
A Compute-Matched Re-Evaluation of TROVE on MATH

Tobias Sesterhenn 1 Ian Berlot-Attwell 2 Janis Zenkner 1 Christian Bartelt 1

Abstract
Reusing established theorems and formulas is cen-
tral to mathematical problem solving, serving as
essential building blocks for tackling increasingly
complex challenges. Recent work, TROVE, ar-
gues that code-generating Large Language Mod-
els (LLMs) can benefit similarly on the MATH
benchmark by inducing and reusing higher-level
toolboxes. By allocating computational budget
across an ensemble of three modes – directly gen-
erating code, creating tools, and reusing tools –
TROVE claims to outperform a PRIMITIVE base-
line that only performs direct generation. How-
ever, recent analysis (Berlot-Attwell et al., 2024)
casts doubt on these gains, noting that the tools
created are often trivial or rarely reused, sug-
gesting that improvements may stem from self-
consistency or self-correction. In this work, we
re-evaluate TROVE on MATH, analyze the im-
pact of each of its modes, and show that its benefit
does not come from these mechanisms, but sim-
ply from a higher computational budget spent for
TROVE compared to PRIMITIVE. To this end, we
also perform a small correction in the original im-
plementation of TROVE’s selection mechanism,
boosting TROVE’s performance on MATH by
3% in accuracy. After matching for compute, the
benefit of TROVE reduces to a marginal improve-
ment of 1%, suggesting that this toolbox approach
does not provide a significant benefit on MATH.

1. Introduction
Reusing proven lemmas and formulas is how mathemati-
cians keep cognitive load manageable and proofs short:
recalling a schema (e.g., the Binomial theorem) frees
working memory that would otherwise be spent on re-

1Clausthal University of Technology, Clausthal, Germany
2Vector Institute, University of Toronto, Toronto, Canada. Cor-
respondence to: Tobias Sesterhenn <tobias.sesterhenn@tu-
clausthal.de>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

derivation (Sweller, 1988; Zhao et al., 2024), and auto-
mated–reasoning systems that reuse earlier proofs solve
new theorems markedly faster than systems that start from
scratch (Walther & Kolbe, 2000). In other words, good math-
ematics relies on a library of lemmas that can be imported
rather than rebuilt.

This reuse principle has long guided library learning in com-
puter science. Systems such as DreamCoder (Ellis et al.,
2023) interleave solving tasks with compressing recurring
code snippets into a growing library; the learned abstrac-
tions then make subsequent synthesis significantly faster
and more sample-efficient. Later variants (Bowers et al.,
2023; Cao et al., 2023; Grand et al., 2023) refine the idea,
but the core insight remains: discover reusable components,
store them, and apply them later. Recent work has explored
how to leverage In-Context Learning (ICL), where a LLM
is prompted with a description of the domain, examples, a
set of available functions, and the task to solve. This al-
lows for an incrementally extended library, or “toolbox“,
through a mechanism to select valid abstractions without
retraining the model. These approaches (Wang et al., 2025;
2024b; Cai et al., 2023) have recently gained attention for
their effectiveness in improving performance on various
benchmarks.

Among them, TROVE (Wang et al., 2024b) currently
stands out as a state-of-the-art method on the MATH
dataset (Hendrycks et al., 2021). For a fixed computa-
tional budget of K LLM calls, TROVE repeatedly gener-
ates Python code to solve a given task using three different
prompting modes and then selects the most likely correct so-
lution via self-consistency (i.e., majority vote) (Wang et al.,
2022). The three modes are:

• CREATE: Solve the task and add any new functions to
a toolbox that is periodically pruned.

• IMPORT: Solve the task by using functions already
present in the toolbox.

• SKIP: Solve the task only with primitive, built-in func-
tions, without using the toolbox.

Hence, when evaluating the use of CODELLAMA (Roziere
et al., 2023), Wang et al. (2024b) reported that TROVE out-
performs a PRIMITIVE baseline that operates only in SKIP

1

A Compute-Matched Re-Evaluation of TROVE on MATH

Table 1: Accuracy comparison across MATH categories. We report mean and standard variation on 5 different random
seeds. The left two columns show the improvement in performance when matching PRIMITIVE for compute. On the right
we reproduce the results of TROVE and show the performance gain when changing TROVE’s selection mechanism from
a two-stage to a one-stage approach. Green highlights represent strictly higher improvements for the compute-matched
version of PRIMITIVE and the corrected version of TROVE.

PRIMITIVE: Reproduction TroVE: Reproduction
Category Original Results Compute-Matched Original Results Reproduced Improved

Algebra 0.15 0.27 ± 0.01 0.25 0.26 ± 0.01 0.29 ± 0.01
Counting 0.14 0.24 ± 0.00 0.26 0.24 ± 0.02 0.27 ± 0.02
Geometry 0.06 0.08 ± 0.01 0.08 0.05 ± 0.01 0.08 ± 0.01
Intermediate 0.05 0.14 ± 0.01 0.11 0.12 ± 0.02 0.13 ± 0.01
Number 0.16 0.28 ± 0.02 0.25 0.27 ± 0.01 0.30 ± 0.01
Prealgebra 0.21 0.33 ± 0.02 0.29 0.29 ± 0.02 0.32 ± 0.02
Precalculus 0.10 0.15 ± 0.01 0.17 0.18 ± 0.03 0.20 ± 0.01

MATH 0.12 0.24 ± 0.01 0.20 0.22 ± 0.01 0.25 ± 0.01

mode achieving 20% on MATH compared to PRIMITIVE
only solving 12%.

However, Berlot-Attwell et al. (2024) raise the question
whether the TROVE mechanism actually increases perfor-
mance as they show that tools are either trivial (already
contained in the knowledge of the LLM) or never reused
(see Appendix B): An ablation study in a subset of MATH
shows that the removal of the IMPORT mode does not nega-
tively affect performance. Although the authors hypothesize
TROVE’s benefit may come from self-consistency or the
self-correctness mechanism, the question of what makes
TROVE better remains an open question.

