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ABSTRACT

Large language models (LLMs) have unveiled remarkable reasoning capabilities
by exploiting chain-of-thought (CoT) prompting, which generates intermediate
reasoning chains to serve as the rationale for deriving the answer. However,
current CoT methods either simply employ general prompts such as Let’s think
step by step, or heavily rely on handcrafted task-specific demonstrations to
attain preferable performances, thereby engendering an inescapable gap between
performance and generalization. To bridge this gap, we propose Meta-CoT, a
generalizable CoT prompting method in mixed-task scenarios where the type of
input questions is unknown. Meta-CoT firstly categorizes the scenario based on
the input question and subsequently constructs diverse demonstrations from the
corresponding data pool in an automatic pattern. Meta-CoT simultaneously enjoys
remarkable performances on ten public benchmark reasoning tasks and superior
generalization capabilities. Notably, Meta-CoT achieves the state-of-the-art result
on SVAMP (93.7%) without any additional program-aided methods. Our further
experiments on five out-of-distribution datasets verify the stability and generality
of Meta-CoT. Code is available at Anonymous.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Scao et al., 2022; Thoppilan et al., 2022;
Chowdhery et al., 2022; Touvron et al., 2023; OpenAI, 2023) have exhibited commendable
capabilities on complex reasoning by virtue of chain-of-thought (CoT) prompting (Wei et al., 2023).
CoT prompting entails the generation of intermediate reasoning chains that serve as the rationale
before deriving the answer.

Current CoT prompting methods predominantly fall into two categories, which we dub as General
Zero-Shot-CoT and Specific Few-Shot-CoT, respectively. The former leverages general prompts such
as Let’s think step by step and appends them directly to the input question, aiming to summon up
the step-by-step reasoning potential from LLMs (Kojima et al., 2023; Yang et al., 2023). The latter
provides task-specific input-output pairs as in-context demonstrations and puts them before the input
question, for the purpose of instructing LLMs to carry out multi-step reasoning with elaborately
selected demonstrations (Wei et al., 2023; Zhang et al., 2023; Wan et al., 2023; Diao et al., 2023).

Briefly, there are two major limitations in previous studies. On one hand, the General Zero-Shot-
CoT pattern is endowed with favorable generalization ability as it does not need any task-related
exemplars, but it often pales in terms of performance when compared with the few-shot pattern.
On the other hand, the Specific Few-Shot-CoT pattern heavily leans on task-specific demonstrations
to attain superior performances, yet fails to bear on decent generalization ability. Although recent
works have made progress by either alleviating manual labor (Zhang et al., 2023) or promoting the
quality of demonstrations (Arora et al., 2023; Wan et al., 2023; Diao et al., 2023), all of them rest
on the task-associated perspective thus far.

Nevertheless, in practical applications, LLMs tend to confront situations of mixed types of questions,
where it cannot be clearly identified which task the question belongs to. On these occasions, it is
neither reasonable to improvise several task-related examples by hand nor possible to manually
search for which task it refers to, not to mention that the question encountered in actual cases is not
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Q: There are 7 baskets of peaches. Each basket has 10 red peaches and 2 green peaches. How many green peaches are in the baskets altogether?

Let’s think step by step.

LLM
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Rationale
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Scenario Demonstrations

Rationale & Answer

Task-specific Demonstrations

Mixed Data Pool
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labled task name: SVAMP

LLM LLM

(a) General Zero-Shot-CoT (b) Specific Few-Shot-CoT (c) Meta-CoT

First, we need to find out... 
Next, we need to find out... 
Therefore, there are 84 green peaches...

84

[SVAMP]
Q: ...How many books does he have ?
A: Let’s think step by step...
[SVAMP]
Q: ...How many peaches does Jake have?
A: Let’s think step by step...
...

Let’s think step by step...
Therefore, the answer is 14.

[Arithmetic, SAQ]
Q: ...How much did each candy cost?
A: Let’s think step by step...
[Arithmetic, SAQ]
...

Let’s think step by step...
Therefore, the answer is 14.

.

Arithmetic 
SAQ

Commonsense
MCQ

Symbolic
Y/N

...

Q: What are candles good for eliminating? Answer Choices: (A) shelf (B) board (C) church (D) table (E) dark

CSQA
SVAMP

Figure 1: Comparison with existing paradigms of CoT prompting. General zero-shot-CoT and
specific few-shot-CoT are from Kojima et al. (2023) and Wei et al. (2023), respectively.

even from a pre-defined collection of tasks. Besides, naive use of general trigger prompts is likely
to result in performance degradation as the lack of templated rationales often leads to spurious
reasoning steps (Wan et al., 2023). Therefore, there exists an inescapable gap between performance
and generalization, especially in realistic mixed-task scenarios. To mitigate this gap, a potential
strategy is to explore the trade-off area between generality and performance while ensuring certain
practical applicability.

