q with C (q) = i within the ε-neighbourhood, such that q ∈ Nε(p).

We restrict membership to core-point neighbourhoods, as placing a CE near a border does not ensure
density-connectivity (and may violate DBSCAN’s membership definition). Fixing the clustering
also avoids the computational and conceptual pitfalls of re-clustering (e.g., merges or new clusters),
ensuring we explain the original structure rather than one altered by the CEs.

Generating multiple diverse CEs, rather than a single instance, enhances explanatory value by prob-
ing cluster-assignment boundaries from different directions, giving stakeholders a thorough view
of the clustering algorithm’s behaviour. Multiple examples help surface explanatory trends (e.g.,
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features repeatedly changed likely matter for assignment) and reduce perceived arbitrariness, im-
proving trust (Miller, 2019). Regarding actionability (feasibility of the proposed change), options
differ by context, e.g., in a medical setting, changing the respiratory rate vs. the oxygen saturation
may be more or less realistic for a given patient; thus, offering several paths raises the chance that at
least one is realistic and acceptable (Stepin et al., 2021).

It is thus crucial that CEs demonstrate diversity (Laugel et al., 2023). CEs that differ only marginally
are redundant and fail to highlight differences among clusters (Mothilal et al., 2020). High redun-
dancy adds no valuable information, for example, two counterfactuals that vary by only 0.1 breaths
per minute in respiratory rate are effectively indistinguishable and convey the same information.
While diversity is essential, CEs that stray too far from the explained point risk suggesting unre-
alistic changes. If a CE bears little in common to the point being explained, human stakeholders
may struggle to relate the two and reason about their differences. Proximity therefore remains fun-
damental to counterfactual reasoning, as it increases both the realism and feasibility while reducing
cognitive load for stakeholders, as there are less overall changes (Miller, 2019).

3.2 EXDBSCAN: EXPLAINING DBSCAN WITH COUNTERFACTUAL REASONING

ExDBSCAN addresses these requirements by generating valid sets of counterfactuals that balance
proximity and diversity. Users can specify their number and the target cluster to meet their needs.

Inter-Cluster Concept of Distance. In CE literature, density is used as a proxy for the ease of
moving between points or feasibility (Poyiadzi et al., 2020; Zhou et al., 2025; Yamao et al., 2024;
Kanamori et al., 2020). In DBSCAN, cluster members are density-connected, so a counterfactual
that moves within a cluster stays in dense regions with similar neighbours, enabling realistic paths.
However, because DBSCAN discovers arbitrary shapes, two points can be close in Euclidean2 yet
require a long density-connected path; straight-line distance can therefore overstate similarity.

CEs that look redundant under Euclidean distance, i.e., proposals close in straight-line distance,
may still be meaningfully diverse once DBSCAN’s density structure is considered. Euclidean close
points can lie in different density-reachable regions and thus represent distinct alternatives. Relying
on Euclidean distance risks “cutting through” clusters and ignoring connectivity, yielding explana-
tions that misstate feasibility. We illustrate this in Appendix A.6.

To address the challenge and incorporate DBSCAN’s notion of similarity, we define proximity as the
length of the weighted density-connected path. For each cluster, we build an undirected weighted
graph G(V,E) whose vertices V are core points; edges connect two vertices if they are directly
density-reachable (distance < ε) and edge weight is their distance. The distance between any two
points is then the weighted shortest-path in G. Thus, instances are “close” only if an easy path
connects them, letting us evaluate diversity while respecting the cluster’s internal structure; ignoring
this structure can misrepresent separations and, consequently, diversity.

Reference Core Point. Given our definition of the assignment function, a CE is assigned to the
target cluster iff it falls within the ε-neighbourhood of a cluster’s core points. When selecting a
point in the space as a CE, we naturally associate it with its nearest core point. To properly leverage
the weighted graph G that captures the cluster’s structure, we identify the most appropriate reference
core point for each proposed CE and generate the CE example within its ε-neighbourhood. Hence, a
set of ExDBSCAN CEs correspond directly to a set of vertices in graph G, namely the cluster’s core
points. We denote the set of CEs for point p as Ck(p), while C ′

k(p) represents the corresponding set
of reference core points.

Proximity Through Attraction. By definition, the most proximal CEs are the ones closest to the
point to explain p. Given k CEs, the set of core points C ′(p) maximising proximity will thus be
composed of the k nearest core points of p. As p and candidate core points are not density connected,
the distance metric used is the one employed for fitting DBSCAN.

Diversity Through Repulsion. In CEs, a set is diverse when its members are mutually dissimi-
lar (Mothilal et al., 2020). One class of methods enforces this by maximising pairwise distances;
variants of the maximum diversity problem (MDP) (Laugel et al., 2023; Ley et al., 2022). An-

2In this paper, we use the Euclidean distance as it is the most popular metric. A discussion on different
metrics is in App. A.4
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other models diversity via repulsion, minimising similarity between selected instances; determinan-
tal point processes are common realisations, probabilistically favouring diverse subsets (Mothilal
et al., 2020; Kulesza et al., 2012; Afrabandpey & Spranger, 2022).

We observe that simply adopting (Euclidean) distance falls short for DBSCAN: its very notion of
similarity is density-connectivity. Thus, the challenge is to model proximity and diversity using
density-connectivity. We adopt a repulsion-based approach that prevents redundant counterfactuals,
as repulsion forces increase substantially as points converge. In contrast, maximising pairwise dis-
tances remains more forgiving toward closely positioned instances, provided that other point pairs
maintain sufficient separation to preserve overall diversity. Also, repulsion interactions naturally
produce more evenly distributed selections across the solution space. In our density-based setting,
we implement this diversity measure using the weighted shortest path distance defined by graph G
to evaluate pairwise distances in a cluster. This ensures that our diversity metric respects the clus-
ter’s density-connectivity structure rather than relying on simple Euclidean distances that could cut
through the cluster and misrepresent the actual relationships between points.

Balancing Proximity and Diversity. ExDBSCAN generates multiple CEs that ensure both proxim-
ity and diversity; an inherent trade-off since closer alternatives are often less diverse. We resolve this
by modelling a physical system and selecting its equilibrium (the minimum-energy configuration),
where the proximity-diversity balance is optimal.

For diversity, we treat candidate core points as like-charged particles with Coulomb’s electrostatic
law (Halliday et al., 2013), pushing already selected cores apart so the minimum-energy set is max-
imally spread; making the minimum energy configuration the most diverse.

For proximity, we bias chosen core points to be close to the original point, by connecting the latter
with a spring to candidate core points. The further the candidate CE, the stronger the force pushing
it closer to the original instance, the force scales linearly with the weighted path distance according
to Hooke’s law (Halliday et al., 2013). Proposition 1 states how the minimum energy configuration
caused by the spring-like interactions, selects the closest core points, accounting for proximity.