In this work, we investigate what really drives TROVE’s
strong performance on the MATH benchmark and show
that its main advantage comes from a higher computational
budget rather than the toolbox mechanism itself. We first
test whether TROVE continues to outperform a PRIMITIVE
baseline when both systems are given the same number
of LLM calls. To ensure a fair comparison, we also fix a
discrepancy between TROVE’s described agreement-based
selection method and its actual implementation, correcting
an error that improves its performance by 3% accuracy.
Finally, we analyze whether TROVE’s varied prompting
strategies provide benefits independently of the toolbox, and
how TROVE and PRIMITIVE scale with increased compute
under an ideal selection mechanism.

Our results show that while TROVE marginally outperforms
PRIMITIVE, the accuracy gain reduces to only 1% when
controlling for the computational budget. We also observe
that, under compute-matched settings, TROVE produces
a slightly more diverse set of candidate predictions — on
average 0.74 more per task. While this may offer some
benefit by broadening the search space, it also increases the
difficulty in selecting the correct answer. Our findings indi-

cate that TROVE’s improved performance is best explained
by a higher allocation of the computational budget, rather
than by its toolbox mechanism.

2. Revisiting TROVE
Prompting Modes TROVE is a training-free method to
build a toolbox of reusable high-level functions to solve
programmatic tasks, operating without ground truth labels
or external supervision (Wang et al., 2024b). For each
task, TROVE samples K candidate programs using a fixed
computational budget, divided equally among three distinct
prompting modes: SKIP, CREATE, and IMPORT. In SKIP
mode, the model generates a solution using only primitive
Python functions that, for MATH, are inherently stored in
the LLM weights, i.e., parametric knowledge. For example,
the LLM can call numpy or sympy functions. In CREATE
mode, the model is instructed to define a new helper function
that encapsulates reusable logic and adds it to the toolbox.
This function is designed to support solving the current
task and potentially benefit future tasks. In IMPORT mode,
the model can select and apply existing functions from the
current toolbox to solve the task. The original work com-
pares TROVE against a PRIMITIVE baseline. Hereby, the
baseline implements the same prompting mode as SKIP.
Thus, when fairly comparing PRIMITIVE and TROVE, each
TROVE mode is used K

3 times, whereas PRIMITIVE is used
K times.

Agreement-Based Selection To decide on a final candidate,
the authors propose an agreement-based selection algorithm
using majority voting and solution complexity: among the
candidates that execute successfully (i.e., without errors),
the most frequent answer is chosen. If there is a tie, the
solution implemented by the shortest program, in terms of
operations, is selected (see Algorithm 2).

2

A Compute-Matched Re-Evaluation of TROVE on MATH

3. Experimental Setup
Compute-Matching In this work, we analyze whether
TROVE’s methodology using library learning and three
different prompting styles brings an advantage over a PRIM-
ITIVE baseline. For this we reproduce the results of the
original work by Wang et al. (2024b) and match PRIMITIVE
for a computational budget of K = 15 LLM calls. In line
with the original work, we evaluate the approaches using
CODELLAMA2-7B-INSTRUCT (Roziere et al., 2023). We
choose the hyperparameters accordingly, as described in Ap-
pendix A. All experiments are run five times, and we report
the mean and standard variation of the accuracies in each
category of MATH. Here, a task is correctly solved if the
selection mechanism selects a candidate whose execution
result agrees with the task solution.

Oracle Selection Mechanism In the experiments, we also
focus on the potential of TROVE under an oracle selection
mechanism, which assumes a perfect selector that identifies
the correct answer as soon as it appears in the candidate set.
We report the corresponding performance using pass@K
for a budget of K.

MATH Dataset The MATH dataset introduced by
Hendrycks et al. (2021) consists of 12, 500 competition-
style math problems. In this work, we use a subset of 3, 201
tasks, following Wang et al. (2024b). The dataset is divided
into seven categories: 881 tasks in prealgebra, 291 tasks in
algebra, 237 in number theory, 503 in counting & probabil-
ity, 497 in geometry, 636 in intermediate algebra, and 156
tasks in precalculus. Each task consists of a query in natural
language and a numeric ground-truth answer.

4. Analysis
We first reproduce the experiments of the original work, but
matching the computational budget (§4.1.1) and correcting
a discrepancy in the agreement-based selection mechanism
(§4.1.2). We further investigate the impact of the different
modes on the overall performance of TROVE (§4.2) and
analyze the performance of PRIMITIVE and TROVE under
different computational budgets (§4.3).

4.1. Correcting Original TROVE Results

4.1.1. MATCHING COMPUTATIONAL BUDGET

To strengthen the hypothesis that TROVE’s toolbox mech-
anism has no significant impact on performance, we com-
pare TROVE against the compute-matched PRIMITIVE base-
line across all MATH domains by sampling the LLM with
K = 15 times per task. We further reproduce the reported
results of the TROVE approach, achieving ±3% of the orig-
inal reported results over five random seeds.

As depicted in Table 1, the compute-matched PRIMITIVE

baseline now, instead of reported 12%, achieves 24%
in MATH, outperforming the original 22% reported by
TROVE. Among the different categories, the performance
differs at most ±4% in accuracy between PRIMITIVE and
TROVE with PRIMITIVE performing better in algebra, ge-
ometry, intermediate algebra, number and prealgebra. When
analyzing the performance across different computational
budgets, the results suggest that the reported results of PRIM-
ITIVE in the original work were achieved by setting K to 1
instead of 15 (see Appendix B.1, Table 5). Thus, contrary
to the claim of the authors, TROVE appears to benefit pri-
marily from repeated sampling rather than toolbox learning.

