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ABSTRACT

Self-reflection—the ability of a large language model (LLM) to revisit, evaluate,
and revise its own reasoning—has recently emerged as a powerful behavior enabled
by reinforcement learning with verifiable rewards (RLVR). While self-reflection
correlates with improved reasoning accuracy, its origin and underlying mecha-
nisms remain poorly understood. In this work, we first show that self-reflection
is not exclusive to RLVR fine-tuned models: it already emerges, albeit rarely, in
pretrained models. To probe this latent ability, we introduce Reflection-Inducing
Probing, a method that injects reflection-triggering reasoning traces from fine-tuned
models into pretrained models. This intervention raises self-reflection frequency of
Qwen2.5 from 0.6% to 18.6%, revealing a hidden capacity for reflection. Moreover,
our analysis of internal representations shows that both pretrained and fine-tuned
models maintain hidden states that distinctly separate self-reflective from non-
reflective contexts. Leveraging this observation, we then construct a self-reflection
vector, a direction in activation space associated with self-reflective reasoning. By
manipulating this vector, we enable bidirectional control over the self-reflective
behavior for both pretrained and fine-tuned models. Experiments across multi-
ple reasoning benchmarks show that enhancing these vectors improves reasoning
performance by up to 12%, while suppressing them reduces computational cost,
providing a flexible mechanism to navigate the trade-off between reasoning quality
and efficiency without requiring additional training. Our findings further our un-
derstanding of self-reflection and support a growing body of work showing that
understanding model internals can enable precise behavioral control.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful technique for
enhancing the reasoning abilities of large language models (LLMs), enabling learning from outcome-
level feedback across diverse tasks (Xu et al., 2025; WANG et al., 2025; Mroueh, 2025). In a nutshell,
RLVR optimizes for end-task success, allowing models to explore novel reasoning strategies at scale
(Zhao et al., 2025b; Ferrag et al., 2025; Su et al., 2025). Notably, it has been reported (Guo et al.,
2025; Liu et al., 2025c; Zeng et al., 2025) that such training induces new emergent behaviors, such as
self-reflection—the ability of a model to revisit, evaluate, and revise its prior outputs. For instance,
the DeepSeek-R1 report (Guo et al., 2025) highlights that RLVR-trained models often generate tokens
such as “wait”, interpreted as signals of internal deliberation or critique.

Despite these observations, it remains unclear why such reflective behaviors emerge. Answering
this question is crucial for understanding the foundations of reasoning in LLMs and guiding future
methods for enhancing their performance. Moreover, empirical studies have shown that reflection
correlates with more accurate and robust reasoning (Zuo et al., 2025; Yue et al., 2025; Liu et al.,
2024a), and that prompting models to explicitly “wait” or reflect can further improve performance
with test-time computing. However, this benefit may come at a cost: reflection can increase inference
time, introduce unnecessary verbosity, and reduce computational efficiency (Yang et al., 2025b;
Renze & Guven, 2024; Sui et al., 2025). These findings highlight not only the need to understand
self-reflection in LLMs, but also the importance of controlling it to balance reasoning quality and
efficiency. These gaps motivate this work to study the following research questions:
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Question: A strictly increasing sequence of positive
integers , , , ... has the property that for every
positive integer , the subsequence , , 
is geometric and the subsequence , , 
is arithmetic. Suppose that . Find .
Response: Let's break down the problem step-by-
step:
1. Understand the sequence properties:
… <omitted>… 
8. Reconsider the relationship between geometric
and arithmetic subsequences:
 … <omitted>…
14. Final Answer:After determining the correct  and
solving for , we get:\boxed{2}

Pe
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Self Reflection Behavior Percentage

Inject CoT 
from  to   

An Example of Self Reflection in 

Figure 1: Left: Frequency distribution of self-reflection behaviors for pretrained model Apt, fine-
tuned model Aft, and Apt with reflection-inducing probing by injecting CoT from Aft, evaluated
on the MATH500 dataset. Right: A representative example of spontaneous self-reflection in Apt,
demonstrating that this capability emerges naturally during pretraining, albeit with different self-
reflection tokens than those typically observed in RLVR fine-tuned models.

Is self-reflection a novel behavior induced by RLVR, or does it already emerge during pretraining?
Can we control self-reflection in LLMs to balance performance and computational efficiency?

Contribution In this work, we provide affirmative answers to both questions. First, we compare the
reasoning behaviors of pretrained models and fine-tuned models (either via RLVR or distillation), and
verify that self-reflection is already present in the pretrained model, albeit at a much lower frequency.
Next, we analyze the hidden representations associated with reflective versus non-reflective reasoning,
and find that they exhibit distinct activation patterns. Furthermore, we show that the degree of
self-reflection can be modulated by a single direction in the representation space. Our contribution
can be summarized as follows.

• Self-Reflection already emerge during pretraining: We demonstrate that self-reflection capa-
bilities naturally exist in pretrained models and are not solely artifacts of RLVR. However, the
frequency of such behavior is extremely low—for example, only 0.6% as shown in Figure 1. To
isolate the model’s capacity for self-reflection from its general reasoning ability, we propose a
method, called reflection-inducing probing, that inserts reasoning traces—specifically, those that
trigger self-reflection in a fine-tuned reasoning model—into the input of the pretrained model,
and then measures whether the latter produces reflection in response. Using reflection-inducing
probing, we observe that the pretrained model exhibits reflection with a frequency of 18.6%,
significantly higher than the baseline of 0.6%, though still lower than the fine-tuned model (which
is almost 100%). Through comparative analysis of hidden representations, we show that pre-
trained models maintain internal structures that distinguish reflective behavior from non-reflective
contexts—similar to fine-tuned models—further suggesting that pretrained models already possess
self-reflection capabilities.

