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Abstract

Language models (LMs) struggle to capture001
knowledge about rare entities. To better cap-002
ture entity knowledge, a common procedure003
in prior work is to start with a base LM such004
as BERT and to modify the LM architecture005
or objective function to produce a knowledge-006
aware LM. Proposed knowledge-aware LMs007
perform well compared to base LMs on entity-008
rich tasks; however deploying, understanding,009
and maintaining many different specialized ar-010
chitectures is challenging, and they also of-011
ten introduce additional computational costs.012
Thus we ask: to what extent we can match the013
quality of these architectures using a base LM014
and only changing the data? We propose meta-015
data shaping, a method which inserts readily016
available entity metadata, such as descriptions017
and categorical tags, into examples at train and018
inference time based on mutual information.019
Intuitively, if metadata corresponding to popu-020
lar entities overlap with metadata for rare enti-021
ties, the LM may be able to better reason about022
the rare entities using patterns learned from023
similar popular entities. On standard entity-024
rich tasks (TACRED, FewRel, OpenEntity),025
metadata shaping exceeds the BERT-baseline026
by an average of 4.3 F1 points and achieves027
state-of-the-art results. We further show the028
gains are on average 4.4x larger for the slice of029
examples containing tail vs. popular entities.030

1 Introduction031

While recent language models (LMs) are remark-032

able at learning patterns that are seen frequently033

during training, they still suffer from performance034

degradation over rare “tail” patterns. In this work,035

we propose metadata shaping, a method to address036

the tail challenge by encoding properties shared be-037

tween popular and tail examples in the data itself.038

Tail degradation is particularly apparent in entity-039

rich tasks, since users care about very different en-040

tities and facts when using popular entity-centric041

applications such as search and personal assistants042

(Bernstein et al., 2012; Poerner et al., 2020; Orr 043

et al., 2020). Given the importance of entity-rich ap- 044

plications, considerable effort has been devoted to 045

developing methods for capturing entity knowledge 046

more reliably. Many of the proposed approaches 047

proceed by changing the model architecture. 048

While early LMs relied heavily on feature engi- 049

neering (Lafferty et al., 2001; Mintz et al., 2009; 050

Zhang and Nivre, 2011), recent neural models 051

could learn useful features during training (Col- 052

lobert et al., 2011), and shifted the focus to model 053

engineering. As such, given data annotated with 054

entity tags, recent methods for reasoning about en- 055

tities typically enrich base LMs (e.g., Devlin et al. 056

(2019)) to produce knowledge-aware LMs. This 057

is accomplished by modifying the base LM archi- 058

tecture or introducing auxiliary objectives to better 059

capture entity properties (Zhang et al., 2019; Pe- 060

ters et al., 2019; Yamada et al., 2020; Wang et al., 061

2020b; Xiong et al., 2020; Su et al., 2021), or by 062

combining multiple learned modules, which are 063

each specialized to handle fine-grained reasoning 064

patterns or subsets of the data distribution (Chen 065

et al., 2019; Wang et al., 2020a). 066

These knowledge-aware LMs have led to impres- 067

sive gains compared to base LMs on entity-rich 068

tasks. However they also raise a few challenges: 069

additional pretraining is expensive, deploying and 070

maintaining multiple specialized LMs can be mem- 071

ory and time-intensive, each LM needs to be op- 072

timized for efficient use (e.g., on-device), and the 073

methods require training to adapt to changing facts 074

or new entities. Further, these LMs learn about an 075

entity from its individual occurrences during train- 076

ing, rather than explicitly encoding that patterns 077

learned for one entity may be useful for reason- 078

ing about other similar entities. Implicitly learning 079

entity similarities may be data-inefficient as the 080

Wikidata knowledge base alone holds ∼ 100M 081

entities and unfortunately, 89% of the Wikidata en- 082

tities do not appear in Wikipedia, a popular source 083
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Figure 1: Metadata shaping inserts metadata (e.g., entity categories and descriptions) into the data at train and test
time. The FewRel benchmark involves identifying the relation between a subject and object string. The above
subject and object are unseen in the FewRel training data and the tuned base LM places low attention weights on
those tokens. A base LM trained with shaped data places high attention weights on useful metadata tokens such as
“politician”. Weights are shown for words which are not stop-words, punctuation, or special-tokens.

of unstructured training data for the LMs, at all. 1084

Thus, we ask the question: to what extent can we085

match the quality of these architectures using a base086

LM architecture and only changing the data? We087

propose some simple modifications to the data at088

train and test time, which we call metadata shaping,089

and find the method is surprisingly quite effective.090

Given unstructured text, there are several readily091

available tools for generating annotations at scale092

(e.g., Manning et al. (2014); Honnibal et al. (2020)),093

and knowledge bases contain entity metadata in-094

cluding categorical tags (e.g., Barack Obama is a095

“politician”) and descriptions (e.g., Barack Obama096

“enjoys playing basketball”). Metadata shaping en-097

tails explicitly inserting retrieved entity metadata in098

examples as in Figure 1 and inputting the resulting099

shaped examples to the LM. Our contributions are:100

Simple and Effective Method We propose101

metadata shaping and demonstrate its effectiveness102

on entity-rich benchmarks. Metadata shaping, with103

simply an off-the-shelf base LM, exceeds the base104

LM trained on unshaped data by by an average105

of 4.3 F1 points and is competitive to state-of-the-106

art methods, which do modify the LM. Metadata107

shaping thus enables re-using well-studied and op-108

timized base LMs (e.g., Sanh et al. (2020)).109

Tail Generalization We show that metadata110

shaping improves tail performance — the observed111

gain from shaping is on average 4.4x larger for the112

slice of examples containing tail entities than for113

1Orr et al. (2020) finds that a BERT based model needs to
see an entity in on the order of 100 samples to achieve 60 F1
points when disambiguating the entity in Wikipedia text.

the slice containing popular entities. Metadata es- 114

tablish “subpopulations”, groups of entities sharing 115

similar properties, in the entity distribution (Zhu 116

et al., 2014; Cui et al., 2019; Feldman, 2021). For 117

example on the FewRel benchmark (Han et al., 118

2018), “Daniel Dugléry” (a French politician) ap- 119

pears 0 times, but “politician” entities in general 120

appear > 700 times in the task training data. Intu- 121

itively, performance on a rare entity should improve 122

if the LM has the explicit information that it is sim- 123

ilar to other entities observed during training. This 124

is data-efficient compared to learning the properties 125

of an entity from its individual occurrences. 126

Explainability Prior knowledge-aware LMs use 127

metadata (Peters et al., 2019; Alt et al., 2020), but 128

do not explain when and why different metadata 129

help. Broadly there are limited tools for reasoning 130

about model architectural changes. This work in- 131

stead takes a data-centric perspective and, inspired 132

by classic feature selection techniques (Guyon and 133

Elisseeff, 2003), we conceptually explain the effect 134

of different metadata on generalization error. 135

We hope this work motivates further research on 136

addressing the tail challenge through the data. 137

2 Method 138

This section introduces metadata shaping, includ- 139

ing the set up and conceptual framework. 140

2.1 Objective 141

The goal of metadata shaping is to improve tail per- 142

formance using properties shared by popular and 143

rare examples. For instance, this work investigates 144
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improving tail performance in entity-rich tasks us-145

