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Abstract
Due to common architecture designs, symme-
tries exist extensively in contemporary neural net-
works. In this work, we unveil the importance
of the loss function symmetries in affecting, if
not deciding, the learning behavior of machine
learning models. We prove that every mirror-
reflection symmetry, with reflection surface O,
in the loss function leads to the emergence of a
constraint on the model parameters θ: OT θ = 0.
This constrained solution becomes satisfied when
either the weight decay or gradient noise is large.
Common instances of mirror symmetries in deep
learning include rescaling, rotation, and permu-
tation symmetry. As direct corollaries, we show
that rescaling symmetry leads to sparsity, rotation
symmetry leads to low rankness, and permuta-
tion symmetry leads to homogeneous ensembling.
Then, we show that the theoretical framework can
explain intriguing phenomena, such as the loss
of plasticity and various collapse phenomena in
neural networks, and suggest how symmetries can
be used to design an elegant algorithm to enforce
hard constraints in a differentiable way.

1. Introduction
Modern neural networks are so large that they contain an
astronomical number of neurons and connections layered
in a highly structured manner. This design of modern ar-
chitectures and loss functions means that there are a lot of
redundant parameters in the model and that the loss func-
tions are often invariant to hidden, nonlinear, and nonper-
turbative transformations of the model parameters. We call
these invariant transformations the “symmetries” of the loss
function. Common examples of symmetries in the loss func-
tion include the permutation symmetry (Simsek et al., 2021;
Entezari et al., 2021; Hou et al., 2019), rescaling symmetry
(Dinh et al., 2017; Saxe et al., 2013; Neyshabur et al., 2014;
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Tibshirani, 2021), scale symmetry (Ioffe & Szegedy, 2015)
and rotation symmetry (Ziyin et al., 2023b). In physics,
symmetries are regarded as fundamental organizing prin-
ciples of nature, and systems with symmetries exhibit rich
and hierarchical behaviors (Anderson, 1972). However, ex-
isting works study specific symmetries case-by-case, and no
unifying theory exists to understand the role of symmetries
in affecting the learning of neural networks. In this work,
we take a neutral stance and show that the common types
of symmetries can be understood in a unified theoretical
framework of what we call the “mirror symmetries”, where
every symmetry is proved to lead to a special structure and
constraint of optimization.

Since we will also discuss stochastic aspects of learning,
we study a generic twice-differentiable non-negative per-
sample loss function:

ℓγ = ℓ0(θ, x) + γ∣∣θ∣∣2, (1)

where x is a minibatch or a single data point of arbitrary
dimension and sampled from a training set. θ is the model
parameter, and γ is the weight decay. ℓ0 assumes the defi-
nition of the model architecture and is the data-dependent
part of the loss. Training with stochastic gradient descent
(SGD), we sample a set of x and compute the gradient of
the averaged per-sample loss over the set. The per-sample
loss averaged over the training set is the empirical risk:
Lγ(θ) ∶= Ex[ℓγ]. Training with gradient descent (GD), we
compute the gradient with respect to Lγ . All the results we
derive for ℓγ directly carry over to Lγ . Also, because the
sampling over x is equivalent to a sampling of ℓ, we omit x
from the equations unless necessary.

The main contributions are the following:

1. we identify a general class of symmetry, the mirror reflec-
tion symmetry, that treats all common types of symmetry
in a coherent framework;

2. we prove that every mirror symmetry leads to a con-
straint on the parameters, and when weight decay is
used (or when the gradient noise is large), SGD train-
ing tends to converge to these constrained symmetric
solutions;

3. we apply the theory to understand phenomena related to
common symmetries such as rescaling, rotation symme-
try, and permutation symmetry.
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Figure 1: Illustration of a simple mirror symmetry when w ∈
R2. Here, the mirror surface is OT = ((1,−1), (0,0))/

√
2.

Points A and B have the same loss value when the loss
contains the O symmetry. The projection of A and B onto
the mirror surface, C, has a strictly smaller norm and is thus
preferred by weight decay. Furthermore, any gradient on
the mirror must also point within the mirror, so gradient (or
gradient noise) cannot take the parameter outside the mirror
once entered.

Experiments and discussions of previous results show that
the theory is highly practically relevant. This work is or-
ganized as follows. We present the proposed theory and
discuss its implications in depth in the next section. We
apply the result to four different problems and numerically
validate the theory in Section 3. We discuss the closely
related works in Section 4. The last section concludes this
work. All the proofs are given in Appendix C.

2. Mirror Symmetry Leads to Constraints
2.1. Main Theorem
Let us first define a general type of symmetry called mirror
reflection symmetry.

Definition 1. A per-sample loss function ℓ0(w) is said to
have the simple mirror (reflection) symmetry with respect to
a unit vector n if, for all w, ℓ0(w) = ℓ0((I − 2nnT )w).

Note that the vector (I −2nnT )w is the reflection of w with
respect to the plane orthogonal to n. Also, the L2 regular-
ization term itself satisfies this symmetry for any n because
reflection is norm-preserving. An important quantity is the
average of the two reflected solutions: w̄ = (I − nnT )w,
where w̄ is the fixed point of this transformation and is
called a “symmetric solution.” This mirror symmetry can be
generalized to the case where the loss function is invariant
only when multiple mirror reflections are made.

Definition 2. Let O consist of columns of orthonormal
vectors: OTO = I , and R = I − 2OOT . A loss function
ℓ0(w) is said to have the O-mirror symmetry if, for all w,
ℓ0(w) = ℓ0(Rw).

By construction, OOT and I−OOT are projection matrices,
and I − 2OOT is an orthogonal matrix. There are a few
equivalent ways to see this symmetry. First of all, it is

equivalent to requiring the loss function to be invariant only
after multiple simple mirror symmetry transformations. Let
m be a unit vector orthogonal to n. Reflections to both m
and n give (I − 2mmT )(I − 2nnT ) = I − 2(nnT +mmT ).
The matrix nnT +mmT is a projection matrix and, thus, an
instantiation of OOT . Secondly, because the composition
of orthogonal unit vectors spans the space of projection
matrices, OOT is nothing but a generic projection matrix
P . Thus, this symmetry can be equivalently defined with
respect to P such that ℓ0(w) = ℓ0((I − 2P )w). If we let O
or P be rank-1, the symmetry reduces to the simple mirror
symmetry in Definition 1. We will see in Section 3 that
many common types of symmetries in deep learning imply
mirror symmetries.

We also make a reasonable smoothness assumption, which
is only needed for part 4 of the theorem. This assumption is
benign because any C2 function satisfies this assumption in
a bounded space.

Assumption 1. The smallest eigenvalue of the Hessian of
ℓ0 is lower-bounded by a (possibly negative) constant λmin.

With these definitions, we are ready to prove the following
theorem.

Theorem 1. Let ℓ0(w) satisfy the O-mirror symmetry.
Then,

1. for any γ, if OTw = 0, then OT∇wℓγ = 0;
2. if OOTw = 0, a subset of the eigenvector of ∇2

wℓ0(w)
spans ker(OT ), and the rest spans im(OOT );

3. if OTw ≠ 0, there exists γ0 such that for all γ > γ0,
ℓγ((I −OOT )w) < ℓγ(w);

4. there exists γ1 such that for all γ > γ1, all minima of ℓγ
satisfy OTw = 0.