• The degrees of self-reflection can be modulated by a single direction: Motivated by the
separability of reflective and non-reflective contexts in the hidden representation space, we use
the method of difference-of-means (Rimsky et al., 2024) to construct a self-reflection direction,
enabling control over self-reflection behavior for both pretrained and fine-tuned models. Our
experiments demonstrate that this control mechanism offers a tunable trade-off between accuracy
and efficiency: enhancing reflection improves accuracy by up to 12% on benchmarks, while
suppressing it reduces output length by over 32% without significant performance degradation.
We further show that this direction transfers robustly across diverse tasks—including mathematical
and scientific reasoning—highlighting its universality as a shared, task-agnostic mechanism.
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2 PRELIMINARY

2.1 TRANSFORMER LAYER

Decoder-only transformers (Liu et al., 2018) map input tokens t = (t1, t2, . . . , tn) ∈ Vn to output
probability distributions over the vocabulary V . Let h(ℓ)

i ∈ Rd denote the residual stream activation
(also referred to as the hidden state) of the i-th token at the ℓ-th layer, where d is the dimensionality
of the hidden state. Each of the L transformer layers applies a sequence of attention and MLP
transformations to update the residual stream:

h̃
(ℓ)
i = h

(ℓ)
i + Attn(ℓ)(h(ℓ)

1:i), h
(ℓ+1)
i = h̃

(ℓ)
i + MLP(ℓ)(h̃

(ℓ)
i ) (1)

The final hidden state is then projected to a probability distribution over the vocabulary V using an
unembedding matrix followed by a softmax function.

2.2 SELF-REFLECTION

Recent work has shown that large language models (LLMs), even when pretrained purely on next-
token prediction, demonstrate surprising levels of reasoning ability (Mondorf & Plank, 2024; Liu
et al., 2024b; Wang et al., 2023). However, this capability can be significantly enhanced through
fine-tuning on reasoning tasks using either reinforcement learning with verifiable rewards (RLVR)
or supervised learning with distilled responses from reasoning models trained from RLVR (Liu
et al., 2025a; Wang et al., 2024; Zhao et al., 2025a). We denote the pretrained model as Apt, and its
fine-tuned variant as Aft.

A notable emergent behavior observed in fine-tuned models Aft is self-reflection—the model’s
ability to internally evaluate, critique, or revise its own reasoning process. Unlike standard reasoning,
which involves generating a direct solution to a task, self-reflection introduces an intermediate meta-
cognitive step where the model pauses or backtracks to reconsider its prior outputs. This behavior is
often marked by explicit tokens such as “wait,” which have been shown to correlate with improved
reasoning outcomes (Li et al., 2024; Liu et al., 2025c; Yeo et al., 2025).

Importantly, self-reflection is not limited to any specific model architecture, observed across both
proprietary models (Jaech et al., 2024) and open-source systems (Guo et al., 2025; OLMo et al., 2024;
Yang et al., 2025a), indicating that it may be a general emergent property of optimizing for complex
reasoning objectives. While models may signal self-reflection using various phrases, including “wait”,
“let me double-check”, or “I might have made a mistake”, we focus our analysis on the canonical
token “wait” due to its high frequency and clear association with reflective behavior. Our analysis
confirms that “wait” is the most commonly used reflection marker across the DeepSeek-R1 series of
models (Guo et al., 2025). Supporting analyses can be found in Appendix D. Crucially, the analytical
framework we develop can generalize beyond "wait", extending to any token that plays an analogous
reflective role within the reasoning trajectory.

3 SELF-REFLECTION ALREADY EMERGES DURING PRETRAINING

In this section, we conduct a systematic analysis of self-reflection behavior in both pretrained
models Aft and fine-tuned ones Apt. Using the MATH500 dataset (Hendrycks et al., 2021) as our
evaluation benchmark, we compare DeepSeek-R1-Distill-Qwen-1.5B (Aft), a model fine-tuned from
Qwen2.5-1.5B (Apt) (Guo et al., 2025; Yang et al., 2024). First, we show that self-reflection naturally
emerges in pretrained models, though at a substantially lower frequency than in RLVR-distilled
counterparts. Second, through analysis of hidden state representations, we find that even pretrained
models implicitly encode and differentiate between self-reflective and nonself-reflective states, despite
rarely generating reflective outputs explicitly.

3.1 PROBING SELF-REFLECTION IN PRETRAINED MODELS

To investigate whether self-reflection emerges intrinsically in Apt, rather than being solely a byproduct
of fine-tuning strategies such as RLVR, we examined the behavior of Apt on mathematical reasoning
tasks using the MATH500 benchmark. Figure 1 (left) highlights the contrast in self-reflection

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        Question​
  

   Response​

non-reflection
inducing token

reflection
inducing token

self-reflection
token

 Convert the point  in rectangular coordinates to polar coordinates.  Enter your answer in the form
, where    and 

Okay, so I need to convert the <omitted> So, plugging in the values, tan 
= 3/0.\n\n Wait, division by zero? That's undefined. <omitted> But wait, let me
think again.\n\nSince the point is (0, 3), <omitted> but since the point is in the
positive y-axis, we need to choose    = /2. <omitted> Therefore, the polar
coordinates are (3,  / 2).\n\n Wait a minute, let me visualize this to ensure I'm
correct <omitted>  I remember that occurs at   = /2 and  = 3 /2. But wait, just
to make sure, let me think about another approach <omitted> Therefore, the polar
coordinates are \boxed{3, /2}

R

N

W

Figure 2: Hidden State Selection Methodology: We identify tokens immediately preceding "wait"
tokens as reflection-inducing tokens and extract their hidden states. For comparison, we collect
hidden states of identical tokens appearing in non-reflective contexts. This contrastive approach
enables us to analyze the neural signatures associated with self-reflection in language models.

frequency between Apt and Aft models, while the right panel shows a representative instance
of naturally occurring self-reflection in Apt. Remarkably, even in the absence of task-specific
supervision, Apt exhibited spontaneous self-reflective behavior in a small but non-negligible fraction
of cases—approximately 0.6%, as shown in Figure 1. These instances are characterized by explicit
reconsideration or revision of prior reasoning steps. For details on how we identify self-reflection
instances, please see Appendix D. While the self-reflection tokens differ somewhat from those
typically observed in RLVR-trained models, their reflective nature is still discernible. These findings
suggest that self-reflection is not solely acquired through fine-tuning, but rather emerges as a latent
capability within the Apt—one that is infrequently activated but nonetheless present.