4.1.2. CORRECTING TROVE’S SELECTION MECHANISM

Algorithm 1 Two-Stage Candidate Selection
function MULTIWAYGENERATION(example, K)

candidates← []
for all mode in {IMPORT, CREATE, SKIP} do

C ← SAMPLEMODEL(example,mode,K)
i∗ ← SELECTBEST(C)
APPEND(candidates, C[i∗])

j∗ ← SELECTBEST(bestResp)
return candidates[j∗].mode, candidates[j∗]

Algorithm 2 One-Stage Candidate Selection
1: function MULTIWAYGENERATION(example, K)
2: candidates← []
3: for all mode in {IMPORT, CREATE, SKIP} do
4: c← SAMPLEMODEL(example, mode, K)
5: EXTEND(candidates, c)
6: i∗ ← SELECTBEST(candidates)
7: return candidates[i∗].mode, candidates[i∗]

When reviewing TROVE, we also identified a difference
between the algorithm described in the original work and
its implementation in Python1. The original implementation
proposes a single stage agreement-based selection mecha-
nism, based on self-consistency and solution complexity on
the K candidate responses (Wang et al., 2024b). However,
the implementation performs a two-stage candidate selec-
tion, where in the first stage for each of the three modes,
one of K

3 candidates is chosen individually and then the
algorithm is applied to the three remaining candidates (see
Algorithm 1).

However, this leads to a lower probability of selecting a cor-
rect answer, as the candidate is chosen by majority voting on
a much smaller size. Once we correct the implementation
for a one-stage candidate selection, as described in Algo-
rithm 2, TROVE’s performance is consistently improved

1https://github.com/zorazrw/trove/blob/
main/run_trove.py

3

https://github.com/zorazrw/trove/blob/main/run_trove.py
https://github.com/zorazrw/trove/blob/main/run_trove.py

A Compute-Matched Re-Evaluation of TROVE on MATH

across all categories. Table 1 shows that compared to our
reproduced results, the performance increases by 3% on
MATH. Compared to the originally reported results, it in-
creases by 5%. Through this, TROVE slightly outperforms
PRIMITIVE by 1%, although these results are not significant
(we show our findings with 5 random seeds).

4.2. Effects of TROVE’s diverse prompting

After matching the compute, PRIMITIVE performs almost
equally to TROVE with TROVE performing only slightly
better after changing to the one-stage selection mecha-
nism. However, TROVE’s three-mode prompting mech-
anism brings more diversity into the approach, as the PRIM-
ITIVE prompting mode only matches the SKIP mode. There-
fore, in the following, we further analyze the impact of
each prompt mode on the overall performance and compare
TROVE’s candidate proposals with the ones by PRIMITIVE.

To examine the potential of both PRIMITIVE and TROVE,
in the following we use the oracle selection mechanism for
candidate selection and report pass@K.

4.2.1. PERFORMANCE OF PROMPT MODES

Figure 1 shows the distribution of the tasks solved in the
different modes for pass@5 and across 5 seeds. Thereby,
the CREATE mode performs best across all categories, fol-
lowed by SKIP and IMPORT. However, TROVE profits
from all three modes, as they partially solve different tasks
on the MATH dataset (Table 2). While CREATE uniquely
solves the highest proportion of tasks, namely 8% in the
entire dataset, SKIP and IMPORT uniquely solve 6% and
4%, respectively.

Furthermore, in Appendix B.3 we show that TROVE also
solves tasks that are not solved by PRIMITIVE (Table 6)
and that the solutions found by PRIMITIVE have the highest
overlap with those found by the SKIP mode of TROVE (Fig-
ure 3). This is reasonable since both PRIMITIVE and SKIP
use the same prompt. In accordance with this, PRIMITIVE is
least similar to IMPORT in their sets of solved challenges,
since their prompting styles differ the most.

4.2.2. PROMPT DIVERSITY INCREASES HYPOTHESIS
SPACE PER TASK

Furthermore, prompt diversity actually leads to a higher vari-
ety of proposed solutions per task, suggesting that TROVE is
capable of covering a larger hypothesis space. We quantify
this by counting the mean number of different predictions
produced per task in the fixed compute budget of K = 15
LLM calls. Table 3 shows that on counting, number, pre-
algebra, and precalculus, TROVE creates approximately
one additional solution candidate, with, on average, 0.74
additional solutions on any MATH task. However, while the

Alge
bra

Cou
nti

ng

Geo
metr

y

Int
erm

ed
iat

e

Num
be

r

Pre
alg

eb
ra

Pre
cal

cul
us

MAT
H

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

PRIMITIVE
IMPORT
CREATE
SKIP

Figure 1: Distribution of solved tasks across the different
categories for each mode. We report pass@5, i.e., using the
oracle selection mechanism for a computational budget of
5.

Table 2: Fraction of tasks uniquely solved by each mode
(mean ± standard variation over seeds). The MATH row
aggregates across all categories.

Category IMPORT CREATE SKIP

Algebra 0.04 ± 0.01 0.10 ± 0.02 0.04 ± 0.01
Counting 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01
Geometry 0.03 ± 0.01 0.07 ± 0.02 0.07 ± 0.01
Intermediate 0.03 ± 0.02 0.07 ± 0.02 0.08 ± 0.01
Number 0.05 ± 0.01 0.08 ± 0.01 0.06 ± 0.01
Prealgebra 0.05 ± 0.01 0.07 ± 0.01 0.07 ± 0.00
Precalculus 0.04 ± 0.02 0.06 ± 0.02 0.03 ± 0.01

MATH 0.04 ± 0.00 0.08 ± 0.01 0.06 ± 0.00

Table 3: Mean number and standard variation of distinct
solutions per task under a fixed compute budget of 15 LLM
calls. Positive ∆ values indicate that TROVE proposes a
higher variety of predictions compared to the PRIMITIVE
baseline.

