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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated superior performance across
various graph learning tasks but face significant computational challenges when
applied to large-scale graphs. One effective approach to mitigate these challenges
is graph sparsification, which involves removing non-essential edges to reduce
computational overhead. However, previous graph sparsification methods often rely
on a single global sparsity setting and uniform pruning criteria, failing to provide
customized sparsification schemes for each node’s complex local context. In this
paper, we introduce Mixture-of-Graphs (MoG), leveraging the concept of Mixture-
of-Experts (MoE), to dynamically select tailored pruning solutions for each node.
Specifically, MoG incorporates multiple sparsifier experts, each characterized by
unique sparsity levels and pruning criteria, and selects the appropriate experts for
each node. Subsequently, MoG performs a mixture of the sparse graphs produced
by different experts on the Grassmann manifold to derive an optimal sparse graph.
One notable property of MoG is its entirely local nature, as it depends on the specific
circumstances of each individual node. Extensive experiments on four large-scale
OGB datasets and two superpixel datasets, equipped with five GNN backbones,
demonstrate that MoG (I) identifies subgraphs at higher sparsity levels (8.67% ∼
50.85%), with performance equal to or better than the dense graph, (II) achieves
1.47−2.62× speedup in GNN inference with negligible performance drop, and (III)
boosts “top-student” GNN performance (1.02% ↑ on RevGNN+OGBN-PROTEINS
and 1.74% ↑ on DeeperGCN+OGBG-PPA). The source code is anonymously
available at https://anonymous.4open.science/r/MoG-5E0F.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Sun et al., 2023a; Zhou et al., 2020) have become prominent for
confronting graph-related learning tasks, including social recommendation (Wu et al., 2021; Yu et al.,
2022), fraud detection (Sun et al., 2022; Wang et al., 2019a; Cheng et al., 2020), drug design (Zhang
& Liu, 2023), and many others (Wu et al., 2023; Sun et al., 2023b). The superiority of GNNs
stems from iterative aggregation and update processes. The former accumulates embeddings from
neighboring nodes via sparse matrix-based operations (e.g., sparse-dense matrix multiplication (SpMM)
and sampled dense-dense matrix multiplication (SDDMM) (Fey & Lenssen, 2019; Wang et al., 2019b)),
and the latter updates the central nodes’ embeddings using dense matrix-based operations (e.g.,
MatMul) (Fey & Lenssen, 2019; Wang et al., 2019b). SpMM typically contributes the most substantial
part (∼70%) to the computational demands (Liu et al., 2023b; Zhang et al., 2024b), influenced largely
by the graph’s scale. Nevertheless, large-scale graphs are widespread in real-world scenarios (Wang
et al., 2022a; Jin et al., 2021; Zhang et al., 2024a), leading to substantial computational burdens,
which hinder the efficient processing of features during the training and inference, posing headache
barriers to deploying GNNs in the limited resources environments.

To conquer the above challenge, graph sparsification (Chen et al., 2023; Hashemi et al., 2024) has
recently seen a revival as it directly reduces the aggregation process associated with SpMM (Liu
et al., 2023b; Zhang et al., 2024b) in GNNs. Specifically, graph sparsification is a technique that
approximates a given graph by creating a sparse subgraph with a subset of vertices and/or edges.
Since the execution time of SpMM is directly related to the number of edges in the graph, this method
can significantly accelerate GNN training or inference. Existing efforts such as UGS (Chen et al.,
2021), DSpar (Liu et al., 2023b), and AdaGLT (Zhang et al., 2023) have achieved notable successes,
with some maintaining GNN performance even with up to 40% edge sparsity.
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Figure 1: (Left) We illustrated the k-hop neighborhood expansion rates for nodes 6 and 14, which is
proportional to the amount of message they receive as the GNN layers deepen; (Middle) The local
patterns of different nodes vary, hence the attributions of edge pruning may also differ. For instance,
pruning (v1, v2) might be due to its non-bridge identity, while pruning (v5, v6) could be attributed to
its non-homophilic nature; (Right) The overview of our proposed MoG.

Beyond serving as a computational accelerator, the purpose of graph sparsification extends further.
Another research line leverages graph sparsification as a performance booster to remove task-
irrelevant edges and pursue highly performant and robust GNNs (Zheng et al., 2020). Specifically, it
is argued that due to uncertainty and complexity in data collection, graph structures are inevitably
redundant, biased, and noisy (Li et al., 2024). Therefore, employing graph sparsification can
effectively facilitate the evolution of graph structures towards cleaner conditions (Zheng et al., 2020;
Luo et al., 2021), and finally boost GNN performance.

However, existing sparsification methods, namely sparsifiers, whether aimed at achieving higher
sparsity or seeking enhanced performance, often adopt a rigid, global approach to conduct graph
sparsification, thus suffering from the inflexibility in two aspects:

❶ Inflexibility of sparsity level. Previous sparsifiers globally score all edges uniformly and prune
them based on a preset sparsity level (Chen et al., 2023). However, as shown in Figure 1 (Left), the
degrees of different nodes vary, which leads to varying rates of k-hop neighborhood expansion.
This phenomenon, along with prior work on node-wise aggregation (Lai et al., 2020; Wang et al.,
2023a), suggests that different nodes require customized sparsity levels tailored to their specific
connectivity and local patterns.