Reflection-Inducing Probing by Injecting CoT from Aft into Apt However, the extremely low
frequency of self-reflection in Apt makes it challenging to analyze systematically and to develop
methods (which will be studied in the next section) for controlling such behavior. To address this
challenge, we propose a probing method, termed reflection-inducing probing, that isolates the model’s
capacity for self-reflection from its general reasoning ability. The key idea is to decouple reasoning
competence from reflective behavior by inserting reasoning traces generated by the fine-tuned model
Aft into the input of the pretrained model Apt, and then measuring whether Apt generates reflection
in response.

Formally, given a question q, we use the fine-tuned model Aft to generate a sequence of reasoning
tokens:

Aft(q) = ( r1︸︷︷︸
pre-reflection

, reflection︸ ︷︷ ︸
explicit signal

, r2︸︷︷︸
post-reflection

)

where r1 denotes the initial chain-of-thought leading up to an explicit reflection token (e.g., “wait”),
and r2 represents the revised or continued reasoning after reflection. We then construct a new
prompt by inserting r1 (the pre-reflection reasoning) into the input of Apt, and evaluate whether Apt

independently produces a reflection token at the appropriate point. This setup ensures that both models
operate on similar reasoning contexts, eliminating confounding differences in reasoning capability.
By comparing the frequency and consistency of self-reflection under this controlled setting, we can
more directly assess whether reflective behavior is present in the pretrained model and to what extent
it is amplified by fine-tuning. The frequency of generating reflection with reflection-inducing probing
is reported in Figure 1.

Self-Reflection emerges naturally in pretrained models albeit with much lower frequency
Remarkably, Apt exhibits clear self-reflective behavior in 18.6% of these cases—a dramatic increase
from its baseline rate. This differential response demonstrates that while Apt rarely produces
overt reflection markers in standard contexts, it possesses latent self-reflection capabilities that
can be activated by appropriate contextual triggers. These findings strongly suggest that self-
reflection mechanisms are encoded during pretraining, rather than being exclusively developed
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through reinforcement learning. With 18.6% self-reflection cases, the subsequent section analyzes
the hidden state representations underlying these self-reflective behaviors to provide further insights.

3.2 HIDDEN STATE REPRESENTATIONS OF SELF-REFLECTION

To further investigate the emergence of self-reflection, we analyze the internal representations of the
model when it decides to generate reflection versus when it does not. Specifically, we focus on the
hidden states associated with reasoning tokens that immediately precede the generation of a reflection
token (e.g., “wait”), and compare them to those that do not lead to reflection.

Since both the pretrained model Apt and the fine-tuned one Aft exhibit self-reflection behaviors,
we use A to denote a generic model (either pretrained or fine-tuned), which will be specified in
context. Given a question q, suppose the model A generates a sequence of reasoning tokens that
includes self-reflection. Let r = A(q) = (r1,reflection, r2), where r1 precedes the reflection
token and r2 follows it. Due to the auto-regressive nature of transformer models, the information
from the question q and the reasoning tokens r1 is aggregated into the hidden representation of the
final token in r1, which is then used by the last layer to predict the next token—the reflection token.
For convenience, we refer to the final token in r1 as a reflection-inducing token, though its hidden
state captures information from the entire preceding context (q, r1). Reflection-inducing tokens often
coincide with sentence-final punctuation (e.g., “.”, “!”, or closing brackets) or specific markers such
as "But". Now with a slight abuse of notation, let h(ℓ)

reflection-inducing(q, r) denote the ℓ-th layer hidden
state of a model at A corresponding to the reflection-inducing token. We collect all such hidden states
from model outputs that contain reflection tokens into the following set

H(ℓ)
reflect =

{
h
(ℓ)
reflection-inducing(q, r) ∈ Rd

}
. (2)

To study the properties of hidden states associated with self-reflection, we contrast this set with
representations from cases where the model does not generate reflection. Specifically, to eliminate
the confounding effect of token surface form, we extract hidden states from tokens that share the
same form as reflection-inducing tokens (e.g., sentence-final punctuation), but which do not lead to
self-reflection in the subsequent responses (within 100 tokens in the experiments). For notational
convenience, we refer to these as non-reflection-inducing tokens, and denote their corresponding
hidden states as h

(ℓ)
non-reflection-inducing(q, r). See Figure 2 for an illustration comparing reflection-

inducing and non-reflection-inducing tokens. We collect such non-reflection-inducing into the
following set

H(ℓ)
non−reflect =

{
h
(ℓ)
non-reflection-inducing(q, r) ∈ Rd

}
. (3)

This design ensures a fair comparison by controlling for the surface form of the reflection-inducing
token, ensuring that any differences in hidden representations are attributable to the model’s decision
to reflect.

For Apt models, which rarely generate self-reflective outputs, we use the method of
reflection-inducing probing by injecting CoT from Apt into Aft to elicit reflective behavior. To
visualize these high-dimensional representations, we employ principal component analysis (PCA)
for dimensionality reduction, projecting the hidden states into a 2D space. Figure 3 presents the
visualizations for the 15th layer (out of 28 total layers) for both models, with more layers presented
in Appendix C.

Our analysis reveals a pattern: both models show clear separation between self-reflection and
nonself-reflection states. While this separation is expected in Aft, which was explicitly trained to
exhibit self-reflective behavior, the equally distinct clustering in Apt is remarkable. Despite rarely
generating explicit self-reflection tokens in its outputs, Apt maintains internal representations that
clearly distinguish between self-reflective and nonself-reflective contexts. This finding provides
strong evidence that self-reflection capabilities develop during pretraining, with models encoding
these patterns in their hidden state representations even when they rarely manifest in generated text.
We will exploit this internal structure to develop methods for controlling self-reflection in the next
section.
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Figure 3: PCA visualization of hidden state representations of layer-15 for DeepSeek-R1-Distill-
Qwen-1.5B and Qwen2.5-1.5B. Both models show separation between H(ℓ)

reflect and H(ℓ)
non−reflect.