Parts 1 and 2 are statements regarding the local gradient
geometry, regardless of the weight decay. Parts 3 and 4
are local and global statements regarding the role of weight
decay, which points to a novel mechanism through which
weight decay regularizes a neural network. The fact that the
constrained solutions become local minima even at a finite
weight decay means that weight decay favors a sparse solu-
tion (sparse in the subspace of symmetry breaking). This
is different from the behavior of weight for linear regres-
sion, where the model only becomes sparse when the weight
decay is infinite. Therefore, textbooks often say that L2 reg-
ularization leads to a dense solution (Bishop & Nasrabadi,
2006; Hastie et al., 2009). The fact that sparse solutions
are favored under weight decay is thus a unique feature of
deep learning. See Figure 1 for an illustration of mirror
symmetries and the intuition behind the proof. We will ex-
plain these parts of the theorem in depth below. Lastly, note
that this theorem applies to arbitrary function ℓ0 that has the
mirror symmetry, which does not need to be a loss function.
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Figure 2: When symmetries exist, the symmetric solutions have highly structured Hessians. Left: the symmetry mirror O
partitions H into two blocks: one block parallel to surfaces in OOT , and the other orthogonal to it. When an extra symmetry
exists, these two blocks can be decomposed into additional subblocks. Mid-Right: the loss function around a symmetric
solution has a universal geometry. Here, s is the component of the parameters along a direction of the O-symmetry. The
competition between the signal in the dataset and the regularization strength determines the local landscape.

2.2. Absorbing States and Stationary Conditions
To discuss the implication of symmetries, we introduce the
concept of a “stationary condition.”

Definition 3. For an arbitrary function f , f(θ) = 0 is a
stationary condition of L(θ) if f(θt) = 0 implies f(θt+1) =
0, where θt is the t-th step parameter under (stochastic)
gradient descent.

A stationary condition can be seen as a special case of an
absorbing state, which is a major theme in the study of
Markov processes and is associated with complex phase-
transition-like behaviors (Norris, 1998; Dickman & Vidigal,
2002; Hinrichsen, 2000). Part 1 of Theorem 1 implies the
following.

Corollary 1. Every O-mirror symmetry implies a linear
stationary condition: OT θ = 0.

Alternatively, a stationary condition can be seen as a gen-
eralization of a stationary point because every stationary
point in the landscape implies the existence of a stationary
condition – but not vice versa. For example, some functions
of the parameters might reach stationarity before the whole
model reaches stationarity. The existence of such conditions
implies that there are special subspaces in the landscape
such that the dynamics of (S)GD within these subspaces
will not leave it. See Appendix Figure 5 for an illustration
of the stationary conditions.

2.3. Structure of the Hessian
Part 2 of Theorem 1 has important implications for the lo-
cal geometry of the loss and the dynamics of SGD. Let H
denote the Hessian of the loss L or that of the per-sample
loss ℓ. Part 2 states that H close to symmetry solutions are
partitioned by the symmetry condition I − 2P to two sub-
spaces: one part aligns with the images of P , and the other
part must be orthogonal to it. Namely, one can transform the

Hessian into a two-block form, H⊥ and H∥, with O.1 Note
that the parameters might also contain other symmetries, so
H∥ and H⊥ may also consist of multiple sub-blocks. This
implies that close to the symmetric solutions, the Hessian of
the loss will take a highly structured form simultaneously
for all data points or batches. See Figure 2.

The fact that the Hessian of neural networks takes a similar
structure after training is supported by empirical works. For
example, the illustrative Hessian in Figure 2 is similar to that
computed in Sagun et al. (2016). That the actual Hessians
after training are well approximated by smaller blocks is
supported by Wu et al. (2020). Blockwise Hessian matrices
can also be related to the existence of gaps in the Hessian
spectrum, which is widely observed (Sagun et al., 2017;
Ghorbani et al., 2019; Wu et al., 2020; Papyan, 2018).

It is instructive to consider the special case where O = nT is
rank-1. Part 2 implies that n must be an eigenvector of the
Hessian whenever the model is at a symmetry solution. For
example, we consider a two-layer tanh network with scalar
input and outputs. The loss function can always be written
as ℓ(w,u) = 1

2
(∑d

i ui tanh(wix) − y)
2
. For each index i,

ui tanh(wix) contains a symmetry with the identity mirror
I2. Therefore, the theory predicts that when u ≈ w ≈ 0,
the Hessian consists of d 2 × 2 block matrices. If we also
recognize that a tanh network approximates a linear network
at the origin, we see that there are actually two mirrors:
(1,1) and (1,−1), which are the eigenvectors of the Hessian
according to the theory. This can be compared with a direct
computation. When w = u = 0, the nonvanishing terms of

1Let Õ be any orthogonal matrix whose basis includes all the
eigenvectors of O. Then, OTHO will be a two-block matrix.
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the Hessian are ∂2

∂wi∂ui
ℓ = −xy:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −xy
−xy 0

...
0 −xy
−xy 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

This means the Hessian is indeed d-block and that the eigen-
vectors are (1,1) and (1,−1), agreeing with the theory. It
is remarkable that we can identify all the eigenvectors of an
arbitrarily wide nonlinear network by examining the sym-
metry in the model.

2.4. Dynamics of Stochastic Gradient Descent
The loss symmetry has a major implication for the dynam-
ics of SGD. Because the Hessian is block-wise with fixed
blocks (with probability 1), the dynamics of SGD in the
symmetry direction and the symmetry-breaking direction
are essentially independent. Let O denote the mirror and
P = OOT the projection matrix. If OOTw = sn where
n is a unit vector, and s is a small quantity, the model is
perturbatively away from the symmetry solution. In this
case, one can expand the loss function to leading orders in
s:

ℓ(x,w) = ℓ(x,w0) +
1

2
wTPH(x)Pw + o(s3), (3)

where we have defined the sample Hessian restricted to the
projected subspace: H(x) ∶= P∇2

wℓ(x,w0)P , which is a
matrix of random variables. Note that all the odd-order
terms in s vanish due to the symmetry in flipping the sign
of s. In fact, one can view the training loss ℓγ or Lγ as a
function of s, which we denote as L̃(s), and this analysis
implies that the loss landscape close to s = 0 has a universal
geometry. See Figure 2.

This allows us to characterize the dynamics of SGD in the
symmetry directions:

Pwt+1 = Pwt − λHPwt, (4)

where λ is the learning rate. If one model H as a ran-
dom matrix, this dynamics reduces to the classical problem
of random matrix product (Furstenberg & Kesten, 1960).
In general, the symmetric solutions at Pw = 0 are saddle
points, while the attractivity of Pw = 0 only depends on the
sign of Lyapunov exponent of dynamics. This implies that
these types of saddles points are often attractive.

To compare, we first consider GD. The largest negative
eigenvalue of Ex[H], ξ∗, thus gives the speed at which SGD
escapes the stationary condition: ∥Pwt∥ ∝ exp(−ξ∗t).
When weight decay is present, all the eigenvalues of H
will be positively shifted by γ, and, therefore, if and only if
ξ∗+γ > 0, GD will be attracted to these symmetric solutions.