ing entity metadata (e.g., “politician”) which are146

readily available for tail (e.g., “Daniel Dugléry”)147

and popular head (e.g., “Barack Obama”) entities.148

Tail entities are those seen < 10 times during train-149

ing and head entities are seen ≥ 10 times, consis-150

tent with Orr et al. (2020); Goel et al. (2021).151

Metadata are easily sourced using off-the-shelf152

models such as those for named entity (NER, NEL)153

or part-of-speech (POS) tagging (Manning et al.,154

2014; Honnibal et al., 2020), heuristic rules, and155

knowledge bases (KBs) (e.g., Wikidata, Wordnet156

(Miller, 1995), and domain-specific KBs (Boden-157

reider, 2004)) allowing us to annotate unstructured158

text at scale. We draw inspiration from prior work159

that aligns text to metadata (Mintz et al., 2009),160

though instead of using predefined feature schemas,161

we consider using an unrestricted set of metadata.162

2.2 Set Up163

Let input x ∈ X and label y ∈ Y , and consider the164

classification datasetDDD = {(xi, yi)}ni=1 of size n.165

Let m ∈ M denote a metadata tag and letM(xi)M(xi)M(xi)166

be the set of metadata collected for example xi. A167

shaping function fs : X → Xs accepts an original168

example xi ∈ X and produces a shaped example169

si ∈ Xs by inserting a subset ofM(xi)M(xi)M(xi) into xi (see170

Figure 1). The downstream classification model p̂φ171

is learned from shaped train examples and infers yi172

from the shaped test examples.173

This work uses the following representative174

metadata shaping functions for all tasks to insert175

a range of coarse-grained signals associated with176

groups of examples to fine-grained specific signals177

associated with individual examples:178

Categorical tokens establish subpopulations of179

entities (e.g., Dugléry falls in the coarse grained180

category of “person” entities, or finer grained cate-181

gory of “politician” entities). NER and POS tags182

are coarse grained categories, and knowledge bases183

contain finer-grained categories (i.e., entity types184

and relations). Categories are consistent and fre-185

quent compared to words in the original examples.186

Description tokens give cues for rare entities187

and alternate expressions of popular entities (e.g.,188

Dugléry is a “UMP party member”). Descriptions189

are likely unique across entities, and can be viewed190

as the finest-grained category for an entity.191

2.3 Conceptual Framework192

Next we want to understand if inserting m ∈193

M(xi)M(xi)M(xi) for xi ∈ DDD can improve tail performance.194

We measure the generalization error of the classifi- 195

cation model p̂φ using the cross-entropy loss: 196

Lcls = E(x,y)

[
− log(p̂φ(y|x))

]
. (1) 197

Let Pr(y|xi) be the true probability of class y ∈ 198

Y given xi. Example xi is composed of a set of 199

patternsKiKiKi (i.e., subsets of tokens in xi). We make 200

the assumption that a pattern k ∈ KiKiKi is a useful 201

signal if it informs Pr(y|xi). We thus parametrize 202

the true distribution Pr(y|xi) using the principle of 203

maximum entropy (Berger et al., 1996): 204

Pr(y|xi) =
1

Z(xi)
exp(

∑
k∈KiKiKi

λk Pr(y|k)). (2) 205

where λk represents learned parameters weighing 206

the contributions of patterns (or events) k andZ(xi) 207

is a partition function that ensures Pr(y|xi) repre- 208

sents a probability distribution. Therefore when 209

evaluating p̂φ, achieving zero cross-entropy loss 210

between the true probability Pr(y|k) and the esti- 211

mated probability p̂φ(y|k), for all k, implies zero 212

generalization error overall. 213

Unseen Patterns Our insight is that for a pattern 214

k that is unseen during training, which is common 215

in entity-rich tasks,2 the class and pattern are in- 216

dependent (y ⊥ k) under the model’s predicted 217

distribution p̂φ, so p̂φ(y|k) = p̂φ(y). With the as- 218

sumption of a well-calibrated model and not consid- 219

ering priors from the base LM pretraining stage,3 220

this probability is p̂φ(y) = 1
|Y| for y ∈ Y . 221

Plugging in p̂φ(y) = 1
|Y| , the cross-entropy 222

loss between Pr(y|k) and p̂φ(y|k) is Pr(k) log |Y |. 223

Our idea is to effectively replace k with another 224

(or multiple) shaped pattern k′, which has non- 225

uniform p̂φ(y|k′) and a lower cross-entropy loss 226

with respect to Pr(y|k′), as discussed next. 227

Inserting Metadata Consider the shaped exam- 228

ple, si = fs(xi), which contains new tokens from 229

M(xi)M(xi)M(xi), and thus contains a new set of patterns 230

Ks
iK
s
iK
s
i . Let km ∈ Ks

iK
s
iK
s
i be a pattern containing some 231

m ∈ M(xi)M(xi)M(xi). For a rare pattern (e.g., a mention 232

of a rare entity in xi) k, if an associated pattern 233

km (e.g., a metadata token for the rare entity) oc- 234

curs non-uniformly across classes during training, 235

2For example, on the FewRel benchmark used in this work,
90.7%/59.7% of test examples have a subject/object span
which are unseen as the subject/object span during training.

3We ignore occurrences in the pretraining corpus and
learned similarities between unseen k and seen k′. Future
work can use these priors to refine the slice of unseen entities.
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Algorithm 1 Metadata Token Selection
1: Precompute Train Statistics
2: Input: training dataDDDtrain, metadata M
3: for each category m ∈M overDDDtrain do
4: Compute pmi(y,m) for y ∈ Y .
5: end for
6: for each class y ∈ Y over Dtrain do
7: Compute frequency fy.
8: end for
9:

10: Select Metadata for Sentence
11: Input: xi fromDDDtrain andDDDtest, integer n.
12: Collect metadataM(xi)M(xi)M(xi) for xi.
13: for m ∈M(xi)M(xi)M(xi) do
14: Compute ry = 2pmi(m,y)fy for y ∈ Y .
15: Normalize ry values to sum to 1.
16: Compute entropy Hm over ry for y ∈ Y .
17: end for
18: Rank m ∈M(xi)M(xi)M(xi) by Hm.
19: Return min(n, |M(xi)M(xi)M(xi)|) tokens with lowest

Hm.