4 CONTROLLING SELF-REFLECTION IN LANGUAGE MODELS

In this section, we introduce our approach for identifying and manipulating self-reflection vectors in
LLMs. Building on our finding in the last section that hidden representations distinctly separate self-
reflective from non-reflective contexts, we construct self-reflection vectors, directions in activation
space associated with self-reflective reasoning. We then demonstrate how these vectors can be
used to bidirectionally control self-reflection behavior, either enhancing it to improve reasoning
accuracy or suppressing it to reduce computational overhead. Through extensive evaluation across
multiple mathematical reasoning benchmarks, we show that our method significantly outperforms
strong baselines while offering flexible control over the performance-efficiency trade-off. Finally,
we examine the cross-domain transferability of these vectors, revealing their potential as universal
controls for self-reflection across diverse reasoning tasks.

4.1 EXTRACT SELF-REFLECTION VECTORS

To identify the self-reflection vector in the residual stream activations, we compute the difference
between the activations of self-reflective and nonself-reflective contexts. This technique, known
as difference-in-means, effectively isolates key feature directions, as demonstrated in prior work
(Rimsky et al., 2024; Arditi et al., 2024; Wu et al., 2025), motivating our application of this approach
to the self-reflection domain. As in Section 3, we focus on the hidden state of reflection-inducing
token, positing that this state encodes the model’s transition into self-reflection reasoning.

For each layer ℓ ∈ {1, . . . , L}, we compute the mean hidden states in the reflection set H(ℓ)
reflect and

non-reflection set H(ℓ)
non−reflect as

µ
(ℓ)
reflect = mean(H(ℓ)

reflect), µ
(ℓ)
non−reflect = mean(H(ℓ)

non−reflect), (4)

and then construct the self-reflection vector as the difference-in-means vector

v(ℓ) = µ
(ℓ)
reflect − µ

(ℓ)
non−reflect, (5)

which captures both the direction along which self-reflective and nonself-reflective activations diverge,
and the magnitude of that divergence.

4.2 MODEL INTERVENTIONS FOR CONTROLLING TRADE-OFF BETWEEN REASONING AND
EFFICIENCY

To actively modulate a model’s tendency to reflect, motivated by the linear representation hypothesis
and prior work (Arditi et al., 2024), we apply simple linear interventions based on the self-reflection
vector v(ℓ) extracted from the ℓ-th layer, which is expected to capture the direction in representation

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

space most associated with self-reflection. Specifically, we modify each residual stream h(ℓ) at the
ℓ-th layer in (1) according to

ĥ
(ℓ)

= h(ℓ) + αv(ℓ)
〈
h(ℓ),v(ℓ)

〉
, (6)

where ĥ
(ℓ)

then replaces h(ℓ) as the input to the next layer, and the scalar α controls the strength of
the intervention. When α > 0, the model’s self-reflection behavior is enhanced; when α < 0, it is
suppressed. Setting α = 0 disables the intervention, preserving the model’s default behavior.
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Figure 4: Effect of α on performance and re-
sponse length on Math500 Dataset (reflection
vector is injected on layer 14).

Ablation study on α To illustrate the effect of
the linear intervention method for controlling self-
reflection, we conduct an ablation study by vary-
ing the self-reflection steering strength α from
−1.0 to 1.0, injecting the reflection vector at
layer 14 in DeepSeek-R1-1.5B on the MATH-500
benchmark. The result is shown in Figure 12.
Negative α values shorten responses, reducing
average token length, while preserving accuracy.
In contrast, positive α both lengthens responses,
and boosts performance, peaking at α=0.03 with a
12% performance gain in Pass@1, before declin-
ing at larger values due to over-reflection. This
clear trade-off underscores α as a practical knob
for balancing verbosity against reasoning depth.
Further ablation detail on the effect of the injection
layer is provided in Appendix E.

4.3 EXPERIMENTAL RESULTS

We evaluate our self-reflection control mechanism on two mathematical reasoning benchmarks,
MATH-500 (Hendrycks et al., 2021) and AIME 2024, and one scientific QA benchmark, GPQA
Diamond (Rein et al., 2024). Experiments are conducted using DeepSeek-R1 and Qwen2.5 models at
both 1.5B and 7B parameter scales (Guo et al., 2025; Yang et al., 2024). To demonstrate that our
method is not limited to these architectures, we also evaluated it on OLMO-2-13B-Instruct and Llama
3.1 8B Instruct (Grattafiori et al., 2024; OLMo et al., 2024).

We compare three inference strategies: Vanilla (Baseline), which uses standard setting without any
intervention; BF (Budget Forcing), which enforces reflection by appending a "wait" token at the
end of initial short generations (Guo et al., 2025; Muennighoff et al., 2025); and Self-Reflection
(SR) Enhanced/Suppressed, our proposed technique that perturbs hidden states using self-reflection
vectors scaled by a coefficient α (positive for enhancement, negative for suppression). Notably, Aft

can frequently trigger self-reflection, so we apply both SR enhancement and suppression; whereas
Apt trigger it only rarely, and we thus evaluate SR enhancement only. For details on selecting the
optimal injection strategy, please refer to Appendix E.

Key Findings. Our results highlight three major insights. First, SR Enhancement improves reason-
ing performance across most evaluated datasets and model sizes. For example, Qwen2.5 7B’s perfor-
mance on MATH-500 jumps by 12.0 percentage points (from 44.6% to 56.6%), and DeepSeek-R1
variants enjoy similar boosts when employing reflection-enhanced decoding. Furthermore, this
performance gain is also accompanied by a noticeable increase in response length, suggesting that
longer responses can be beneficial when tackling more challenging reasoning tasks.