In this sense, ξ∗ gives a critical weight decay value at which
a symmetry-induced constraint is favored.

For SGD, the dynamics is qualitatively different. The naive
expectation is that, when using SGD, the model will escape
the stationary condition faster due to the noise. However,
this is the opposite of the truth. The existence of the SGD
noise due to minibatch sampling makes these stationary con-
ditions more attractive. The stability of the type of dynamics
in Eq. (4) can be analyzed by studying the condition for con-
vergence in probability of the solution Pw = 0 (Ziyin et al.,
2023a). One can show that Pw converges to 0 in probability
if and only if the Lyapunov exponent of the process Λ is neg-
ative, which is possible even if this critical point is a strict
saddle. When does a subspace of Pw converge (or collapse)
to zero? A qualitatively correct critical learning rate can
be derived using a diagonal approximation of the Hessian.
In this case, each subspace of H(x) has its own Lyapunov
exponent and can be analytically computed. Let ξ(x) de-
note the eigenvalue of H(x) in this subspace. Then, this
subspace collapses when Λ = Ex[log ∣1−λ(ξ(x)+γ)∣] < 0,
which is negative for a large learning rate (see Appendix C
for a formal treatment). The meaning of this condition be-
comes clear by expanding to the second order in λ to obtain:

λ > −2E[ξ + γ]
E[(ξ + γ)2]

. (5)

The numerator is the eigenvalue of the empirical loss, and
the denominator can be identified as the minibatch noise
effect (Wu et al., 2018), which becomes larger if the batch
size is small or if the dataset is noisy. Therefore, this phe-
nomenon happens due to the competition between the signal
and noise in the gradient. This example shows that at a large
learning rate, the stationary conditions are favored solutions
of SGD, even if they are not favored by GD. Also, conver-
gence to these symmetry-induced saddles is not a unique
feature of SGD but happens for Adam-type dynamics as
well (Ziyin et al., 2021; 2023a).

Two novel applications of this analysis are to learning a
sparse model and a low-rank model. See Figure 3. We first
apply it to a linear regression with rescaling symmetry. It
is known that when both weight decay and rescaling sym-
metries are present, the solutions are sparse and identical
to lasso (Ziyin & Wang, 2023). Our result shows that even
without weight decay, the solutions are sparse at a large
learning rate. Then, we consider a matrix factorization prob-
lem. Classical results show that the solutions are low-rank
when weight decay is present (Srebro et al., 2004). Our
result shows that even if there is no weight decay, SGD at
a large learning rate or gradient noise converges to these
low-rank saddles. The fact that these constrained structures
disappear completely when the symmetry is removed sup-
ports our claim that symmetry is the cause of them.

Another strong piece of evidence for the relevance of the
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theory to real neural networks is that after training, the
Hessian of the loss function is observed to contain many
small negative eigenvalues, which hints at the convergence
to saddle points (Sagun et al., 2016; 2017; Ghorbani et al.,
2019; Alain et al., 2019). A related phenomenon is that of
pathological Fisher information. Our result implies that the
Fisher information is singular close to any symmetry solu-
tions. Note that OT∇wℓ(w,x) = 0 for a symmetry solution
and any x. Therefore, the Fisher information has a zero
eigenvalue along the directions orthogonal to any mirror
symmetry, in agreement with previous findings (Wei et al.,
2008; Cousseau et al., 2008; Fukumizu, 1996; Karakida
et al., 2019a;b).

2.5. L1 Equivalence of Mirror Symmetries
Parts 3 and 4 of Theorem 1 imply that constrained solu-
tions are favored when weight decay is used. These re-
sults can be stated in an alternative way: that every mir-
ror symmetry plus weight decay has an L1 equivalent.
To see this, let the loss function L0(w) be O-symmetric,
and P = OOT . Let w be an arbitrary weight, which
we decompose as w = w′ + sPw/∣∣Pw∣∣, where we de-
fine s = ∣∣Pw∣∣. Let us define an equivalent loss function
L̃0(w′, Pw/∣∣Pw∣∣, s2) ∶= L0(w). By definition, we have
successfully constructed the L1 equivalent of the original
loss.

L0(w) + γ∣∣w∣∣2 = L̃0(w′, Pw/∣∣Pw∣∣, s2) + γ(∣∣w′∣∣2 + s2)
= L̃0(w′, Pw/∣∣Pw∣∣, ∣z∣) + γ(∣∣w′∣∣2 + ∣z∣), (6)

where we introduced ∣z∣ = s2. Therefore, along the
symmetry-breaking direction, the loss function has an equiv-
alent L1 form. One can also show that L̃0 is well defined
as an L1-constrained loss function. If L0 is differentiable,
L̃0 is differentiable except at s = 0. Thus, it suffices to show
that the right derivative of L̃0 with respect to z exists at
z = 0+. As we have discussed, at z = 0, the expansion of L0

is second order in s. This means that the leading order term
of L̃0 is first order in z, and so the L1 penalty is well-defined
for this loss function. Meanwhile, if there is no symmetry,
this reparametrization will not work because s = 0 will have
a divergent derivative.

2.6. An Algorithm for Differentiable Constraint
Sparsity and low-rankness are typical structured constraints
that practitioners often want to incorporate into their mod-
els (Tibshirani, 1996; Meier et al., 2008; Jaderberg et al.,
2014). However, the known methods of achieving these
structured constraints tend to be tailored for specific prob-
lems and based on nondifferentiable operations. Our the-
ory shows that incorporating symmetries is a general and
scalable way to introduce such constraints into deep learn-
ing. Consider solving the following constrained problem:
minθ L(θ) s.t. as many elements of Pθ are zero as possible.
Here, P = OOT is a projection matrix. Our theory implies

an algorithm for enforcing such constraints in a differen-
tiable way: introducing an artificial O-symmetry to the loss
function encourages the constraint OT θ = 0, which can be
achieved by running GD on the following loss function:

min
w,u,v

L(T (w,u, v)) + α(∣∣w∣∣2 + ∣∣u∣∣2), (7)

where w, u, v have the same dimension as θ and
T (w,u, v) = (I − P )v + (Pw) ⊙ (Pu), where ⊙ denotes
the Hadamard product. We call the algorithm DCS, stand-
ing for differentiable constraint by symmetry. This pa-
rameterization introduces the mirror symmetry to which
OTT (w,u, v) = 0 is a stationary condition. By Theorem 1,
a sufficiently large α ensures that OTT (w,u, v) = 0 is an en-
ergetically favored solution. Also, note that this parametriza-
tion is a “faithful” parametrization in the sense that it is
always true that minw,u,v L(T (w,u, v)) = minθ L(θ). A
special case of this algorithm is the spred algorithm (Ziyin
& Wang, 2023), which focuses on the rescaling symmetry
and has been found to be efficient in model compression
problems. See Section B for an application of the algorithm
to ResNet18.

3. Examples and Experiments
Now, let us consider four examples where symmetry plays
an important role in deciding the learned solution. While
all the theorems in this section can be proved as corollaries
of Theorem 1, we give independent proofs of them to bring
some concreteness to the general theorem. The technical
details of the experiments are in Section B.

