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Abstract

Language models (LMs) struggle to capture
knowledge about rare entities. To better cap-
ture entity knowledge, a common procedure
in prior work is to start with a base LM such
as BERT and to modify the LM architecture
or objective function to produce a knowledge-
aware LM. Proposed knowledge-aware LMs
perform well compared to base LMs on entity-
rich tasks; however deploying, understanding,
and maintaining many different specialized ar-
chitectures is challenging, and they also of-
ten introduce additional computational costs.
Thus we ask: to what extent we can match the
quality of these architectures using a base LM
and only changing the data? We propose meta-
data shaping, a method which inserts readily
available entity metadata, such as descriptions
and categorical tags, into examples at train and
inference time based on mutual information.
Intuitively, if metadata corresponding to popu-
lar entities overlap with metadata for rare enti-
ties, the LM may be able to better reason about
the rare entities using patterns learned from
similar popular entities. On standard entity-
rich tasks (TACRED, FewRel, OpenEntity),
metadata shaping exceeds the BERT-baseline
by an average of 4.3 FI points and achieves
state-of-the-art results. We further show the
gains are on average 4.4x larger for the slice of
examples containing tail vs. popular entities.

1 Introduction

While recent language models (LMs) are remark-
able at learning patterns that are seen frequently
during training, they still suffer from performance
degradation over rare “tail” patterns. In this work,
we propose metadata shaping, a method to address
the tail challenge by encoding properties shared be-
tween popular and tail examples in the data itself.

Tail degradation is particularly apparent in entity-
rich tasks, since users care about very different en-
tities and facts when using popular entity-centric
applications such as search and personal assistants

(Bernstein et al., 2012; Poerner et al., 2020; Orr
etal., 2020). Given the importance of entity-rich ap-
plications, considerable effort has been devoted to
developing methods for capturing entity knowledge
more reliably. Many of the proposed approaches
proceed by changing the model architecture.

While early LMs relied heavily on feature engi-
neering (Lafferty et al., 2001; Mintz et al., 2009;
Zhang and Nivre, 2011), recent neural models
could learn useful features during training (Col-
lobert et al., 2011), and shifted the focus to model
engineering. As such, given data annotated with
entity tags, recent methods for reasoning about en-
tities typically enrich base LMs (e.g., Devlin et al.
(2019)) to produce knowledge-aware LMs. This
is accomplished by modifying the base LM archi-
tecture or introducing auxiliary objectives to better
capture entity properties (Zhang et al., 2019; Pe-
ters et al., 2019; Yamada et al., 2020; Wang et al.,
2020b; Xiong et al., 2020; Su et al., 2021), or by
combining multiple learned modules, which are
each specialized to handle fine-grained reasoning
patterns or subsets of the data distribution (Chen
et al., 2019; Wang et al., 2020a).

These knowledge-aware LMs have led to impres-
sive gains compared to base LMs on entity-rich
tasks. However they also raise a few challenges:
additional pretraining is expensive, deploying and
maintaining multiple specialized LMs can be mem-
ory and time-intensive, each LM needs to be op-
timized for efficient use (e.g., on-device), and the
methods require training to adapt to changing facts
or new entities. Further, these LMs learn about an
entity from its individual occurrences during train-
ing, rather than explicitly encoding that patterns
learned for one entity may be useful for reason-
ing about other similar entities. Implicitly learning
entity similarities may be data-inefficient as the
Wikidata knowledge base alone holds ~ 100M
entities and unfortunately, 89% of the Wikidata en-
tities do not appear in Wikipedia, a popular source
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Figure 1: Metadata shaping inserts metadata (e.g., entity categories and descriptions) into the data at train and test
time. The FewRel benchmark involves identifying the relation between a subject and object string. The above
subject and object are unseen in the FewRel training data and the tuned base LM places low attention weights on
those tokens. A base LM trained with shaped data places high attention weights on useful metadata tokens such as
“politician”. Weights are shown for words which are not stop-words, punctuation, or special-tokens.

of unstructured training data for the LMs, at all. !
Thus, we ask the question: to what extent can we
match the quality of these architectures using a base
LM architecture and only changing the data? We
propose some simple modifications to the data at
train and test time, which we call metadata shaping,
and find the method is surprisingly quite effective.
Given unstructured text, there are several readily
available tools for generating annotations at scale
(e.g., Manning et al. (2014); Honnibal et al. (2020)),
and knowledge bases contain entity metadata in-
cluding categorical tags (e.g., Barack Obama is a
“politician”) and descriptions (e.g., Barack Obama
“enjoys playing basketball”). Metadata shaping en-
tails explicitly inserting retrieved entity metadata in
examples as in Figure 1 and inputting the resulting
shaped examples to the LM. Our contributions are:

Simple and Effective Method We propose
metadata shaping and demonstrate its effectiveness
on entity-rich benchmarks. Metadata shaping, with
simply an off-the-shelf base LM, exceeds the base
LM trained on unshaped data by by an average
of 4.3 F1 points and is competitive to state-of-the-
art methods, which do modify the LM. Metadata
shaping thus enables re-using well-studied and op-
timized base LMs (e.g., Sanh et al. (2020)).