The aim is to find the system’s stable configuration, i.e., the one that minimises the energy of the
physical system. Spring-like forces bias the system to select points closest to the original instance
as springs push towards their rest state; i.e., when explained point and candidate core point have a
null distance. Electrostatic-like repulsion favours core points to be pairwise distant (according to the
shortest weighted path distance), as same-charged particles push each other away. The minimum
energy configuration balances the springs’ desire to go back to their rest configuration with the
charges’ desire to spread as much as possible. Hence, given a set C ′(p) of chosen core points, and
point to explain p, the energy configuration of the system has the form:

EC′ =
∑

Vi∈C′

∑
Vj∈C′:j>i

1

D(Vi, Vj)
+

∑
Vi∈C′

d2(p, Vi) (2)

Vi is the ith vertex of graph G, D(Vi, Vj) denotes the weighted shortest path distance between
vertices Vi and Vj . Lastly, d(p, Vi) is the Euclidean distance between the point to explain p and
vertex Vi.3 We evaluate physical constants characterising spring and electrostatic terms in Eq. 2 as 1,
as we are only interested in how energy terms scale with distance. To find the optimal configuration
of the system and thus, the set of C , we find the subset C ′ of vertices V minimising system energy:

C ′
k(p) = argmin

B∈V : |B|=k

EB . (3)

The energy term in Eq. 2 can be seen as ExDBSCAN’s cost function in the formalism introduced
in Eq. 1. Fig. 1 shows how a solution of Eq. 3 looks like on a toy dataset where counterfactuals are
produced for a noise point. On the left of Fig. 1, considering the electrostatic term only leads to
maximally diverse counterfactuals. On the right, using just spring-like terms make counterfactuals
maximally proximal. In the middle, balancing repulsion and attraction considering the cluster’s
density structure, prompts proximal and spread-out counterfactuals. We observe the following:
Proposition 1. Aligning with our desiderata on priximity, if considering only the spring-like term in
Eq. 2, solving the optimisation problem in Eq. 3 is equivalent to selecting the k nearest neighbours
of the point to explain p.

3Depending on the dataset’s and cluster’s structure distances d(p, Vi) and D(Vi, Vj) might have different
scales. Because of this, we use a normalisation scheme introduced in Appendix A.3.
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Figure 1: Optimising diversity (left), balanced (middle), optimising proximity (right). Cluster points
in yellow and blue, resp.; noise marked with X; green point to be explained; red stars counterfactuals.

Proof. From Eq. 2, and by induction, when the set of core points is empty, the core minimising the
elastic energy of the system is the closest to the point to explain p (minimum possible distance). As
far as the induction step, given a set of k′ < k selected core points, the next core point to be selected,
i.e., the one minimising the total elastic energy, is given by the closest non-selected core-point p.

Solving the optimisation problem in Eq. 3 is computationally challenging.

Proposition 2. Solving Eq. 3, i.e. the energy minimisation problem with both attraction and repul-
sion, is an NP-hard problem.

Proof. (Sketch, full in Appendix A.7) Maximum diversity problems are NP-hard (Parreño et al.,
2021). Eq. 3 restricted to the electrostatic term can be mapped to the MDP. Adding springs does not
change NP-hardness: If it did, the MDP could be solved in polynomial time sending spring constants
to zero.

We approximate the solution using the following greedy algorithm. Given an incomplete set of
selected core points C ′

k with k′ < k, the next cluster point is chosen as the one minimising the
total energy of the system according to Eq. 2. When choosing the instance initialising the set of
core points, C ′ is still empty and thus no repulsive electrostatic-like force influences the choice. C ′

will thus be initialised with the core point closest to the point to explain since it is the one greedily
minimising the energy configuration, composed by a single spring-like term. Note in the case with
only one counterfactual, the greedy optimisation corresponds to the optimal one according to Eq. 2.

Choosing the set of counterfactuals C. Our chosen set of core points C ′ leverages the clusters’
density structure to optimally balancing proximity and diversity through the weighted undirected
graph G. Given C ′, we need to select where in each core point’s ε neighbourhood the counterfactual
is going to be placed, practically mapping C ′ to the final set of counterfactuals C. Given a single
core point q in C ′, to further improve proximity and respecting our assignment function definition,
we position the counterfactual p′ ∈ C, ε away in the direction of the original point p:

p′ = p+ (dpq − ε)(q − p)/dpq.e (4)

The counterfactual point p′ is considered part of the cluster containing reference core point q, as it
satisfies the density-based clustering criteria for the target cluster, effectively ensuring validity.

Theorem 3.1. Every counterfactual point p′ with reference core point q, such that C (q) = i, i ̸=
−1, that is generated for a point p ∈ X : C (p) ̸= i toward cluster i with the proposed method, is
considered part of cluster i, implying that C (p′) ̸= C (p) and C(p′) = i, and thus valid counterfac-
tual.

Proof. (Sketch) The definition in Section 3.1 denotes that p′ is in the same cluster as its reference
core point q with C (q) = i, therefore C (p′) ̸= C (p) and specifically C (p′) = i. ■

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

How to retrieve the set of counterfactuals C when a set of features is non-actionable is detailed in
Appendix A.5 where we show how ExDBSCAN creates a graph only considering reference core
points whose ε neighbourhood is reachable without changing non-actionable features.

4 EXPERIMENTS

Experimental Setup. We study 30 OpenML tabular datasets (Vanschoren et al., 2013)4 to assess
counterfactuals in terms of being valid, proximal, and diverse. For each dataset we find the best
(ε,minPts) by grid search wrt. DBCV score (Moulavi et al., 2014). Details in App. in Table 1.
We compare EXDBSCAN to BAYCON, a model-agnostic counterfactual method. BAYCON treats
the clustering as a black-box prediction task, repeatedly querying it with candidate points and using
Bayesian optimisation to search the feature space. BAYCON finds counterfactuals, but does not
utilise DBSCAN’s density-connectivity. BAYCON is a state-of-the-art model-agnostic competitor,
but lacks the guarantees and structural awareness that ExDBSCAN provides for obtaining multiple
CEs. For each cluster Ci or noise partition N , sample 10 points randomly. For each sampled point
p ∈ Ci, create a target for every other cluster Cj with j ̸= i yielding 10×

∑m
i=1(m − 1) + 10×m

queries per dataset. Each query asks to produce a set of k = 10 CEs in the specified target cluster.

1) Validity (↑): Proportion of returned k counterfactuals that reach the target cluster (i.e., the CE is
part of the target cluster). When no CE is found, validity is zero for that query.

2) Average Proximity (↓): Mean distance from original point p to each valid returned CE, measured
in DBSCANs clustering feature space. Lower values indicate that the CE more closely resembles
the explained point.

3) Average Diversity (↑). We want k CEs to offer diverse solutions in the target cluster, not minor
variants of the same information. We therefore measure the average similarity (defined as the
inverse of the pairwise weighted shortest path distance), and use its inverse to report diversity.

For a compact, per-dataset comparison we visualise three stacked barbell plots (Fig. 2): Validity (top,
higher is better), Average Proximity (middle, lower is better), and Average Diversity (bottom, higher
is better). Datasets are ordered by BAYCON validity (descending). For each dataset, connectors link
BayCon (red markers) and EXDBSCAN (blue markers) to emphasise within-dataset differences.

Validity Results. In the top view in Figure 2, EXDBSCAN obtains perfect validity on all datasets,
meaning every generated CE successfully attains the target cluster assignment. In contrast, BAY-
CON shows substantial variability in validity, with scores ranging from near-zero on several datasets
to ≈ 0.8 on the best-performing datasets. On the census6 dataset, BAYCON even entirely fails
to produce any valid counterfactual. These differences reflect the fundamental distinction in how
the methods operate. EXDBSCAN’s validity guarantee stems from its construction by following
density-reachable paths through the graph and positioning CEs within ε-neighbourhoods of target
core points. The experiments thus empirically confirm the validity by design as stated in Theo-
rem 3.1. Every step of the CE generation process respects DBSCAN’s density-connectivity struc-
ture, guaranteeing that the final CE satisfies the cluster membership criteria.