Category PRIMITIVE TROVE ∆

Algebra 4.20± 0.04 4.83± 0.15 +0.64
Counting 5.94± 0.06 6.77± 0.13 +0.83
Geometry 6.79± 0.66 6.64± 0.41 -0.15
Intermediate 3.89± 0.06 4.09± 0.25 +0.20
Number 4.88± 0.64 5.78± 0.19 +0.90
Prealgebra 5.18± 0.04 6.47± 0.16 +1.29
Precalculus 3.36± 0.12 4.83± 0.14 +1.47

MATH 4.76± 0.19 5.50± 0.19 +0.74

increased number of candidate solutions may be beneficial
when combined with a good selection mechanism, this may
not hold for a weaker one such as majority voting, where
the extra predictions inject noise.

4

A Compute-Matched Re-Evaluation of TROVE on MATH

4.3. Effect on different computational budgets

To analyze whether TROVE’s diverse prompting leads to
better pass@K results across growing computational bud-
gets, we calculate the accuracies over different computa-
tional budgets. However, Figure 2 shows that there is no
significant difference between TROVE and PRIMITIVE.
Whereas TROVE solves 44% of tasks with a budget of
K = 15, PRIMITIVE achieves 43% accuracy. Figure 4 in
Appendix B.4 shows that this gap remains consistent for a
budget of up to K = 75. Notably, the results also highlight
the importance of the selection mechanism. When using an
oracle selector both TROVE and PRIMITIVE achieve 19%
higher accuracy compared to their respective majority-vote
baselines. This suggests that further gains are more likely
to come from better selection rather than increased prompt
diversity alone.

2 4 6 8 10 12 14
Budget

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy Categories

Math
Algebra
Counting
Geometry
Intermediate
Number
Prealgebra
Precalculus

Pass@K
Primitive
TroVE

Figure 2: Performance across different computational bud-
gets represented by the sampling sizes for TROVE and
PRIMITIVE on the MATH dataset. As TROVE requires
each mode to be called, the plot depicts the performance
only for multiples of 3.

5. Related Work
5.1. Library Learning on Formal Syntaxes

Early work in library learning leverages domain-specific
languages (DSLs) to constrain the search space and extract
reusable abstractions. DreamCoder alternates between a
neural–guided enumerative wake phase that finds programs
in a functional DSL and a sleep phase that compresses recur-
ring subprograms into a growing library of abstractions (El-
lis et al., 2023). Based on this, STITCH employs a corpus-
driven, top-down search to discover higher-level primitives
without exhaustive enumeration (Bowers et al., 2023), while
Babble uses e-graphs and anti-unification to merge and re-
fine candidate subexpressions into a library (Cao et al.,
2023). LILO further augments DreamCoder by integrat-
ing an LLM to propose promising enumerative candidates
alongside classic search, improving both scalability and
solution quality (Grand et al., 2023).

5.2. LLM Program Creation on MATH

More recent approaches drop the DSL constraint and operate
directly in general-purpose languages via in-context “tool-
boxes.” LATM prompts an LLM once per task to generate
exactly one helper function from Big-Bench, then uses that
toolbox to solve the task (Cai et al., 2023). CREATOR
and CRAFT both adopt multi-iteration pipelines: CRE-
ATOR cycles through generate–refine–execute stages (Qian
et al., 2023), while CRAFT adds abstraction, validation,
deduplication, and retrieval steps to assemble a specialized
toolset (Yuan et al., 2023). ReGAL, which was published
parallely to TROVE, applies offline refactoring and pruning
cycles to Python solutions on MATH (Stengel-Eskin et al.,
2024). A recent study suggests that TROVE outperforms
CREATOR, LATM, and CRAFT on the MATH benchmark
in both accuracy and efficiency (Wang et al., 2024a).

Within automated theorem proving, several works ex-
tract reusable formal lemmas from ground-truth proofs.
ATG (Lin et al., 2024) generates new, reusable theorems
from the Metamath library to improve downstream proof
search, while REFACTOR (Zhou et al., 2024) extracts mod-
ular lemmas from existing proofs to shorten and strengthen
theorem proving. LEGO-Prover (Wang et al., 2023) intro-
duces a dynamic library of verified lemmas and leverages
an LLM to construct proofs modularly, enabling the system
to tackle increasingly complex theorems more effectively.

5.3. Evaluation of Tool Use and Library Learning

Empirical analyses have begun to question whether toolbox
learning truly drives gains over simple sampling. Most re-
lated to our work, Berlot-Attwell et al. (2024) demonstrate
that for TROVE and LEGO-Prover most “learned“ libraries
are invoked only once, casting doubt on their reusability.
In a concurrent study, they show that for LEGO-Prover the
benefit of the toolbox mechanism vanishes, as soon as the
computational cost is taken into account (Berlot-Attwell
et al., 2025). Regarding sampling in Program Synthesis,
Li & Ellis (2024) show that finetuning an LLM and re-
peatedly sampling from it significantly outperforms library
learning methods such as LILO (Grand et al., 2023) and
ReGAL (Stengel-Eskin et al., 2024). However, in contrast
to TROVE these approaches leverage an offline dataset to
create the library, whereas TROVE creates its toolbox online
during inference. More broadly, Yue et al. (2025) find that
increasing the number of samples from a base LLM often
outperforms reinforcement learning methods under a fixed
compute budget. This observation aligns with our findings
on TROVE, suggesting that, in some cases, simply allocat-
ing more compute to sampling from a primitive model can
match or exceed the performance of more complex mecha-
nisms such as toolbox construction.

