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Abstract

Recently, a series of algorithms have been explored for GAN compression, which
aims to reduce tremendous computational overhead and memory usages when
deploying GANs on resource-constrained edge devices. However, most of the
existing GAN compression work only focuses on how to compress the generator,
while fails to take the discriminator into account. In this work, we revisit the role of
discriminator in GAN compression and design a novel generator-discriminator co-
operative compression scheme for GAN compression, termed GCC. Within GCC, a
selective activation discriminator automatically selects and activates convolutional
channels according to a local capacity constraint and a global coordination con-
straint, which help maintain the Nash equilibrium with the lightweight generator
during the adversarial training and avoid mode collapse. The original generator
and discriminator are also optimized from scratch, to play as a teacher model to
progressively refine the pruned generator and the selective activation discriminator.
A novel online collaborative distillation scheme is designed to take full advantage
of the intermediate feature of the teacher generator and discriminator to further
boost the performance of the lightweight generator. Extensive experiments on vari-
ous GAN-based generation tasks demonstrate the effectiveness and generalization
of GCC. Among them, GCC contributes to reducing 80% computational costs
while maintains comparable performance in image translation tasks. Our code and
models are available at: https://github.com/SJLeo/GCC

1 Introduction

Generative Adversarial Networks (GANs) have been widely popularized in diverse image synthesis
tasks, such as image generation [16, 50], image translation [64, 30] and super resolution [35, 59].
However, the ultra-high computational and memory overhead of GANs hinder its deployment on
resource-constrained edge devices. To alleviate this issue, a series of traditional model compression
algorithms, i.e., network pruning [18, 36], weight quantization [39, 26], low-rank decomposition [10,
19], knowledge distillation [22, 52], and efficient architecture design [29, 55] have been applied to
reduce calculational consumptions of GANs.

Previous work [56, 12, 61] attempted to directly employ network pruning methods to compress the
generator but obtain unimpressive results, as shown in Figure 1(a). The similar phenomenon also
occurred in SAGAN shown in Appendix A. A potential reason is that these methods failed to take into
account the generator and the discriminator must follow the Nash equilibrium state to avoid the mode
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Figure 1: Illustration of model collapse phenomenon. The experiment is conducted on Pix2Pix [30]
based on the Cityscapes [8] dataset. (a) shows the influence of mode collapse in generating images.
Each image generated by the 1/4 channels width generator appears the forgery trace, which is marked
by the red box. (b) and (c) show loss curves of the original generator and the 1/4 channels width
generator with the original discriminator, respectively.
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Figure 2: The performance of generators with different compression ratios on various channel number
discriminators. (a) is the result of SAGAN [63] on CelebA [44] dataset. (b) is the result of Pix2Pix
on the Cityscapes dataset. "1/2 channels" means that we reduce the network width of the generator
network to 1/2 of the original size. GCC uses selective activation discriminator without distillation.

collapse in the adversarial learning. In other words, these methods simply compress the generator
while maintaining the original capability of the discriminator, which resulted in breaking the balance
in adversarial learning. As shown in Figure 1(b) and 1(c), when compressing the generator, the
loss of the discriminator gradually tends to zero, such a situation indicates that the capacity of the
discriminator significantly surpasses that of the lightweight generator. Furthermore, the capacity
imbalance between the generator and discriminator leads to the mode collapse problem [47].

In order to retain the Nash equilibrium between the lightweight generator and discriminator, we must
revisit the role of the discriminator in the procedure of GAN compression. A straightforward method
is to reduce the capacity of the discriminator to re-maintain the Nash equilibrium between it and
the lightweight generator. Therefore, we train a lightweight generator against the discriminators
with different channel numbers. The results are shown in Figure 2, we can obtain the following
observations: i) The channel numbers in the discriminator significantly influence the performance
of the lightweight generator; ii) The discriminator with the same channel compression ratio as the
generator may not get the best result. iii) The optimal value of channel numbers for discriminators is
task-specific. In short, it is arduous to choose an appropriate channel number for the discriminator in
different tasks.