BAYCON, conversely, treats the clustering as a black-box prediction task and explores the feature
space using Euclidean distance without awareness of DBSCAN’s connectivity requirements. It can
propose changes that move points toward target clusters in a straight-line distance, but do not achieve
the density-connectivity that DBSCAN requires for membership. This is precisely why a DBSCAN-
specific method proves valuable, because model-agnostic approaches lack the structural knowledge
to reliably generate valid density-based CEs. The inferior results from BAYCON are thus not due to
poor optimisation, but rather due to a fundamental mismatch between the Euclidean search strategy
and DBSCAN’s density-based decision boundaries.

Proximity Results. The middle view in Figure 2, reveals that EXDBSCAN consistently produces
more proximal counterfactuals than BAYCON across all datasets. When comparing only valid CEs
from both methods, EXDBSCAN achieves lower proximity scores in every case. The superiority in
proximity is notable given EXDBSCAN’S perfect validity as this means that our method does not

4Dataset details and reproducible code: Link to repository.
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Figure 2: CE quality metrics for 30 datasets (x-axis). BAYCON (red) and EXDBSCAN (blue)
barbells on same dataset. Top: Validity (proportion of counterfactuals that attain target; ▲ better).
Middle: Avg. proximity of valid CEs (▼ better). Bottom: Avg. diversity as mean distance (▲ better).

sacrifice one for the other. The physics-inspired optimisation balances the spring-like forces pulling
CEs toward the original point with the repulsion-like forces ensuring diversity. BAYCON’S higher
proximity values suggest it often makes larger less targeted changes to achieve cluster reassignment,
likely because it cannot leverage the density-connected pathways that EXDBSCAN does.

Diversity Results. The bottom view in Figure 2 shows that EXDBSCAN generates more diverse
sets than BAYCON, as measured by mean pairwise distance within the density-reachability graph.
This diversity advantage is meaningful because it indicates that EXDBSCAN’S CEs span different
areas of the target cluster. The diversity arises from the repulsion component of the energy system,
which pushes selected core points apart according to their graph-based distance. BAYCON’S lower
diversity scores suggest its CEs tend to concentrate in limited areas of the feature space, providing
more redundancy and thus less comprehensive exploration of alternative ways to achieve cluster
membership. Note, EXDBSCAN achieves superior diversity, better proximity and perfect validity.

Due to lack of space, we defer additional experiments that demonstrate that EXDBSCAN also per-
forms very well when a set of features is non-actionable and thus not helpful in CEs, to App. A.9.2.

5 CONCLUSION AND FUTURE WORK

We proposed ExDBSCAN, a novel counterfactual reasoning framework for density-based cluster-
ing. In extensive experiments, we showcase that ExDBSCAN generates diverse, valid, and proxi-
mal counterfactuals. With our physics-inspired diversity model we balance diversity and proximity
when generating sets of counterfactuals. ExDBSCAN enhances the application of DBSCAN to en-
sure interpretability and thus user trust. Future work concentrates on generating counterfactuals for
incremental density-based clustering as necessary for, e.g., streaming data.
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REPRODUCIBILITY STATEMENT

We include an anonymised GitHub, including all code necessary to reproduce our experiments.
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A APPENDIX

A.1 LLM STATEMENT

No generative AI tools were used in the writing of the paper and at any stage of this research.

A.2 ALGORITHM PSEUDOCODE

To complement Section 3.2 we include full pseudocode for the following two components of ExDB-
SCAN:

1. Selection of k reference core points via greedy minimisation of energy function in Eq. 3.

2. Generation of counterfactual examples from the selected core points using Eq. 4

These algorithms make explicit the operations described in the main text and show how proximity
and diversity are jointly optimised.

A.2.1 GREEDY SELECTION OF CORE POINTS

Given a point p to be explained and a target cluster, the first step of EXDBSCAN is to select a set of
k core points whose ε-neighbourhoods will serve as the basis for constructing counterfactuals. The
energy of a candidate set C ′ is:

EC′ =
∑

Vi∈C′

∑
Vj∈C′:j>i

1

D(Vi, Vj)
+

∑
Vi∈C′

d2(p, Vi).

The optimisation problem in Eq. 3 is NP-hard (Proposition 2), so we use a greedy approximation.
For k = 1, this procedure returns the optimal solution.

Algorithm 1 Greedy Selection of Core Points

Require: Point to explain p; set of core points V ; number of counterfactuals k; weighted graph
distance D(·, ·); feature-space distance d(·, ·); target cluster t.

Ensure: Set C ′ of k selected core points
1: C ′ ← ∅
2: V t = {Vj : Vj ∈ t}
3: while |C ′| < k do
4: best core← None, best energy← +∞
5: for each core point Vj ∈ V \ C ′ do
6: S ← C ′ ∪ {Vj}
7: ES ← 0 ▷ Repulsion term (graph distances)
8: for all pairs (Vi, Vℓ) in S with ℓ > i do

9: ES ← ES +
1

D(Vi, Vℓ)
10: end for ▷ Attraction term (feature-space distance)
11: for all Vi ∈ S do
12: ES ← ES + d2(p, Vi)
13: end for
14: if ES < best energy then
15: best energy← ES

16: best core← Vj

17: end if
18: end for
19: C ′ ← C ′ ∪ {best core}
20: end while
21: return C ′

13
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All shortest-path distances D(Vi, Vj) are precomputed once for the target cluster. Evaluating each
candidate core point requires O(|C ′|), yielding a total complexity of O(km) where m = |V |.

A.2.2 CONSTRUCTING COUNTERFACTUALS

Once the set of reference core points C ′ = {q1, . . . , qk} has been selected, each counterfactual p′ is
placed inside the ε-neighbourhood of its corresponding core point q. To maximise proximity to the
original point p, we move away from p towards q and stop at distance ε from q. This corresponds
exactly to Eq. 4 in the main text. Because each constructed point lies within ε of a core point in the
target cluster, Theorem 3.1 guarantees that all counterfactuals are valid. Algorithm 2 summarises
the procedure through pseudocode.

Algorithm 2 Generate Counterfactuals from Selected Core Points

Require: Point p; selected core points C ′ = {q1, . . . , qk}; DBSCAN radius ε; feature-space metric
d(·, ·)

Ensure: Set C of k counterfactuals
1: C ← ∅
2: for all qj ∈ C ′ do
3: dpq ← d(p, qj) ▷ By construction, dpq > 0 since p and qj belong to different clusters
4: direction← (qj − p)/dpq
5: p′ ← p+ (dpq − ε) · direction ▷ Eq. 4
6: C ← C ∪ {p′}
7: end for
8: return C

Because each p′ lies within distance ε of a core point in the target cluster, the construction ensures
all counterfactuals are valid.

A.2.3 TARGET CLUSTER NOT SPECIFIED

Pseudocode 1 requires the target cluster in input. The user could prefer not to specify a certain target
cluster, e.g. if the user wants to convert a noise point to a generic non-noise instance. In this case,
pseudocode 1 would need to be slightly changed on line 8. Specifically, instead of adding a repulsion
term for each pair of core points already selected unconditionally, we add it only if they belong to
the same cluster. Points belonging to different cluster are indeed already diverse by construction and
they are not connected through any density connected path according to DBSCAN’s algorithm.