Motivated by the above ideas, we propose Meta-CoT: a generalizable CoT prompting method in
mixed-task scenarios where the type of input questions is unknown. Meta-CoT comprises three
phases: firstly, it gathers questions of various reasoning types from a collection of reasoning
tasks and samples distinct questions as in-context learning (ICL) demonstrations. Those ICL
demonstrations are used to categorize the scenario of the input question. Secondly, it automatically
constructs diverse demonstrations from the corresponding data pool based on the classified scenario
obtained in the first phase. Thirdly, it performs a final inference on the input question with the
demonstrations elaborated in the second phase and delivers the feedback to the data pool.

We evaluate our proposed Meta-CoT on ten benchmark reasoning tasks including: (i) arithmetic
reasoning (MultiArith (Roy & Roth, 2015), GSM8K (Cobbe et al., 2021), AddSub (Hosseini
et al., 2014), AQUA-RAT (Ling et al., 2017), SingleEq (Koncel-Kedziorski et al., 2015), SVAMP
(Patel et al., 2021)); (ii) commonsense reasoning (CSQA (Talmor et al., 2019), StrategyQA
(Geva et al., 2021)); (iii) symbolic reasoning (Last Letter Concatenation, Coin Flip) (Wei et al.,
2023). In addition, we further validate the stability and generalization of Meta-CoT on five
out-of-distribution datasets including ARC-challenge (Clark et al., 2018), ASDiv (Miao et al.,
2020), CSQA2.0 Talmor et al. (2021), Sports Understanding (Suzgun et al., 2022) and Creak
(Onoe et al., 2021). Experimental results show that Meta-CoT simultaneously enjoys remarkable
performances and superior generalization capabilities. Notably, Meta-CoT achieves the state-of-the-
art result on SVAMP (93.7%) without any additional program-aided methods. Moreover, Meta-CoT
achieves impressive performance on GSM8K (89.92%) even without in-context demonstrations
from GSM8K itself.

To sum up, our work has three major contributions as follows:

(i) To the best of our knowledge, our work pioneers a novel setting of the mixed-task scenario for
CoT prompting, which has significant practical application values.

(ii) We propose a generalizable CoT prompting method in mixed-task scenarios, which not only
bridges the gap between performance and generalization but also unearths their in-between mutual
synergy by gaining performance improvements in sync with achieving generality.

(iii) Our approach has shown impressive performance and superior generalization ability on a total
of 15 in-distribution and out-of-distribution datasets. Notably, it achieves the state-of-the-art result
on SVAMP (93.7%) without any additional program-aided methods.

2



Under review as a conference paper at ICLR 2024

Table 1: Typical CoT techniques (ICL: in-context learning; FT: fine-tuning; KD: knowledge
distillation). Segment 1: fine-tuning techniques; Segment 2: in-context learning techniques. To
the best of our knowledge, our work is the first to apply CoT prompting to mixed-task scenarios
with enjoyable generality and superior performance without additional manual labor. In our work,
we focus on in-context learning techniques, eliminating the burden of fine-tuning LLMs.

Model Training Generality w/o Manual w/ Input-related
Labor Info.

Fine-tune-CoT (Ho et al., 2022) KD ✗ ✓ ✗
LoRAHub (Huang et al., 2023) FT ✓ ✓ ✗

Zero-Shot-CoT (Kojima et al., 2023) ICL ✓ ✓ ✗
Few-Shot-CoT (Wei et al., 2023) ICL ✗ ✗ ✓
Self-Consistency-CoT (Wang et al., 2023) ICL ✗ ✗ ✓
Least-to-Most Prompting (Zhou et al., 2023) ICL ✗ ✗ ✓
Auto-CoT (Zhang et al., 2023) ICL ✗ ✓ ✓
Active Prompt (Diao et al., 2023) ICL ✗ ✗ ✓
OPRO (Yang et al., 2023) ICL ✗ ✓ ✗
Meta-CoT (our work) ICL ✓ ✓ ✓

2 RELATED WORK

Two lines of research are key to our work: CoT prompting and cross-task generalization.

2.1 CHAIN-OF-THOUGHT PROMPTING

Recently, CoT prompting methods have pushed the multi-step reasoning abilities of LLMs to a
remarkable aptitude by eliciting them to generate intermediate reasoning chains before deriving the
final answer (Wei et al., 2023), of which some typical techniques are listed in Table 1. Currently,
there are two flavors of research in CoT prompting: General Zero-Shot-CoT (Kojima et al., 2023)
and Specific Few-Shot-CoT (Wei et al., 2023). The former merely appends a general prompt such
as Let’s think step by step to the input question, with the intuition that the step-by-step capabilities
of LLMs can be conjured with simple natural language triggers. The latter leverages several task-
specific input-output pairs as reasoning demonstrations and inserts them before the test question, in
light of decent in-context learning capability of LLMs (Radford et al., 2019; Brown et al., 2020).

General Zero-Shot-CoT. LLMs have proven to be competent zero-shot reasoners by Kojima et al.
(2023), which has greatly broadened the generalizability of CoT techniques and liberated the need
to prepare task-specific examples in advance. While benefiting from its task-agnostic property, it
often fails to excel at performance in comparison with its few-shot rivals (Wei et al., 2023; Zhang
et al., 2023). In order to further boost the performance, recent works have laid emphasis on the
optimization of triggering prompts (Yang et al., 2023). In their work, LLMs are employed as
optimizers, and new prompts are progressively generated based on the past optimization history.
Despite the augmented performance, the optimization process for prompts reverts to a task-specific
problem, and for unseen test questions in real-world scenarios, it may not be advisable to use LLMs
to optimize prompts on the fly.