Tail Generalization We show that metadata
shaping improves tail performance — the observed
gain from shaping is on average 4.4x larger for the
slice of examples containing tail entities than for

'Orr et al. (2020) finds that a BERT based model needs to
see an entity in on the order of 100 samples to achieve 60 F1
points when disambiguating the entity in Wikipedia text.

the slice containing popular entities. Metadata es-
tablish “subpopulations”, groups of entities sharing
similar properties, in the entity distribution (Zhu
et al., 2014; Cui et al., 2019; Feldman, 2021). For
example on the FewRel benchmark (Han et al.,
2018), “Daniel Dugléry” (a French politician) ap-
pears O times, but “politician” entities in general
appear > 700 times in the task training data. Intu-
itively, performance on a rare entity should improve
if the LM has the explicit information that it is sim-
ilar to other entities observed during training. This
is data-efficient compared to learning the properties
of an entity from its individual occurrences.

Explainability Prior knowledge-aware LMs use
metadata (Peters et al., 2019; Alt et al., 2020), but
do not explain when and why different metadata
help. Broadly there are limited tools for reasoning
about model architectural changes. This work in-
stead takes a data-centric perspective and, inspired
by classic feature selection techniques (Guyon and
Elisseeff, 2003), we conceptually explain the effect
of different metadata on generalization error.

We hope this work motivates further research on
addressing the tail challenge through the data.

2 Method

This section introduces metadata shaping, includ-
ing the set up and conceptual framework.

2.1 Objective

The goal of metadata shaping is to improve tail per-
formance using properties shared by popular and
rare examples. For instance, this work investigates



improving tail performance in entity-rich tasks us-
ing entity metadata (e.g., “politician”’) which are
readily available for fail (e.g., “Daniel Dugléry”)
and popular head (e.g., “Barack Obama”) entities.
Tail entities are those seen < 10 times during train-
ing and head entities are seen > 10 times, consis-
tent with Orr et al. (2020); Goel et al. (2021).
Metadata are easily sourced using off-the-shelf
models such as those for named entity (NER, NEL)
or part-of-speech (POS) tagging (Manning et al.,
2014; Honnibal et al., 2020), heuristic rules, and
knowledge bases (KBs) (e.g., Wikidata, Wordnet
(Miller, 1995), and domain-specific KBs (Boden-
reider, 2004)) allowing us to annotate unstructured
text at scale. We draw inspiration from prior work
that aligns text to metadata (Mintz et al., 2009),
though instead of using predefined feature schemas,
we consider using an unrestricted set of metadata.

2.2 SetUp

Let input x € X and label y € ), and consider the
classification dataset D = {(x;,y;)}}_, of size n.
Let m € M denote a metadata tag and let M (z;)
be the set of metadata collected for example z;. A
shaping function fs : X — &5 accepts an original
example x; € X and produces a shaped example
s; € X, by inserting a subset of M (z;) into z; (see
Figure 1). The downstream classification model pg
is learned from shaped train examples and infers y;
from the shaped test examples.

This work uses the following representative
metadata shaping functions for all tasks to insert
a range of coarse-grained signals associated with
groups of examples to fine-grained specific signals
associated with individual examples:

Categorical tokens establish subpopulations of
entities (e.g., Dugléry falls in the coarse grained
category of “person” entities, or finer grained cate-
gory of “politician” entities). NER and POS tags
are coarse grained categories, and knowledge bases
contain finer-grained categories (i.e., entity types
and relations). Categories are consistent and fre-
quent compared to words in the original examples.

Description tokens give cues for rare entities
and alternate expressions of popular entities (e.g.,
Dugléry is a “UMP party member”). Descriptions
are likely unique across entities, and can be viewed
as the finest-grained category for an entity.

2.3 Conceptual Framework

Next we want to understand if inserting m €
M (z;) for z; € D can improve tail performance.

We measure the generalization error of the classifi-
cation model py using the cross-entropy loss:

Las = E(o ) [ — log(pe(y]))]- ey

Let Pr(y|z;) be the true probability of class y €
Y given z;. Example z; is composed of a set of
patterns K; (i.e., subsets of tokens in x;). We make
the assumption that a pattern k£ € Kj; is a useful
signal if it informs Pr(y|z;). We thus parametrize
the true distribution Pr(y|x;) using the principle of
maximum entropy (Berger et al., 1996):

Pr(yla;) =

exp( Y M Pr(ylk). @)

1
Z(:rl) keK;

where Ay represents learned parameters weighing
the contributions of patterns (or events) k and Z(z;)
is a partition function that ensures Pr(y|x;) repre-
sents a probability distribution. Therefore when
evaluating py, achieving zero cross-entropy loss
between the true probability Pr(y|k) and the esti-
mated probability py(y|k), for all &k, implies zero
generalization error overall.

Unseen Patterns Our insight is that for a pattern
k that is unseen during training, which is common
in entity-rich tasks,” the class and pattern are in-
dependent (y L k) under the model’s predicted
distribution pg, s0 Py (y|k) = Py (y). With the as-
sumption of a well-calibrated model and not consid-
ering priors from the base LM pretraining stage,’
this probability is p,(y) = 5 fory € V.