A.3 NORMALISATION SCHEME

The distance d(p, Vi) from candidate core points Vi to the explained point p and the distances be-
tween candidate core points D(Vi, Vj), could have different scales depending on the the dataset,
with d(p, Vi) potentially being bigger as it connects points that are not in a cluster. In order to pre-
vent the spring-like term to dominate, given the distance dc from p to the closest core point, and the
average graph weight D̄ , we scale distances D(Vi, Vj) by dc/D̄ .

A.4 METRIC

By design, ExDBSCAN is agnostic to metrics. That being said, if DBSCAN is fit on a metric differ-
ent to euclidean, e.g., Minkowski, cosine, Mahalanobis, or mixed-type metrics, ExDBSCAN can be
easily adjusted to this. Instead of using euclidean distance, we can employ any other distance metric
to determine reference core-points as well as solving the energy-minimisation to produce diverse
and proximal counterfactuals. We also highly advise, to then also use the using the same metric in
ExDBSCAN that was selected for DBSCAN clustering to maintain consistency in the concepts of
density-reachability and graph connectivity. Furthermore, we advise employing this chosen metric
to evaluate proximity and diversity, as the underlying structure of the data and clustering depends on
it.
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A.5 NON-ACTIONABLE FEATURES

Actionability ensures that the generated CEs are actionable, i.e., a user can actually realistically
change the features. Non-actionable features as genetic information or inherent personal attributes,
including age and gender, make explanations unrealistic and prevent human stake-holders to simu-
late and apply the proposed changes.

A.5.1 NON-ACTIONABLE FEATURES IN EXDBSCAN

To account for non-actionable features, we restrict the set of core points to consider, when iden-
tifying the set C ′. The constrained set of core points includes all core points that are not further
than ε away from the original point when measuring distances in the subspace defined by the non-
actionable features Rn′

, with n′ < n the number of non-actionable features. In this way, we take
into consideration only core points whose ε neighbourhood is reachable without changing any of the
non-actionable features.

The undirected weighted graph G is then built and the set of reference core points chosen C ′ as
described in Section 3.2. When moving from the set of core points C ′ to the set of counterfactuals
C, it is not guaranteed that we can move in the direction of the point to explain p, as we now have
the constraint given by the non-actionable features. Therefore, we move toward point p only in the
subspace Rn−n′

formed by the actionable features, still putting the counterfactual ε away from the
reference core point, which is always possible given our core point filtering procedure. We visualise
the approach in Figure 3 where we show how a single counterfactual is produced for a toy dataset
when feature Y is non-actionable.

Figure 3: Conceptual Figure illustrating actionability. Coloured points denote cluster points assigned
to different clusters. The x-axis shows the actionable and y-axis shows non-actionable feature. The
orange rhombus shows the closest core point, that is in the non-actionable direction not further than
ε away from the point to explain (purple). The green star is the identified counterfactual.

A.5.2 REAL-WORLD CONSTRAINTS

There are different strategies to account for real-world constraints. First of all, if the non-actionable
features include categorical features, we suggest changing the metric employed in DBSCAN as well
as ExDBSCAN, for more details to employing different metrics see Section A.4.
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Figure 4: Counterfactuals (red stars) with their closest core point (orange squares) for a noise point
(green) toward a half circle cluster. Counterfactuals near the opposite ends of the half circle are
Euclidean near, moving between the two arcs ends would instead require many intermediate steps,
as they are far in terms of DBSCAN’s density-connected path

Other constraints, i.e., monotonicity or feature bounds can be easily incorporated through further
filtering of the core point set. Instead of restricting the set of reference core points to actionable
dimensions only, we can additionally restrict this to be a specific direction or range depending on the
constraints defined by the user. This allows us to also incorporate already known domain knowledge
into our model.

A.6 EUCLIDEAN DISTANCE’S LIMITATIONS

Instances that appear redundant based on Euclidean distance, might add valuable diversity when
considering the cluster’s structure. Using our shortest path weighted distance properly takes into
account the clusters’ structure. We exemplify this in Figure 4, where counterfactuals are proposed
for a noise point toward a half-circle cluster. Points near the opposite ends of the arc appear close
in the Euclidean space, but under DBSCAN they are density distant; a critical distinction when
evaluating diversity for CEs.

A.7 NP-HARDNESS

Proposition 2, states that the optimisation problem in Equation 3 is NP-hard, we present here a
more extended proof.

Proof. Consider the energy landscape in Equation 2, the electrostatic term reads (in contracted no-
tation)

∑
i,j>i

1
D(Vi,Vj)

, which needs to be minimised to find the optimal energy configuration. Min-

imising the sum of the energy terms is equivalent to maximise their negative. Thus, the problem can
be mapped to a maximum diversity problem where the object summed is the inverse distance, MDP
optimisation is known to be NP-hard (Parreño et al., 2021). Consider now adding the spring terms,
considering Equation 2 in full. We can again map the minimisation problem to a maximisation one
by taking the negative energy. If this new optimisation problem would be solvable in polynomial
time, we could move the spring constants (which we consider equal to 1) to 0. In this limit, the MDP
could be also solved in polynomial time, contradicting its NP-hardness. ■
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A.8 EXPERIMENTAL SETUP

A.8.1 SURROGATE MODELS

While training surrogate classifiers on DBSCAN labels might seem like the straightforward baseline,
we decided to not include this due to the following reasons:

• Noise handling: DBSCAN does not only group the points into clusters, but it additionally
defines points that do not belong to a cluster as noise points. The assigned noise points
do not form a coherent “class” with meaningful decision boundaries, they maybe scattered
around the complete dataset. Consequently, any surrogate classifier would need to learn
from highly irregular or disconnected regions, which would likely result in poor fidelity.

• Surrogate complexity: Constructing a surrogate introduces drawbacks and uncertainty
on its own, additional hyperparameters, tuning steps, and optimisation challenges. As a
consequence, the comparison between the models is less controlled and less interpretable.

• Lack of fidelity guarantees: Even if the surrogate would have a high accuracy, there is no
guarantee that it reproduces DBSCAN’s density-reachability criteria reliably. Incorrectly
learned boundaries would lead to counterfactuals that are “valid” for the surrogate but not
for DBSCAN. While the CEs would explain the classifiers / surrogates decision boundaries,
this is not directly transferable and therefore also not applicable as an evaluation strategy.

• Instability concerns: Prior work Visani et al. (2022) shows that surrogate models trained
on synthetic or held-out data can be unstable, especially in settings with complex or non-
convex decision boundaries such as density-based clustering.

We see that comparing to a surrogate model poses an interesting question, regarding the differences
in information extracted between the surrogate model and DBSCAN itself. While we do not see this
as an evaluation framework, we plan future work employing ExDBSCAN as a tool to investigate
those differences.

A.9 EXPERIMENTAL RESULTS

The following sections present the complete numerical results in tables, thereby we distinguish
between results regarding actionability (Sect. A.9.2) and results without non-actionable features
(Sect. A.9.1).

A.9.1 ALL FEATURES ARE ACTIONABLE

Validity Given a point to explain, a method produces a valid outcome if it returns a counterfactual,
and the counterfactual actually belongs to the cluster. High validity is thus a proxy of how a method
effectively deals with challenging scenarios where a counterfactual is difficult to retrieve.

To evaluate validity we take the results used to assess proximity in the following paragraph and
compute the proportion of valid counterfactuals. Results are displayed in Table 1.