Second, SR Suppression offers fine-grained control over computational cost. It consistently reduces
output length—often by more than 50%—while preserving most of the model’s accuracy. Notably,
DeepSeek-R1-7B reduces average token length from 3564 to 2451 on MATH-500 with only a minor
drop in Pass@1, which remains above 91%.

Finally, these effects demonstrate strong generalizability across training paradigms and model families.
The observed improvements hold for both Aft models (e.g., DeepSeek-R1, OLMO2) and Apt models
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Size Method MATH-500 AIME 2024 GPQA Diamond
Pass@1 ↑ LEN ↓ Pass@1 ↑ LEN ↓ Pass@1 ↑ LEN ↓

DeepSeek-R1-1.5B

Vanilla 84.1 4755 29.2 6118 14.0 4250
BF 85.5 10122 30.0 8986 14.8 5210
SR Enhanced 87.4 9458 33.5 8132 18.9 7496
SR Suppressed 83.2 3716 27.3 5229 13.8 3795

DeepSeek-R1-7B

Vanilla 92.7 3585 55.8 4558 27.1 3696
BF 93.1 7111 54.5 9629 32.0 5802
SR Enhanced 93.5 8959 58.2 5684 34.6 6513
SR Suppressed 91.2 2439 52.9 3319 26.5 3120

OLMo2-13B

Vanilla 41.8 3075 7.2 3753 15.2 2645
BF 43.2 4891 10.2 4894 17.0 3714
SR Enhanced 47.9 4574 11.7 4941 19.1 3490
SR Suppressed 40.8 2106 6.5 2656 13.7 1375

Qwen2.5 1.5B
Vanilla 27.5 1515 0.2 544 5.7 702
BF 29.6 3993 0.1 4517 5.0 1389
SR Enhanced 36.9 1836 6.1 2525 6.8 814

Qwen2.5 7B
Vanilla 44.8 1294 3.9 2285 16.2 598
BF 46.0 3986 5.3 4526 16.9 1639
SR Enhanced 56.8 2671 16.1 2941 14.8 1816

Llama 3.1 8B
Vanilla 44.0 1613 3.5 1653 30.9 1914
BF 40.1 3771 2.9 3912 26.1 5031
SR Enhanced 57.7 2887 16.5 2974 34.1 3995

Table 1: Performance across mathematical and scientific reasoning benchmarks using models of
different sizes. We compare three inference strategies: Vanilla (no intervention), BF (budget forcing
via “wait” token insertion), and our method: SR Enhanced/Suppressed (applying positive or negative
α to respectively amplify or suppress self-reflection during inference). Pass@1 indicates accuracy
(higher is better); LEN indicates average generation length (lower is better). We use 10% of the data
as a validation set to select the optimal α in Eq. 6.

(e.g., Qwen2.5, Llama3.1), suggesting that the self-reflection signal is a robust and transferable
mechanism that transcends specific architectures or fine-tuning methods.

Building on this generalizability, we emphasize the practical value of inference-time control over
latent self-reflection dynamics. Unlike rigid interventions such as budget forcing, our method affords
semantically grounded, continuous modulation of a model’s internal self-reflection, enabling a tunable
trade-off between performance and efficiency, especially in resource-constrained settings.

To verify that the observed gains are not due to chance, we perform a paired significance
analysis over individual problems for every model–dataset combination. Table 2 reports one-
sided McNemar-style p-values comparing SR-Enhanced to Vanilla. In 15 out of 18 cases, the
p-value is below 0.05, closely mirroring the accuracy differences in Table 1 and indicating that
the improvements are statistically reliable. The remaining three cases, DeepSeek-R1-7B on
MATH-500 and two GPQA settings for the smaller Qwen models, are exactly those where SR-
Enhanced offers little or no advantage, reinforcing that we do not overstate effects in regimes
with negligible gains.

Dataset DeepSeek-R1-1.5B DeepSeek-R1-7B OLMo2-13B Qwen2.5-1.5B Qwen2.5-7B Llama 3.1-8B

MATH-500 0.0057 0.2125 4.0× 10−4 2.0× 10−4 4.0× 10−5 0.0017
AIME 2024 0.0066 0.0139 0.0057 1.0× 10−4 2.0× 10−5 7.0× 10−4

GPQA Diamond 2.0× 10−4 5.0× 10−4 0.0030 0.0519 0.8665 0.0334

Table 2: One-sided p-values from a McNemar-style paired test over problems, comparing
SR-Enhanced vs. Vanilla for each model and dataset.

4.4 TRANSFERABILITY OF SELF-REFLECTION VECTORS

To investigate the transferability of self-reflection vectors across different reasoning domains, we
evaluated whether vectors extracted from the GPQA Diamond dataset could be effectively trans-
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Figure 5: Left: Cosine similarity of self-reflection vectors and the “wait” token across MATH500
and GPQA datasets. The green curve shows similarity between vectors from MATH500 and GPQA.
Blue and orange curves show similarity with the “wait” token. Right: Performance on MATH500
when applying self-reflection vectors extracted from GPQA Diamond to DeepSeek-R1 models.

ferred to mathematical reasoning tasks in MATH500. We compute the cosine similarity between
self-reflection vectors extracted from different domains (MATH500 and GPQA Diamond), and
between these vectors and the embedding of the token "wait" in DeepSeek-R1-Distill-Qwen-1.5B.
For tokenizers containing multiple subword tokens for "wait", we report the average cosine similarity
along with its variance. The results are plotted in Figure 5(left). Our analysis revealed remarkable
consistency in the neural signatures of self-reflection across these distinct domains. Specifically,
vectors extracted from GPQA and MATH500 exhibit high cosine similarity, suggesting that the
internal representation of reflective states is largely domain-invariant. Notably, these self-reflection
vectors are substantially different from the embedding of the token "wait", indicating that they encode
deeper semantic properties of reflective behavior rather than surface-level cues.