To solve the above issues, we design a generator-discriminator cooperative compression scheme, term
GCC in this paper. GCC consists of four sub-networks, i.e., the original uncompressed generator and
discriminator, a pruned generator, and a selective activation discriminator. GCC selectively activates
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partial convolutional channels of the selective activation discriminator, which guarantees the whole
optimization process to maintains in the Nash equilibrium stage. In addition, the compression of
the generator will damage its generating ability, and even affect the diversity of generated images,
resulting in the occurrence of mode collapse. GCC employs an online collaborative distillation that
combines the intermediate features of both the original uncompressed generator and discriminator
and then distills them to the pruned generator. The introduction of online collaborative distillation
boosts the lightweight generator performance for effective compression. The contributions of GCC
can be summarized as follows:

• To the best of our knowledge, we offer the first attempt to revisit the role of discriminator in
GAN compression. We propose a novel selective activation discriminator to automatically
select and activate the convolutional channels according to a local capacity constraint and a
global coordination constraint. The dynamic equilibrium relationship between the original
models provides a guide to choose the activated channels in the discriminator.

• A novel online collaborative distillation is designed to simultaneously employ intermediate
features of teacher generator and discriminator to guide the optimization process of the
lightweight generator step by step. These auxiliary intermediate features provide more
complementary information into the lightweight generator for generating high-fidelity
images.

• Extensive experiments on various GAN-based generation tasks (i.e., image generation,
image-to-image translation, and super-resolution) demonstrate the effectiveness and gener-
alization of GCC. GCC contributes to reducing 80% computational costs while maintains
comparable performance in image translation.

2 Related Work

Generative Adversarial Networks. Generative Adversarial Network, i.e., GANs [16] has attracted
intense attention and has been extensively studied for a long time. For example, DCGAN [50] greatly
enhanced the capability of GANs by introducing the convolutional layer. The recent works [17,
33, 63, 4] employed a series of advanced network architecture to further improve the fidelity of the
generated images. In addition, several novel loss functions [54, 17, 2, 45] were designed to stabilize
the adversarial training stage of GANs. A popular research direction of GANs is image-to-image
translation. The image-to-image translation is designed to transfer images from the source domain to
the target domain while retaining the content representation of the image. Image-to-image translation
is widely used in computer vision and image processing, such as semantic image synthesis [30, 48],
style transfer [64, 1], super resolution [35, 59], image painting [49, 65] and so on.

Mode Collapse. Mode collapse is the main catastrophic problem during the adversarial training
stage of GANs, which leads to the diversity of generated images are monotonous, only fitting part
of the real data distribution. To address this issue, recent efforts were focus on new objective
functions [47, 17, 34], architecture modifications [5, 15] and mini-batch discrimination [54, 33].
Actually, the capacity gap between the generator and the discriminator is a more essential reason for
mode collapse. In this paper, we provide a different perspective to eliminate the capacity gap, we
select the convolutional channel to be activated in the discriminator according to a local capacity
constraint and a global coordination constraint.

GAN Compression. To reduce huge resource consumption during the inference process of GANs,
great efforts have emerged in the field of GAN compression in the recent two years. The search-
based methods [56, 37, 12, 23, 40, 58] exploited neural architecture search and genetic algorithm
to obtain a lightweight generator. However, they fell into the trap of manual pre-defined search
space and huge search costs. The prune-based methods [38, 31, 57, 61] directly pruned a lightweight
generator architecture from the original generator architecture. However, these works failed to take
discriminator pruning into account, which would seriously destroy the Nash equilibrium between the
generator and the discriminator. The discriminator-free methods [51, 12] directly use the large GAN
model as a teacher to distill the lightweight generator without discriminator, which also achieved good
performance. Slimmable GAN [23] correspondingly shrank the network width of the discriminator
with the generator. However, as shown in Fig. 2, there is no linear between the channel numbers
of the optimal discriminator and generator. Anycost GAN [40] proposed a generator-conditioned
discriminator, which generates the discriminator architecture via passing the generator architecture
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Figure 3: The proposed generator-discriminator cooperative compression scheme (GCC).

into the fully connected layer. However, the fully connected layer is only trained through the
original GAN loss, so it is difficult to accurately predict the optimal discriminator architecture for the
lightweight generator. In this work, we design a generator-discriminator cooperative compression
(GCC) scheme, which employ a selective activation discriminator and novel online collaborative
distillation to boost the performance of the lightweight generator.