Proximity Table 1 shows how EXDBSCAN consistently outperforms BAYCON in terms of prox-
imity. Leveraging DBSCAN’s structure, EXDBSCAN is able to find the best counterfactual across
all datasets. The more proximal the counterfactual, the more the counterfactual probes the local de-
cision boundary of the model, increasing the probability the the explanation reflects the real reason
why the model made its decision.

Diversity Table 1 showcases how EXDBSCAN outperforms BAYCON regarding diversity.

A.9.2 NON-ACTIONABLE FEATURES

We here evaluate EXDBSCAN in the setting where a subset of features are non-actionable. We
utilise the experimental pipeline used in Section 4, additionally choosing a random set of features
as non actionable. How many features are non actionable is a parameter chosen at random between
one 1 and n

2 features, with n the total number of features. Figure 5 and Table 2 showcase results.
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Table 1: Complete results regarding Proximity, Validity, and Diversity for ExDBSCAN (ours) and
BayCon. Accross all experiments ExDBSCAN achieved better (higher) validity and diversity, and
better (lower) proximity. Mean and standard error of the mean are reported. The standard error of the
mean is not reported for validity as it is a metric characterising the whole set of counterfactuals and
not each counterfactual. We write n.a. when there are not enough samples to estimate the standard
error of the mean.

Dataset Method Proximity Validity Diversity

autoPrice ExDBSCAN 1.5± 0.2 1.00 6.71± 0.003
autoPrice BayCon 3.7± 0.2 0.48 5.85± 0.007
baskball ExDBSCAN 1.2± 0.1 1.00 1.47± 0.02
baskball BayCon 2.0± 0.1 0.78 1.13± 0.03
blood-transfusion-service-center ExDBSCAN 1.3± 0.2 1.00 1.23± 0.04
blood-transfusion-service-center BayCon 1.6± 0.3 0.57 0.66± 0.1
bodyfat ExDBSCAN 0.6± 0.4 1.00 4.23± 0.009
bodyfat BayCon 1.5± 0.3 0.38 3.47± 0.01
breast-w ExDBSCAN 1.0± 0.1 1.00 4.32± 0.01
breast-w BayCon 3.0± 0.2 0.90 3.31± 0.01
chscase census2 ExDBSCAN 1.0± 0.1 1.00 2.02± 0.01
chscase census2 BayCon 1.6± 0.1 0.61 1.81± 0.01
chscase census6 ExDBSCAN 1.1± 0.1 1.00 0.78± 0.04
chscase census6 BayCon - 0.00 -
chscase vine1 ExDBSCAN 1.1± 0.2 1.00 4.642± 0.008
chscase vine1 BayCon 3.2± 0.3 0.50 4.114± 0.009
confidence ExDBSCAN 2.73± 0.05 1.00 1.64± 0.01
confidence BayCon 3.15± 0.05 0.35 1.20± 0.07
diabetes ExDBSCAN 1.4± 0.2 1.00 4.792± 0.005
diabetes BayCon 2.4± 0.1 0.42 2.17± 0.04
diabetes numeric ExDBSCAN 1.2± 0.1 1.00 0.90± 0.08
diabetes numeric BayCon 1.3± 0.1 0.72 0.38± 0.2
diggle table a1 ExDBSCAN 1.3± 0.1 1.00 1.46± 0.02
diggle table a1 BayCon 2.1± 0.4 0.18 1.22± 0.03
disclosure x noise ExDBSCAN 0.8± 0.1 1.00 0.82± 0.08
disclosure x noise BayCon 1.2± 0.1 0.72 0.50± 0.2
ecoli ExDBSCAN 3.6± 0.1 1.00 6.59± 0.003
ecoli BayCon 5.7± n.a. 0.17 0.67± 0.5
glass ExDBSCAN 2.5± 0.3 1.00 4.734± 0.008
glass BayCon 4.4± 0.5 0.57 4.166± 0.008
hayes-roth ExDBSCAN 1.30± 0.05 1.00 2.92± 0.01
hayes-roth BayCon 1.53± 0.09 0.82 1.28± 0.06
heart-statlog ExDBSCAN 1.2± 0.1 1.00 6.488± 0.009
heart-statlog BayCon 3.6± 0.2 0.95 5.224± 0.004
iris ExDBSCAN 1.2± 0.2 1.0 2.774± 0.005
iris BayCon 2.7± 0.2 0.75 1.82± 0.03
liver-disorders ExDBSCAN 0.9± 0.3 1.00 0.59± 0.07
liver-disorders BayCon 1.1± 0.2 0.19 0.49± 0.07
longley ExDBSCAN 1.0± 0.2 1.00 1.74± 0.04
longley BayCon 1.6± 0.2 0.16 1.31± 0.05
machine cpu ExDBSCAN 1.8± 0.3 1.00 1.27± 0.05
machine cpu BayCon 2.0± 0.2 0.62 0.73± 0.1
mu284 ExDBSCAN 1.0± 0.1 1.00 1.89± 0.2
mu284 BayCon 1.7± 0.1 0.52 1.74± 0.2
no2 ExDBSCAN 0.7± 0.2 1.00 2.78± 0.03
no2 BayCon 1.6± 0.2 0.59 2.17± 0.04
pm10 ExDBSCAN 1.1± 0.1 1.00 3.369± 0.009
pm10 BayCon 2.6± 0.2 0.66 2.15± 0.1
prnn fglass ExDBSCAN 2.9± 0.4 1.00 4.647± 0.009
prnn fglass BayCon 4.6± 0.6 0.62 4.238± 0.007
rabe 131 ExDBSCAN 1.1± 0.1 1.00 2.29± 0.01
rabe 131 BayCon 2.0± 0.1 0.85 2.11± 0.01
sleep ExDBSCAN 0.8± 0.2 1.00 0.98± 0.04
sleep BayCon 1.34± 0.09 0.15 0.76± 0.03
strikes ExDBSCAN 1.57± 0.03 1.00 2.431± 0.003
strikes BayCon 2.45± 0.04 0.43 1.77± 0.006
vehicle ExDBSCAN 2.4± 0.7 1.00 3.95± 0.01
vehicle BayCon 3± 2 0.20 3.05± 0.04
wine ExDBSCAN 1.0± 0.2 1.00 6.476± 0.009
wine BayCon 2.6± 0.4 0.53 5.397± 0.008
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Figure 5: CE quality metrics for 30 datasets (x-axis). BAYCON (red) and EXDBSCAN (blue)
barbells on same dataset. Top: Validity (proportion of counterfactuals that attain target; ▲ better).
Middle: Avg. proximity of valid CEs (▼ better). Bottom: Avg. diversity as mean distance (▲ better).

ExDBSCAN demonstrates perfect validity of 1.00 across all experiments, indicating that our ap-
proach always generates a CE whenever a valid counterfactual exists. This is not always guaranteed,
as there may be instances, where no actionable feature can be changed to alter the cluster assign-
ment. Furthermore, we observe that the produced counterfactuals are generally more proximal than
the ones identified with BAYCON. Finally, the lower section of Figure 5, as well as the most right
column in Table 2 provide details regarding diversity. ExDBSCAN performs better, with the sole
exceptions being the vehicle and longley datasets, where the differences are minimal. In these cases
ExDBSCAN still achieves superior results for proximity and validity.