Specific Few-Shot-CoT. Owing to the well-crafted in-context exemplars, Few-Shot-CoT achieves
preferable performance, which consequently extends to a plethora of studies focusing on
improvements upon it. According to the period of improvement, these studies are grouped into three
categories: (i) pre-reasoning pattern; (ii) peri-reasoning pattern; and (iii) post-reasoning pattern.

For the pre-reasoning pattern, current research attends to either alleviating manual labor when
selecting demonstrations (Zhang et al., 2023; Wan et al., 2023), or promoting demonstration quality
(Creswell et al., 2023; Madaan & Yazdanbakhsh, 2022; Arora et al., 2023; Diao et al., 2023). Auto-
CoT (Zhang et al., 2023) exploited the benefits of diversity in demonstrations and automatically
constructed the demonstrations without the need for additional manual labor. Active-Prompt (Diao
et al., 2023) underscored the significance of uncertainty by intentionally selecting the most uncertain
questions for annotation and utilizing them as demonstrations. For the peri-reasoning pattern, recent
studies concentrate on fine-grained reasoning processes such as problem decomposition (Zhou et al.,
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Figure 2: The ratio of wrong cases in task identification (a), ratio of wrong cases in category
identification (b) and ratio of wrong cases falling into form identification (c).

2023; Press et al., 2022). Zhou et al. (2023) introduced least-to-most prompting, which reduced
complex problems to sub-problems and then the sub-problems were solved sequentially. Self-ask
(Press et al., 2022) specifically asked follow-up questions to the model and then answered them
before responding to the initial question. For the post-reasoning pattern, related works principally
enhanced the performance by verification (Weng et al., 2022; Lyu et al., 2023) or ensemble-like
methods (Wang et al., 2023; Li et al., 2023; Wang et al., 2022; Yoran et al., 2023). Weng et al. (2022)
computed an explainable answer verification score by taking turns masking the initial conditions
and predicting their results. Wang et al. (2023) introduced a self-consistency decoding approach to
sample multiple outputs of LLMs and then voted over the final answers.

However, the aforementioned works, which mainly hinge on task-associated exemplars, fail to step
outside the task-specific framework to pursue generalizability. In turn, there is an upper bound to
the performance that a general Zero-Shot-CoT method can achieve, thus leading the current CoT
prompting to a dilemma. Our work, in contrast, manages to find a way out of this dilemma by
intuitively carrying out an upstream scenario identification task, making our proposed Meta-CoT
applicable in realistic mixed-task scenarios.

2.2 CROSS-TASK GENERALIZATION

Cross-task generalization has been a long-standing research goal in natural language processing
(NLP). The conventional pre-training and fine-tuning paradigm gains a foothold by pre-training on
a large corpus of text to capture general knowledge and fine-tuning on specific tasks to acquire
specific knowledge. Beyond this primitive paradigm, post pre-training and multi-task learning
encourage further advancements in this research area. For instance, Yu et al. (2022) made progress
in the science domain while Zhang & Zhao (2021) promoted the model’s performance on dialogue-
related tasks by introducing two novel training objectives to incorporate the dialogue-like features.
Furthermore, typical multi-task learning frameworks promote models to learn shared representations
across tasks to achieve task generalization. For example, MT-DNN (Liu et al., 2019) leveraged a few
task-aware output modules to tailor the shared representations to each task. Notably, Zhang et al.
(2022) proposed a task prefix guided multi-task pre-trainig framework, under the motivation that
there are potential relationships among tasks which can be helpful for task generalization. Our work,
consequently, is inspired by the discovery that data from different tasks may have similarities, thus
sensibly partitioning mixed questions is likely to detect the mutual synergy between generalization
and performance. More recent works such as ExT5 (Aribandi et al., 2022), T0 (Sanh et al., 2022)
and FLAN (Wei et al., 2022) strived to convert a variety of tasks into an identical text-to-text format,
so that models can be trained on those tasks jointly. LoraHub (Huang et al., 2023) leveraged the
composability of LoRA (Low-Rank Adaption of LLMs) modules to promote the task generalization
ability of LLMs. Our work, however, manages to effectuate task generalization through timely and
user-friendly in-context learning without any training.
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3 CHALLENGES OF GENERALIZABLE COT IN MIXED-TASK SCENARIOS

Existing studies (Wei et al., 2023) commonly assume that the type of questions fed to the model
is known and conduct each set of evaluations on the questions from the same dataset. However, a
more realistic setting lies in mixed-task scenarios where the type of input questions is unknown and
they come in an arbitrary manner. To address the mixed-task scenarios, we put forward a salient
procedure, namely scenario identification to explore practical and efficient solutions in a plug-and-
play fashion. Beforehand, we need to address the following two challenges: (i) How to effectively
partition the mixed questions so that we can invoke the pre-defined solutions (e.g., scenario-wise
ICL)? (ii) What information do LLMs need to know for efficient scenario identification?