3 Methodology

This section, we illustrate the proposed GCC framework in Figure 3. We first briefly introduce the
composition and loss function of GAN in Section 3.1. Then, we present how to obtain the lightweight
architecture from the original generator in Section 3.2. The selective activation discriminator that
automatically chooses activated convolutional channels is illustrated in Section 3.3. In Section 3.4,
we propose a novel online collaborative distillation scheme to further improve the performance of the
lightweight generator.

3.1 Preliminaries

Generative Adversarial Networks (GANs) contain two fundamental components, generator G and
discriminator D. Among them, G maps the input z into a fake image for cheating the discriminator,
while the discriminator distinguishes the generator outputs from the real images x. The generator and
discriminator are alternately optimized via the adversarial term to achieve their respective optimization
objectives. The optimization objectives are defined as follows:

LG = Ez∼p(z) [fG(−D(G(z)))] (1)

LD = Ex∼pdata [fD(−D(x))]︸ ︷︷ ︸
LDreal

+Ez∼p(z) [fD(D(G(z)))]︸ ︷︷ ︸
LDfake

(2)

where fG and fD are the loss functions of the generator and discriminator, respectively. Theoretically,
the generator and discriminator maintain the Nash equilibrium when the generator and discriminator
have a balanced capacity, and the discriminator is cheated. In this paper, we observe from experiments
that the Nash equilibrium maintained in the GAN compression stage to avoid model collapse and
obtain an impressive performance.

3.2 Generator Compression

In order to avoid additional computational overhead brought by the neural architecture search, we
directly employ the conventional network pruning methods to compress the generator. Previous
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work [43] revealed that the core of network pruning searches for a suitable sub-architecture from the
original network architecture instead of parameter inheritance. Therefore, we leverage the one-shot
pruning method [36, 42] to obtain the appropriate lightweight generator architecture from the original
generator architecture. In our experiments, we adopt the slimming [42] to prune the generator when
the network contains the Batch Normalization (BN) layers. We use L1-norm pruning [36] on the
contrary (without BN layers). The detailed pruning process is described in Appendix B. Finally, we
only keep the architecture of the pruned generator and train it from scratch with a selective activation
discriminator proposed in Section 3.3.

3.3 Selective Activation Discriminator

As shown in Figure 2, the convolutional channel number in the discriminator have an essential
impact on the performance of the lightweight generator. Therefore, we design a selective activation
discriminator to automatically choose and activate convolutional channels via learnable retention
factors. We assign a learnable retention factor to each convolution kernel of the original discriminator,
each retention factor represents the probability that the corresponding convolution kernel participates
in the inference process. When the retention probability is larger than the given threshold, the
corresponding convolution kernel is retained, otherwise it is suppressed. We denote retention factors
set as A = {αi}LD

i=1 where αi = {αi1, αi2, ..., αini} ∈ Rni is the retention factors of the i-th
convolution layer and ni is the number of convolution kernel in the i-th layer. Given the threshold τ ,
the retention factor αij determines whether the j-th convolution kernel of the i-th layer activate or
not:

Iij =

{
1 if αij ∈ [τ, 1]
0 if αij ∈ [0, τ).

(3)

Then activated convolution kernel’s output O′ij is calculated by:

O′ij = Iij ∗Oij , (4)

where Oij is the original output feature map. Since the binary function is not differentiable for αij ,
we employ STE [27] to estimate the gradient of αij as:

∂Larch

∂αij
=
∂Larch

∂Iij
, (5)

where Larch is a loss function, and the retention factor αij is manually clipped to the range of [0, 1].
The learning of retention factor is considered as the architecture search of the discriminator.

The selective activation discriminator is optimized according to a local capacity constraint and a
global coordination constraint. On the one hand, the incremental loss gap between the generator
and the discriminator will break the Nash equilibrium in the adversarial training scheme, which
leads to the discriminator effortlessly distinguishing the authenticity of the input images. The pruned
generator and the selective activation discriminator should pursuit capacity balance to maintain the
Nash equilibrium. Therefore, a local capacity constraint Llocal is designed as follows:

Llocal = |LS
G − LS

Dfake
|, (6)

where the superscript S denotes the student (compressed model). On the other hand, the loss gap
between the original model’s combination internally reflects the relative capacity relationship between
them. Therefore, we design a global coordination constraint to adjust the relative ability of the student
generator and discriminator to be consistent with that of the teacher combination. This constraint
helps to pull the loss gap between teacher and student models into close proximity. In this way,
the uncompressed model is regarded as teacher model to guide the learning of retention factors
to automatically adjust the discriminator capacity to match the lightweight generator. The global
coordination constraint Lglobal is calculated by:

Lglobal = |Llocal − |LT
G − LT

Dfake
|| (7)

The superscript T represents the teacher (uncompressed) model. Due to the instability of adversarial
training, we use Exponential Moving Average (EMA) to stabilize the loss corresponds to the teacher
models. In short, the optimization objective of the retention factor is defined as follows:

Larch = LS
D + Lglobal. (8)
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where LS
D guarantees the basic identification function of the discriminator. Furthermore, we use the

following bilevel optimization [7, 11] to optimize α: i) Update discriminator weights to minimize
LD for t times. ii) Update retention factor α to minimize Larch. iii) Repeat step i) and step ii) until
the end of training. In the optimization process of the discriminator weights, we freeze the retention
factors and vice versa.

3.4 Online Collaborative Distillation

In Section 3.3, we use the original model as the teacher models to guide the learning of the student
discriminator. Most of the existing work merely considered the distillation from the generator, in
contrast, we also employ richer intermediate information from the discriminator to perform collab-
orative distillation, which provides complementary and auxiliary concepts to boost the generation
performance. Therefore, we propose a novel online collaborative distillation method to take full
advantage of the teacher generator and discriminator combinations to promote the lightweight gener-
ator. The online scheme optimizes the teacher model and the lightweight student model iteratively
and progressively from scratch. Therefore, we do not need a pre-trained teacher model, and directly
complete the distillation process in one stage. Experiments show that online knowledge distillation is
more efficient than traditional two-stage offline knowledge distillation.

Perceptual loss [32] is widely used to calculate the similarity of semantic and perceptual quality
between images. It measures the semantic differences via a pre-trained image classification network
(such as VGG), where the extracted features are less relevant to our generation task. Meanwhile, the
teacher discriminator has a task-oriented ability to distinguish the authenticity of images. Following
the work [6], we employ the teacher discriminator to replace the pre-trained classification model to
extract the features of the images for calculating the perceptual loss. Furthermore, the intermediate
feature map of the generator has rich information for generating real-like fake images, and we also
add them to the calculation of perceptual loss. In this way, the similarity metric is summarized as:

d(·, ·) = γmMSE(·, ·) + γtTexture(·, ·), (9)

where γm and γt are pre-defined hyperparameter used for balancing MSE and Texture [13, 14] loss
functions, respectively. Detailed formulation of Texture loss function is described in Appendix C.
Thus, the collaborative distillation loss is:

Ldistill =

LG∑
i=1

Ez∼p(z)
[
d(fi(G

S
i (z)), G

T
i (z))

]
+

LD∑
j=1

Ez∼p(z)
[
d(DT

j (G
S(z)), DT

j (G
T (z)))

]
,

(10)
whereGS

i andGT
i are the intermediate feature maps of the i-th chosen layer in the student and teacher

generator, DT
j are the intermediate feature maps of the j-th chosen layer in the teacher discriminator.

LG / LD denote the number of the generator / discriminator chosen layers. fi is a 1×1 learnable
convolution transform layer to match the channel dimension of the teacher’s feature maps.

4 Experiments

4.1 Setups

To demonstrate the effectiveness of the proposed GCC, we conduct extensive experiments on a series
of GAN based tasks:

Image Generation. We employ SAGAN [63] to input random noise to generate face images on the
CelebA [44] dataset. CelebA contains 202,599 celebrity images with a resolution of 178×218. We
first center crop them to 160×160 and then resize them to 64×64 before feeding them into the model.
Frechet Inception Distance (FID) [21] is adopted to evaluate the quality of the generated images. The
lower score indicates the better the image generation results.

Image-to-Image Translation. Pix2Pix [30] is a conditional GAN that uses Unet-based [53] generator
to translate paired images. We evaluate pix2pix on the Cityscapes [8] dataset, which contains 3475
German street scenes. The images are resized to 256×256 for training. We follow the work [37] run
the DRN-D-105 [62] to calculate mean Intersection over Union (mIOU) for evaluating the quality
of the generated images. The higher score indicates the better the image generation performance.
In addition, we also conduct experiments on the unpaired dataset. CycleGAN [64] leverages a
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Table 1: Quantitative comparison with the state-of-the-art GAN compression methods.