A.10 RUN-TIME ANALYSIS

To show ExDBSCAN’s superior run-time performance over BayCon we run both methods and mea-
sure the average time in seconds per-dataset needed to find counterfactuals. Table 3 testifies how
ExDBSCAN is significantly faster than BayCon on the tested datasets. In fairness to BayCon, the
Bayesian method produces more than the 10 counterfactuals considered but the inability to restrict
the counterfactual search is a feature of Baycon.

B SURROGATES

As an additional benchmark we take into consideration the following scenario. A surrogate model is
fitted to the DBSCAN clustering assignment using DBSCAN’s cluster labels. Then, a state-of-the-
art counterfactual generator, i.e. DiCE is tasked to produce 10 counterfactuals. The surrogate chosen
is a feed-forward neural network: a differentiable model allowing gradient-based optimisations.
Results displayed in Table 4 show how, compared with ExDBSCAN’s, DiCE’s counterfactuals are
on average significantly more distant to the original instance as showed by the proximity values.
DiCE’s worse proximity is not balance by a better diversity than ExDBSCAN, with the two methods
performing similarly across datasets.
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Table 2: Complete results with non-actionable features regarding Proximity, Validity, and Diversity
for ExDBSCAN (ours) and BayCon. Accross all experiments ExDBSCAN achieved better (higher)
validity and diversity, and better (lower) proximity. Mean and standard error of the mean are re-
ported. The standard error of the mean is not reported for validity as it is a metric characterising the
whole set of counterfactuals and not each counterfactual. We write n.a. when there are not enough
samples to estimate the standard error of the mean.

Dataset Method Proximity Validity Diversity

autoPrice ExDBSCAN 1.6± 0.2 1.00 6.701± 0.003
autoPrice BayCon 3.8± 0.2 0.48 6.069± 0.007
baskball ExDBSCAN 1.26± 0.08 1.00 1.47± 0.02
baskball BayCon 2.1± 0.1 0.82 1.17± 0.03
blood-transfusion-service-center ExDBSCAN 0.67± 0.09 1.00 1.21± 0.07
blood-transfusion-service-center BayCon 1.1± 0.1 0.38 0.7± 0.4
bodyfat ExDBSCAN 0.9± 0.2 1.00 4.31± 0.01
bodyfat BayCon 1.5± 0.3 0.36 3.50± 0.01
breast-w ExDBSCAN 1.0± 0.1 1.00 3.80± 0.01
breast-w BayCon 2.9± 0.2 0.82 3.27± 0.01
chscase census2 ExDBSCAN 0.9± 0.1 1.00 2.21± 0.01
chscase census2 BayCon 1.6± 0.1 0.55 1.81± 0.01
chscase census6 ExDBSCAN 1.5± 0.2 1.00 0.78± 0.07
chscase census6 BayCon - 0.00 -
chscase vine1 ExDBSCAN 1.2± 0.2 1.00 4.55± 0.09
chscase vine1 BayCon 3.4± 0.4 0.55 4.11± 0.01
confidence ExDBSCAN 2.24± 0.04 1.00 1.33± 0.01
confidence BayCon 3.17± 0.05 0.35 1.20± 0.07
diabetes ExDBSCAN 1.4± 0.1 1.00 4.66± 0.09
diabetes BayCon 2.4± 0.4 0.42 2.13± n.a.
diabetes numeric ExDBSCAN 1.0± 0.1 1.00 0.77± 0.06
diabetes numeric BayCon 1.3± 0.1 0.72 0.4± 0.2
diggle table a1 ExDBSCAN 1.1± 0.1 1.00 1.32± 0.04
diggle table a1 BayCon 1.7± 0.3 0.14 1.14± 0.02
disclosure x noise ExDBSCAN 0.6± 0.1 1.00 0.72± 0.09
disclosure x noise BayCon 1.2± 0.1 0.75 0.5± 0.2
ecoli ExDBSCAN 4.0± 0.1 1.00 5.034± 0.004
ecoli BayCon 5.71± n.a. 0.29 1.2± 0.5
glass ExDBSCAN 1.9± 0.3 1.00 3.954± 0.007
glass BayCon 3.2± 0.6 0.45 3.5± 0.1
hayes-roth ExDBSCAN 1.30± 0.06 1.00 2.79± 0.02
hayes-roth BayCon 1.51± 0.08 0.81 1.35± n.a.
heart-statlog ExDBSCAN 1.3± 0.1 1.00 6.014± 0.008
heart-statlog BayCon 3.2± 0.2 0.70 5.013± 0.006
iris ExDBSCAN 1.1± 0.2 1.00 2.847± 0.005
iris BayCon 2.7± 0.2 0.75 1.8± 0.3
liver-disorders ExDBSCAN 0.67± 0.08 1.00 0.59± 0.06
liver-disorders BayCon 0.9± 0.1 0.19 0.5± 0.8
longley ExDBSCAN 1.0± 0.2 1.00 1.12± 0.02
longley BayCon 1.63± n.a. 0.16 1.34± n.a.
machine cpu ExDBSCAN 1.6± 0.8 1.00 1.0± 0.1
machine cpu BayCon 2± 1 0.62 0.8± 0.2
mu284 ExDBSCAN 1.02± 0.08 1.00 1.79± 0.02
mu284 BayCon 1.7± 0.1 0.52 1.74± 0.02
no2 ExDBSCAN 0.9± 0.2 1.00 2.49± 0.03
no2 BayCon 1.9± 0.2 0.62 0.01± 0.04
pm10 ExDBSCAN 1.0± 0.1 1.00 2.892± 0.007
pm10 BayCon 2.1± 0.2 0.41 2.26± 0.01
prnn fglass ExDBSCAN 2.4± 0.4 1.00 4.103± 0.008
prnn fglass BayCon 4.2± 0.3 0.67 4.0± 0.1
rabe 131 ExDBSCAN 1.10± 0.09 1.00 2.28± 0.02
rabe 131 BayCon 2.1± 0.2 0.88 2.1± 0.2
sleep ExDBSCAN 0.9± 0.2 1.00 1.01± 0.04
sleep BayCon 1.50± 0.09 0.07 0.78± 0.03
strikes ExDBSCAN 1.3± 0.1 1.00 2.2± 0.3
strikes BayCon 2.5± 0.2 0.43 1.8± 0.4
vehicle ExDBSCAN 1.0± 0.7 1.00 2.80± 0.01
vehicle BayCon 1.6± 2 0.17 2.98± 0.04
wine ExDBSCAN 1.3± 0.2 1.00 6.313± 0.007
wine BayCon 3.1± 0.4 0.62 5.474± 0.008
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Table 3: Run-time analysis comparing ExDBSCAN with BayCon. Running times (in seconds) show
ExDBSCAN’s being faster than BayCon.