then the cross-entropy loss between p̂φ(y|km) and236

Pr(y|km) is lower than the cross-entropy loss be-237

tween p̂φ(y|k) and Pr(y|k). If km provides a high238

quality signal, shifting p̂φ(y|xi) in the correct di-239

rection, performance of p̂φ should improve.240

We can measure the non-uniformity of km across241

classes using the conditional entropy Ĥ(Y|k).242

When k is unseen and p̂φ(y|k) = p̂φ(y, k) =243

p̂φ(y) =
1
|Y| (uniform), so Ĥ(Y|k) is maximized:244

Ĥ(Y|k) = −
∑
y∈Y

p̂φ(y, k) log p̂φ(y|k) = log(|Y|). (3)245

246

For non-uniform p̂φ(y|km), this conditional en-247

tropy decreases. Thus we connect the method of248

using metadata for the tail to classical feature se-249

lection methods (Guyon and Elisseeff, 2003); we250

seek the metadata providing the largest information251

gain. Next we discuss the practical considerations252

for selecting metadata.253

Metadata Selection Entities are associated with254

large amounts of metadata M(xi)M(xi)M(xi) — categories255

can range from coarse-grained (e.g., “person”) to256

fine-grained (e.g., “politician” or “US president”)257

and there are intuitively many ways to describe peo-258

ple, organizations, sports teams, and other entities.259

Since certain metadata may not be helpful for a260

task, and popular base LMs do not scale very well261

to long dependencies (Tay et al., 2020; Pascanu 262

et al., 2013), it is important to understand which 263

metadata to use for shaping. 264

We want to select km with non-uniform 265

p̂φ(y|km) across y ∈ Y , i.e. with lower Ĥ(Y|km). 266

Conditional probability Pr(y|km) is defined as: 267

Pr(y|km) = 2pmi(y,km) Pr(y), (4) 268

where we recall that the pointwise mutual infor- 269

mation pmi(y, km) is defined as log
( Pr(y,km)
Pr(y) Pr(km)

)
. 270

The pmi compares the probability of observing y 271

and km together (the joint probability) with the 272

probabilities of observing y and km independently. 273

Class-discriminative metadata reduce Ĥ(Y|k). 274

Directly computing the resulting conditional 275

probabilities after incorporating metadata inDDD is 276

challenging since the computation requires consid- 277

ering all patterns contained in all examples, gen- 278

erated by including m. Instead we use simplistic 279

proxies to estimate the information gain. In Algo- 280

rithm 1, we focus on the subset ofKs
iK
s
iK
s
i containing 281

individual metadata tags m, and compute the en- 282

tropy over p̂φ(y|m) for y ∈ Y . Simple extensions 283

to Algorithm 1, at the cost of additional compu- 284

tation, would consider a broader set of km (e.g., 285

n-grams containing m for n > 1), or iteratively 286

select tokens by considering the correlations in the 287

information gain between different metadata tags. 288

3 Experiments 289

In this section, we demonstrate that metadata shap- 290

ing is general and effective. 291

3.1 Datasets 292

We evaluate on standard entity-typing and relation 293

extraction benchmarks used by baseline methods. 294

Entity typing involves predicting the the applica- 295

ble types for a given substring in the input example 296

from a set of output types. We use OpenEntity (9 297

output types) (Choi et al., 2018) for evaluation. Re- 298

lation extraction involves predicting the relation 299

between the two substrings in the input example, 300

one representing a subject and the other an object. 301

We use FewRel (80 output relations) and TACRED 302

Revisited (42 output relations) for evaluation (Han 303

et al., 2018; Zhang et al., 2017; Alt et al., 2020). 304

3.2 Experimental Settings 305

Model We fine-tune a BERT-base model on meta- 306

data shaped data for each task, taking the pooled 307
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Model
FewRel TACRED OpenEntity

P R F1 P R F1 P R F1
BERT-base 85.1 85.1 84.9 66.3 78.7 72.0 76.4 71.0 73.2
K-BERT 83.1 85.9 84.3 - - - 76.7 71.5 74.0
ERNIE 88.5 88.4 88.3 74.8 77.1 75.9 78.4 72.9 75.6
E-BERTconcat 88.5 88.5 88.5 - - - - - -
KnowBERTWiki 89.2 89.2 89.2 78.9 76.9 77.9 78.6 71.6 75.0
CokeBERT 89.4 89.4 89.4 - - - 78.8 73.3 75.6
Ours (BERT-base) 90.2 90.2 90.2 77.0 76.3 76.7 79.3 73.3 76.2

Table 1: Test scores on standard relation extraction and entity-typing tasks. “Ours (Base LM)” is metadata shaping.
All methods use the same base LM (BERT-base) and external information (Wikipedia) for consistent comparison.
A dash (“-”) indicates the baseline method did not report scores for the task.