Plugging in pg(y) = ‘17‘, the cross-entropy
loss between Pr(y|k) and p,(y|k) is Pr(k)log|Y|.
Our idea is to effectively replace k£ with another
(or multiple) shaped pattern k', which has non-
uniform pg(y|k") and a lower cross-entropy loss
with respect to Pr(y|k’), as discussed next.

Inserting Metadata Consider the shaped exam-
ple, s; = fs(x;), which contains new tokens from
M (z;), and thus contains a new set of patterns
K}. Let k,, € K} be a pattern containing some
m € M(z;). For a rare pattern (e.g., a mention
of a rare entity in x;) k, if an associated pattern
km (e.g., a metadata token for the rare entity) oc-
curs non-uniformly across classes during training,
For example, on the FewRel benchmark used in this work,
90.7%/59.7% of test examples have a subject/object span
which are unseen as the subject/object span during training.
3We ignore occurrences in the pretraining corpus and

learned similarities between unseen k and seen k’. Future
work can use these priors to refine the slice of unseen entities.



Algorithm 1 Metadata Token Selection

Precompute Train Statistics

Input: training data Dy,.4;,, metadata M

for each category m € M over Dy, do
Compute pmi(y, m) fory € ).

end for

for each class y € Y over Dy,.4ip, do
Compute frequency fy.

end for

R A A i

Select Metadata for Sentence

: Input: z; from Dy,.,;, and Dy, integer n.
: Collect metadata M (z;) for x;.

: for m € M(z;) do

Compute r,, = 2PMi(mY) £ fory € V.

e e = =
o b =3

15: Normalize r, values to sum to 1.
16: Compute entropy H,, over ry, fory € Y.
17: end for

—_
e

: Rank m € M(z;) by Hy,.
: Return min(n, |M(z;)|) tokens with lowest
H,,.

—_
Nel

then the cross-entropy loss between py(y|k,y,) and
Pr(y|ky,) is lower than the cross-entropy loss be-
tween pg(y|k) and Pr(y|k). If k,, provides a high
quality signal, shifting py(y|z;) in the correct di-
rection, performance of p, should improve.

We can measure the non-uniformity of k,,, across
classes using the conditional entropy H(Y|k).
When k is unseen and py(y|k) = pg(y, k) =

Pe(y) = ﬁ (uniform), so H(Y|k) is maximized:

HYIk) == poly, k) logpo(ylk) =log(|V]). (3

yey

For non-uniform pg(y|k., ), this conditional en-
tropy decreases. Thus we connect the method of
using metadata for the tail to classical feature se-
lection methods (Guyon and Elisseeff, 2003); we
seek the metadata providing the largest information
gain. Next we discuss the practical considerations
for selecting metadata.

Metadata Selection Entities are associated with
large amounts of metadata M (x;) — categories
can range from coarse-grained (e.g., “person”) to
fine-grained (e.g., “politician” or “US president”)
and there are intuitively many ways to describe peo-
ple, organizations, sports teams, and other entities.
Since certain metadata may not be helpful for a
task, and popular base LMs do not scale very well

to long dependencies (Tay et al., 2020; Pascanu
et al., 2013), it is important to understand which
metadata to use for shaping.

We want to select k,, with non-uniform
Do (y|km) across y € Y, i.e. with lower H(Y|km).
Conditional probability Pr(y|k,,) is defined as:

Pr(ylkm) = 2™ Fm) Pr(y), )

where we recall that the pointwise mutual infor-
mation pmi(y, k;,,) is defined as log (%).
The pmi compares the probability of observing y
and k,, together (the joint probability) with the
probabilities of observing y and k,, independently.
Class-discriminative metadata reduce H (Y|k).
Directly computing the resulting conditional
probabilities after incorporating metadata in D is
challenging since the computation requires consid-
ering all patterns contained in all examples, gen-
erated by including m. Instead we use simplistic
proxies to estimate the information gain. In Algo-
rithm 1, we focus on the subset of K} containing
individual metadata tags m, and compute the en-
tropy over py(y|m) for y € Y. Simple extensions
to Algorithm 1, at the cost of additional compu-
tation, would consider a broader set of k,, (e.g.,
n-grams containing m for n > 1), or iteratively
select tokens by considering the correlations in the
information gain between different metadata tags.

3 Experiments

In this section, we demonstrate that metadata shap-
ing is general and effective.

3.1 Datasets

We evaluate on standard entity-typing and relation
extraction benchmarks used by baseline methods.
Entity typing involves predicting the the applica-
ble types for a given substring in the input example
from a set of output types. We use OpenEntity (9
output types) (Choi et al., 2018) for evaluation. Re-
lation extraction involves predicting the relation
between the two substrings in the input example,
one representing a subject and the other an object.
We use FewRel (80 output relations) and TACRED
Revisited (42 output relations) for evaluation (Han
et al., 2018; Zhang et al., 2017; Alt et al., 2020).