Further, we evaluate the performance of self-reflection vectors derived from GPQA-Diamond on
MATH500 using our proposed intervention method, SR-Enhanced/Suppressed, and present the
results in Figure 5(right). Notably, we observe similar performance gains to those seen with in-
domain self-reflection vectors, as reported in Table 1. This cross-domain transfer demonstrates that
the reflective mechanism captures a generalizable cognitive pattern rather than being confined to
task-specific reasoning strategies. Together, these findings suggest that LLMs develop a unified
internal representation of self-reflection, one that can be leveraged across tasks without the need for
domain-specific fine-tuning.

4.5 COMPARISON OF DIFFERENT METHODS

Table 3: Comparison of feature-extraction methods and
steering methods for constructing the self-reflection vec-
tor on DeepSeek-R1 1.5B.

SR Enhanced SR Suppressed
Method PASS@1 ↑ LEN ↓ PASS@1 ↑ LEN ↓
Difference-in-means 87.2 9420 83.4 3738

↪→ Additive Steering 86.0 9845 83.0 3639
PCA 84.3 10074 79.1 3912
Contrastive PCA 84.7 9876 80.6 4078

To validate our choice of the difference-
in-means approach for generating steer-
ing vectors, we conduct a compara-
tive analysis against alternative feature-
extraction techniques. We consider four
variants: (i) a difference-in-means di-
rection with the projected update used
in the main paper, (ii) a difference-in-
means direction with additive steering,
(iii) a standard PCA direction, and (iv)
contrastive PCA (Abid et al., 2018). All
methods are evaluated under identical
intervention settings for both enhancing and suppressing self-reflection.

The evaluation was performed under identical intervention settings for both the enhancement
and suppression of the target behavior. The quantitative results are shown in Table 3. The data
indicate that the difference-in-means approach achieves the highest task performance in both
intervention scenarios, yielding superior PASS@1 scores while maintaining reasonable vector
lengths.
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This empirical finding aligns with insights from recent work in mechanistic interpretability (Wu
et al., 2025). These studies suggest that for the specific goal of causal steering of model behavior,
simple directional vectors derived from differences often outperform other techniques, thereby
motivating our choice of the difference-in-means approach.

4.6 ADDITIONAL ANALYSIS OF SELF-REFLECTION TOKENS ON LLAMA 3.1 8B
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Figure 6: Additional analysis of self-reflection tokens on Llama 3.1 8B. (a)–(b): distributions of
frequent reflection markers before and after injecting CoT from Aft into Apt. (c): distributions of
frequent reflection markers after steering in Aft with the self-reflection vector. (d): percentage that
contains at least one reflection token, comparing Apt, after injecting CoT from Aft into Apt and
steered Aft.

In addition to the analysis on Qwen models, we investigate whether the learned self-reflection
direction captures a model-agnostic behavioral pattern. To this end, we replicate our token-level study
on Llama 3.1–8B and measure how steering Apt using CoT traces extracted from Aft reshapes the
distribution of explicit reflection markers.

Figure 6 provides four complementary views of the effect. Panels (a) and (b) show the empirical
frequency of the most common reflection-like tokens before and after intervention. Panel (c) visualizes
the token distribution induced directly by the steering vector itself after injection. Panel (d) further
summarizes the fraction of generated answers that contain at least one reflection token.

Across all four panels, we observe a consistent trend: steering substantially increases the usage
of a diverse set of reflection markers, including wait, re-check, re-evaluate, and try again, yet no
single token dominates. This distributed increase indicates that the direction is not memorizing or
over-amplifying any specific token. Instead, the intervention activates a broader functional mode
associated with reflective reasoning.

The behavior in Panel (c) is particularly revealing. Even though the steering vector is constructed
solely from hidden states associated with the token wait, the resulting intervention increases the usage
of multiple distinct reflection markers rather than merely reproducing wait. This demonstrates that
the learned direction generalizes beyond surface-level token identity: it stimulates a latent mechanism
for self-checking and revision, rather than a token-specific association.

Taken together with our Qwen results, the cross-model consistency and cross-token generality provide
strong evidence that the learned direction captures an underlying functional mode of self-reflection.
Rather than encoding a single marker, it induces a model-independent shift toward reflective reasoning
behavior.

5 CONCLUSION

In this paper, we demonstrated that self-reflection in large language models is an emergent capability
that develops during pretraining rather than being uniquely induced by reinforcement learning
techniques. Through contrastive analysis of hidden state representations, we revealed that even
models with minimal explicit reflection behavior maintain internal neural signatures that distinguish
self-reflective contexts. By exploiting these representations, we developed an intervention method
that enables bidirectional control over self-reflection, providing a flexible mechanism to navigate the
performance-efficiency trade-off without requiring additional training.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All implementation details, including
model configurations, and evaluation procedures, are provided in Appendix A. We will also release
our code and scripts upon publication to facilitate replication and further research.

ETHICS STATEMENT

This work investigates the mechanisms of self-reflection in LLMs and introduces methods to amplify
or suppress reflective reasoning behaviors. While such techniques may contribute to a deeper
understanding of model internals and enable improvements in reasoning quality, they could also
be misapplied to manipulate model behaviors in unintended or undesirable ways. We therefore
emphasize that our contributions are intended for research purposes, and we encourage responsible
use of these findings in line with ethical standards for AI development.

USE OF LLMS

We used LLMs to assist in the preparation of this paper, primarily for polishing writing, improving
readability, and clarifying technical descriptions. All research questions, methods, and analyses were
designed and conducted by the authors.
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A IMPLEMENTATION DETAILS

For the DeepSeek-R1-Distill-Qwen models, we adopted a specialized prompting strategy that incorpo-
rates the explicit token <think> to elicit self-reflective reasoning and promote internal deliberation.

In contrast, for the Qwen models, we employed the same prompt template but omitted the <think>
token. This design allowed us to isolate and assess the specific influence of <think> on eliciting
reflective behaviors and its downstream impact, as Qwen models do not natively rely on such explicit
triggers.

To support complex multi-step reasoning, we set the maximum generation length to 32,784 tokens
across all experiments, ensuring that outputs were not prematurely truncated. All experiments were
conducted on a computing cluster equipped with 8 NVIDIA A5000 GPUs.