5

A Compute-Matched Re-Evaluation of TROVE on MATH

6. Conclusion
The findings of this study indicate that the primary advan-
tage of the TROVE approach comes less from the use of an
incrementally assembled toolbox of abstractions and more
from the increased probability of finding the correct solu-
tions through repeated sampling. When controlling for the
total number of generated solutions, the baseline approach
that simply samples more candidate programs using its in-
herent domain knowledge performs comparable to TROVE.
In the MATH domain, we confirm that library learning does
not bring a significant advantage over this simple baseline.
However, our experiments show that TROVE’s prompting
mechanism does lead to an increased hypothesis space. Un-
der a stronger selection mechanism, this may lead to a small
benefit over PRIMITIVE, which exists in our experiments
but under majority selection we demonstrate it is not signifi-
cant. More importantly, a driving factor is the choice of the
selection mechanism. Although TROVE and PRIMITIVE
often create a correct candidate, the selection mechanism
often does not select it, as shown by the 19% difference
between oracle selection and majority voting for K = 15.
Improving the current selection mechanism would lead to
a much higher benefit than the one currently brought from
TROVE over the baseline.

In conclusion, while our results cast doubt on whether tool-
based methods represent an alternative to intensive sampling
in MATH, we remain optimistic about the long-term poten-
tial of systematic abstraction learning for LLMs in other
domains. Recent work on agentic tasks (Wang et al., 2025;
Zheng et al., 2025) has shown that tools can effectively com-
press past experiences that can then be reused to improve
efficiency and solving harder long horizon challenges. By
deepening understanding on when and how library learning
can assist LLMs, future research can more effectively uti-
lize toolboxes to achieve improvements in complex problem
solving.

Impact Statement
This paper advances Library Learning by analyzing the
effectiveness of toolbox-based approaches for program gen-
eration with LLMs in mathematical problem solving. Our
findings suggest that reported improvements from toolbox
reuse may largely stem from increased sampling rather than
true abstraction learning. This informs a broader understand-
ing of when abstraction mechanisms in LLMs are beneficial,
potentially guiding more efficient prompting and evaluation
strategies. From an ethical perspective, this work does not
involve sensitive data, user interaction, or deployment in
high-stakes environments. While insights may influence fu-
ture tool design for educational or productivity applications,
we foresee no immediate societal risks.

Acknowledgements
This work is partially supported by the Federal Ministry
of Education and Research (BMBF) and by the Federal
Ministry for Economic Affairs and Energy of Germany
(BMWE).

References
Berlot-Attwell, I., Rudzicz, F., and Si, X. Library learning

doesn’t: The curious case of the single-use” library”.
arXiv preprint arXiv:2410.20274, 2024.

Berlot-Attwell, I., Rudzicz, F., and Si, X. Llm library
learning fails: A lego-prover case study. arXiv preprint
arXiv:2504.03048, 2025.

Bowers, M., Olausson, T. X., Wong, L., Grand, G., Tenen-
baum, J. B., Ellis, K., and Solar-Lezama, A. Top-down
synthesis for library learning. Proceedings of the ACM on
Programming Languages, 7(POPL):1182–1213, 2023.

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D.
Large language models as tool makers. arXiv preprint
arXiv:2305.17126, 2023.

Cao, D., Kunkel, R., Nandi, C., Willsey, M., Tatlock, Z.,
and Polikarpova, N. Babble: Learning better abstractions
with e-graphs and anti-unification. Proceedings of the
ACM on Programming Languages, 7(POPL):396–424,
2023.

Cheng, Z., Dong, H., Wang, Z., Jia, R., Guo, J., Gao, Y.,
Han, S., Lou, J.-G., and Zhang, D. Hitab: A hierarchical
table dataset for question answering and natural language
generation. arXiv preprint arXiv:2108.06712, 2021.

Ellis, K., Wong, L., Nye, M., Sable-Meyer, M., Cary, L.,
Anaya Pozo, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: growing generalizable, inter-
pretable knowledge with wake–sleep bayesian program
learning. Philosophical Transactions of the Royal Society
A, 381(2251):20220050, 2023.

Grand, G., Wong, L., Bowers, M., Olausson, T. X., Liu,
M., Tenenbaum, J. B., and Andreas, J. Lilo: Learning
interpretable libraries by compressing and documenting
code. arXiv preprint arXiv:2310.19791, 2023.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Li, W.-D. and Ellis, K. Is programming by example solved
by llms? arXiv preprint arXiv:2406.08316, 2024.

6

A Compute-Matched Re-Evaluation of TROVE on MATH

Lin, X., Cao, Q., Huang, Y., Yang, Z., Liu, Z., Li, Z., and
Liang, X. Atg: Benchmarking automated theorem gen-
eration for generative language models. arXiv preprint
arXiv:2405.06677, 2024.

Lu, P., Qiu, L., Chang, K.-W., Wu, Y. N., Zhu, S.-C., Ra-
jpurohit, T., Clark, P., and Kalyan, A. Dynamic prompt
learning via policy gradient for semi-structured math-
ematical reasoning. arXiv preprint arXiv:2209.14610,
2022.

Pasupat, P. and Liang, P. Compositional semantic parsing on
semi-structured tables. arXiv preprint arXiv:1508.00305,
2015.

Qian, C., Han, C., Fung, Y. R., Qin, Y., Liu, Z., and Ji, H.
Creator: Tool creation for disentangling abstract and con-
crete reasoning of large language models. arXiv preprint
arXiv:2305.14318, 2023.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Stengel-Eskin, E., Prasad, A., and Bansal, M. Regal: Refac-
toring programs to discover generalizable abstractions.
arXiv preprint arXiv:2401.16467, 2024.

Sweller, J. Cognitive load during problem solving: Effects
on learning. Cognitive science, 12(2):257–285, 1988.

Walther, C. and Kolbe, T. Proving theorems by reuse. Artifi-
cial Intelligence, 116(1-2):17–66, 2000.

Wang, H., Xin, H., Zheng, C., Li, L., Liu, Z., Cao, Q.,
Huang, Y., Xiong, J., Shi, H., Xie, E., et al. Lego-prover:
Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wang, Z., Cheng, Z., Zhu, H., Fried, D., and Neubig, G.
What are tools anyway? a survey from the language
model perspective. arXiv preprint arXiv:2403.15452,
2024a.