3.2 Experimental Settings

Model We fine-tune a BERT-base model on meta-
data shaped data for each task, taking the pooled



FewRel TACRED OpenEntity
Model P R Fl |P R Fl |P R FI
BERT-base 851 85.1 849|663 787 720|764 71.0 732
K-BERT 831 859 843 |- - : 76.7 715 740
ERNIE 88.5 884 883|748 77.1 759|784 729 75.6
E-BERT copeat 88.5 88.5 885 |- - ; ; - ;
KnowBERTyy;x; | 89.2 892 89.2 | 789 769 779|786 71.6 75.0
CokeBERT 894 894 89.4 |- - ; 78.8 733 75.6
Ours (BERT-base) | 90.2 902 90.2 | 77.0 763 76.7 | 793 733 76.2

Table 1: Test scores on standard relation extraction and entity-typing tasks. “Ours (Base LM)” is metadata shaping.
All methods use the same base LM (BERT-base) and external information (Wikipedia) for consistent comparison.
A dash (“-”) indicates the baseline method did not report scores for the task.

[CLS] representation and using a linear prediction
layer for classification (Devlin et al., 2019). We
use cross-entropy loss for FewRel and TACRED
and binary-cross-entropy loss for OpenEntity. All
test scores are reported at the epoch with the best
validation score and we use the scoring implemen-
tations released by (Zhang et al., 2019). Additional
training details are provided in appendix A.

Metadata Source We use the state-of-the-art pre-
trained entity-linking model from Orr et al. (2020)
to link the text in each task to an October 2020
dump of Wikidata. We use Wikidata and the first
sentence of an entity’s Wikipedia page to obtain
descriptions. Additional details for the source of
metadata are in Appendix A. For certain examples
in the tasks, there are no linked entities (e.g., sev-
eral subject or object entities are simply pronouns
or dates). Table 3 gives statistics for the number of
examples with available of metadata for each task.
Metadata tags are selected by Algorithm 1.

3.3 Baselines

Prior work proposes various knowledge-aware
LMs, which are currently the state-of-the-art for
the evaluated tasks. ERNIE, (Zhang et al., 2019)
LUKE (Yamada et al., 2020), KEPLER (Wang
et al., 2020b), CokeBERT (Su et al., 2021), and
WKLM (Xiong et al., 2020) introduce auxil-
liary loss terms and require additional pretrain-
ing. Prior approaches also modify the architecture
for example using alternate attention mechanisms
(KnowBERT (Peters et al., 2019), K-BERT (Liu
et al., 2020), LUKE) or training additional trans-
former stacks to specialize in knowledge-based
reasoning (K-Adapter (Wang et al., 2020a)). E-
BERT (Poerner et al., 2020) does not require ad-
ditional pretraining and uses entity embeddings

which are aligned to the word embedding space.
In Table 1, we compare to methods which use the
same base LM, BERT-base, and external informa-
tion resource, Wikipedia, for consistency.

3.4 End-to-End Benchmark Results

We simply use an off-the-shelf BERT-base LM
(Wolf et al., 2020), with no additional pretrain-
ing and fine-tuned on shaped data to exceed the
BERT-base LM trained on unshaped data by 5.3
(FewRel), 4.7 (TACRED), and 3.0 (OpenEntity) F1
points. Metadata shaping is also competitive with
SoTA baselines which do modify the BERT-base
LM. Results are shown in Table 1. Table 3 reports
the availability of metadata for each task. We ob-
serve that metadata shaping is effective both when
most task examples have available metadata (e.g.,
FewRel) and when a small proportion of task ex-
amples have available metadata (e.g., OpenEntity),
analyzed further in Section 4.

For the baselines, we give reported numbers
when available, Su et al. (2021) reports two of the
KnowBERT-Wiki and all K-BERT results, and we
obtain remaining numbers using the code released
by baseline work as detailed in Appendix A.

4 Analysis

Here we study the following key questions for effec-
tively using metadata shaping: Section 4.1 What
are the roles of different varieties of metadata? Sec-
tion 4.2 What are the effects of metadata shaping
on slices concerning tail versus popular entities?

4.1 Framework: Role of Metadata Types

Metadata Effects Class-discriminative meta-
data correlates with reduced model uncertainty.
High quality metadata, as found in Wikidata, re-
sults in improved classification performance.



To investigate the effects of metadata on model
uncertainty, we compute the entropy of py softmax
scores over the output classes as a measure of un-
certainty, and compute the average across test set
examples. Lower uncertainty is correlated with
improved classification F1 (See Figure 2 (Left)).

We compute pmi scores for inserted metadata
tokens as a measure of class-discriminativeness.
We rank individual tokens & by pmi(y, k) (for task
classes y), computed over the training dataset. On
FewRel, for test examples containing a top-20 pmi
word for the gold class, the accuracy is 27.6%
higher when compared to the slice with no top-
20 pmi words for the class. Notably, 74.1% more
examples contain a top-20 pmi word for their class
when pmi is computed on shaped data vs. unshaped
training data.

Metadata Selection Simple information theo-
retic heuristics are effective for selecting metadata,
despite the complexity of the underlying contextual
embeddings.