B RELATED WORK

B.1 FEATURES AS DIRECTIONS

Extracting feature directions, often derived from contrastive pairs of inputs, is an established technique
for analyzing and manipulating neural network representations (Rimsky et al., 2024; Burns et al.,
2022; Zou et al., 2023). It is widely recognized that adding such feature vectors to the model’s residual
stream can modify its behavior, although the optimal intervention points and specific methodologies
remain areas of active research (Von Rütte et al., 2024; Jorgensen et al., 2023).

Several studies suggest that directions within the activation space capture semantic features more
effectively or interpretably than individual neurons (Geiger et al., 2024; Park et al., 2023; Bolukbasi
et al., 2016). Recent approaches utilize techniques like sparse autoencoders to discover these
feature directions in an supervised manner (Huben et al., 2024). However, alternative methods such
as Difference-in-Means (DiffMean) (Arditi et al., 2024) have demonstrated strong performance,
sometimes exceeding that of sparse autoencoders, in specific applications like concept detection
and model steering (Wu et al., 2025). Furthermore, the underlying assumption that features can be
represented linearly has proven effective in tasks such as targeted concept erasure within language
models (Shao et al., 2023; Belrose et al., 2023; Feng et al., 2025).

B.2 SELF-REFLECTION IN LANGUAGE MODELS

The concept of self-reflection in language models has gained increasing attention as a mechanism for
improving reasoning quality and alignment. Recent studies (Lightman et al., 2024; Madaan et al.,
2023; Puerto et al., 2024; Zelikman et al., 2022; Lightman et al., 2023; Li et al., 2025) have explored
how prompting models to generate intermediate reflections, critiques, or alternative solutions can
improve final outputs in tasks such as math problem solving, programming, and factual reasoning.
While many of these techniques are implemented at the prompting level or through chain-of-thought
scaffolding, they suggest that self-reflection is a powerful tool for enhancing reasoning. Notably,
these methods often induce substantial increases in generation length and latency, raising questions
about the trade-off between deliberation and efficiency (Yang et al., 2025b; Yi & Wang, 2025; Chen
et al., 2024; Team et al., 2025).

Recent studies have show that RLVR (Shah et al., 2025; Shinn et al., 2023; Wang et al., 2025; Xu
et al., 2025) can improve reasoning abilities by explicitly training models to reflect using outcome-
based feedback. Empirically, trained models (Guo et al., 2025; Liu et al., 2025b) like DeepSeek-R1
demonstrate significant improvements over baseline models in mathematical and logical reasoning
tasks, and showcase new emergent behaviors such as self-reflection. Our work shows that self-
reflection is a broadly distributed and latent feature of LLMs, not exclusively a product of RLVR.
Concurrent works (Shah et al., 2025; Yue et al., 2025) also suggest that RLVR does not necessarily
introduce novel reasoning abilities beyond those acquired during pretraining; instead, it primarily
serves to amplify abilities already present in the model. Our work also complements this literature
by showing that LLMs already encode latent self-reflection signals in their hidden states—even in
models not explicitly trained for such behavior—and that reflection can be selectively enhanced or
suppressed through lightweight vector interventions. This enables fine-grained control over reflective
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behavior, including the ability to mitigate over-reflection, thereby avoiding unnecessary computational
overhead without sacrificing performance.

C PCA VISUALIZATION OF SELF-REFLECTION STATES
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Figure 7: Linear-probe test accuracy of a
linear SVM trained to distinguish reflection-
inducing tokens from non–reflection-inducing
tokens at each layer of DeepSeek-R1-Distill-
Qwen-1.5B and Qwen2.5-1.5B. Accuracy is
above 99% across all layers for both models,
showing that the two groups are almost per-
fectly linearly separable.

To investigate how self-reflective states are in-
ternally represented, we apply PCA to hid-
den states extracted from Qwen2.5-1.5B and
DeepSeek-R1-Distill-Qwen-1.5B. Figure 3 in
the main text shows the PCA projection
of the final-layer representations, while Fig-
ures 8 and 9 display representative layers for
Qwen2.5-1.5B and DeepSeek-R1-Distill-Qwen-
1.5B, respectively.

Across layers, reflection-inducing and
non–reflection-inducing tokens form two elon-
gated clouds that are increasingly separated
along the first principal component. In very
early layers there is some overlap, but from
middle layers onward a clear margin emerges,
and by the deepest layers the two populations
are well separated for both model families.
This progression indicates that the model
progressively sharpens a reflection-related
direction in representation space rather than
encoding it only at a single depth.

The PCA visualizations are consistent with our quantitative linear-probe results in Figure 7,
where a linear SVM trained on 10% of the hidden states and evaluated on the remaining 90%
achieves above 99% test accuracy at every layer for both models, confirming that reflection-
inducing and non–reflection-inducing tokens are almost perfectly linearly separable in the
original high-dimensional space. Notably, this linear structure also appears in Qwen2.5-1.5B,
which emits very few explicit self-reflection tokens, supporting our claim that self-reflection is
encoded as a latent representational direction rather than being tied only to surface markers or
a specific training recipe.

These geometric patterns help explain why our steering method is effective: the learned self-
reflection direction aligns with an existing, model-internal axis that already separates reflective
from non-reflective states, so moving along this direction amplifies or suppresses reflection by
leveraging a naturally emergent subspace rather than inventing a new behavior.

D IDENTIFYING SELF-REFLECTION INSTANCES

To systematically identify self-reflection in language model outputs, we developed a keyword-based
detection approach. We define a self-reflection instance as any generation containing explicit self-
reflection tokens that signal the model’s reconsideration or revision of its reasoning process.