3.1. Rescaling Symmetry Causes Sparsity
The simplest type of symmetry in deep learning is the rescal-
ing symmetry. Consider a loss function ℓ0 for which the
following equality holds for any x, arbitrary vectors u, w
and ρ ∈ R/{0}:

ℓ0(u,w,x) = ℓ0(ρu, ρ−1w,x). (8)

For the rescaling symmetry and for all the problems we dis-
cuss below, it is also possible for ℓ0 to contain other param-
eters v that are irrelevant to the symmetry: ℓ0 = ℓ0(u,w, v).
Since having such v or not does not change our result, we
omit writting v.

The following theorem states that this symmetry leads to
sparsity in the parameters.

Theorem 2. Let ℓ0(u,w) have the rescaling symmetry in
Eq. (8). Then, for any x, (1) if u = 0 and w = 0, then
∇uℓγ = 0 and ∇wℓγ = 0; (2) for any fixed u, w, there exists
γ0 such that for all γ > γ0, ℓγ(0,0) < ℓγ(u,w).

To prove this using the main theorem is simple. When the
rescaling symmetry exists between two scalars u and w,
there are two planes of mirror symmetry: n1 = (1,1) and
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Figure 3: When loss function symmetries are present, the model converges to structurally constrained solutions at a high
weight decay or gradient noise. Left: A vanilla linear regression trained with SGD does not converge to sparse solutions for
any learning rate. When we introduce redundant rescaling symmetry to every parameter, sparser solutions are favored at
higher learning rates (λ). Mid: Vanilla 200 dimensional matrix factorization trained with SGD prefers lower-rank solutions
when the gradient noise is strong due to the rotation symmetry. The inset shows that the model always stays full-rank if we
remove the rotation symmetry by introducing residual connections. Right: Correlation of the pre-activation value of neurons
in the penultimate layer of ResNet18. After training, the neurons are grouped into homogeneous blocks when weight decay
is present. The inset shows that such block structures are rare when there is no weight decay. Also, the patterns are similar
for post-activation values (Section B), which further supports the claim that the block structures are due to the symmetry,
not because of linearity. See Section B for the experimental details.

n2 = (1,−1). Here, n1 symmetry implies that u = −w is
a symmetry solution, and n2 symmetry implies that u =
w is a symmetry solution. Applying Theorem 1 to these
two mirrors implies that u = 0 and w = 0 is a symmetry
solution and obeys Theorem 2. When u ∈ Rd1 and w ∈ Rd2

are vectors of arbitrary dimensions and have the rescaling
symmetry, one can identity the implied mirror symmetry as
O = I , and so I − 2P = −I: the loss function is symmetric
to a simultaneous flip of all the signs of u and w. Applying
Theorem 1 to this mirror again finishes the proof.

This symmetry usually manifests itself when part of the
parameters is linearly connected. Previous works have used
this property to either understand the inductive bias of neural
networks or design efficient training algorithms. When the
model is a fully connected ReLU network, Neyshabur et al.
(2014) showed that having L2 is equivalent to L1 constraints
of weights. Ziyin & Wang (2023) designed an algorithm
to compress neural networks by transforming a parameter
vector v to u⊙w, where ⊙ is the Hadamard product.

For numerical evidence, see Figure 3-left and 4. Here, we
consider a linear regression task with noisy Gaussian data,
where the loss function is ℓ = (vTx − y), where v is either
directly trained or parametrized as the Hadamard product
of two-parameter vectors to artificially introduce rescaling
symmetry: v = u⊙w. We see that without such symmetry,
the model never converges to a sparse solution, whereas
the symmetrized parametrization converges to symmetry
solutions, in agreement with the theory.

3.2. Rotation Symmetry Causes Low-Rankness
A more involved but common type of symmetry is the rota-
tion symmetry, which also appears in a few slightly different
forms in deep learning. This type of symmetry appears in
matrix factorization problems, where it is a main cause of
the emergence of saddle points (Li et al., 2019). It also ap-
pears in Bayesian deep learning (Tipping & Bishop, 1999;
Kingma & Welling, 2013; Lucas et al., 2019; Wang & Ziyin,
2022), self-supervised learning (Chen et al., 2020; Ziyin
et al., 2023b), and transformers in the form of key-query
matrices (Vaswani et al., 2017; Dong et al., 2021).

Now, we show that rotation symmetry in the landscape leads
to low rankness. We use the word “rotation” in a broad
sense, including all orthogonal transformations. There are
two types of rotation symmetry common in deep learning.
In the first kind, we have for any W ,

ℓ0(W ) = ℓ0(ΩW ) (9)

for any orthogonal matrix Ω such that ΩΩT = I and W is
a set of weights viewed as a matrix or vector whose left
dimension matches the right dimension of Ω.

Theorem 3. Let ℓ0 satisfy the rotation symmetry in Eq. (9).
Then, for any index i, vector n and x, (1) if nTW = 0, then
nT∇W ℓγ = 0; (2) for any fixed W , there exists γ0 such that
for all γ > γ0, ℓγ(W/i) < ℓγ(W ).2

Part 1 of the statement deserves a closer look. nTW = 0

2The notation W/i denotes the matrix obtained by setting the
i-th singular value of W to be zero.
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implies that W is low-rank and n is a left eigenvector of W .
That the gradient vanishes in this direction means that once
the weight matrix becomes low-rank, it will always be low-
rank for the rest of the training. To prove it using Theorem 1,
we note that for any projection matrix Π, the matrix I −
2Π is an orthogonal matrix because (I − 2Π)(I − 2Π)T =
(I − 2Π)2 = I . Therefore, the rotation symmetry already
implies that for any Π and W , ℓ0((I−2Π)W ) = ℓ0(W ). To
apply the theorem, we need to view W as a vector, and the
corresponding reflection matrix is diag(I − 2Π, ..., I − 2Π),
a block-wise repetition of the matrix I − 2Π, where each
block corresponds to a column of W . By construction, P is
also a projection matrix. Since this holds for an arbitrary Π,
one can choose Π to match the desired plane in Theorem 3,
which can be then proved by invoking Theorem 1.

A more common symmetry is a “double” rotation symmetry,
where ℓ0 depends on two matrices U and W and satisfies
ℓ0(U,W ) = ℓ0(UR,RTW ), for any orthogonal matrix R
and any U and W . Namely, the loss function is invariant
if we simultaneously rotate two different matrices with the
same rotation. In this case, one can show something similar:
nTW = 0 and Un = 0 for some fixed direction n is the
favored solution.

See Figure 3-mid, which shows that low-rank solutions are
preferred in matrix factorization when the gradient noise is
large (namely, when the learning rate is large or the label
noise is strong), whereas such a tendency disappears when
one removes the rotation symmetry by introducing a residual
connection. An additional experiment with weight decay
is presented in the Appendix.3 Because transformers have
the double rotation symmetry in the self attention, we also
perform an experiment with transformers in an in-context
learning task in Section B.6.