We apply Algorithm 1, which ranks metadata
tags by their provided information gain, to select
metadata tags for the tasks. Given z; with a set
M (z;) of metadata tags, our goal is to select n to
use for shaping. We compare four selection ap-
proaches: using the highest (“High Rank™) and
lowest (“Low Rank”) ranked tokens by Algorithm
1, random metadata from M (z;) (“Random™), and
the most popular metadata tokens across the union
of M(z;),Vx; € Dyrain (“Popular”), selecting the
same number of metadata tags per example for
each baseline. We observe that “High Rank™ con-
sistently gives the best performance, evaluated over
three seeds, and note that even “Random” yields
decent performance vs. the BERT-baseline, indi-
cating the simplicity of the method (Table 2).

Considering the distribution of selected category
tokens under each scheme, the KL-divergence be-
tween the categories selected by “Low Rank™ vs.
“Popular” is 0.2 (FewRel), 4.6 (OpenEntity), while
the KL-divergence between “High Rank” vs. “Pop-
ular” is 2.8 (FewRel), 2.4 (OpenEntity). Popular
tokens are not simply the best candidates; instead,
Algorithm 1 selects discriminative metadata.

For OpenEntity, metadata are relatively sparse,
so categories appear less frequently in general and
it is reasonable that coarse grained types have more
overlap with “High Rank”. For e.g., “business”
is in the top-10 most frequent types under “High
Rank”, while “non-profit” (occurs in 2 train exam-

Benchmark Strategy Test F1
BERT-base 84.9
Random 87.2+£0.8
FewRel Popular 87.9 £0.1
Low Rank  87.8 £0.4
High Rank 88.9 £0.6
BERT-base 73.2
Random 74.3 £0.7
OpenEntity Popular 74.5 £0.4
Low Rank  74.1 £0.4
High Rank 74.8 £0.1
BERT-base 72.0
Random 73.8 £1.6
TACRED Popular 73.6 £0.9
Low Rank 733 +1.0
High Rank 74.7 £0.5

Table 2: Average and standard deviation over 3 random
seeds. Each method selects up to n metadata tokens per
entity. For FewRel, TACRED, n = 3 per subject, ob-
ject. For OpenEntity n = 2 per main entity as 33% of
OpenEntity train examples have > 2 categories avail-
able (80.7% have > 3 categories on FewRel). Note we
use larger n for the main results in Table 1.

ples) is in the top-10 most frequent types for “Low
Rank”. Metadata tokens overall occur more fre-
quently in FewRel (See Table 3), so finer-grained
types are also quite discriminative. The most fre-
quent category under “Low Rank” is “occupation”
(occurs in 2.4k train examples), but the top-10 cat-
egories under “High Rank” are finer-grained, con-
taining “director” and “politician” (each occurs in
> 300 train examples).

Task Agnostic Metadata Effects Using meta-
data correlates with reduced task-specific LM un-
certainty. We observe shaping also correlates with
reduced LM uncertainty in a task-agnostic way.
We perform additional masked language model-
ing (MLM) over the shaped task training data using
an off-the-shelf BERT-MLM model to learn model
Pp. We minimize the following loss function and
evaluate the model perplexity on the task test data:

Lunim = EsD mensins [ = 10g(Po(5m, |sm /1))]. (5

where [ is the masked token distribution and
Sm, 1s the masked token at position % in the shaped
sequence S,,.* Through minimizing the MLM loss,

*We use the Hugging Face implementation for masking
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Figure 2: Test F1 for pg (no additional pretraining) vs.
average entropy of P, softmax scores (Top) and vs. per-
plexity of a model pg (W/ pretraining) (Bottom). pg and
Pe use the same shaped training data. Each point is a
different metadata shaping scheme (median over 3 Ran-
dom Seeds): for RO all inserted tokens are true tokens
associated with the entity in the KB. For RX, X true
metadata tokens are replaced by random (noise) tokens
from the full vocabulary. For each point, the total num-
ber of metadata tokens is constant per example.

pg learns direct dependencies between tokens in
the data (Zhang and Hashimoto, 2021). In Figure 2
(Right), we observe a correlation between reduced
perplexity for py, and higher downstream perfor-
mance for pg across multiple tasks, both using the
same training data. Overall, shaping increases the
likelihood of the data, and we observe a correlation
between the intrinsic perplexity metric and the ex-
trinsic downstream metrics as a result of the same
shaping scheme. Table 4 (Appendix B) reports the
same correlations for all benchmarks.

Metadata Noise We hypothesize that noisier
metadata can provide implicit regularization.
Noise arises from varied word choice, word order,
and blank noising.

Feature noising (Wang et al., 2013) is effective
to prevent overfitting and while regularization is
typically applied directly to model parameters, Xie
et al. (2017); Dao et al. (2019) regularize through
the data. We hypothesize that using metadata with
diverse word choice and order (e.g., entity descrip-
tions) and blank noising (e.g., by masking metadata
tokens), can help reduce overfitting, and we provide
initial empirical results in Appendix B.