Dataset Method Run-time (s)

autoPrice ExDBSCAN 1.9± 0.5
autoPrice BayCon 17± 1
baskball ExDBSCAN 0.010± 0.001
baskball BayCon 10± 1
blood-transfusion-service-center ExDBSCAN 19± 3
blood-transfusion-service-center BayCon 10± 1
bodyfat ExDBSCAN 1.5± 0.3
bodyfat BayCon 20± 2
breast-w ExDBSCAN 58± 9
breast-w BayCon 10± 1
chscase census2 ExDBSCAN 0.010± 0.001
chscase census2 BayCon 15± 1
chscase census6 ExDBSCAN 0.010± 0.001
chscase census6 BayCon 23.3± 0.1
chscase vine1 ExDBSCAN 0.040± 0.001
chscase vine1 BayCon 18± 1
confidence ExDBSCAN 0.20± 0.01
confidence BayCon 123± 2
diabetes ExDBSCAN 128± 20
diabetes BayCon 16± 1
diabetes numeric ExDBSCAN 0.010± 0.001
diabetes numeric BayCon 1.6± 0.1
diggle table a1 ExDBSCAN 0.010± 0.001
diggle table a1 BayCon 19± 1
disclosure x noise ExDBSCAN 5.0± 0.8
disclosure x noise BayCon 89± 1
ecoli ExDBSCAN 21± 11
ecoli BayCon 19± 3
glass ExDBSCAN 11± 2
glass BayCon 15± 2
hayes-roth ExDBSCAN 0.040± 0.001
hayes-roth BayCon 6.4± 0.7
heart-statlog ExDBSCAN 1.1± 0.2
heart-statlog BayCon 14± 1
iris ExDBSCAN 2.2± 0.4
iris BayCon 9± 1
liver-disorders ExDBSCAN 2.89± 0.04
liver-disorders BayCon 6± 2
longley ExDBSCAN 0.010± 0.001
longley BayCon 21± 1
machine cpu ExDBSCAN 2.1± 0.3
machine cpu BayCon 11± 2
mu284 ExDBSCAN 3.6± 0.7
mu284 BayCon 17± 1
no2 ExDBSCAN 15± 2
no2 BayCon 12± 2
pm10 ExDBSCAN 4.1± 0.6
pm10 BayCon 13± 1
prnn fglass ExDBSCAN 11± 2
prnn fglass BayCon 14± 2
rabe 131 ExDBSCAN 0.010± 0.001
rabe 131 BayCon 9± 1
sleep ExDBSCAN 0.010± 0.001
sleep BayCon 23± 1
strikes ExDBSCAN 0.24± 0.01
strikes BayCon 17.6± 0.2
vehicle ExDBSCAN 72± 12
vehicle BayCon 29± 1
wine ExDBSCAN 0.66± 0.08
wine BayCon 17± 2
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Table 4: Proximity diversity and validity for DiCE. A feed-forward neural network is fitted as a
surrogate on DBSCAN’s cluster labels. The neural network is differentiable allowing DiCE to be
applied. Compared to ExDBSCAN’s results DiCE achieves significantly worse proximity and simi-
lar diversity.

Dataset ProximityRand DiversityRand

autoPrice 4.8± 0.3 4.4± 0.2
baskball 2.3± 0.1 1.7± 0.05
blood-transfusion-service-center 3.6± 0.2 3.3± 0.2
bodyfat 4.9± 0.3 4.6± 0.2
breast-w 3.0± 0.2 1.90± 0.09
chscase census2 5.2± 0.4 3.1± 0.2
chscase census6 7.6± 0.6 3.5± 0.3
chscase vine1 3.0± 0.2 2.4± 0.1
confidence 2.50± 0.08 1.6± 0.2
diabetes 4.3± 0.1 3.1± 0.2
diabetes numeric 1.9± 0.2 0.99± 0.03
diggle table a1 2.4± 0.1 1.08± 0.06
disclosure x noise 1.50± 0.07 1.04± 0.03
ecoli 6.7± 0.5 5.3± 0.7
glass 4.4± 0.3 4.2± 0.2
hayes-roth 1.94± 0.06 1.22± 0.05
heart-statlog 3.7± 0.2 2.9± 0.2
iris 2.2± 0.1 2.10± 0.1
liver-disorders 2.9± 0.4 2.6± 0.3
longley 2.2± 0.2 1.7± 0.2
machine cpu 4.6± 0.3 3.3± 0.1
mu284 7.5± 0.2 5.3± 0.2
no2 2.7± 0.2 2.4± 0.1
pm10 2.29± 0.09 2.52± 0.05
prnnfglass 5.2± 0.3 4.6± 0.2
rabe 131 2.7± 0.2 2.1± 0.1
sleep 4.2± 0.3 2.8± 0.1
strikes 2.91± 0.03 1.55± 0.02
vehicle 3.7± 0.5 3.8± 0.2
wine 3.3± 0.2 3.7± 0.2
wine-quality-red 7.3± 0.6 5.2± 0.2
wine-quality-white 7.1± 0.4 4.5± 0.2
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C EXTENDED BAYCON

In the experimental evaluation, comparison with BayCon was made choosing, for each instance, 10
counterfactuals for both ExDBSCAN and BayCon. Due to the nature of the method, BayCon does
not allow to set a specific number of counterfactuals giving the user several alternatives, the first 10
proposed where chosen for evaluation an comparison with ExDBSCAN. For a more comprehensive
analysis, we add here two ways to subset BayCon counterfactuals. Respectively, we choose 10
random options and the 10 closest to the original instance. The random choice favours diversity
neglecting proximity while the proximity-oriented choice does not take into account diversity, as
testified by the results in Table 5 showing inferior results to ExDBSCAN.

C.1 RANDOM BENCHMARK

To further benchmark ExDBSCAN perform, we select 10 random core points from the target cluster
and generate counterfactuals according to Eq. 4. The random benchmark does not take into account
proximity but does not bias any counterfactual to be closer to a second one making it thus a good op-
tion for diversity. This intuition is confirmed by the results (Table 6) showing competitive diversitive
w.r.t. to ExDBSCAN while providing worse proximity.

C.2 QUALITATIVE EXAMPLE

To better showcase ExDBSCAN’s real-world applications we designed a small qualitative example
reproducing data coming from different sensors. Specifically we generate a dataset of 100 instances
having 4 features: temperature, pressure, humidity and voltage. The data is organised into 3 compact
normally distributes clusters. One outlier is created with temperature and pressure being out-of-
distribution for every cluster. We generate counterfactuals toward each of the 3 clusters for the
outlying instance which is labelled as noise by DBSCAN.

The outlying instance is (85, 110, 70, 5) with features indicating temperature in Celsius, pres-
sure in kiloPascal, percentage of humidity and voltage in Volt respectively. We generate with
ExDBSCAN the initial counterfactual (maximally proximal) for each of the 3 clusters which read
(27.4, 101.6, 57.4, 5.05, ), (37.2, 102.9, 48.5, 5.1) and (21.0, 99.8, 69.0, 4.8) respectively.

Analysing the proposed counterfactuals, it’s clear that temperature is an outlying feature of the
anomaly, as it significantly drops for all ExDBSCAN’s output. Pressure as well is dropped in every
counterfactual. Percentage of humidity is in line with cluster 3’s counterfactuals while proposed CEs
do not significantly modify voltage. Thus, the outlier wasn’t assigned to cluster 1 and 2 because of
temperature, pressure and voltage while it wasn’t assigned to cluster 3 because of its temperature
and pressure.
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Table 5: Proximity diversity and validity for BayCon. Random refers to chosing the 10 counterfac-
tuals randomly from the proposed one. Closest refers to selecting the 10 closest counterfactuals.