Wang, Z., Fried, D., and Neubig, G. Trove: Inducing veri-
fiable and efficient toolboxes for solving programmatic
tasks. arXiv preprint arXiv:2401.12869, 2024b.

Wang, Z., Gandhi, A., Neubig, G., and Fried, D. Inducing
programmatic skills for agentic tasks. arXiv e-prints, pp.
arXiv–2504, 2025.

Yuan, L., Chen, Y., Wang, X., Fung, Y. R., Peng, H.,
and Ji, H. Craft: Customizing llms by creating and
retrieving from specialized toolsets. arXiv preprint
arXiv:2309.17428, 2023.

Yue, Y., Chen, Z., Lu, R., Zhao, A., Wang, Z., Song, S., and
Huang, G. Does reinforcement learning really incentivize
reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Zhao, B., Lucas, C. G., and Bramley, N. R. A model of
conceptual bootstrapping in human cognition. Nature
Human Behaviour, 8(1):125–136, 2024.

Zheng, B., Fatemi, M. Y., Jin, X., Wang, Z. Z., Gandhi, A.,
Song, Y., Gu, Y., Srinivasa, J., Liu, G., Neubig, G., et al.
Skillweaver: Web agents can self-improve by discover-
ing and honing skills. arXiv preprint arXiv:2504.07079,
2025.

Zhou, J. P., Wu, Y., Li, Q., and Grosse, R. Refactor: Learn-
ing to extract theorems from proofs. arXiv preprint
arXiv:2402.17032, 2024.

7

A Compute-Matched Re-Evaluation of TROVE on MATH

A. Experimental Setup
We used the hyperparameters specified in the original TROVE paper (Wang et al., 2024b), except for the PRIMITIVE baseline
that was extended for different values of the num return sequences parameter, which defines the number of LLM calls per
task. Furthermore, per MATH domain, the PRIMITIVE baseline and TROVE were run for five different seeds. A slight
adaptation was performed by setting the exec timeout value from 100s to 30s, but this did not lead to any performance drop.
We used the official implementation from Github, which is released under the CC-BY-SA-4.0 license.

The experiments were run on a single NVIDIA RTX A6000, 2 CPUs, and 48GB RAM. Our code and data are available at
https://github.com/Tsesterh/TroVE Compute Matched.

Table 4: Hyperparameters for TroVE and the PRIMITIVE baseline.

Hyperparameter TroVE PRIMITIVE
trim steps 500 500
exec timeout 100 100
top p 0.95 0.95
num return sequences 5 1, ..., 15
temperature 0.6 0.6
max new tokens 512 512
suffix — primitive

B. Additional Experimental Results
In this section, we provide additional insights by analyzing TROVE and PRIMITIVE on different topics. In §B.1 we show
that the results of the original work probably were produced by prompting PRIMITIVE only once. In §B.2 we analyze
differences in the sets of solutions found by TROVE and PRIMITIVE, evaluating the question whether TROVE’s diverse
prompting mechanisms can solve challenges that cannot be solved by PRIMITIVE. In §B.3 we further analyze the similarity
of the proposed solutions between PRIMITIVE and each of TROVE’s modes. In §B.4 we analyze the potential of each mode
for an increased computational budget, combining the results of different seeds to evaluate for K = 75. Lastly, in §B.5 we
analyze whether there is a difference between the difficulty levels that both approaches solve on MATH.

B.1. Reproducing the TROVE paper

To test the hypothesis that the PRIMITIVE baseline is outperformed by TROVE due to the computational budget, we
reproduce the results for different computational budgets K. As can be seen in Table 5 for a computational budget of K = 1
the performance of the PRIMITIVE baseline is closest to the performance reported in the original paper. Furthermore, when
aligned for compute, PRIMITIVE performs equally as TROVE.

Table 5: Performance of PRIMITIVE and TROVE for different computational budgets using the agreement-based selection
mechanism (for TROVE we report the results for the improved version of the mechanism). We report for multiples of 3 as
for TROVE each of the three modes needs to be called. P@K stands for calling the PRIMITIVE mode K times, T@K for
calling TROVE mode K times. As for K = 1 no TROVE value exists, we add the originally reported value of PRIMITIVE,
to show that it was indeed not aligned for compute, as the values are within 2% on the whole MATH dataset. We report the
mean values across 5 seeds.

Category P@1 P (orig) P@3 T@3 P@6 T@6 P@9 T@9 P@12 T@12 P@15 T@15

algebra 0.13 0.15 0.19 0.23 0.23 0.26 0.25 0.28 0.26 0.29 0.27 0.29
counting 0.16 0.14 0.20 0.20 0.22 0.24 0.22 0.26 0.22 0.27 0.24 0.27
geometry 0.05 0.06 0.06 0.05 0.08 0.06 0.08 0.07 0.08 0.07 0.08 0.08
intermediate 0.07 0.05 0.10 0.10 0.12 0.12 0.12 0.13 0.13 0.13 0.14 0.13
number 0.20 0.16 0.24 0.24 0.26 0.26 0.28 0.28 0.28 0.29 0.28 0.30
prealgebra 0.20 0.21 0.26 0.25 0.30 0.29 0.32 0.31 0.32 0.32 0.33 0.32
precalculus 0.06 0.10 0.10 0.13 0.12 0.17 0.14 0.18 0.14 0.20 0.15 0.20

MATH 0.14 0.12 0.18 0.19 0.21 0.22 0.23 0.24 0.23 0.25 0.24 0.25

8

https://github.com/zorazrw/trove
https://github.com/Tsesterh/TroVE_Compute_Matched

A Compute-Matched Re-Evaluation of TROVE on MATH

Table 6: Exclusive task coverage by TROVE and PRIMITIVE across MATH categories. For each method, we report the
number and percentage of tasks solved (i) consistently across all five seeds but by no seed of the other method (consistent
gain), and (ii) by at least one seed but not all seeds, and not by any seed of the other method (potential gain).