Model Dataset Method MACs Compression Ratio Metric
FID(↓) mIoU(↑)

SAGAN CelebA
Original 23.45M - 24.87 -

Prune 15.45M 34.12% 36.60 -
GCC (Ours) 15.45M 34.12% 25.21 -

CycleGAN Horse2zebra

Original 56.80G - 61.53 -
Co-Evolution [56] 13.40G 76.41% 96.15 -

GAN-Slimning [57] 11.25G 80.19% 86.09 -
AutoGAN [12] 6.39G 88.75% 83.60 -

GAN Compression [37] 2.67G 95.30% 64.95 -
CF-GAN [58] 2.65G 95.33% 62.31 -

CAT [31] 2.55G 95.51% 60.18 -
DMAD [38] 2.41G 95.76% 62.96 -

Prune 2.40G 95.77% 145.1 -
GCC (Ours) 2.40G 95.77% 59.31 -

Pix2Pix Cityscapes

Original 18.6G - - 42.71
GAN Compression [37] 5.66G 69.57% - 40.77

CF-GAN [58] 5.62G 69.78% - 42.24
CAT [31] 5.57G 70.05% - 42.53

DMAD [38] 3.96G 78.71% - 40.53
Prune 3.09G 82.39% - 38.12

GCC (Ours) 3.09G 82.39% - 42.88

Table 2: Quantitative results on the super resolution task.

Model MACs Set5 Set14 BSD100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRGAN 145.88G 29.88 0.86 27.07 0.76 26.35 0.72 24.77 0.76
GCC(Ours) 22.79G 30.35 0.87 27.46 0.77 26.58 0.72 24.88 0.76

ResNet [20] generator to translates horse image into zebra image on the horse2zebra dataset extracted
from ImageNet [9]. This dataset consists of 1,187 horse images and 1,474 zebra images, and all
images are resized 256×256 for training. We use FID to evaluate the quality of the generated images.

Super Resolution. We apply the proposed GCC to compress SRGAN [35], which uses a DenseNet-
like [24] generator to upscale low-resolution images. The training set and validation set of COCO [41]
dataset are combined for the training process. We randomly crop 96×96 high-resolution images
from the original images and then downsample it 4× into low-resolution images as the input of the
generator. For testing, we employ Set5 [3], Set14 [35], BSD100 [46], and Urban100 [25] as the
standard benchmark datasets. Peak Signal-to-Noise Ratio (PSNR) [28] and Structural Similarity
(SSIM) [60] are used to evaluate the quality of the generated images. The higher score indicates the
better the image generation performance. More implementation details are illustrated in Appendix D.

4.2 Comparison to the State of the Art

Quantitative Result. Tables 1 and 2 show the comparison results of different algorithms on image
generation, image-to-image translation, and super-resolution. From these two tables, we can obtain
the following observations: 1) In the task of image translation, our method can greatly reduce the
computational costs in each task and achieve comparable performance as the original uncompressed
model. For example, GCC obtains a lower FID than the original model under the extremely high
compression ratio on CycleGAN. Specifically, GCC reduces the MACs of CycleGAN from 56.8G to
2.40G, with compression by 23.6× while FID still reduces 2.22. 2) GCC reduces the computational
costs by 82.39% and achieves a higher mIoU than the original model, which establishes a new
state-of-the-art performance for the Pix2Pix model. 3) In image generation task, GCC also shows
impressive results on low MACs demands of GAN, i.e., SAGAN. Although the original SAGAN
only requires 23.45M MACs to generate a 64×64 pixel image, GCC successes to reduce the MACs
by 34.12%. 4) For SRGAN in the super-resolution task, GCC helps to significantly reduce 123.09G
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Figure 4: Qualitative results of SAGAN based on CelebA dataset (top), CycleGAN based on
Horse2zebra dataset (middle left), Pix2Pix based on Cityscapes dataset (middle right), and SRGAN
based on BSD100 / Urban100 dataset (bottom). Original represents the images generated by the
original uncompressed generator. (Best viewed with zooming in)

MACs, with a compression ratio of 6.4×. It is worth noting that although GCC reduces such a
high amount of computational costs, the lightweight model can achieve higher PSNR and SSIM
than the original model on each test dataset. In addition, we also show the results of employing
network pruning methods [36, 42] to compress the generator and directly perform adversarial training
with the original discriminator, abbreviated as "Prune", the experimental results demonstrate the
importance and effectiveness of our proposed selective activation discriminator. In summary, Our
proposed GCC contributes to removes a large number of redundant calculations while maintains the
comparable performances of the original model. The results provide a feasible solution for demands
on a super-computing or mini-computing GAN model.