3.3. Permutation Symmetry Causes Homogeneity
The most common type of symmetry in deep learning is
permutation symmetry. It shows up in virtually all architec-
tures in deep learning. A primary and well-studied example
is that in a fully connected network, the training objective
is invariant to any pairwise exchange of two neurons in the
same hidden layer. We refer to this case as the “special
permutation symmetry” because it is a special case of the
permutation symmetry we study below. Many recent works
are devoted to understanding the special permutation sym-
metry (Simsek et al., 2021; Entezari et al., 2021; Hou et al.,

3It is now worthwhile to clarify the difference between con-
tinuous and discrete symmetries because rescaling and rotation
symmetries are continuous transformations, and it seems like con-
tinuous symmetries can also cause these constraints. This is not
true – the constraints are only consequences of the existence of re-
flection surfaces. Having continuous symmetries is one convenient
way to induce certain types of mirror symmetry, but not the only
way.

2019).

Here, we study a more general and abstract type of per-
mutation symmetry. The loss function has a permutation
symmetry between parameter subsets θa and θa if, for any
θa and θb,4

ℓ0(θa, θb) = ℓ0(θb, θa). (10)

When there are multiple pairs that satisfy this symmetry, one
can combine this pairwise symmetry to generate arbitrary
permutations. From this perspective, permutation symme-
tries appear far more common than they are recognized.
Another example is that a convolutional neural network is
invariant to a pairwise exchange of two filters, which is
rarely studied. A scalar rescaling symmetry can also be
regarded as a special case of permutation symmetry.

Here, we show that the permutation symmetry tends to make
the neurons become identical copies of each other (namely,
encouraging θa to be as close to θb as possible).

Theorem 4. Let ℓ0 satisfy the permutation symmetry in
Eq. (10). Then, for any x, (1) if θa − θb = 0, then ∇θaℓγ =
∇θbℓγ; (2) for any θa ≠ θb, there exists γ0 such that for all
γ > γ0, ℓγ((θa + θb)/2, (θa + θb)/2) < ℓγ(θb, θa).

To prove it, one can identify the projection as

P = 1

2
[ Id −Id
−Id Id

] . (11)

Let θ = (θ1, θ2) denote a vector combination of both sets of
the parameters. The permutation symmetry thus implies the
mirror symmetry: ℓ0(θ) = ℓ0((I − 2P )θ). The symmetry
solution is θ1 = θ2, and applying the master theorem to this
mirror allows us to obtain Theorem 4.

This theorem implies that a permutation symmetry can be
seen as a generalized form of ensembling smaller submod-
els.5 Restricted to fully connected networks, this type of
homogeneous ensembling can be called a “neuron collapse.”
This identification of the stationary subspace agrees with
the result in Simsek et al. (2021). Special cases of this result
have been proved previously. For a fully connected network,
Fukumizu & Amari (2000) showed that the solutions of sub-
networks are also solutions of the larger network, and Chen
et al. (2023) demonstrated that these subnetwork solutions
of fully connected networks can be attractive when the learn-
ing rate is large. Our result is more general because it does

4A special case is a hidden layer of a network; let wa and ua be
the input and output weights of neuron a, and wb, ub be the input
and output weights of neuron b. We can thus let θa ∶= (wa, ua)
and θb ∶= (wb, ub).

5It is not true that the origin is always favored when a mirror
symmetry exists. Consider this loss: Lγ(w1,w2) = [(w1 +w2) −
1]2+γ(w2

1+w2
2). A permutation symmetry exists between w1 and

w2. The condition θa − θb = 0 is satisfied for all solutions of the
loss whenever γ > 0. Meanwhile, no solution satisfies θa = θb = 0.
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not restrict to the special permutation symmetry induced by
fully connected networks. A novel application is that the
networks have block-wise neurons and activation patterns
whenever weight decay is present.

We train a Resnet18 on the CIFAR-10 dataset, following the
standard training procedures. We compute the correlation
matrix of neuron firing of the penultimate layer of the model,
which follows a fully connected layer. We compare the
matrix for both training with and without weight decay and
for both pre- and post-activations (see Appendix B). See
Figure 3-right, which shows that homogeneous solutions
are preferred when weight decay is used, in agreement with
the prediction of Theorem 1.

3.4. Loss of Plasticity and Neural Collapses
Also, our theory implies that the commonly observed loss of
plasticity problem in continual and reinforcement learning
(Lyle et al., 2023; Abbas et al., 2023; Dohare et al., 2023)
is attributable to symmetries in the model. For a given task,
weight decay or a finite learning rate makes the model con-
verge to symmetry solutions, which tend to be low-capacity
constrained solutions. If we train on an additional task, the
capacity of the model can only decrease because the sym-
metry solutions are also stationary conditions, which SGD
cannot escape. Fortunately, our theory suggests at least two
ways to fix this problem: (1) use an alternative parame-
terization that explicitly removes the symmetry and/or (2)
inject additive noise to the gradient to eliminate the station-
ary conditions. In fact, gradient noise injection is a known
method to alleviate plasticity loss (Dohare et al., 2023).
There are alternative ways to achieve (1). An easy way is to
bias every (symmetry-relevant) parameter by a random bias:
wi → wi + βi, where βi is a small fixed random variable.

A related phenomenon that symmetry can explain is the
collapse of neural networks. The most common type of col-
lapse is when the learned representation of a neural network
spans a low-rank subspace of the entire available space, of-
ten leading to reduced expressive power. In Bayesian deep
learning, a posterior collapse happens when the stochas-
tic latent variables are low-rank (Lucas et al., 2019; Wang
& Ziyin, 2022). This can be attributed to the double rota-
tion symmetry of the encoder’s last layer weight and the
decoder’s first layer weight. In self-supervised learning, a
dimensional collapse happens when the representation of
the last layer is low-rank (Tian, 2022), which has been found
to be explained by the rotation symmetry of the last layer
weight matrix. This also explains why many self-supervised
learning methods focus on removing the symmetry (Bardes
et al., 2021). The rank collapse that happens in self-attention
may also be relevant (Dong et al., 2021). In supervised learn-
ing, the “neural collapse” happens when the learned rep-
resentation of the penultimate learning becomes low-rank,
which happens when weight decay is present (Papyan et al.,

Figure 4: Loss of plasticity in continual learning in a vanilla
linear regressor (dashed) and linear regressors with rescal-
ing symmetry (solid). Vanilla regression has no symmetry
and does not suffer plasticity loss, whereas having symme-
tries leads to the loss of plasticity. One can fix the problem
with one of the two suggested methods, either by removing
the symmetry in the model or removing the absorbing states
by injecting noise.

2020). Figure 3 shows that such a phenomenon can be at-
tributed to the permutation symmetry in the fully connected
layer. In summary, our result provides a unified perspective
of the collapse phenomenon: collapses are caused by sym-
metries in the loss function. Our theory also suggests that
these collapse phenomena have a natural interpretation as
“phase transitions” in theoretical physics, where a collapse
solution corresponds to a symmetric state with the “order
parameter” being OT θ.6

4. Related Works
A few related works study symmetries in specific deep-
learning scenarios. To name a few primary examples, Fuku-
mizu & Amari (2000) studies the permutation symmetry
without weight decay or SGD training. Chen et al. (2023)
studies permutation symmetry in fully connected networks
with a large learning rate under SGD. However, it does not
consider the role of weight decay nor its implication beyond
fully connected nets. Ziyin & Wang (2023) studies rescal-
ing symmetry when weight decay is present but does not
study its Hessian or its connection to SGD training. Sre-
bro et al. (2004) and the related works thereof study the
matrix factorization with weight decay but not how SGD
influences its solution nor how it relates to symmetry. In
contrast, our result is useful for understanding both SGD and
weight decay when symmetries are present. Lastly, Ziyin
et al. (2024) studies the regularization effect of continuous
symmetries under SGD, different from our focus on discrete
symmetry. Besides, an interesting future problem is to lever-
age parameter-symmetries to learn data-space symmetries

6For example, see Ziyin et al. (2022) and Ziyin & Ueda (2022)
for a study of these phase transitions in deep linear networks.
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(Cohen & Welling, 2016; Bökman & Kahl, 2023) because
learning group-invariant functions naturally involves special
structures and constraints in the architecture.