4.2 Evaluation: Tail and Head Slices

Section 3 shows the overall gain from shaping. We
now consider fine-grained slices of examples con-
taining head vs. tail entities and observe gains are
4.4x larger on the tail slice on average (Figure 3). °

and fine-tuning the BERT-base MLM (Wolf et al., 2020).

5A consideration for TACRED is that 42% of these head
spans are stopwords (e.g., pronouns) or numbers; just 7% are
for FewRel. This is based on unseen object spans for FewRel
and TACRED, as > 90% of subject spans are unseen.
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Figure 3: The gain from training the BERT-base LM
with metadata shaped data over training with unshaped
data, split by the popularity of the entity span in the test
example.

Subpopulations Metadata are helpful on the tail
as they establish subpopulations.

We hypothesize that if a pattern is learned for an
entity-subpopulation occurring in the training data,
the model may perform better on rare entities that
also participate in the subpopulation, but were not
individually observed during training. On FewRel,
we take the top-20 TF-IDF words associated with
each category signal during training as linguistic
cues captured by the model for the category sub-
population, consistent with Goel et al. (2021). For
example, “government” is in the top-20 TF-IDF
words for the “politician” entity category. At test
time, we select the slice of examples containing any
of these words for any of the categories inserted in
the example. The performance is 9.0/3.5 F1 points
higher on examples with unseen subject/object en-
tities with vs. without a top-20 TF-IDF word for a
subject/object category.

Metadata Effects on Popular Entities For pop-
ular entities the LM can learn entity-specific pat-
terns well, and be mislead by subpopulation-level
patterns corresponding to metadata.

Although we observe overall improvements,
here we examine the effect of metadata on the pop-
ular entity slice within our conceptual framework.

Let p be a popular pattern (i.e., entity mention)
in the training data, and let m be a metadata token
associated with p. Intuitively, the LM can learn
entity-specific patterns from occurrences of p, but
coarser grained subpopulation-level patterns corre-
sponding to m. If m and p are class-discriminative
for different sets of classes, then m can mislead
the LM. To evaluate this, consider subject and ob-
ject entity spans p € P seen > 1 time during
training. For test examples let ), be the set of
classes y for which there is a p € P in the ex-



ample with pmi(y,p) > 0, and define ), as the
classes y for which there is a metadata token m
with pmi(y, m) > 0 in the example. The examples
where YV, # 0, Y, # 0, and ), contains the true
class, but ),,, does not, represents the slice where
metadata can mislead the model. On this slice of
FewRel, the gain from the shaped model is 2.3 F1
points less than the gain on the slice of all examples
with ), # () and )V, # (), supporting our intuition.

An example entity-specific vs. subpopulation-
level tension in FewRel is: p = “Thames River”
is class-discriminative for y =“located in or next
to body of water”, but its m ="“river” is class-
discriminative for y =“mouth of the watercourse”.

5 Related Work

Incorporating Knowledge in LMs Discussed
in Section 3.2, significant prior work incorporates
knowledge by changing the base LM architecture
or loss function. Peters et al. (2019); Alt et al.
(2020) also use NER, POS Wikpedia, or Wordnet
metadata, but do not conceptually explain the ben-
efit or selection process. Orr et al. (2020) demon-
strates that category metadata improves tail perfor-
mance for NED. We do not modify the base LM.
Prior work inserts metadata for entities in the
data itself. Particularly relevant, Joshi et al. (2020);
Logeswaran et al. (2019); Raiman and Raiman
(2018) each uses a single form of metadata (ei-
ther descriptions or types) for a single task-type
(either QA or NED) demonstrating empirical bene-
fits. Metadata shaping combines different varieties
of metadata and applies generally to classification
tasks, and we provide conceptual grounding.

Feature Selection This work is inspired by tech-
niques in feature selection based on information
gain (Guyon and Elisseeff, 2003). In contrast to
traditional feature schemas (Levin, 1993; Marcus
et al., 1993; Mintz et al., 2009), metadata shaping
annotations are expressed in natural language to
flexibly include diverse structured and unstructured
metadata. We show the classic methods (Berger
et al., 1996) are informative even when using com-
plicated contextual embeddings. In our setting of
entity-rich tasks, we also draw a connection from
maximum entropy to explain how metadata can
reduce generalization error.

Prompting Prompting can serve similar goals,
but often requires human-picked prompt tokens
(Keskar et al., 2019; Aghajanyan et al., 2021) or

task-specific templates (Han et al., 2021; Chen
et al., 2021), while metadata shaping provides a
flexible baseline across metadata-types and task-
types. Prompting typically aims to better elicit
implicit knowledge from the base LM (Liu et al.,
2021), while metadata shaping focuses on explic-
itly incorporating retrieved signals not found in the
original task. Shaping is applied at train and test
time and does not introduce new parameters, as
required by methods which use learned prompts.

Data Augmentation One approach to tackle the
tail is to generate additional examples for tail enti-
ties (Wei and Zou, 2019; Xie et al., 2020; Dai and
Adel, 2020). However, this can be sample ineffi-
cient since augmentations do not explicitly signal
that different entities are in the same subpopulation
(Horn and Perona, 2017), so the model would need
view each entity individually in different contexts.
Metadata shaping and prompting (Scao and Rush,
2021) may be viewed as implicit augmentation.