3.1 PARTITIONING MIXED QUESTIONS

In the first place, we investigate how to effectively partition the mixed questions. Following Kojima
et al. (2023); Zhang et al. (2023), we adopt questions from ten reasoning tasks. Those questions
cover three categories including arithmetic, commonsense and symbolic reasoning and involve
three forms encompassing short-answer, multiple-choice, and yes-or-no questions 1. At the very
beginning, we make a simple and naive attempt to test how well LLMs can identify various tasks.
We randomly sample one question from each of the ten tasks. For each question, we retain the
task name from which it originates so that we obtain ten question-task pairs, which we employ as
in-context learning demonstrations for question type identification.

As can be seen from Figure 2, the identification accuracy is only 42%. We then analyze the wrong
examples and find that 92% and 64% of them belong to the same category and form as the correct
task respectively. The results demonstrate that LLMs are not qualified for distinguishing task names,
but possess a high probability of correctly discriminating their categories or forms. We speculate
that the underlying reason can be two-fold: on one hand, task names themselves are too abstract
for LLMs to well perceive their differences through in-context learning alone. On the other hand,
there exist potential similarities and correlations among tasks themselves (Zhang et al., 2022), which
enlightens us to disclose more rational partitioning strategies.
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Figure 3: Identification accuracy (%)
with different partitioning schemes.

Since the majority of cases that misidentify task names
fall into the same category or form, we compare
the identification accuracy with the following three
variants of partitioning schemes: (i) Category-based
scheme which separates mixed questions into diverse
categories; (ii) Form-based scheme which segments data
into different answer forms; (iii ) <Category, Form>-
based scheme which concurrently takes the two aspects
into account. As is shown in the right parts of Figure
2, we find that for category- and form-based schemes, a
particular group tends to dominate the wrong cases. For
instance, 85% of wrong cases in category identification
belong to the symbolic group. We discover that this is
because the sampled symbolic group demonstrations do
not cover symbolic yes-or-no question, thus hindering
LLMs from accurately identifying this missing type. As such, partitioning mixed questions based on
both its category and form is a sensible strategy, which adequately considers the two major natures
of question data. The results in Figure 3 show that this strategy reaches high accuracy (99%).

3.2 IDENTIFYING SCENARIOS

In this part, we analyze what information LLMs require for efficient scenario identification. We
extract the questions (Q) from the original data files and obtain the corresponding rationales (CoT)
and predicted answers (A) from the Zero-Shot-CoT log files from Kojima et al. (2023). Abiding
by the <Category, Form>-based partitioning strategy discussed in Section 3.1, we consider four
alternatives of input formats fed to LLMs for scenario identification: (i) [Q] which takes purely
the question as input ; (ii) [Q, A] which concatenates the question and the corresponding predicted

1More data information is shown in Appendix A.1
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Q: Bobby had 32 pieces of candy. ...
Scenario: <Arithmetic, short-answer> 

Q: The man took paperwork... 
Scenario: <Commonsense, multiple-choice> 

Q: A coin is heads up. ... 
Scenario: <Symbolic, yes-no> 
Q: A company produces 420 units... 
Scenario: <Arithmetic, multiple-choice> 

Q: Was Aristotle a member of... ?
Scenario: Commonsense, yes-no> 

Q: Take the last letters...and concatenate them.
Scenario: <Symbolic, short-answer> 

Input question: If John scored 100 on his first 3 tests and an 80 on his 4th, what was his average score across the 4 tests?

Q: If John scored 100 on his first 3 tests...
Scenario: 

<Arithmetic, short-answer>  

<Arithmetic, SAQ><Arithmetic, MCQ> <Symbolic, SAQ> <Symbolic, Y/N> <Commonsense, Y/N> <Commonsense, MCQ>
Q:
Q: A company...
Q:

Q: Take the...
Q: 
Q:

Q:
Q: 
Q: Bobby had...

Q: A coin is...
Q: 
Q:

Q:
Q: Was Aristotle... 
Q:

Q:
Q: 
Q: The man...

<Arithmetic, short-answer>  

Q:
Q:
Q:
Q:

Q: Mike worked 3 hours, eacy day, for 5 days...How 
many hours did he work in total ?
A: Let’s think step by step. Mike worked 3 hours... In 
total, he worked 3 + 3 + 3 + 3 + 3 = 15 hours. 
Therefore, the answer is 15.

Q: For Halloween Katie and her sister combined... 
how many pieces do they have left?
A: Let's think step by step. Katie and her sister have a 
total of 8 + 23...they have 31 - 8 = 23 pieces left. 
Therefore, the answer is 23.

Q: If John scored 100 on his first 3 tests and an 80...
A: 

Let's think step by step. John scored 100 on his first 3 
tests, which totals to 300. ... The answer is 95.

Mixed Data Pool

Gathering and Sampling Fetch the scenario questions

Identification

Clustering

Inference

Feedback to data pool

...