5. Conclusion
In this work, we have presented a unified theory to under-
stand the role of discrete symmetries in deep learning and
studied their implications on gradient-based learning. We
have shown that every mirror symmetry leads to a struc-
tured constraint of learning. This statement is examined
from two different angles: (1) such solutions are favored
when L2 regularizations are applied; (2) they are favored
when the gradient noise is strong (which can happen when
the learning rate is large, the batch size is small, or the data
is noisy). We substantiated our theoretical discovery with
numerical examples of achieving common structures such
as sparsity and low-rankness. We also discussed a variety
of specific problems and phenomena and their relationship
to symmetry. Our result is universal in that it only relies on
the existence of the specified symmetries and does not rely
on the properties of the loss function, model architectures,
or data distributions. Per se, symmetry and its associated
constraint are both good and bad. On the bad side, it limits
the expressivity of the network and its approximation power.
On the good side, it leads to more condensed models and
representations, tends to ignore features that are noisy and
can improve generalization capability thereby.
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Figure 5: Stationary conditions in different loss landscapes. Left: L = (wu − 1)2. Here, u = w and u = −w are the stationary conditions
caused by the rescaling symmetry. Right: θ = (u,w) and L = −∣∣θ∣∣2 + ∣∣θ∣∣4. Here, the stationary condition caused by the rotation
symmetry is every straight line crossing the origin. Every stationary condition delineates a submanifold of the entire landscape. Once the
model is in this submanifold, SGD cannot leave it.

A. Additional Related Works

B. Experimental Concerns
B.1. Illustration of Stationary Conditions

See Figure 5.
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Figure 6: Comparison for the correlation matrix of the neurons in the penultimate layer at zero weight decay (left) and 0.001
weight decay (right). Upper: pre-activation correlation. Lower: post-activation correlation. After training, the neurons are
grouped into homogeneous blocks when weight decay is present. The inset shows that such block structures are very rare
when there is no weight decay. Also, the patterns are similar for post-activation values, which further supports the claim that
the block structures are due to the symmetry, not because of linearity.

B.2. Experimental Details and Additional Results for Figure 3

Here, we give the experimental details for the experiments in Figure 3.

For the sparsity experiments, we generate online data of batch size 1 in the following way. The input x ∈ R200 is sampled
from a diagonal normal distribution. The label y = 1

200 ∑i xi + ϵ ∈ R, where ϵ is a noise term also sampled from a Gaussian
distribution. The training proceeds with SGD without weight decay or momentum for 105 iterations. The vanilla linear
regression (labeled as “w/o rescaling”) is parameterized in the standard way: f(x) = wTx. The regressor with rescaling
symmetry is parameterized as a Hadamard product, as in the spred algorithm (Ziyin & Wang, 2023): f(x) = (w ⊙ u)Tx,
where ⊙ denotes the element-wise product.

For the low-rank experiment with matrix factorization, we also generate online data of batch size 1 similarly. The input
x ∈ R200 is sampled from a diagonal normal distribution. The label is y = µx+ (1−µ)ϵ ∈ R200, where µ controls the degree
of noise in the label and can be seen as the effective signal-to-noise ratio in the data. Here, the noise vector ϵ have different
variances: ϵi ∼ N(0,2/i). The vanilla matrix factorization model is f(x) =WUx, where both W and U ∈ R200×200. The
training proceeds with standard SGD without momentum or weight decay. For the inset figure, we parameterize the network
through residual connections: f(x) = (I200 +W )(I200 +U)x, thus removing the rotation symmetry.

For the ResNet experiment, we train a standard ResNet18 with roughly 10M parameters in total on the CIFAR-10 dataset.
The SGD algorithm uses a batch size of 128 for 100 epochs with a fixed learning rate of 0.1 and momentum of 0.9, with
varying degrees of weight decay. To plot the activation correlation, we take the penultimate layer neurons of the fully
connected layer with dimension 128 and compute the correlation matrix over their activation of 2000 unseen test points.
The neurons are sorted according to the eigenvector with the largest eigenvalue of the correlation matrix to reveal its block
structure. Importantly, the pre- and post-activations have a similar correlation structure, showing that the effect is not due to
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linearity but the permutation symmetry. See Figure 6 for the comparison between the pre- and post-activation correlations.

B.3. Experimental Detail for Continual Learning

Here, we give the experimental detail for the continual learning experiment in Figure 4.

For all the experiments in the figure, the training proceeds with Adam without momentum with a batch size of 16 for 25000
steps. Every task consists of a dataset of 100 data points drawn from the following distribution. The input x ∈ R100 is
sampled from a diagonal normal distribution. The label y = 1

100 ∑i xi + ϵ ∈ R, where ϵ is a noise term also sampled from a
Gaussian distribution. The weights obtained from training on task j is used as the initialization for task j + 1, which consists
of another 100 data points sampled in the same way. We train for 10 tasks and record the number of dead neurons in the
model. The dead neurons are defined as the number of parameters that have a vanishing gradient.

To have strong control over the experimental conditions, we use vanilla linear regression as a base model, which is shown
in the solid curve. Because there is no symmetry in the model, the vanilla linear regression has a minimal level of dead
neurons, and its number does not increase as the number of tasks increases.

In contrast, for a linear regression with augmented rescaling symmetry where we reparameterize every weight of the linear
regressor by the Hadamard product of two independent weights (also see the previous section), the loss of plasticity problem
emerges, and the number of dead neurons increases steadily as one train on more and more tasks. To show that symmetry is
indeed the cause of the problem, we fix the loss of plasticity problem in this model with the two suggested methods. First,
we inject a very weak Gaussian random noise with variance 1e − 4 to the gradient every step. Because this removes the
absorbing states, or equivalently the stationary conditions, the number of dead neurons reduces to the same level as vanilla
regression. Alternatively, we bias every weight parameter by a random and fixed constant: wi → wt + βi, where βi is drawn
from a Gaussian distribution with variance 1e − 4. Because this parametrization removes the symmetry in the model, it also
fixes the loss of plasticity problem, as we expect from the theory.
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Figure 7: Training of a ResNet18 on CIFAR-10 without (vanilla) and with rescaling symmetry on each parameter. Left:
the two models are similar in terms of training time and final performance. Right: with rescaling symmetry, the model
parameters is very sparse. Here, sparsity is defined as the fraction of parameters with a magnitude smaller than 10−6. Setting
these parameters to zero has no discernible effect on the model performance.