[CLS] representation and using a linear prediction308

layer for classification (Devlin et al., 2019). We309

use cross-entropy loss for FewRel and TACRED310

and binary-cross-entropy loss for OpenEntity. All311

test scores are reported at the epoch with the best312

validation score and we use the scoring implemen-313

tations released by (Zhang et al., 2019). Additional314

training details are provided in appendix A.315

Metadata Source We use the state-of-the-art pre-316

trained entity-linking model from Orr et al. (2020)317

to link the text in each task to an October 2020318

dump of Wikidata. We use Wikidata and the first319

sentence of an entity’s Wikipedia page to obtain320

descriptions. Additional details for the source of321

metadata are in Appendix A. For certain examples322

in the tasks, there are no linked entities (e.g., sev-323

eral subject or object entities are simply pronouns324

or dates). Table 3 gives statistics for the number of325

examples with available of metadata for each task.326

Metadata tags are selected by Algorithm 1.327

3.3 Baselines328

Prior work proposes various knowledge-aware329

LMs, which are currently the state-of-the-art for330

the evaluated tasks. ERNIE, (Zhang et al., 2019)331

LUKE (Yamada et al., 2020), KEPLER (Wang332

et al., 2020b), CokeBERT (Su et al., 2021), and333

WKLM (Xiong et al., 2020) introduce auxil-334

liary loss terms and require additional pretrain-335

ing. Prior approaches also modify the architecture336

for example using alternate attention mechanisms337

(KnowBERT (Peters et al., 2019), K-BERT (Liu338

et al., 2020), LUKE) or training additional trans-339

former stacks to specialize in knowledge-based340

reasoning (K-Adapter (Wang et al., 2020a)). E-341

BERT (Poerner et al., 2020) does not require ad-342

ditional pretraining and uses entity embeddings343

which are aligned to the word embedding space. 344

In Table 1, we compare to methods which use the 345

same base LM, BERT-base, and external informa- 346

tion resource, Wikipedia, for consistency. 347

3.4 End-to-End Benchmark Results 348

We simply use an off-the-shelf BERT-base LM 349

(Wolf et al., 2020), with no additional pretrain- 350

ing and fine-tuned on shaped data to exceed the 351

BERT-base LM trained on unshaped data by 5.3 352

(FewRel), 4.7 (TACRED), and 3.0 (OpenEntity) F1 353

points. Metadata shaping is also competitive with 354

SoTA baselines which do modify the BERT-base 355

LM. Results are shown in Table 1. Table 3 reports 356

the availability of metadata for each task. We ob- 357

serve that metadata shaping is effective both when 358

most task examples have available metadata (e.g., 359

FewRel) and when a small proportion of task ex- 360

amples have available metadata (e.g., OpenEntity), 361

analyzed further in Section 4. 362

For the baselines, we give reported numbers 363

when available, Su et al. (2021) reports two of the 364

KnowBERT-Wiki and all K-BERT results, and we 365

obtain remaining numbers using the code released 366

by baseline work as detailed in Appendix A. 367

4 Analysis 368

Here we study the following key questions for effec- 369

tively using metadata shaping: Section 4.1 What 370

are the roles of different varieties of metadata? Sec- 371

tion 4.2 What are the effects of metadata shaping 372

on slices concerning tail versus popular entities? 373

4.1 Framework: Role of Metadata Types 374

Metadata Effects Class-discriminative meta- 375

data correlates with reduced model uncertainty. 376

High quality metadata, as found in Wikidata, re- 377

sults in improved classification performance. 378
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To investigate the effects of metadata on model379

uncertainty, we compute the entropy of p̂φ softmax380

scores over the output classes as a measure of un-381

certainty, and compute the average across test set382

examples. Lower uncertainty is correlated with383

improved classification F1 (See Figure 2 (Left)).384

We compute pmi scores for inserted metadata385

tokens as a measure of class-discriminativeness.386

We rank individual tokens k by pmi(y, k) (for task387

classes y), computed over the training dataset. On388

FewRel, for test examples containing a top-20 pmi389

word for the gold class, the accuracy is 27.6%390

higher when compared to the slice with no top-391

20 pmi words for the class. Notably, 74.1% more392

examples contain a top-20 pmi word for their class393

when pmi is computed on shaped data vs. unshaped394

training data.395

Metadata Selection Simple information theo-396

retic heuristics are effective for selecting metadata,397

despite the complexity of the underlying contextual398

embeddings.399

We apply Algorithm 1, which ranks metadata400

tags by their provided information gain, to select401

metadata tags for the tasks. Given xi with a set402

M(xi)M(xi)M(xi) of metadata tags, our goal is to select n to403

use for shaping. We compare four selection ap-404

proaches: using the highest (“High Rank”) and405

lowest (“Low Rank”) ranked tokens by Algorithm406

1, random metadata fromM(xi)M(xi)M(xi) (“Random”), and407

the most popular metadata tokens across the union408

ofM(xi)M(xi)M(xi), ∀xi ∈DtrainDtrainDtrain (“Popular”), selecting the409

same number of metadata tags per example for410

each baseline. We observe that “High Rank” con-411

sistently gives the best performance, evaluated over412

three seeds, and note that even “Random” yields413

decent performance vs. the BERT-baseline, indi-414

cating the simplicity of the method (Table 2).415

Considering the distribution of selected category416

tokens under each scheme, the KL-divergence be-417

tween the categories selected by “Low Rank” vs.418

“Popular” is 0.2 (FewRel), 4.6 (OpenEntity), while419

the KL-divergence between “High Rank” vs. “Pop-420

ular” is 2.8 (FewRel), 2.4 (OpenEntity). Popular421

tokens are not simply the best candidates; instead,422

Algorithm 1 selects discriminative metadata.423

For OpenEntity, metadata are relatively sparse,424

so categories appear less frequently in general and425

it is reasonable that coarse grained types have more426

overlap with “High Rank”. For e.g., “business”427

is in the top-10 most frequent types under “High428

Rank”, while “non-profit” (occurs in 2 train exam-429

Benchmark Strategy Test F1

FewRel

BERT-base 84.9
Random 87.2 ±0.8
Popular 87.9 ±0.1
Low Rank 87.8 ±0.4
High Rank 88.9 ±0.6

OpenEntity

BERT-base 73.2
Random 74.3 ±0.7
Popular 74.5 ±0.4
Low Rank 74.1 ±0.4
High Rank 74.8 ±0.1

TACRED

BERT-base 72.0
Random 73.8 ±1.6
Popular 73.6 ±0.9
Low Rank 73.3 ±1.0
High Rank 74.7 ±0.5

Table 2: Average and standard deviation over 3 random
seeds. Each method selects up to nmetadata tokens per
entity. For FewRel, TACRED, n = 3 per subject, ob-
ject. For OpenEntity n = 2 per main entity as 33% of
OpenEntity train examples have ≥ 2 categories avail-
able (80.7% have ≥ 3 categories on FewRel). Note we
use larger n for the main results in Table 1.

ples) is in the top-10 most frequent types for “Low 430

Rank”. Metadata tokens overall occur more fre- 431

quently in FewRel (See Table 3), so finer-grained 432

types are also quite discriminative. The most fre- 433

quent category under “Low Rank” is “occupation” 434

(occurs in 2.4k train examples), but the top-10 cat- 435

egories under “High Rank” are finer-grained, con- 436

taining “director” and “politician” (each occurs in 437

> 300 train examples). 438

Task Agnostic Metadata Effects Using meta- 439

data correlates with reduced task-specific LM un- 440

certainty. We observe shaping also correlates with 441

reduced LM uncertainty in a task-agnostic way. 442

We perform additional masked language model- 443

ing (MLM) over the shaped task training data using 444

an off-the-shelf BERT-MLM model to learn model 445

p̂θ. We minimize the following loss function and 446

evaluate the model perplexity on the task test data: 447

Lmlm = Es∼D,m∼M,i∼I
[
− log(p̂θ(smi |sm/i))

]
. (5) 448

449

where I is the masked token distribution and 450

smi is the masked token at position i in the shaped 451

sequence sm.4 Through minimizing the MLM loss, 452

4We use the Hugging Face implementation for masking
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Figure 2: Test F1 for p̂φ (no additional pretraining) vs.
average entropy of p̂φ softmax scores (Top) and vs. per-
plexity of a model p̂θ (w/ pretraining) (Bottom). p̂φ and
p̂θ use the same shaped training data. Each point is a
different metadata shaping scheme (median over 3 Ran-
dom Seeds): for R0 all inserted tokens are true tokens
associated with the entity in the KB. For RX, X true
metadata tokens are replaced by random (noise) tokens
from the full vocabulary. For each point, the total num-
ber of metadata tokens is constant per example.

p̂θ learns direct dependencies between tokens in453

the data (Zhang and Hashimoto, 2021). In Figure 2454

(Right), we observe a correlation between reduced455

perplexity for p̂θ, and higher downstream perfor-456

mance for p̂φ across multiple tasks, both using the457

same training data. Overall, shaping increases the458

likelihood of the data, and we observe a correlation459

between the intrinsic perplexity metric and the ex-460

trinsic downstream metrics as a result of the same461

shaping scheme. Table 4 (Appendix B) reports the462

same correlations for all benchmarks.463

Metadata Noise We hypothesize that noisier464

metadata can provide implicit regularization.465

Noise arises from varied word choice, word order,466

and blank noising.467

Feature noising (Wang et al., 2013) is effective468

to prevent overfitting and while regularization is469

typically applied directly to model parameters, Xie470

et al. (2017); Dao et al. (2019) regularize through471

the data. We hypothesize that using metadata with472

diverse word choice and order (e.g., entity descrip-473

tions) and blank noising (e.g., by masking metadata474

tokens), can help reduce overfitting, and we provide475

initial empirical results in Appendix B.476

4.2 Evaluation: Tail and Head Slices477

Section 3 shows the overall gain from shaping. We478

now consider fine-grained slices of examples con-479

taining head vs. tail entities and observe gains are480

4.4x larger on the tail slice on average (Figure 3). 5481

and fine-tuning the BERT-base MLM (Wolf et al., 2020).
5A consideration for TACRED is that 42% of these head

spans are stopwords (e.g., pronouns) or numbers; just 7% are
for FewRel. This is based on unseen object spans for FewRel
and TACRED, as > 90% of subject spans are unseen.