①Scenario Identification ②Demonstration Selection ③Answer Derivation

Figure 4: Overview of Meta-CoT, which consists of three phases: (i) scenario identification:
categorizes the scenario of the input question (left); (ii) demonstration selection: fetches the ICL
demonstrations for the categorized scenario (middle); (iii) answer derivation: performs the answer
inference by feeding the LLM with the prompt comprising the fetched ICL demonstrations and the
input question (right).

answer; (iii) [Q, CoT] which joins the question and the rationale together ; (iv) [Q, CoT, A] which
sequentially combines the question, rationale and answer.

Table 2: Identification accuracy (%) with
different input formats.

Input format Generality Accuracy

[Q] ✓ 99.00
[Q, A] ✗ 96.40
[Q, CoT] ✗ 90.30
[Q, CoT, A] ✗ 91.10

Results in Table 2 suggest that the question itself is
sufficient for LLMs to perceive the scenario. Notably,
the participation of CoT degrades the identification
performance, which may reveal that LLMs only need
to focus on the question itself and the rationales
would distract LLMs, thus leading to identification
errors. Therefore, the question-only pattern [Q] is a
satisfactory input option for scenario identification with
decent accuracy and generality.

4 META-COT

This section introduces Meta-CoT, which is illustrated in Figure 4. On a high level, Meta-CoT
consists of three phases: (i) scenario identification: categorizes the scenario of the input question;
(ii) demonstration selection: fetches the ICL demonstrations for the categorized scenario; (iii)
answer derivation: performs the answer inference by feeding the LLM with the prompt comprising
the fetched ICL demonstrations and the input question. We detail these phrases as follows.

4.1 SCENARIO IDENTIFICATION

Given an input question qin, the goal of the scenario identification phase is to categorize the scenario,
e.g., the type of the question. To this end, we first prepare a few ICL demonstrations, each of which
consists of a question qi and its scenario si. The ICL demonstrations will be concatenated with
qin to prompt the LLM to infer the question scenario. At the very beginning, we leverage public
off-the-shelf datasets and obtain n data groups based on the <category, form > partitioning strategy
to construct the ICL demonstrations. Now that we have n data groups [D1, D2, . . . , Dn] as a mixed
questions pool MP, we randomly sample one question from each data group and obtain a set of
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questions [q1, q2, . . . , qn], with qi ∈ Di. Let si represent the scenario name for the data group Di.
The demonstration di for data group Di is formed by: di = [Q: qi,Scenario: si]. We run such
a process for each data group to have n-shot demonstrations: Picl = [d1, d2, . . . , dn]. Similarly,
the prompted input for identification Pide can be formulated as [Q: qin,Scenario: ]. Finally, we
concatenate the demonstrations and the prompted input together: [Picl, Pide] and feed it into LLMs
to predict the scenario sin for qin.

4.2 DEMONSTRATION SELECTION

After categorizing the scenario sin for the input question qin, we are able to construct scenario-wise
demonstrations for in-context learning. Given the scenario sin for the input question obtained in
Section 4.1, we fetch the corresponding scenario data group Din ∈ [D1, D2, . . . , Dn]. Therefore,
we have the questions in Din under the same scenario with qin. Then, we construct the few-shot
demonstrations by sampling a few representative questions by k-means clustering and invoking
Zero-Shot-CoT to obtain the reasoning chains following Auto-CoT (Zhang et al., 2023).

Concretely, we leverage Sentence-BERT (Reimers & Gurevych, 2019) to obtain a vector
representation for each candidate question in Din. Afterward, we perform k-means clustering
over the acquired contextualized representations. For each cluster i, we sort the questions in
ascending order by distance from the cluster center. Then we iterate over the sorted question
list and apply Zero-Shot-CoT to the current question, namely adding Let’s think step by step
after the question, to get the rationale and predicted answer. Next, we follow prior works (Wei
et al., 2023; Zhang et al., 2023) and conduct simple filtering operations 2 on the question and
rationale, which help obtain more effective demonstrations. Once the question-rationale pair is
retained under the filtering operation, we stop functioning on other questions in cluster i. As a
result, we manage to collect a total of k representative and high-quality demonstrations for Din:
[
(
q1re, r

1
re, a

1
re

)
,
(
q2re, r

2
re, a

2
re

)
, . . . ,

(
qkre, r

k
re, a

k
re

)
], where rire and aire refer to the rationale and

predicted answer of qire by invoking Zero-Shot-CoT.

4.3 ANSWER DERIVATION

Now that we have k typical demonstrations of the formerly classified scenario sin, we execute a
final inference to obtain the answer to qin. Concretely, we construct each demonstration dire by:
dire =

[
Q: qire,A: rire, a

i
re

]
where qire, rire, and aire are from Din. Then we prepare the templated

input prompt for inference by Pinf = [Q: qin,A: Prompt], where Prompt refers to simple triggers
such as Let’s think step by step. After that, the concatenated demonstrations

[
d1re, d

2
re, . . . , d

k
re

]
are

inserted before the input prompt Pinf , which is eventually delivered to LLMs to derive the rationale
rin and answer ain of input question qin. Meanwhile, we obtain a new triple of the input question,
rationale and answer (qin, rin, ain), which is sent back to the identified data group Din to update
the mixed questions pool MP.