Figure 8: Rank of L2 regularized matrix factorization. We see that as the weight decay becomes stronger, the model becomes
lower and lower rank.

B.4. Learning dynamics of the DCS Algorithm

To demonstrate the learning dynamics of the DCS algorithm, We consider training a sparse ResNet18 on CIFAR-10. Here,
the training proceeds with SGD with 0.9 momentum and batch size 128, consistent with standard practice. We use a cosine
learning rate scheduler for 200 epochs. We compare the learning dynamics of vanilla ResNet18 and a ResNet18 with the
rescaling symmetry on every parameter, where we reparametrize the original parameter vector v as the Hadamard product of
two vectors w ⊙ v. Both models use a weight decay of 5e-4. We note that this special case of the DCS algorithm is identical
to the spred algorithm (Ziyin & Wang, 2023). After training, both the vanilla model and the DCS model reach roughly 93%
test accuracy (with the DCS model higher by a small margin).

See Figure 7. As is clear, the training time required for a DCS model is similar to that of a vanilla model. In terms of
memory cost, we note that DCS costs twice as much memory as the vanilla at batch size 1. However, at the batch size 128,
the memory cost difference between the two is smaller than 10 percent.

B.5. Matrix Factorization

For completeness, we also include an experiment with regularized matrix factorization with GD. Here, we have a training
set with 200 datapoints, where each input data X is i.i.d. from N(0, I50). The model has dimensions 50→ 50→ 50. We
train with gradient descent for varying values of weight decay. See Figure 8.
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Figure 9: The evolution of the rank of the key and query weights of a single-layer transformer during full-batch training. In
agreement with the theory, the rank is lower when the weight decay is stronger. The rank of the two matrices also mirrors
each other due to the double rotation symmetry.

Figure 10: The evolution of the rank of the key and query weights of a two-layer transformer during full-batch training.
Here, W i

Q and W i
K are the query and key weights, respectively, for the i-th layer. Within the same layer, the rank of the two

matrices mirrors each other due to the double rotation symmetry. This similarity is lacking between different layers due to
the lack of symmetry.

B.6. Transformer

We perform an experiment with the simplest versions of transformer, with one or two single-head self-attention layers and
without any MLP. Here, the input dimension is 50 × 100 such that for each data point X , elements of X∶,1∶100 are i.i.d. from
N(0,1), and the target

X1∶49,101 =X1∶49,1∶100w∗, (12)

where w∗ ∈ R100 is a ground truth vector, generated also from N(0, I100). The tasks are the simplest type of in-context
learning, where the first 49 vectors serve as demonstrations of feature-target pairs, and the last row of X is the feature that
the model needs to predict, whose label is X∶,1∶100w∗. Following this procedure, we construct a training set of 500 data
points, and the training proceeds with a full-batch Adam with a learning rate of 4e − 3 and various weight decay values.

According to our theory, there is a double rotation symmetry between the key and query weights K and Q. Therefore, we
expect that as weight decay increases, the rank of the learned K and Q drops. More importantly, as we discussed in the
main text, they should drop together with each other. See Figure 9 and 10 for the result.
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C. Theoretical Concerns
C.1. A Formal Derivation of Eq. (5)

By Definition 2, the loss function has the O-symmetry if for any x

ℓ(w,x) = ℓ(I − 2OOTw,x). (13)

As we discussed, this means that for every data point x, the per-sample Hessian ∇2
wℓ(w,x) takes the same block-wise

structure outlined in Fig. 2. For this chapter, the most important consequence of Theorem 1 is that OTw = 0 is a symmetry
solution of ℓ(w,x) for all x.

We are interested in the atractivity of these solutions. The expansion of the per-sample loss to the second order gives:

ℓ(w,x) = ℓ(w(0), x) + 1

2
wTP∇2

wℓ(w(0), x)Pw + o(s4), (14)

where P = OOT is a projection matrix, and w(0) = Pw is the component of w that is orthogonal to the symmetry breaking
subspace. Here, we care about when Pw is attracted towards 0. The dynamics of z ∶= Pw is thus a stochastic linear
dynamics:

zt+1 = zt − λĤ(w(0), x)zt, (15)

where Ĥ(w(0), x) = P∇2
wℓ(w(0), x)P .

To proceed, we make the following assumption.

Assumption 2. (Stationary background dynamics) The motion of w0 is sufficiently slow that Ĥ(w(0), x) = Ĥ∗(x) is a
constant function in w(0).

This also implies that any eigenvalue of H also only depends on x. This assumption holds when the time scale of relaxation
for w(0) is far slower than that of Pw or when the dynamics is already stationary, namely, close to convergence.

When Assumption 2 holds, and O is rank-1, this dynamics is analytically solvable. By Theorem 1, if O = n is rank-1, n
is an eigenvector of Ĥ for all x. Thus, the dynamics simplifies to a one-dimensional dynamics, where h(x) ∈ R is the
corresponding eigenvalue of Ĥ(w0, x):

zt+1 = zt − λh(x)zt. (16)

The sufficient and necessary condition for the stability of this dynamics at z = 0 has an analytical solution (Ziyin et al.,
2023a), which is Eq. (5).

Theorem 5. (Ziyin et al. (2023a)) Let wt follow Eq. (16). Then, for any data set,

wt →p 0 (17)

if and only if7

Ex[log ∣1 − λh(x)∣] < 0. (18)

C.2. Proofs

C.2.1. PROOF OF THEOREM 1

Proof. Part 1. Let R ∶= (I − 2OOT ). By assumption, we have OTw = 0. Now, consider a linearly transformed version of w:

w̃(s) = w + sn, (19)

where n is any unit vector in the image of OOT . Note that we have the following relation:

Rw̃(s) = (I − 2OOT )(w + sn) = w − sn = w̃(−s). (20)

7This condition generalizes to the case when the batch size S is larger than 1, where h(x) becomes the per-batch Hessian, and the
expectation is taken over all possible batches.
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Therefore, by definition of the mirror symmetry, we have that for all s:

ℓγ(w̃(s)) = ℓγ(w̃(−s)). (21)

Dividing both sides by s and taking the limit s→ 0, we obtain

nT∇wℓγ(w) = 0. (22)

Because n is arbitrary, one can select a set of n such that they span the rows of OT , and we obtain that OT∇wℓγ(w) = 0.
This finishes part 1.

Part 2. Let OTw = 0. By symmetry, we have that for any s ∈ R and n ∈ ker(OT )⊥:8

ℓ0(w + sn) = ℓ0(w − sn). (23)

Let m be an arbitrary vector in ker(OT ). Then, we also have that for any s′ ∈ R

ℓ0(w + sn + s′m) = ℓ0(w − sn + s′m). (24)

Taking derivative over s′ for both sides and let s′ → 0, we obtain

mT∇ℓ0(w + sn) =mT∇ℓ0(w − sn). (25)

Taking derivative over s and let s→ 0, we obtain

2mT∇2
wℓ0(w)n = 0. (26)

Since m is an arbitrary vector in ker(OT ) and n is an arbitrary in ker(OT )⊥, this implies that

∇2
wℓ0(w)n ∈ ker(OT )⊥, (27)

∇2
wℓ0(w)m ∈ ker(OT ). (28)

Namely, a subset of the eigenvectors of ∇2
wℓ0(w) spans ker(OT )⊥ and the rest spans ker(OT ). This proves part 2.