TROVE PRIMITIVE

Consistent gain Potential gain Consistent gain Potential gain

Category # % # % # % # %

Algebra 25 2.84% 83 9.42% 10 1.14% 84 9.53%
Counting 3 1.03% 41 14.09% 5 1.72% 18 6.19%
Geometry 0 0.00% 18 7.59% 1 0.42% 26 10.97%
Intermediate 2 0.40% 60 11.93% 7 1.39% 32 6.36%
Number 1 0.20% 49 9.86% 0 0.00% 37 7.44%
Prealgebra 2 0.31% 64 10.06% 2 0.31% 60 9.43%
Precalculus 1 0.64% 18 11.54% 0 0.00% 12 7.69%

MATH 33 1.03% 265 8.28% 24 0.75% 218 6.81%

B.2. Coverage Diversity

To quantify the additional coverage the diversity of the three modes brings, we separate the additional benefit of TROVE
over PRIMITIVE into two parts, assuming a perfect selection mechanism:

1. Consistent gain – tasks consistently solved by every TROVE seed and by no PRIMITIVE seed.

2. Potential gain – tasks solved by at least one TROVE seed, by no PRIMITIVE seed, but not solved by all TROVE seeds.
These represent tasks in the hypothesis space that can be reached basically in addition by a TROVE seed but not by a
PRIMITIVE seed.

Table 6 shows both the numbers per MATH category and for the benchmark as a whole, as well for TROVE and for
PRIMITIVE. The results show that over the different TROVE seeds the method consistently solves 1.03% of tasks that were
not solved by any PRIMITIVE run. Potentially, on the five seeds, TROVE additionally solves 8.28% of the tasks in any seed
that were not found by any PRIMITIVE seed. On the other hand, PRIMITIVE also solves 0.75% that were not solved by any
TROVE run. Therefore, the results show that the different prompt modes do not necessarily help TROVE solve a larger
variety of challenges.

B.3. Comparing PRIMITIVE and TROVE solutions

For the cross–type analysis we compare every PRIMITIVE run with every run of a given TROVE mode M . Let

SP = {1, . . . , k}, SM = {1, . . . , ℓ}

be the sets of indexes of random seeds for PRIMITIVE and for mode M , and denote by AP
s and AM

t the corresponding sets
of solved challenges. The cross–type mean Jaccard similarity between PRIMITIVE and the mode M is then

JP↔M =
1

k ℓ

∑
s∈SP

∑
t∈SM

|AP
s ∩AM

t |
|AP

s ∪AM
t |︸ ︷︷ ︸

J(AP
s,A

M
t)

,

i.e., the average Jaccard similarity over all k×ℓ pairs of runs from the two types. We compute this value separately for each
TROVE mode (SKIP, IMPORT, CREATE) and for every problem category.

As depicted in Figure 3, when computing the Jaccard similarity between PRIMITIVE and the three modes, SKIP and
PRIMITIVE have the highest value (Figure 3). This makes sense as SKIP and PRIMITIVE share the same prompt. Furthermore,
PRIMITIVE is least similar to IMPORT, as their prompting styles differ the most. However, this does not count for each

9

A Compute-Matched Re-Evaluation of TROVE on MATH

category, as for precalculus the similarity to IMPORT is actually highest. We suggest that the reason for this is that IMPORT
outperforms SKIP in precalculus, as shown in Figure 1, resulting in a potentially greater overlap with PRIMITIVE.

Alge
bra

Cou
nti

ng

Geo
metr

y

Int
erm

ed
iat

e

Num
be

r

Pre
alg

eb
ra

Pre
cal

cul
us

MAT
H

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ja

cc
ar

d
Si

m
ila

rit
y

PRIMITIVE vs IMPORT
PRIMITIVE vs CREATE
PRIMITIVE vs SKIP

Figure 3: Mean Jaccard Similarities over 5 random seeds between PRIMITIVE and each TROVE mode for solutions found
by the oracle selection mechanism.

B.4. Impact of Selection Mechanism

We analyze the potential of each approach for an increasing computational budget assuming a perfect oracle selection
mechanism. Table 7 shows that TROVE slightly outperforms PRIMITIVE in different values of K, mostly consistent by 1%.

When combining the maximum 15 answers of the 5 seeds, we can plot the performance for up to 75 samples. Figure 4
depicts how the accuracy changes for each of the approaches presented in this work. Interestingly, also for the oracle
as for the one-stage agreement-based selection mechanism, TROVE slightly outperforms PRIMITIVE, for the oracle by
0.75% after 75 samples and for the agreement-based method by 2.62%. However, for the agreement-based selection modes,
the performance does not anymore increase significantly for TROVE nor for PRIMITIVE. Therefore, to leverage the full
potential of both approaches, it may be worth researching more evolved selection mechanisms.

Table 7: Primitive (P) and Trove (T) pass@K values (using the oracle selection mechanism) for different values of K. We
report the mean value across 5 random seeds.

Category P@1 T@1 P@3 T@3 P@6 T@6 P@9 T@9 P@12 T@12 P@15 T@15

Algebra 0.13 — 0.24 0.29 0.32 0.36 0.38 0.41 0.41 0.44 0.44 0.47
Counting 0.16 — 0.27 0.28 0.34 0.35 0.38 0.40 0.42 0.43 0.44 0.46
Geometry 0.05 — 0.11 0.09 0.18 0.16 0.22 0.19 0.25 0.22 0.28 0.24
Intermediate 0.07 — 0.14 0.12 0.19 0.18 0.23 0.22 0.25 0.25 0.28 0.27
Number 0.20 — 0.31 0.31 0.40 0.39 0.44 0.45 0.47 0.48 0.50 0.52
Prealgebra 0.20 — 0.35 0.36 0.44 0.45 0.49 0.50 0.53 0.54 0.56 0.57
Precalculus 0.06 — 0.12 0.17 0.19 0.23 0.22 0.26 0.26 0.29 0.29 0.31

MATH 0.14 — 0.24 0.26 0.32 0.33 0.37 0.38 0.40 0.41 0.43 0.44

B.5. Distribution among MATH difficulties

Each task in MATH is further labeled with a difficulty level from 1 (easiest) to 5 (most difficult), allowing for fine-grained
analysis of model performance across both topic and complexity. Table 8 provides a breakdown of the dataset by category
and difficulty level.