5 EXPERIMENTS

This section will describe our experimental setup and present the main results.

5.1 SETUP

Tasks and Datasets. Our method is evaluated on 10 in-distribution benchmark datasets and 5 out-
of-distribution datasets. The in-distribution datasets are from three categories of reasoning tasks:
(i) arithmetic reasoning (MultiArith (Roy & Roth, 2015), GSM8K (Cobbe et al., 2021), AddSub
(Hosseini et al., 2014), AQUA-RAT (Ling et al., 2017), SingleEq (Koncel-Kedziorski et al., 2015),
SVAMP (Patel et al., 2021)); (ii) commonsense reasoning (CSQA (Talmor et al., 2019), StrategyQA
(Geva et al., 2021)); (iii) symbolic reasoning (Last Letter Concatenation, Coin Flip) (Wei et al.,
2023). The five out-of-distribution datasets include: ARC-challenge (Clark et al., 2018), ASDiv
(Miao et al., 2020), CSQA2.0 Talmor et al. (2021), Sports Understanding (Suzgun et al., 2022) and
Creak (Onoe et al., 2021).

2More details are attached in Appendix B.1
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Table 3: Accuracy (%) on ten in-distribution reasoning datasets. Segment 1: ICL methods without
CoT; Segment 2: Task-specific CoT approaches; Segment 3: CoT techniques with generalization.
† indicates the experiment is based on GPT-4, otherwise GPT-3.5-Turbo is employed by default.
Results in bold and underline are the best and second-best performances respectively.
Method AQuA MultiArith AddSub GSM8K SingleEq SVAMP Letter Coin Strategy CSQA Avg.

Zero-Shot 29.1 67.2 84.5 15.9 83.1 67.9 4.8 44.0 65.3 74.3 53.6
Few-Shot 33.1 87.5 86.6 22.8 89.0 79.1 7.2 64.4 62.3 81.0 61.3

Few-Shot-CoT 54.3 97.3 89.1 73.8 92.9 81.9 73.2 99.0 63.7 78.0 80.3
Auto-CoT 49.6 99.3 89.6 75.9 92.3 84.6 81.2 100.0 64.6 72.2 80.9

Zero-Shot-CoT 51.6 94.7 84.2 71.2 91.1 78.4 85.8 99.0 62.6 69.9 78.8
General-CoT 46.9 98.7 87.9 74.1 92.9 83.8 75.2 100.0 63.4 72.2 79.5
Meta-CoT 54.7 99.7 90.9 72.6 93.5 88.6 77.2 100.0 64.5 72.4 81.4
Meta-CoT† 72.8 99.0 91.9 89.9 92.3 93.7 90.2 100.0 74.1 86.4 89.0

Implementation. We utilize the popular and publicly available GPT-3.5-Turbo and GPT-4
(OpenAI, 2023) from OpenAI API 3. Experimental results are based on GPT-3.5-Turbo by default
unless otherwise specifically marked. The original mixed questions pool MP is constructed based
on the 10 in-distribution datasets. The number of data groups n is 6 according to the partitioning
scheme discussed in Section 3.1. Following Wei et al. (2023), the number of demonstrations k is
8 except for <arithmetic, multiple-choice questions> and <symbolic, short-answer questions > (4),
<commonsense, multiple-choice questions> (7) and <commonsense, yes-or-no questions> (6).

Baselines. We compare Meta-CoT with 6 baselines, which can be divided into three groups: (i)
ICL methods without CoT prompting including Zero-Shot (Kojima et al., 2023) and Few-Shot
(Brown et al., 2020); (ii) task-specific CoT approaches involving Few-Shot-CoT (Wei et al., 2023)
and Auto-CoT (Zhang et al., 2023); (iii) CoT techniques with generalization referring to Zero-Shot-
CoT (Kojima et al., 2023) and General-CoT. General-CoT is a strong baseline that we specifically
devise for generalization comparison. It randomly collects one demonstration from each partitioned
question group in our mixed data pool (MP) and then leverages the gathered demonstrations as a
generic inference prompt for all the input data. 4

5.2 MAIN RESULTS

Performance of Meta-CoT on 10 in-distribution datasets Table 3 presents the results on
ten in-distribution reasoning tasks. Notably, Meta-CoT achieves a state-of-the-art result on
SVAMP (93.7%) without any additional program-aided methods. Meta-CoT also attains impressive
performance on GSM8K without in-context demonstrations from GSM8K itself. Furthermore,
Meta-CoT towers above all the baseline methods from different angles. On one hand, compared
with two typical task-specific CoT approaches, Meta-CoT not only surpasses them in performance
but also enjoys the generalizable property, which means that the input question with an unknown
type can be adapted to our method in an automatic and labor-free pattern. On the other hand, while
the general CoT techniques both witness performance degradation (i.e., 80.9%→78.8/79.5%), Meta-
CoT stands out by continually boosting the performance (i.e., 80.9%→81.4%), thus shedding light
on the mutual synergy between performance and generalization of LLMs.