To prove part 3, we first recognize that if we only look at the L2 regularization part of the loss function, an orthogonal
solution is always favored over a non-orthogonal solution. Let w be an arbitrary solution such that OTw ≠ 0. We decompose
w into an orthogonal part and a non-orthogonal part:

w = u + sn, (29)

where OTu = 0 and OOTn = n. Since u and n are orthogonal, we have that

∣∣w∣∣2 − ∣∣u∣∣2 = s2 > 0. (30)

Therefore, if

γ > ℓ0(u) − ℓ0(w)
s2

, (31)

we have that

ℓγ(w) − ℓγ(u) = ℓ0(w) − ℓ0(u) + γ(∣∣w∣∣2 − ∣∣u∣∣2) (32)

= ℓ0(w) − ℓ0(u) + γs2 (33)

> ℓ0(w) − ℓ0(u) +
ℓ0(u) − ℓ0(w)

s2
s2 = 0. (34)

However, since we have u = (I −OOT )w, this proves part 3.

8We use ker(OT )⊥ to denote the set of all vectors that is perpendicular to all the vectors in ker(OT ).
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Part 4. By assumption, the smallest Hessian eigenvalue of ℓ0 is lower bounded by λmin. Therefore, if γ > λmin, ℓγ has a
positive definite Hessian everywhere, implying that its gradients are monotone and that the global minimum is unique. Now,
suppose there exists u = w + c0n such that c0 ≠ 0, OTw = 0, OOTn = n, and

∇ℓγ(u) = 0. (35)

Then,
nT∇ℓγ(u) = 0 = nT∇ℓγ(w). (36)

This implies that the gradient is not monotone, which contradicts the assumption. Therefore, we have proved part 4.

C.2.2. PROOF OF THEOREM 2

Proof. We first show part 1. The rescaling symmetry states that for any ϵ ≠ 1 and w, u,

ℓ0((1 + ϵ)u,w/(1 + ϵ)) = ℓ0(u,w). (37)

For an infinitesimal ϵ, this condition leads to
∇wℓ0 ⋅w = ∇uℓ0 ⋅ u. (38)

Taking the derivative of both sides over w, we obtain

∇wℓ0 = −∇2
wℓ0 ⋅w +∇w∇uℓ0 ⋅ u. (39)

Therefore, the gradient of ℓγ is −∇2
wℓ0 ⋅w + 2γw +∇w∇uℓ0 ⋅ u. When both w and u are zero, ∇wℓγ = 0. Likewise, we can

show that ∇uℓγ = 0. This proves part 1.

For part 2, let us denote the quantity ℓγ(0,0) − ℓγ(u,w) as ∆. Now, note that ∆ = ℓ0(0,0) − ℓ0(u,w) − γ(∣∣u∣∣2 + ∣∣w∣∣2),
and so setting

γ >max(0, ℓ0(0,0) − ℓ0(u,w)
∣∣u∣∣2 + ∣∣w∣∣2

) (40)

fulfills the requirement. Note that because ℓ0 is differentiable, the fraction always exists. This proves part 2.

C.2.3. PROOF OF THEOREM 3

Proof. We focus on proving part 1. For an arbitrary and fixed index, i, of the singular values of W , we consider a continuous
transformation of W0 =W (s). Define a diagonal matrix Σ̃jj = Σjj for all j ≠ i, and define

Σ̃jj(s) =
⎧⎪⎪⎨⎪⎪⎩

Σjj if j ≠ i;
sΣjj if j = i.

(41)

We also define a transformed version of V , which depends on an arbitrary vector z:

Ṽkl(z) =
⎧⎪⎪⎨⎪⎪⎩

Vkl if k ≠ i;
zl if k = i.

(42)

With Σ̃ and Ṽ , we define W̃
W̃ (s, z) = U Σ̃(s)Ṽ . (43)

We note two different features of this transformation: (1) W (0) is low-rank, and (2) for any s, ℓ(W (s)) = ℓ(W (−s)). To
see this, note that there exists an orthogonal matrix R such that

RW (s) =W (−s). (44)

By the assumed symmetry of the loss function, we have ℓ(W (s)) = ℓ(RW (s)) = ℓ(W (−s)). Because

d

ds
Wjk(s, z) = UjiΣiiṼik(z) = UjiΣiizk, (45)
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we can take the derivative of s of both sides of the equality ℓ(W (s)) = ℓ(W (−s)) to obtain a low-rank condition on the
gradient width as a matrix:

Σii∑
jk

[∇Wjk
ℓ(W (s)) + ∇Wjk

ℓ(W (−s))]Ujizk = 0. (46)

In the limit s→ 0, W (s) =W (−s) and so the equality leads to

2Σii∑
jk

∇Wjk
L(W (0))Ujizk = 0. (47)

Because this equality must hold for any zk, we have that Uji must be a left eigenvector of ∇Wjk
ℓ(W (0)) with zero

eigenvalues. Substituting into the gradient descent algorithm, we have

∑
j

UjiWjk,t+1 = ∑
j

UjiWjk,t − λ∑
j

Uji∇Wjk
ℓ(Wt) = 0. (48)

This proves part 1.

For part 2, we note that the Frobenious norm of a matrix is the sum of its squared singular values. Therefore, if we hold
other singular values unchanged and shrink one of the singular values to 0, the L2 regularization part of the loss function
will strictly decrease. The rest of part 2 is the same as the proof of Theorem 2.

C.2.4. PROOF OF THEOREM 4

Proof. The symmetry condition is
ℓ0(θa, θb) = ℓ0(θb, θa). (49)

Taking the gradient of both sides with respect to θa, we obtain

∇θaℓ0(θa, θb) = ∇θaℓ0(θb, θa). (50)

When θa = θb, we can write the above condition as

∇θaℓ0(θa, θb) = ∇θbℓ0(θa, θb). (51)

This proves the first part of the theorem.

We now prove the second part of the theorem. Let us define interpolation functions ga and gb:

ga(µ) = (0.5 − µ)θa + (0.5 + µ)θb; (52)

gb(µ) = (0.5 + µ)θa + (0.5 − µ)θb. (53)

With these definitions, we have ga(µ) = gb(−µ). Also, we note that

ga(0) = gb(0) = 0.5θa + 0.5θb, (54)

which is the solution we want to compare with.

The loss function is given by
ℓγ(θa, θb) = ℓγ(ga(0.5), gb(0.5)). (55)

In contrast, for the homogeneous solution, the loss value is

ℓγ(ga(0), gb(0)). (56)

The norms of the two solutions, µ = 0.5 and µ = 0, can be compared:

∆ ∶= ∣∣ga(0)∣∣2 + ∣∣gb(0)∣∣2 − ∣∣ga(0.5)∣∣2 + ∣∣gb(0.5)∣∣2 < 0, (57)

where the inequality follows from the Cauchy-Schwarz inequality and the assumption that θa ≠ θb. Therefore, for any

γ > ℓ0(ga(0.5), gb(0.5)) − ℓ0(ga(0), gb(0))
∆

, (58)

ℓγ(ga(0), gb(0)) < ℓγ(θa, θb). This proves the second part of the statement.
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