Figure 3: The gain from training the BERT-base LM
with metadata shaped data over training with unshaped
data, split by the popularity of the entity span in the test
example.

Subpopulations Metadata are helpful on the tail 482

as they establish subpopulations. 483

We hypothesize that if a pattern is learned for an 484

entity-subpopulation occurring in the training data, 485

the model may perform better on rare entities that 486

also participate in the subpopulation, but were not 487

individually observed during training. On FewRel, 488

we take the top-20 TF-IDF words associated with 489

each category signal during training as linguistic 490

cues captured by the model for the category sub- 491

population, consistent with Goel et al. (2021). For 492

example, “government” is in the top-20 TF-IDF 493

words for the “politician” entity category. At test 494

time, we select the slice of examples containing any 495

of these words for any of the categories inserted in 496

the example. The performance is 9.0/3.5 F1 points 497

higher on examples with unseen subject/object en- 498

tities with vs. without a top-20 TF-IDF word for a 499

subject/object category. 500

Metadata Effects on Popular Entities For pop- 501

ular entities the LM can learn entity-specific pat- 502

terns well, and be mislead by subpopulation-level 503

patterns corresponding to metadata. 504

Although we observe overall improvements, 505

here we examine the effect of metadata on the pop- 506

ular entity slice within our conceptual framework. 507

Let p be a popular pattern (i.e., entity mention) 508

in the training data, and let m be a metadata token 509

associated with p. Intuitively, the LM can learn 510

entity-specific patterns from occurrences of p, but 511

coarser grained subpopulation-level patterns corre- 512

sponding to m. If m and p are class-discriminative 513

for different sets of classes, then m can mislead 514

the LM. To evaluate this, consider subject and ob- 515

ject entity spans p ∈ P seen ≥ 1 time during 516

training. For test examples let Yp be the set of 517

classes y for which there is a p ∈ P in the ex- 518

7



ample with pmi(y, p) > 0, and define Ym as the519

classes y for which there is a metadata token m520

with pmi(y,m) > 0 in the example. The examples521

where Yp 6= ∅, Ym 6= ∅, and Yp contains the true522

class, but Ym does not, represents the slice where523

metadata can mislead the model. On this slice of524

FewRel, the gain from the shaped model is 2.3 F1525

points less than the gain on the slice of all examples526

with Yp 6= ∅ and Ym 6= ∅, supporting our intuition.527

An example entity-specific vs. subpopulation-528

level tension in FewRel is: p = “Thames River”529

is class-discriminative for y =“located in or next530

to body of water”, but its m =“river” is class-531

discriminative for y =“mouth of the watercourse”.532

5 Related Work533

Incorporating Knowledge in LMs Discussed534

in Section 3.2, significant prior work incorporates535

knowledge by changing the base LM architecture536

or loss function. Peters et al. (2019); Alt et al.537

(2020) also use NER, POS Wikpedia, or Wordnet538

metadata, but do not conceptually explain the ben-539

efit or selection process. Orr et al. (2020) demon-540

strates that category metadata improves tail perfor-541

mance for NED. We do not modify the base LM.542

Prior work inserts metadata for entities in the543

data itself. Particularly relevant, Joshi et al. (2020);544

Logeswaran et al. (2019); Raiman and Raiman545

(2018) each uses a single form of metadata (ei-546

ther descriptions or types) for a single task-type547

(either QA or NED) demonstrating empirical bene-548

fits. Metadata shaping combines different varieties549

of metadata and applies generally to classification550

tasks, and we provide conceptual grounding.551

Feature Selection This work is inspired by tech-552

niques in feature selection based on information553

gain (Guyon and Elisseeff, 2003). In contrast to554

traditional feature schemas (Levin, 1993; Marcus555

et al., 1993; Mintz et al., 2009), metadata shaping556

annotations are expressed in natural language to557

flexibly include diverse structured and unstructured558

metadata. We show the classic methods (Berger559

et al., 1996) are informative even when using com-560

plicated contextual embeddings. In our setting of561

entity-rich tasks, we also draw a connection from562

maximum entropy to explain how metadata can563

reduce generalization error.564

Prompting Prompting can serve similar goals,565

but often requires human-picked prompt tokens566

(Keskar et al., 2019; Aghajanyan et al., 2021) or567

task-specific templates (Han et al., 2021; Chen 568

et al., 2021), while metadata shaping provides a 569

flexible baseline across metadata-types and task- 570

types. Prompting typically aims to better elicit 571

implicit knowledge from the base LM (Liu et al., 572

2021), while metadata shaping focuses on explic- 573

itly incorporating retrieved signals not found in the 574

original task. Shaping is applied at train and test 575

time and does not introduce new parameters, as 576

required by methods which use learned prompts. 577

Data Augmentation One approach to tackle the 578

tail is to generate additional examples for tail enti- 579

ties (Wei and Zou, 2019; Xie et al., 2020; Dai and 580

Adel, 2020). However, this can be sample ineffi- 581

cient since augmentations do not explicitly signal 582

that different entities are in the same subpopulation 583

(Horn and Perona, 2017), so the model would need 584

view each entity individually in different contexts. 585

Metadata shaping and prompting (Scao and Rush, 586

2021) may be viewed as implicit augmentation. 587

6 Conclusion 588

We propose metadata shaping to improve tail per- 589

formance. The method is a simple and general 590

baseline that is competitive with SoTA approaches 591

for entity-rich tasks. We empirically show that the 592

method improves tail performance and formalize 593

why metadata can reduce generalization error. 594

Benefits from shaping include the ability to use 595

simpler, off-the-shelf LMs, tackle the tail efficiently 596

by learning subpopulation-level (rather than only 597

entity-specific) patterns, and provide a conceptual 598

understanding by relying on the rich set of tools for 599

reasoning about data distributions (in contrast to 600

the limited set of tools for reasoning about model 601

architectural changes). In limitations, pretrained 602

entity embeddings may encode facts beyond the 603

scope of the provided metadata tokens, and this 604

work did not consider including metadata for non- 605

subject and non-object entities that appear in the ex- 606

amples. Both shaping and the baseline knowledge- 607

aware LMs (e.g., Zhang et al. (2019)) rely on ac- 608

curate external knowledge — Wikidata contains 609

high-quality, human-curated entity metadata and in 610

future work, we want to compare the approaches 611

using noisy and incomplete KBs (West et al., 2014). 612

While this work focused on entity-rich tasks, 613

metadata shaping is not limited to this setting and 614

we hope this work motivates further research on 615

addressing the tail challenge through the data along- 616

side the model. 617

8



References618

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis,619
Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke620
Zettlemoyer. 2021. Htlm: Hyper-text pre-621
training and prompting of language models. In622
arXiv:2107.06955v1.623