Dataset Method Proximity Diversity Validity

autoPrice BayCon (Random) 3.45± 0.17 6.4± 0.3 0.46
autoPrice BayCon (Closest) 2.67± 0.14 0.18± 0.01 0.46
baskball BayCon (Random) 1.92± 0.09 1.42± 0.02 0.78
baskball BayCon (Closest) 1.29± 0.09 0.83± 0.04 0.78
blood-transfusion-service-center BayCon (Random) 1.8± 0.2 1.19± 0.08 0.55
blood-transfusion-service-center BayCon (Closest) 1.2± 0.2 1.62± 0.18 0.55
bodyfat BayCon (Random) 1.7± 0.2 3.8± 0.1 0.40
bodyfat BayCon (Closest) 0.9± 0.2 0.29± 0.01 0.40
breast-w BayCon (Random) 3.0± 0.2 3.6± 0.1 0.90
breast-w BayCon (Closest) 2.3± 0.2 0.31± 0.01 0.90
chscase census2 BayCon (Random) 1.6± 0.1 1.86± 0.06 0.58
chscase census2 BayCon (Closest) 1.1± 0.1 0.58± 0.02 0.58
chscase census6 BayCon (Random) − − 0
chscase census6 BayCon (Closest) − − 0
chscase vine1 BayCon (Random) 3.3± 0.3 4.2± 0.1 0.63
chscase vine1 BayCon (Closest) 2.7± 0.3 0.26± 0.01 0.63
confidence BayCon (Random) 3.09± 0.04 1.23± 0.08 0.35
confidence BayCon (Closest) 2.76± 0.07 0.73± 0.02 0.35
diabetes BayCon (Random) 3.3± 0.2 3.7± 0.2 0.42
diabetes BayCon (Closest) 1.8± 0.2 0.35± 0.03 0.42
diabetes numeric BayCon (Random) 1.5± 0.1 0.7± 0.1 0.72
diabetes numeric BayCon (Closest) 1.0± 0.1 2.9± 0.5 0.72
diggle table a1 BayCon (Random) 1.9± 0.3 1.5± 0.1 0.18
diggle table a1 BayCon (Closest) 1.5± 0.3 0.68± 0.05 0.18
disclosure x noise BayCon (Random) 1.4± 0.1 1.11± 0.09 0.70
disclosure x noise BayCon (Closest) 0.8± 0.1 2.4± 0.2 0.70
ecoli BayCon (Random) 5.90± 0.08 2.5± 0.5 0.17
ecoli BayCon (Closest) 5.71± 0.01 0.6± 0.2 0.17
glass BayCon (Random) 3.9± 0.4 4.5± 0.2 0.58
glass BayCon (Closest) 3.3± 0.5 0.27± 0.01 0.58
hayes-roth BayCon (Random) 1.75± 0.06 2.6± 0.1 0.81
hayes-roth BayCon (Closest) 1.02± 0.06 0.65± 0.03 0.81
heart-statlog BayCon (Random) 3.4± 0.2 5.4± 0.1 0.93
heart-statlog BayCon (Closest) 2.6± 0.2 0.20± 0.01 0.93
iris BayCon (Random) 2.4± 0.1 2.2± 0.1 0.80
iris BayCon (Closest) 2.2± 0.1 0.50± 0.02 0.80
liver-disorders BayCon (Random) 2.5± 0.5 1.8± 0.1 0.90
liver-disorders BayCon (Closest) 1.7± 0.5 0.91± 0.09 0.90
longley BayCon (Random) 1.7± 0.2 1.5± 0.1 0.16
longley BayCon (Closest) 1.4± 0.2 0.68± 0.09 0.16
machine cpu BayCon (Random) 2.2± 0.2 1.28± 0.04 0.63
machine cpu BayCon (Closest) 1.5± 0.2 1.2± 0.1 0.63
mu284 BayCon (Random) 1.67± 0.09 1.96± 0.08 0.48
mu284 BayCon (Closest) 1.2± 0.1 0.61± 0.02 0.48
no2 BayCon (Random) 1.9± 0.2 3.6± 0.3 0.59
no2 BayCon (Closest) 1.0± 0.2 0.49± 0.05 0.59
pm10 BayCon (Random) 2.4± 0.1 2.7± 0.1 0.61
pm10 BayCon (Closest) 1.6± 0.1 0.46± 0.01 0.61
prnn fglass BayCon (Random) 4.5± 0.5 4.7± 0.3 0.67
prnn fglass BayCon (Closest) 4.0± 0.6 0.26± 0.01 0.67
rabe 131 BayCon (Random) 2.0± 0.1 2.31± 0.06 0.85
rabe 131 BayCon (Closest) 1.4± 0.1 0.49± 0.02 0.85
sleep BayCon (Random) 1.9± 0.6 0.8± 0.03 0.18
sleep BayCon (Closest) 1.8± 0.6 1.3± 0.1 0.18
strikes BayCon (Random) 2.38± 0.04 2.07± 0.02 0.42
strikes BayCon (Closest) 1.84± 0.04 0.59± 0.01 0.42
vehicle BayCon (Random) 4± 2 3.8± 0.5 0.20
vehicle BayCon (Closest) 3± 2 0.36± 0.04 0.20
wine BayCon (Random) 2.6± 0.3 5.6± 0.2 0.55
wine BayCon (Closest) 1.9± 0.3 0.20± 0.01 0.55
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Table 6: Proximity diversity for the random benchmark. Specifically, 10 random core points are
chosen from the DBSCAN clusters and the counterfactuals are placed ε away in the direction of
the original instance, analogously as the ExDBSCAN case. The random benchmark is competitive
when looking at diversity, as the random choice doesn’t bias any counterfactual to be closer to others.
Conversely, the random benchmark doesn’t perform at the same level as ExDBSCAN when looking
at proximity as counterfactuals are not attracted toward the original instance.

Dataset ProximityRand DiversityRand ValidityRand

autoPrice 4.8± 0.3 4.4± 0.2 1
baskball 2.3± 0.1 1.67± 0.05 1
blood-transfusion-service-center 3.6± 0.2 3.31± 0.18 1
bodyfat 4.9± 0.3 4.6± 0.2 1
breast-w 3.0± 0.2 1.90± 0.09 1
chscase census2 5.2± 0.4 3.1± 0.2 1
chscase census6 7.6± 0.6 3.5± 0.3 1
chscase vine1 3.0± 0.2 2.4± 0.1 1
confidence 2.50± 0.08 1.6± 0.2 1
diabetes 4.3± 0.1 3.1± 0.2 1
diabetes numeric 1.9± 0.2 0.99± 0.03 1
diggle table a1 2.4± 0.1 1.08± 0.06 1
disclosure x noise 1.49± 0.07 1.04± 0.03 1
ecoli 6.7± 0.5 5.3± 0.7 1
glass 4.4± 0.3 4.2± 0.2 1
hayes-roth 1.94± 0.06 1.22± 0.05 1
heart-statlog 3.7± 0.2 2.9± 0.2 1
iris 2.2± 0.1 2.1± 0.1 1
liver-disorders 2.9± 0.4 2.6± 0.3 1
longley 2.2± 0.2 1.7± 0.2 1
machine cpu 4.6± 0.3 3.3± 0.1 1
mu284 7.5± 0.2 5.3± 0.2 1
no2 2.7± 0.2 2.4± 0.1 1
pm10 2.29± 0.09 2.52± 0.05 1
prnn fglass 5.2± 0.3 4.6± 0.2 1
rabe 131 2.7± 0.2 2.1± 0.1 1
sleep 4.2± 0.3 2.8± 0.1 1
strikes 2.91± 0.03 1.55± 0.02 1
vehicle 3.7± 0.5 3.8± 0.2 1
wine 3.3± 0.2 3.7± 0.2 1
wine-quality-red 7.3± 0.6 5.2± 0.2 1
wine-quality-white 7.1± 0.4 4.5± 0.2 1
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