6 Conclusion

We propose metadata shaping to improve tail per-
formance. The method is a simple and general
baseline that is competitive with SOTA approaches
for entity-rich tasks. We empirically show that the
method improves tail performance and formalize
why metadata can reduce generalization error.

Benefits from shaping include the ability to use
simpler, off-the-shelf LMs, tackle the tail efficiently
by learning subpopulation-level (rather than only
entity-specific) patterns, and provide a conceptual
understanding by relying on the rich set of tools for
reasoning about data distributions (in contrast to
the limited set of tools for reasoning about model
architectural changes). In limitations, pretrained
entity embeddings may encode facts beyond the
scope of the provided metadata tokens, and this
work did not consider including metadata for non-
subject and non-object entities that appear in the ex-
amples. Both shaping and the baseline knowledge-
aware LMs (e.g., Zhang et al. (2019)) rely on ac-
curate external knowledge — Wikidata contains
high-quality, human-curated entity metadata and in
future work, we want to compare the approaches
using noisy and incomplete KBs (West et al., 2014).

While this work focused on entity-rich tasks,
metadata shaping is not limited to this setting and
we hope this work motivates further research on
addressing the tail challenge through the data along-
side the model.
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A Appendix
A.1 Dataset Details

Benchmarks The datasets can be downloaded
here: https://github.com/thunlp/ERNIE.

Metadata We tag original dataset examples with
a state-of-the-art pretrained entity-linking model
from (Orr et al., 2020),° which was trained on an
October 2020 Wikipedia dump with train, valida-
tion, test splits of 51M, 4.9M, and 4.9M sentences.
FewRel includes entity annotations. The types we
use as category metadata for all tasks are those
appearing at least 100 times in Wikidata for enti-
ties this Wikipedia training data used bh Orr et al.
(2020). Descriptions are sourced from Wikidata
descriptions and the first 50 words of the entity
Wikipedia page. Table 3 reports the availability of
metadata for examples across the benchmark tasks.

A.2 Training Details

We use the pretrained BERT-base-uncased model
for each task to encode the input text. We take the
hidden layer representation corresponding to the
[CLS] token and use a linear classification layer for
prediction. All models are trained on 1 Tesla P100
GPU (1.5 min/epoch for OpenEntity, 7.5 min/epoch
for FewRel, 28 min/epoch for TACRED). For all
tasks, we select the best learning rate from {1e-6,
2e-6, le-5, 2e-5, 1e-4} and use the scoring imple-
mentations released by Zhang et al. (2019).

Entity Typing Hyperparameters include 2e-5
learning rate, no regularization parameter and 256
max. sequence length, batch size of 16 and no gra-
dient accumulation or warmup. We report the test

®https://github.com/HazyResearch/bootleg
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Benchmark Train Valid Test
TACRED 68124 22631 15509
Category 54k/46k  16k/15k  9k/10k
Description 50k/43k  15k/14k  8k/9k
FewRel 8k 16k 16k
Category 8k/8k 16k/15k  16k/15k
Description  7k/8k 15k/16k  15k/16k
OpenEntity 1998 1998 1998
Category 674 674 647
Description 655 672 649

Table 3: We show the benchmark split sizes (row 1),
and the # of examples tagged with category and de-
scription metadata (rows 2 and 3). We give numbers
for the subject and object entity-span on relation extrac-
tion and the main entity-span for entity-typing. The
tasks have represent a range of proportions of shaped
examples (e.g., essentially all FewRel examples have
metadata, while metadata is sparsely available for Ope-
nEntity).

score for the epoch with the best validation score
within 20 epochs.

Relation Extraction Hyperparameters include
2e-5 learning rate and no regularization parameter.
For FewRel, we use batch size of 16, 512 maximum
sequence length, and no gradient accumulation or
warmup. For TACRED, we use a batch size 48,
256 maximum sequence length, and no gradient
accumulation or warmup. We report the test score
for the epoch with the best validation score within
15 epochs (FewRel) and 8 epochs (TACRED).

A.3 Metadata Implementation Details

We report the test score at the epoch with the high-
est validation score. For the results in Table 1, we
evaluated the number of metadata tokens to insert,
whether place the tokens directly following or at
the end of the example, and whether to use blank
noising on the metadata tokens. Metadata tokens
are ranked by Algorithm 1.

We use up to 20 metadata categories per subject
and object on FewRel, up to 25 metadata categories
per subject on OpenEntity, and up to 5 metadata cat-
egories per subject and object on TACRED. Note
that categories (e.g., “United States federal execu-
tive department”) can include multiple tokens, se-
lecting these maximum values by grid search. For
FewRel and OpenEntity, we insert metadata tokens
directly after the corresponding entity mention, and



for TACRED, we inserted all metadata at the end
of the example. For OpenEntity we randomly mask
10% of metadata tokens at training time as implicit
regularization, and for relation extraction, we use
no blank noising. The impact of position and blank
noising are further discussed in Appendix B.3.