Christoph Alt, Aleksandra Gabryszak, and Leonhard624
Hennig. 2020. Tacred revisited: A thorough eval-625
uation of the tacred relation extraction task. In ACL.626

Adam L. Berger, Vincent J. Della Pietra, and Stephen627
A. Della Pietra. 1996. A maximum entropy ap-628
proach to natural language processing. In Compu-629
tational Linguistics.630

Michael S Bernstein, Jaime Teevan, Susan Dumais,631
Daniel Liebling, and Eric Horvitz. 2012. Direct an-632
swers for search queries in the long tail. In SIGCHI.633

Olivier Bodenreider. 2004. The unified medical lan-634
guage system (umls): integrating biomedical termi-635
nology. In Nucleic Acids Research.636

Vincent Chen, Sen Wu, Alex Ratner, J. Weng, and637
Christopher Ré. 2019. Slice-based learning: A pro-638
gramming model for residual learning in critical data639
slices. In Advances in neural information process-640
ing systems, pages 9392–9402.641

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,642
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and643
Huajun Chen. 2021. Knowprompt: Knowledge-644
aware prompt-tuning with synergistic optimization645
for relation extraction. In arXiv:2104.07650v5.646

Eunsol Choi, Omer Levy, Yejin Choi, and Luke647
Zettlemoyer. 2018. Ultra-fine entity typing. In648
arXiv:1807.04905v1.649

Ronan Collobert, Jason Weston, Leon Bottou, Michael650
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.651
Natural language processing (almost) from scratch.652
In Journal of Machine Learning Research.653

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and654
Serge Belongie. 2019. Class-balanced loss based on655
effective number of samples. In CVPR.656

Xiang Dai and Heike Adel. 2020. An analysis of sim-657
ple data augmentation for named entity recognition.658
Proceedings of the 28th International Conference on659
Computational Linguistics.660

Tri Dao, Albert Gu, Alexander Ratner, Chris De Sa Vir-661
ginia Smith, and Christopher Ré. 2019. A kernel662
theory of modern data augmentation. Proceedings663
of the 36th International Conference on Machine664
Learning (PMLR).665

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and666
Kristina Toutanova. 2019. Bert: Pre-training of deep667
bidirectional transformers for language understand-668
ing. In NAACL-HLT.669

Vitaly Feldman. 2021. Does learning require mem- 670
orization? a short tale about a long tail. In 671
arXiv:1906.05271v4. 672

Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, 673
Jason Wu, Stephan Zheng, Caiming Xiong, Mo- 674
hit Bansal, and Christopher Ré. 2021. Robustness 675
gym: Unifying the nlp evaluation landscape. arXiv 676
preprint arXiv:2101.04840. 677

Isabelle Guyon and Andre Elisseeff. 2003. An intro- 678
duction to variable and feature selection. In Journal 679
of Machine Learning Research. 680

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and 681
Maosong Sun. 2021. Ptr: Prompt tuning with rules 682
for text classification. In arXiv:2105.11259v3. 683

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan 684
Yao, Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: 685
A large-scale supervised few-shot relation classifi- 686
cation dataset with state-of-the-art evaluation. In 687
EMNLP. 688

Matthew Honnibal, Ines Montani, Sofie Van Lan- 689
deghem, and Adriane Boyd. 2020. Industrial- 690
strength natural language processing in python. 691

Grant Van Horn and Pietro Perona. 2017. The devil is 692
in the tails: Fine-grained classification in the wild. 693
In arXiv:1709.01450. 694

Mandar Joshi, Kenton Lee, Yi Luan, and Kristina 695
Toutanova. 2020. Contextualized representations us- 696
ing textual encyclopedic knowledge. In ArXiv. 697

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh- 698
ney, Caiming Xiong, and Richard Socher. 2019. 699
Ctrl: A conditional transformer language model for 700
controllable generation. arXiv:1909.05858v2. 701

J. Lafferty, A. McCallum, , and Fernando Pereira. 2001. 702
Conditional random fields: Probabilistic models for 703
segmenting and labeling sequence data. In ICML. 704

Beth Levin. 1993. English Verb Classes and Alterna- 705
tions. The University of Chicago Press. 706

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 707
Hiroaki Hayashi, and Graham Neubig. 2021. Pre- 708
train, prompt, and predict: A systematic survey of 709
prompting methods in natural language processing. 710
In arXiv:2107.13586. 711

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, 712
Haotang Deng, and Ping Wang. 2020. K-bert: 713
Enabling language representation with knowledge 714
graph. In Proceedings of AAAI. 715

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, 716
Kristina Toutanova, Jacob Devlin, and Honglak Lee. 717
2019. Zero-shot entity linking by reading entity de- 718
scriptions. In arXiv:1906.07348v1. 719

9



Christopher D. Manning, Mihai Surdeanu, John Bauer,720
Jenny Finkel, Steven J. Bethard, and David Mc-721
Closky. 2014. The stanford corenlp natural language722
processing toolkit. In Proceedings of the 52nd An-723
nual Meeting of the Association for Computational724
Linguistics.725

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann726
Marcinkiewicz. 1993. Building a Large Annotated727
Corpus of English: The Penn Treebank.728

George A Miller. 1995. Wordnet: a lexical database for729
english. In Communications of the ACM.730

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-731
sky. 2009. Distant supervision for relation extrac-732
tion without labeled data. In ACL.733

Laurel Orr, Megan Leszczynski, Simran Arora, Sen734
Wu, Neel Guha, Xiao Ling, and Chris Ré. 2020.735
Bootleg: Chasing the tail with self-supervised736
named entity disambiguation. In Arxiv.737

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.738
2013. On the difficulty of training recurrent neural739
networks. In Proceedings of the 30th International740
Conference on Machine Learning (PMLR).741

Matthew E Peters, Mark Neumann, Robert L Lo-742
gan IV, Roy Schwartz, Vidur Joshi, Sameer Singh,743
and Noah A Smith. 2019. Knowledge enhanced744
contextual word representations. arXiv preprint745
arXiv:1909.04164.746

Nina Poerner, Ulli Waltinger, and Hinrich Schutze.747
2020. E-bert: Efficient-yet-effective entity embed-748
dings for bert. arXiv:1911.03681v2.749