We construct a curated list of self-reflection keywords, informed by prior analyses of reasoning
dynamics in language models (Guo et al., 2025; Liu et al., 2024b). A generation is marked as
self-reflective if it contains one or more of the following terms:

To validate this detection method, we applied it to model outputs on the MATH500 benchmark using
the DeepSeek-R1-Distill-Qwen-1.5B model. We set the maximum response length to 32,784 tokens
to accommodate complex, multi-step solutions and to ensure that instances of late-stage self-reflection
were not truncated. Among the reflection tokens, the keyword "wait" emerged as particularly
salient. In our analysis of DeepSeek-R1 outputs, "wait" accounted for approximately 97.2% of all
detected reflection instances. Beyond DeepSeek-style models, "wait" also appears as a common
reflection token in other architectures such as Llama 3.1 8B, making it a natural cross-model
anchor for probing self-reflection. Importantly, our goal is not to exhaustively enumerate every
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Figure 8: PCA visualization of hidden states from the Qwen2.5-1.5B model across 14 layers.
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Figure 9: PCA visualization of hidden states from the DeepSeek-R1-Distill-Qwen-1.5B model
across 14 layers.
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possible reflection token, but to identify a small, high-precision subset that reliably signals self-
reflective behavior. Our cross-model analysis (Section 4.6) shows that steering based on hidden
states around "wait" nonetheless reshapes the usage of a broader family of reflection tokens
and alters models’ reasoning behavior, indicating that the resulting self-reflection direction is
not tied to a single surface-level token pattern.

Dominant Self-Reflection Keyword:
wait

Miscellaneous Self-Reflection Keywords
(low frequency):
re-check, recheck, check
again, rethink, re-think,
reconsider, re-consider, try
again, re-examine, reexamine,
re-evaluate, reevaluate, think
again, consider again, evaluate
again, examine again

wait
97.2%

misc
2.8%

Keyword Distribution

Figure 10: Left: Dominant and miscellaneous self-reflection keywords used in our analysis. Right:
Frequency distribution across model-generated outputs, where wait constitutes the predominant
share, and all other keywords occur at much lower frequencies.

E ABLATION STUDY

We determine the optimal injection strategy via a two-stage procedure:

(i) Scaling Search: For each candidate layer ℓ, we perform a grid search over α ∈ [−1.0, 1.0] to
identify the value that maximizes validation performance, exploring both enhancement and
suppression regimes.

(ii) Layer Selection: We evaluate each layer’s receptivity to injection. For specialized reasoning
models (e.g., DeepSeek-R1), a single well-chosen layer often suffices to yield significant
gains. In contrast, for general pretrained models (e.g., Qwen2.5), we observe that distributing
moderate injections across multiple layers produces the best trade-off between accuracy and
efficiency.

Effect of Injection Layer. We’ve already described α selection in the main text. Here, we fix
α = 0.01 and examine the effect of injecting the self-reflection vector at each layer of DeepSeek-R1
1.5B on MATH-500 (Figure 11). We observe that middle layers, most notably layer 14, achieve
the highest performance. Injections into early layers yield only marginal gains, as the steering
signal is progressively transformed and attenuated by subsequent network operations. Conversely,
injecting too late often degrades performance, likely because the intervention interferes directly
with token generation rather than shaping deeper reasonin prg dynamics. These results indicate
that moderate, mid-network interventions best modulate self-reflection by targeting layers that both
abstract reasoning patterns and retain strong control over final predictions.

Ablation study on α To complement our earlier ablation on MATH500 and address the
concern of evaluating only a single benchmark, we perform the same study on AIME 2024.
We vary the steering strength α from −1.0 to 1.0, injecting the reflection vector at layer 14 of
DeepSeek-R1-1.5B. The results are shown in Figure 12.

Negative α values shorten responses substantially while preserving accuracy, confirming their
utility for reducing verbosity without harming performance. Positive α values increase average
response length and improve Pass@1, peaking around α = 0.03 before declining as over-steering
introduces excessive reflection and degrades performance.
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Figure 11: Effect of injecting the self-reflection
vector at different layers of DeepSeek-R1 1.5B
(α = 0.01) on Pass@1 and response length for
MATH-500.
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Figure 12: Effect of α on performance and
response length on AIME 2024 (reflection vec-
tor injected at layer 14).

F STEERING EFFECT ON GENERAL REASONING ABILITY

Table 4: Evaluation of faithfulness
and repetition on MATH500 using
roscoe-512-roberta-base
embeddings, reported for the
DeepSeek-R1-1.5B model.

Setting Faithfulness ↑ Repetition ↓
Vanilla 0.8562 0.0648
SR Enhanced 0.8509 0.0639
SR Suppressed 0.8588 0.0644

To evaluate the impact of self-reflection on general abil-
ity, we report results on two metrics: faithfulness and
repetition (Golovneva et al., 2023). Faithfulness assesses
whether the reasoning chain misinterprets the problem
or introduces vague or irrelevant information. Repeti-
tion measures redundancy between reasoning steps by
computing token-level overlap. Both metrics are com-
puted on the MATH 500 dataset, following the setup in,
using facebook/roscoe-512-roberta-base to
embed each reasoning step. As shown in Table 4, the inter-
vention causes only negligible changes in faithfulness and
repetition scores. This suggests that self-reflection does
not compromise the logical coherence or diversity of the generated reasoning steps.c

G LIMITATIONS.

Our work presents several limitations. First, users must predefine whether to enhance or suppress
self-reflection prior to inference; the model does not yet autonomously adjust its reflective behavior
based on task complexity or reasoning demands. Second, our approach relies on access to internal
model activations, which may not be feasible in closed-source or API-limited environments. Third,
while our most detailed layerwise and representational analyses are conducted on smaller
models for computational efficiency, the broader empirical evaluation spans models from 1.5B
to 13B parameters, including DeepSeek-R1 7B, Qwen2.5 7B, OLMo2-13B, and Llama 3.1 8B.
Extending the full set of analyses to even larger or more heavily optimized systems remains an
important direction for future work.

In the future, these limitations could be addressed by developing adaptive self-reflection mechanisms
that dynamically modulate introspection based on task complexity and reasoning signals. Further
research might extend these techniques to more opaque model environments with limited activation
access. Additional work could also explore methods for automatic calibration of injection parameters
across diverse model architectures and reasoning domains.
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