A.4 Baseline Implementations

We produce numbers for key baselines which do
not report for the benchmarks we consider, using
provided code.” ®

* We produce numbers for KnowBERT-Wiki
on TACRED-Revisited using a learning rate
of 3¢ — 5, B2 = 0.98, and choosing the best
score for epochs € 1, 2, 3, 4 and the remaining
provided configurations.

* We produce numbers for ERNIE on TACRED-
Revisited using the provided training script
and configurations they use for the original
TACRED task.

B Additional Experiments
B.1 Task Agnostic Metadata Effects

In Table 4 we report the same experiment con-
ducted in Section 4.1, for all benchmark tasks con-
sidered in this work. Each point represents the
median test score over 3 random seeds.

B.2 Metadata Noise

Noisier metadata appear to provide implicit regu-
larization. Noise arises from varied word choice
and order, as found in entity descriptions, or blank
noising (i.e. random token deletion).

Here we provide initial empirical results.

Blank noising (Xie et al., 2017) by randomly
masking 10% of inserted metadata tokens during
training leads to a consistent boost on OpenEn-
tity: 0.1 (“High Rank™), 0.5 (“Popular™), 0.5 (“Low
Rank”) F1 points higher than the respective scores
from Table 2 over the same 3 random seeds. We
observe no consistent benefit from masking on
FewRel. Since metadata are sparsely available for
OpenEntity examples, we hypothesize that blank
noising of the category tokens can prevent over-
reliance on the signal. Future work could inves-
tigate advanced masking strategies, for example
masking discriminative words in the training data.

"https://github.com/allenai/kb
8https://github.com/thunlp/ERNIE
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Benchmark R2
FewRel 0.985
TACRED 0.782*
OpenEntity  0.956

Table 4: Correlation (R?) between test F1 of D¢ (no ad-
ditional pretraining) vs. perplexity of the independent
model py (w/ additional pretraining) for three tasks, us-
ing the procedure described in Figure 2. *Without one
outlier corresponding to shaping with all random to-
kens (R? = 0.02 with this point).

Descriptions use varied word choice and order
vs. category metadata.” To study whether shap-
ing with description versus category tokens lead
the model to rely more on metadata tokens, we
consider two shaping schemes that use 10 meta-
data tokens: 10 category tokens and 5 category,
5 description, where the categories are randomly
selected. We observe both give the ~same score
on FewRel, 89.8 F1 and 89.5 F1, and use models
trained with these two schemes to evaluate on test
data where 10% of metadata tokens per example
are randomly removed. Performance drops by 1.4
F1 for the former and 1.0 F1 for the latter.

B.3 Implementation Choices

We also analyze the degree of sensitivity of meta-
data shaping to how the metadata are inserted in
examples (e.g., special tokens, the number of meta-
data tokens, and position).

Boundary Tokens Designating the boundary be-
tween original tokens in the example and inserted
metadata tokens improves model performance.
Inserting boundary tokens (e.g., “#”) in the ex-
ample, at the start and end of a span of inserted
metadata, consistently provides a boost across the
tasks. Comparing performance with metadata and
boundary tokens to performance with metadata and
no boundary tokens, we observe a 0.7 F1 (FewRel),
1.4 F1 (OpenEntity) boost in our main results. We
use boundary tokens for all results in this work.

Task Structure Tokens such as
“[START_SUBJECT]” and “[END_SUBJECT]”,
designate the relevant entities in the examples.
With no other shaping, inserting these tokens
provides a 26.3 (FewRel), 24.7 (OpenEntity) F1

°Over FewRel training data: on average a word in the set
of descriptions appears 8 times vs. 18 times for words in the
set of categories, and the description set contains 3.3x the
number of unique words vs. set of categories.



point boost vs. training the BERT model without
task structure tokens. These tokens are already
commonly used.

Token Insertion We observe low sensitivity to
increasing the context length and to token place-
ment (i.e., inserting metadata directly-following the
entity-span vs at the end of the sentence).

We evaluate performance a the maximum num-
ber of inserted tokens per entity, n, increases. '°
We insert metadata tokens in a random order (to
control for the effect of different metadata hav-
ing different levels of class-discriminativeness)
and observe that for FewRel, n < {1, 5, 10,
20} gives {85.4,86.4,87.6,88.5} test F1. On
OpenEntity, n € {1, 5, 10, 20, 40} gives
{74.9,75.7,74.8,74.5,75.8} test F1. Overall per-
formance changes gracefully with n and we ob-
serve low sensitivity to longer contexts.

The benefit of inserting metadata directly-
following the entity span vs at the end of the ex-
ample differed across tasks (e.g., for TACRED,
placement at the end performs better, for the other
tasks, placement directly-following performs bet-
ter), though the observed difference was small. In
Section 4, tokens are inserted directly-following
the relevant entity span for all tasks.

10Per subject and object entity for FewRel, and per main
entity for OpenEntity. ILe., n = 10 for FewRel yields a
maximum of 20 total inserted tokens for the example.
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