Jonathan Raiman and Olivier Raiman. 2018. Deep-750
type: multilingual entity linking by neural type sys-751
tem evolution. In Thirty-Second AAAI Conference752
on Artificial Intelligence.753

Victor Sanh, Lysandre Debut, Julien Chaumond, and754
Thomas Wolf. 2020. Distilbert, a distilled ver-755
sion of bert: smaller, faster, cheaper and lighter.756
arXiv:1910.01108v4.757

Teven Le Scao and Alexander M. Rush. 2021. How758
many data points is a prompt worth? In NAACL759
HLT.760

Yusheng Su, Xu Han, Zhengyan Zhang, Yankai Lin,761
Peng Li, Zhiyuan Liu, Jie Zhou, and Maosong Sun.762
2021. Cokebert: Contextual knowledge selection763
and embedding towards enhanced pre-trained lan-764
guage models. In arXiv:2009.13964.765

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang766
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu767
Yang, Sebastian Ruder, and Donald Metzler. 2020.768
Long range arena: A benchmark for efficient trans-769
formers. In arXiv:2011.04006v1.770

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei1, 771
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin 772
Jiang, and Ming Zhou. 2020a. K-adapter: Infus- 773
ing knowledge into pre-trained models with adapters. 774
arXiv:2002.01808v5 2020. 775

Sida I Wang, Mengqiu Wang, Stefan Wager, Percy 776
Liang, and Christopher D Manning. 2013. Feature 777
noising for log-linear structured prediction. Em- 778
pirical Methods in Natural Language Processing 779
(EMNLP). 780

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan 781
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 782
2020b. Kepler: A unified model for knowledge 783
embedding and pre-trained language representation. 784
arXiv:1911.06136v3. 785

Jason Wei and Kai Zou. 2019. Eda: Easy data augmen- 786
tation techniques for boosting performance on text 787
classification tasks. EMNLP 2019. 788

Robert West, Evgeniy Gabrilovich, Kevin Murphy, 789
Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014. 790
Knowledge base completion via search-based ques- 791
tion answering. In International World Wide Web 792
Conference Committee (IW3C2). 793

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 794
Chaumond, Clement Delangue, Anthony Moi, Pier- 795
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 796
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 797
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 798
Teven Le Scao, Sylvain Gugger, Mariama Drame, 799
Quentin Lhoest, and Alexander M. Rush. 2020. 800
Transformers: State-of-the-art natural language pro- 801
cessing. In Proceedings of the 2020 Conference on 802
Empirical Methods in Natural Language Processing: 803
System Demonstrations, pages 38–45, Online. Asso- 804
ciation for Computational Linguistics. 805

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu- 806
ong, and Quoc V. Le. 2020. Unsupervised data aug- 807
mentation for consistency training. NeurIPS 2020. 808

Zhang Xie, Sida I. Wang, Jiwei Li, Daniel Levy, Aim- 809
ing Nie, Dan Jurafsky, and Andrew Y. Ng. 2017. 810
Data noising as smoothing in neural network lan- 811
guage models. ICLR 2017. 812

Wenhan Xiong, Jingfei Du, William Yang Wang, and 813
Veselin Stoyanov. 2020. Pretrained Encyclope- 814
dia: Weakly Supervised Knowledge-Pretrained Lan- 815
guage Model. In International Conference on Learn- 816
ing Representations (ICLR) 2020. 817

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki 818
Takeda, and Yuji Matsumoto. 2020. Luke: Deep 819
contextualized entity representations with entity- 820
aware self-attention. EMNLP 2020. 821

Tianyi Zhang and Tatsunori Hashimoto. 2021. On 822
the inductive bias of masked language model- 823
ing: From statistical to syntactic dependencies. 824
arXiv:2104.05694. 825

10

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Yue Zhang and Joakim Nivre. 2011. Transition-based826
dependency parsing with rich non-local features. In827
Proceedings of the 49th Annual Meeting of the Asso-828
ciation for Computational Linguistics.829

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-830
geli, and Christopher D. Manning. 2017. Position831
aware attention and supervised data improve slot fill-832
ing. In Empirical Methods in Natural Language Pro-833
cessing (EMNLP).834

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,835
Maosong Sun, and Qun Liu. 2019. Ernie: En-836
hanced language representation with informative en-837
tities. arXiv preprint arXiv:1905.07129.838

Xiangxin Zhu, Dragomir Anguelov, and Deva Ra-839
manan. 2014. Capturing long-tail distributions of840
object subcategories. In CVPR.841

A Appendix842

A.1 Dataset Details843

Benchmarks The datasets can be downloaded844

here: https://github.com/thunlp/ERNIE.845

Metadata We tag original dataset examples with846

a state-of-the-art pretrained entity-linking model847

from (Orr et al., 2020),6 which was trained on an848

October 2020 Wikipedia dump with train, valida-849

tion, test splits of 51M, 4.9M, and 4.9M sentences.850

FewRel includes entity annotations. The types we851

use as category metadata for all tasks are those852

appearing at least 100 times in Wikidata for enti-853

ties this Wikipedia training data used bh Orr et al.854

(2020). Descriptions are sourced from Wikidata855

descriptions and the first 50 words of the entity856

Wikipedia page. Table 3 reports the availability of857

metadata for examples across the benchmark tasks.858

A.2 Training Details859

We use the pretrained BERT-base-uncased model860

for each task to encode the input text. We take the861

hidden layer representation corresponding to the862

[CLS] token and use a linear classification layer for863

prediction. All models are trained on 1 Tesla P100864

GPU (1.5 min/epoch for OpenEntity, 7.5 min/epoch865

for FewRel, 28 min/epoch for TACRED). For all866

tasks, we select the best learning rate from {1e-6,867

2e-6, 1e-5, 2e-5, 1e-4} and use the scoring imple-868

mentations released by Zhang et al. (2019).869

Entity Typing Hyperparameters include 2e-5870

learning rate, no regularization parameter and 256871

max. sequence length, batch size of 16 and no gra-872

dient accumulation or warmup. We report the test873

6https://github.com/HazyResearch/bootleg

Benchmark Train Valid Test

TACRED 68124 22631 15509
Category 54k/46k 16k/15k 9k/10k
Description 50k/43k 15k/14k 8k/9k

FewRel 8k 16k 16k
Category 8k/8k 16k/15k 16k/15k
Description 7k/8k 15k/16k 15k/16k

OpenEntity 1998 1998 1998
Category 674 674 647
Description 655 672 649

Table 3: We show the benchmark split sizes (row 1),
and the # of examples tagged with category and de-
scription metadata (rows 2 and 3). We give numbers
for the subject and object entity-span on relation extrac-
tion and the main entity-span for entity-typing. The
tasks have represent a range of proportions of shaped
examples (e.g., essentially all FewRel examples have
metadata, while metadata is sparsely available for Ope-
nEntity).