Qualitative Results. Figure 4 depicts the model generation performance on each task. Qualitative
results reveal that GCC contributes to generating high-fidelity images with low computational
demands. More qualitative results are provided in Appendix G.

Acceleration. We also compare acceleration performance on actual hardware between the original
generator and the lightweight generator on Pix2Pix. The latency is measured on two types of
computing processors (i.e. Intel Xeon Platinum 8260 CPUs and NVIDIA Tesla T4 GPUs). The
original generator takes 75.96ms to generate one image on CPUs and 2.06ms on GPUs. However,
the lightweight generator only uses 18.68ms and 1.74ms to generate one image on CPUs and GPUs,
respectively. GCC helps to achieve 4.07× and 1.18× acceleration on CPU and GPU, respectively.

4.3 Ablation Study

Online Collaborative Distillation. Table 3 shows the effectiveness of each components in the
online collaborative distillation. The variant "Ours w/o Online" represents the traditional two-stage
distillation scheme. "Ours w/o D-distillation" and "Ours w/o G-distillation" denotes that only adopt
the intermediate feature information of the teacher generator/discriminator in the distillation stage,
respectively. We can intuitively observe that the distillation method can indeed further improve the
performance of the model. Both MSE loss and Texture loss are helpful in the distillation process, and
the combination of these two losses achieves better mIOU scores. GCC deploys the distillation process
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Table 3: Ablation study results in online collaborative distillation.

Name Online Collaborative MSE loss Texture loss mIOU(↑)
Ours w/o distillation × × × × 39.17

Ours w/o Texture loss X X X × 41.80
Ours w/o MSE loss X X × X 40.07

Ours w/o Online × X X X 41.16
Ours w/o D-distillation X × X X 42.31
Ours w/o G-distillation X × X X 41.43

GCC(Ours) X X X X 42.88
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GCC
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Figure 5: Loss curve and visualization results via GCC improvement. The experiment was conducted
on Pix2Pix based on the Cityscapes dataset. (Best viewed with zooming in)

into the online stage, where promotes an uncompressed teacher model progressively to gradually
guide the learning of the lightweight generator and avoid the complicated two-stage distillation
scheme. In Table 3, the online distillation scheme can achieve better performance than the offline
distillation. The online collaborative distillation distills the intermediate feature information from
both the generator and discriminator of the teacher model. G-only distillation / D-only distillation
only distills one of them to the lightweight generator, which leads to declining results.

Solution of Mode Collapse. Figure 1 shows the phenomenon of mode collapse when compressing
the generator without GCC. With the introduction of GCC, the 1/4 channels width generator can
get rid of mode collapse. We show the improved loss curve and visualization results in Figure 5.
In Figure 5(a), the selective activation discriminator effectively balances the adversarial training
with the lightweight generator. The loss gap between the 1/4 channels width generator and selective
activation discriminator is more evenly matched to that of the original model as shown in Figure 1(b).
In Figure 5(b), the 1/4 channels width generator can generate higher quality images with GCC.

5 Conclusion

During GAN compression, we observe that merely compressing the generator while retaining the
original discriminator destroys the Nash equilibrium between them, which further results in mode
collapse. In this work, we revisit the role of discriminator in GAN compression and design a novel
generator-discriminator cooperative compression (GCC) scheme. To ensure normal adversarial
training between the lightweight generator and discriminator, we propose a selective activation
discriminator to automatically select the convolutional channel to be activated. In addition, we
propose a novel online collaborative distillation that simultaneously utilizes the intermediate feature
of the teacher generator and discriminator to boost the performance of the lightweight generator.
We have conducted experiments on various generation tasks, and the experimental results verify the
effectiveness of our proposed GCC.
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