Performance of Meta-CoT on five out-of-distribution datasets As our work aims to accomplish
a generalizable CoT prompting method in mixed-task scenarios, we further conduct experiments on
5 out-of-distribution datasets to verify its generality. We observe from Table 4 that our approach
is capable of achieving a decent performance while maintaining favorable stability. The results
certify the applicability of Meta-CoT to realistic situations where the incoming data is not defined
by a certain type. Besides, we surprisingly discover that comparable results are yielded with the
demonstrations of <commonsense, yes-or-no questions > scenario. We analyze that it is probably
due to the broad coverage of commonsense knowledge that assists in the generality of LLMs.

3https://openai.com/blog/openai-api
4More details are presented in Appendix B.2.
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Table 4: Accuracy (%) on five out-of-distribution datasets. SAQ: short-answer question; MCQ:
multiple-choice question; Y/N: yes-or-no question. We report the mean (Avg.) and standard
deviations (Std.). We calculate Std. based on different question groups. Segment 1: Methods
that leverage demonstrations of a specified scenario; Segment 2: Our Meta-CoT method. Results in
bold and underline are the best and second-best performances respectively.

Method Creak Sports CSQA2.0 ASDiv ARC-c Avg.± Std.

Symbolic, SAQ 10.8 58.5 22.4 73.2 66.6 56.8±22.9
Symbolic, Y/N 28.3 22.6 33.3 73.3 60.9 54.1±23.4
Arithmetic, SAQ 8.6 43.6 16.7 77.2 67.6 55.9±28.9
Arithmetic, MCQ 18.8 59.1 28.5 77.3 70.0 61.2±22.5
Commonsense, Y/N 85.7 83.1 65.2 71.7 76.6 75.4 ± 3.3
Commonsense, MCQ 22.5 25.5 23.5 74.0 77.9 58.6±30.2

Meta-CoT 85.1 83.1 62.3 77.1 77.6 77.2±0.4

6 ANALYSIS

6.1 METHODS OF CONSTRUCTING COT DEMONSTRATIONS

Table 5: Accuracy (%) of different
demonstration construction methods.

Method AQuA Strategy Coin

Meta-CoT 54.7 64.5 100.0

w/ similarity 49.6 64.1 99.2
w/ randomness 52.0 61.2 99.0

Since our work is situated in realistic mixed-task
scenarios, accessing high-quality demonstrations in
a labor-saving pattern is of crucial importance.
Accordingly, we select two representative labor-free
sampling methods for comparison: (i) Similarity-based
which retrieves the most top-k similar questions based
on cosine similarity; (ii) Randomness-based which
randomly samples k demonstrations for each input
question. Results in Table 5 show our proposed Meta-CoT performs best, illustrating the importance
of diversity in demonstrations.

6.2 EFFECT OF SCENARIO IDENTIFICATION

In order to further explore the effect of scenario identification which plays a key role in
generalization, we discard this identification phase and adopt an idealized strategy in which we
assume that the model is given the gold scenario. Results in Table 6 reveal that only a trivial
improvement is detected even with the correct scenario given (70.2% → 70.6%). This indicates
that our method potentially arouses the self-determination ability of LLMs without the need for
manual intervention.

Table 6: Effect of scenario identification. We study the cases where the correct scenario for the input
question is given and them compare them with our method, which adaptively predicts the scenario.

Method AQuA Strategy ASDiv Creak CSQA2.0 ARC-c Avg.

Meta-CoT 54.7 64.5 77.1 85.1 62.3 77.6 70.2
w/ correct scenario 52.8 65.0 77.2 85.7 65.2 77.9 70.6

7 CONCLUSION

In this work, we initially put forward a novel setting with significant application values, namely
mixed-task scenarios where the type of input question is unknown. Upon this challenging
setting, we propose Meta-CoT, a generalizable CoT prompting mechanism that first performs
scenario identification based on the input data and then automatically constructs corresponding
demonstrations for ICL. Evaluation results on a total of 15 in-distribution and out-of-distribution
datasets demonstrate the impressive performance and superior generalization ability of our proposed
approach. While most existing works focus on either promoting performance or pursuing generality,
we open up a pioneering perspective to bridge the two aspects in a simple and practical manner.
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A DATASET INFORMATION

A.1 IN-DISTRIBUTION DATASETS

Our method is evaluated on 10 in-distribution benchmark datasets that cover three categories
including arithmetic, commonsense and symbolic tasks and involve three forms encompassing short-
answer, multiple-choice, and yes-or-no questions. The corresponding categories and forms of these
datasets are shown in Table 7.