score for the epoch with the best validation score 874

within 20 epochs. 875

Relation Extraction Hyperparameters include 876

2e-5 learning rate and no regularization parameter. 877

For FewRel, we use batch size of 16, 512 maximum 878

sequence length, and no gradient accumulation or 879

warmup. For TACRED, we use a batch size 48, 880

256 maximum sequence length, and no gradient 881

accumulation or warmup. We report the test score 882

for the epoch with the best validation score within 883

15 epochs (FewRel) and 8 epochs (TACRED). 884

A.3 Metadata Implementation Details 885

We report the test score at the epoch with the high- 886

est validation score. For the results in Table 1, we 887

evaluated the number of metadata tokens to insert, 888

whether place the tokens directly following or at 889

the end of the example, and whether to use blank 890

noising on the metadata tokens. Metadata tokens 891

are ranked by Algorithm 1. 892

We use up to 20 metadata categories per subject 893

and object on FewRel, up to 25 metadata categories 894

per subject on OpenEntity, and up to 5 metadata cat- 895

egories per subject and object on TACRED. Note 896

that categories (e.g., “United States federal execu- 897

tive department”) can include multiple tokens, se- 898

lecting these maximum values by grid search. For 899

FewRel and OpenEntity, we insert metadata tokens 900

directly after the corresponding entity mention, and 901
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for TACRED, we inserted all metadata at the end902

of the example. For OpenEntity we randomly mask903

10% of metadata tokens at training time as implicit904

regularization, and for relation extraction, we use905

no blank noising. The impact of position and blank906

noising are further discussed in Appendix B.3.907

A.4 Baseline Implementations908

We produce numbers for key baselines which do909

not report for the benchmarks we consider, using910

provided code.7 8911

• We produce numbers for KnowBERT-Wiki912

on TACRED-Revisited using a learning rate913

of 3e − 5, β2 = 0.98, and choosing the best914

score for epochs ∈ 1, 2, 3, 4 and the remaining915

provided configurations.916

• We produce numbers for ERNIE on TACRED-917

Revisited using the provided training script918

and configurations they use for the original919

TACRED task.920

B Additional Experiments921

B.1 Task Agnostic Metadata Effects922

In Table 4 we report the same experiment con-923

ducted in Section 4.1, for all benchmark tasks con-924

sidered in this work. Each point represents the925

median test score over 3 random seeds.926

B.2 Metadata Noise927

Noisier metadata appear to provide implicit regu-928

larization. Noise arises from varied word choice929

and order, as found in entity descriptions, or blank930

noising (i.e. random token deletion).931

Here we provide initial empirical results.932

Blank noising (Xie et al., 2017) by randomly933

masking 10% of inserted metadata tokens during934

training leads to a consistent boost on OpenEn-935

tity: 0.1 (“High Rank”), 0.5 (“Popular”), 0.5 (“Low936

Rank”) F1 points higher than the respective scores937

from Table 2 over the same 3 random seeds. We938

observe no consistent benefit from masking on939

FewRel. Since metadata are sparsely available for940

OpenEntity examples, we hypothesize that blank941

noising of the category tokens can prevent over-942

reliance on the signal. Future work could inves-943

tigate advanced masking strategies, for example944

masking discriminative words in the training data.945

7https://github.com/allenai/kb
8https://github.com/thunlp/ERNIE

Benchmark R2

FewRel 0.985
TACRED 0.782*
OpenEntity 0.956

Table 4: Correlation (R2) between test F1 of p̂φ (no ad-
ditional pretraining) vs. perplexity of the independent
model p̂θ (w/ additional pretraining) for three tasks, us-
ing the procedure described in Figure 2. *Without one
outlier corresponding to shaping with all random to-
kens (R2 = 0.02 with this point).

Descriptions use varied word choice and order 946

vs. category metadata.9 To study whether shap- 947

ing with description versus category tokens lead 948

the model to rely more on metadata tokens, we 949

consider two shaping schemes that use 10 meta- 950

data tokens: 10 category tokens and 5 category, 951

5 description, where the categories are randomly 952

selected. We observe both give the ∼same score 953

on FewRel, 89.8 F1 and 89.5 F1, and use models 954

trained with these two schemes to evaluate on test 955

data where 10% of metadata tokens per example 956

are randomly removed. Performance drops by 1.4 957

F1 for the former and 1.0 F1 for the latter. 958

B.3 Implementation Choices 959

We also analyze the degree of sensitivity of meta- 960

data shaping to how the metadata are inserted in 961

examples (e.g., special tokens, the number of meta- 962

data tokens, and position). 963

Boundary Tokens Designating the boundary be- 964

tween original tokens in the example and inserted 965

metadata tokens improves model performance. 966

Inserting boundary tokens (e.g., “#”) in the ex- 967

ample, at the start and end of a span of inserted 968

metadata, consistently provides a boost across the 969

tasks. Comparing performance with metadata and 970

boundary tokens to performance with metadata and 971

no boundary tokens, we observe a 0.7 F1 (FewRel), 972

1.4 F1 (OpenEntity) boost in our main results. We 973

use boundary tokens for all results in this work. 974

Task Structure Tokens such as 975

“[START_SUBJECT]” and “[END_SUBJECT]”, 976

designate the relevant entities in the examples. 977

With no other shaping, inserting these tokens 978

provides a 26.3 (FewRel), 24.7 (OpenEntity) F1 979

9Over FewRel training data: on average a word in the set
of descriptions appears 8 times vs. 18 times for words in the
set of categories, and the description set contains 3.3x the
number of unique words vs. set of categories.
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point boost vs. training the BERT model without980

task structure tokens. These tokens are already981

commonly used.982

Token Insertion We observe low sensitivity to983

increasing the context length and to token place-984

ment (i.e., inserting metadata directly-following the985

entity-span vs at the end of the sentence).986

We evaluate performance a the maximum num-987

ber of inserted tokens per entity, n, increases. 10988

We insert metadata tokens in a random order (to989

control for the effect of different metadata hav-990

ing different levels of class-discriminativeness)991

and observe that for FewRel, n ∈ {1, 5, 10,992

20} gives {85.4, 86.4, 87.6, 88.5} test F1. On993

OpenEntity, n ∈ {1, 5, 10, 20, 40} gives994

{74.9, 75.7, 74.8, 74.5, 75.8} test F1. Overall per-995

formance changes gracefully with n and we ob-996

serve low sensitivity to longer contexts.997

The benefit of inserting metadata directly-998

following the entity span vs at the end of the ex-999

ample differed across tasks (e.g., for TACRED,1000

placement at the end performs better, for the other1001

tasks, placement directly-following performs bet-1002

ter), though the observed difference was small. In1003

Section 4, tokens are inserted directly-following1004

the relevant entity span for all tasks.1005

10Per subject and object entity for FewRel, and per main
entity for OpenEntity. I.e., n = 10 for FewRel yields a
maximum of 20 total inserted tokens for the example.
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