We analyze whether TROVE differs from PRIMITIVE in the distribution of solved difficulties. For this, the oracle mechanism
is chosen again to evaluate the potential of both TROVE and PRIMITIVE. Table 9 shows that both approaches solve a
higher proportion of simple tasks than difficult ones. While they find a solution in more than 70% of the tasks of level 1, at
level 5 they only solve roughly 20%. Although TROVE solves slightly more tasks at difficulty level 5, again there is no

10

A Compute-Matched Re-Evaluation of TROVE on MATH

0 10 20 30 40 50 60 70
Budget

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

PRIMITIVE
PRIMITIVE Oracle
TroVE Two-Stage
TroVE One-Stage
TroVE Oracle

Figure 4: Accuracies for PRIMITIVE and TROVE across different selection mechanisms up to a sample size of 75. TROVE
Two-Stage refers to the original implementation as discussed in Section 4.1.2, TROVE One-Stage for the corrected
mechanism.

Table 8: Distribution of problems in the MATH dataset by category and difficulty level (L1–L5).

Category Size Level 1 Level 2 Level 3 Level 4 Level 5

Algebra 881 125 159 192 209 196
Counting 291 31 77 59 69 55
Geometry 237 29 45 50 63 50
Intermediate 503 28 68 116 146 145
Number 497 29 81 112 132 143
Prealgebra 636 61 149 178 124 124
Precalculus 156 29 29 34 28 36

significant difference between both approaches. This suggests that TROVE’s prompt diversity does not positively influence
the performance on harder tasks.

Table 9: Analysis of the difficulty levels solved by TROVE and PRIMITIVE (in %) for pass@K with K = 15 on the MATH
dataset. The mean value across 5 random seeds is reported.

Level 1 Level 2 Level 3 Level 4 Level 5
Category Method

Algebra Primitive 75.52 59.37 47.92 31.96 19.18
Trove 84.00 65.28 52.08 33.40 18.78

Counting Primitive 76.77 63.12 46.78 31.30 13.45
Trove 79.35 63.64 52.88 30.14 15.64

Geometry Primitive 38.62 44.44 25.20 27.30 10.80
Trove 35.86 38.22 24.00 22.54 7.60

Intermediate Primitive 60.00 46.47 35.00 23.01 13.79
Trove 64.29 48.82 35.00 20.68 10.21

Number Primitive 85.52 68.15 57.50 45.45 30.35
Trove 83.45 66.91 57.14 47.12 36.50

Prealgebra Primitive 79.02 71.68 55.17 51.29 31.94
Trove 80.98 70.47 58.31 52.90 32.74

Precalculus Primitive 64.14 41.38 18.82 19.29 10.00
Trove 71.72 33.79 20.00 29.29 8.33

Math Primitive 71.63 60.63 46.13 34.79 20.96
Trove 76.02 61.22 48.37 35.15 21.34

11

A Compute-Matched Re-Evaluation of TROVE on MATH

B.6. Tool Reuse

As this work complements the work by Berlot-Attwell et al. (2024), it focuses solely on the quantitative re-evaluation
of TROVE. However, Berlot-Attwell et al. (2024) perform a deeper analysis on tool reuse on MATH, across all seven
categories. Their findings show that TROVE only learns functions for 3 of the 7 areas — counting, number, and prealgebra
— resulting in a total of just 15 learned functions. No functions are learned for algebra, geometry, intermediate algebra,
or pre-calculus. Moreover, only two of these functions are ever reused in a correct solution: is perfect square(n)
once and is prime(num) twice. With just three reuses across 3,201 test questions, the authors conclude that TROVE’s
performance gains are unlikely to stem from tool reuse, which is elaborated in our work by showing that the benefit simply
comes from increased compute.

B.7. Analysis on Other Domains

To extend our evaluation to additional domains, we test the PRIMITIVE baseline on three more datasets: TabMWP (Lu et al.,
2022), WTQ (Pasupat & Liang, 2015), and HiTab (Cheng et al., 2021). We run experiments using a single random seed
and three different computational budgets (K ∈ 1, 5, 15). As shown in Figure 10, when compute-matched with K = 15,
PRIMITIVE performs much more similarly to TROVE than suggested by the originally reported results.

On WTQ and HiTab, the performance of PRIMITIVE improves by approximately 7 percentage points. On TabMWP,
performance increases by 8 percentage points, although in this case, the original paper’s reported result already closely
matches our K = 15 reproduction.

To validate these trends more robustly, we propose evaluating across multiple random seeds. Nonetheless, these preliminary
results suggest that our core observations from MATH may generalize to other domains as well, indicating that the
performance gap between TROVE and PRIMITIVE may be marginal when computational budgets are matched.

Method TabMWP WTQ HiTab

Primitive K = 1 0.36 0.18 0.08
Primitive K = 5 0.42 0.23 0.14
Primitive K = 15 0.44 0.25 0.15

Primitive (Wang et al., 2024b) 0.43 0.20 0.09
TROVE (Wang et al., 2024b) 0.47 0.21 0.18

Table 10: Accuracy across further datasets. Results show that with matched compute (K = 15), PRIMITIVE approaches the
performance of TROVE.

12