• Arithmetic Reasoning: we choose the following six datasets: (i) MultiArith (Roy & Roth,
2015), (ii) GSM8K (Cobbe et al., 2021), (iii) AddSub (Hosseini et al., 2014), (iv) AQUA-RAT
(Ling et al., 2017), (v) SingleEq (Koncel-Kedziorski et al., 2015), and (vi) SVAMP (Patel et al.,
2021). MultiArith, AddSub, and SingleEq come from the Math World Problem Repository (Koncel-
Kedziorski et al., 2016), while the other three are from more contemporary benchmarks. Among
them, all the arithmetic datasets belong to short-answer form except for AQUA-RAT which is in
multiple-choice format.

• Commonsense Reasoning: we take the following two datasets into account: (i) CSQA (Talmor
et al., 2019) and StrategyQA (Geva et al., 2021). CSQA poses questions with complicated semantics
that frequently necessitate prior knowledge reasoning (Talmor et al., 2019). StrategyQA requires
models to conduct multi-hop reasoning during inference (Geva et al., 2021). CSQA is in multiple-
choice form whereas StrategyQA belongs to the yes-or-no format.

• Symbolic Reasoning: we employ the typical datasets Last Letter Concatenation and Coin Flip
from Wei et al. (2023), which are in short-answer and yes-or-no form respectively. Last Letter
Concatenation asks the model to concatenate the last letters of each word. Coin Filp requires the
model to answer whether a coin heads up after a series of actions of either flipping or not flipping
the coin.

Table 7: Information of 10 in-distribution datasets (Ari.: arithmetic; Com.: commonsense and Sym.:
symbolic; SAQ: short-answer question; MCQ: multiple-choice question; Y/N: yes-or-no question).

Task MultiArith GSM8K AddSub AQuA SingleEq SVAMP CSQA Strategy Letter Coin

Category Ari. Ari. Ari. Ari. Ari. Ari. Com. Com. Sym. Sym.
Form SAQ SAQ SAQ MCQ SAQ SAQ MCQ Y/N SAQ Y/N
Size 600 1319 395 254 508 1000 1221 2290 500 500

A.2 OUT-OF-DISTRIBUTION DATASETS

Table 8 presents the information of 5 out-of-distribution datasets we use to evaluate our method,
including ARC-challenge (Clark et al., 2018), ASDiv (Miao et al., 2020), CSQA2.0 Talmor et al.
(2021), Sports Understanding (Suzgun et al., 2022) and Creak (Onoe et al., 2021). ARC-challenge
(Clark et al., 2018) requires the model to cope with English language exam questions that span
several grade levels as indicated in the files, which is in short-answer form. ASDiv (Miao et al.,
2020) evaluates the model’s capability of answering English math word problems in various
language patterns and problem types. CSQA2.0 (Talmor et al., 2021) and Creak (Onoe et al.,
2021) ask the model to judge the assertions about everyday commonsense knowledge as correct
or incorrect. Sports Understanding (Suzgun et al., 2022) demands the model to determine whether
a statement relating to sports is plausible or not.

Table 8: Information of 5 out-of-distribution datasets (SAQ: short-answer question; MCQ: multiple-
choice question; Y/N: yes-or-no question).

Task ASDiv Creak Sports CSQA2.0 ARC-c

Category Arimetic Commonsense Commonsense Commonsense Commonsense
Form SAQ Y/N Y/N Y/N SAQ
Size 2305 1371 1000 2541 299
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B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Filtering operations in Demonstration Selection. We follow the works from (Wei et al., 2023;
Zhang et al., 2023) and leverage simple criteria to filter the question-rationale pair as follows: the
question needs to be no more than 60 tokens and the rationale should not exceed 5 reasoning steps.
The reasoning step is identified by counting the number of \n tokens in the rationales. The \n token
is often employed by Zero-Shot-CoT for separating reasoning steps. The objective of this filtering
strategy is to seek simple heuristics by sampling simpler questions and rationales.

B.2 BASELINE METHODS

We introduce the baselines methods in detail.

• ICL methods without CoT: Zero-Shot (Kojima et al., 2023) concatenates a test question with
the prompt “A:” as the LLM input. Few-Shot (Brown et al., 2020) has the same LLM input as Zero-
Shot except for several additional templated demonstrations as: [Q: q,A: The answer is a] before
the test question, where q and a are manually crafted questions and answers.

• Task-specific CoT approaches.: Few-Shot-CoT (Wei et al., 2023) follows similar patterns as
Few-Shot but differs in that rationales are inserted before deriving the answer. Auto-CoT (Zhang
et al., 2023) divides questions of a given dataset into a few clusters, samples a representative question
from each cluster, and constructs its reasoning chain using Zero-Shot-CoT with simple heuristics.

• CoT techniques with generalization: Zero-Shot-CoT (Kojima et al., 2023) simply inserts the
prompt Let’s think step by step after a test question to conduct inference, which rids the necessity of
handcrafted task-wise demonstrations. We also compare our method with a strong baseline General-
CoT, in which the in-context demonstrations for inference come from distinct question groups.

C FURTHER ANALYSIS

Table 5 demonstrates the complete results of different demonstration sampling methods on 6 well-
partitioned data groups. We find that the diversity-based strategy performs best overall.
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Figure 5: Results of different demonstration sampling methods on 6 data groups (Ari: arithmetic;
Com: commonsense and Sym: symbolic).
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