❷ Inflexibility of sparsity criteria. Previous sparsifiers often operate under a unified guiding principle,
such as pruning non-bridge edges (Wang et al., 2022b), non-homophilic edges (Gong et al.,
2023), or edges with low effective resistance (Spielman & Srivastava, 2008; Liu et al., 2023b),
among others. However, as illustrated in Figure 1 (Middle), the context of different nodes varies
significantly, leading to varied rationales for edge pruning. Therefore, it is essential to select
appropriate pruning criteria tailored to the specific circumstances of each node to customize the
pruning process effectively.

Based on these observations and reflections, we propose the following challenge: Can we customize
the sparsity level and pruning criteria for each node, in the meanwhile ensuring the efficiency of
graph sparsification? Towards this end, we propose a novel graph sparsification method dubbed
Mixture of Graphs (MoG). It comprises multiple sparsifier experts, each equipped with distinct
pruning criteria and sparsity settings, as in Figure 1 (Right). Throughout the training process, MoG
dynamically selects the most suitable sparsifier expert for each node based on its neighborhood
properties. This fosters specialization within each MoG expert, focusing on specific subsets of nodes
with similar neighborhood contexts. After each selected expert prunes the 1-hop subgraph of the
central nodes and outputs its sparse version, MoG seamlessly integrates these sparse subgraphs on
the Grassmann manifold in an expert-weighted manner, thereby forming an optimized sparse graph.

We validate the effectiveness of MoG through a comprehensive series of large-scale tasks. Experi-
ments conducted across six datasets and three GNN backbones showcase that MoG can ❶ effectively
locate well-performing sparse graphs, maintaining GNN performance losslessly at satisfactory graph
sparsity levels (8.67% ∼ 50.85%), and even only experiencing a 1.65% accuracy drop at 69.13%
sparsity on OGBN-PROTEINS; ❷ achieve a tangible 1.47 ∼ 2.62× inference speedup with negligible
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performance drop; and ❸ boost ROC-AUC by 1.81% on OGBG-MOLHIV, 1.02% on ogbn-proteins
and enhances accuracy by 0.95% on OGBN-ARXIV compared to the vanilla backbones.

The key contributions of MoG can be found in appendix H.2.

2 TECHNICAL BACKGROUND

Notations & Problem Formulation We consider an undirected graph G = {V, E}, with V as the
node set and E the edge set. The node features of G is represented as X ∈ RN×F , where N = |V|
signifies the total number of nodes in the graph. The feature vector for each node vi ∈ V , with F
dimensions, is denoted by xi = X[i, ·]. An adjacency matrix A ∈ {0, 1}N×N is utilized to depict
the inter-node connectivity, where A[i, j] = 1 indicates an edge eij ∈ E , and 0 otherwise. For our
task of graph sparsification, the core objective is to identify a subgraph Gsub given a sparsity ratio s%:

Gsub = {V, E \ E ′}, s% =
|E ′|
|E|

, (1)

where Gsub only modifies the edge set E without altering the node set V , and E ′ denotes the removed
edges, and s% represents the ratio of removed edges.

Graph Neural Networks Graph neural networks (GNNs) (Wu et al., 2020) have become pivotal
for learning graph representations, achieving benchmark performances in various graph tasks at
node-level (Xiao et al., 2022), edge-level (Sun et al., 2021), and graph-level (Liu et al., 2022a).
At the node-level, two of the most famous frameworks are GCN (Kipf & Welling, 2017) and
GraphSAGE (Hamilton et al., 2017), which leverages the message-passing neural network (MPNN)
framework (Gilmer et al., 2017) to aggregate and update node information iteratively. For edge-level
and graph-level tasks, GCN and GraphSAGE can be adapted by simply incorporating a predictor
head or pooling layers. Nevertheless, there are still specialized frameworks like SEAL (Zhang &
Chen, 2018) and Neo-GNN (Yun et al., 2021) for link prediction, and DiffPool (Ying et al., 2018)
and PNA (Corso et al., 2020) for graph classification. Regardless of the task, MPNN-style GNNs
generally adhere to the following paradigm:

h
(l)
i = COMB

(
h
(l−1)
i , AGGR{h(k−1)

j : vj ∈ N (vi)}
)
, 0 ≤ l ≤ L (2)

where L is the number of GNN layers, h(0)
i = xi, and h

(l)
i (1 ≤ l ≤ L) denotes vi’s node embed-

ding at the l-th layer. AGGR(·) and COMB(·) represent functions used for aggregating neighborhood
information and combining ego- and neighbor-representations, respectively.

Graph Sparsification Graph sparsification methods can be categorized by their utility into two
main types: computational accelerators and performance boosters. Regarding computational accel-
erators, early works aimed at speeding up traditional tasks like graph partitioning/clustering often
provide theoretical assurances for specific graph properties, such as pairwise distances (Althöfer et al.,
1990), cuts (Abboud et al., 2022), eigenvalue distribution (Batson et al., 2013), and effective resis-
tance (Spielman & Srivastava, 2008). More contemporary efforts focus on the GNN training and/or
inference acceleration, including methods like SGCN (Li et al., 2020b), GEBT (You et al., 2022),
UGS (Chen et al., 2021), DSpar (Liu et al., 2023b), and AdaGLT (Zhang et al., 2024a). Regarding
performance boosters, methods like NeuralSparse (Zheng et al., 2020) and PTDNet (Luo et al., 2021)
utilize parameterized denoising networks to eliminate task-irrelevant edges. SUBLIME (Liu et al.,
2022b) and Nodeformer (Wu et al., 2022) also involve refining or inferring a cleaner graph structure
followed by k-nearest neighbors (kNN) sparsification. Further discussion is in appendix H.3.

Mixture of Experts The Mixture of Experts (MoE) concept (Jacobs et al., 1991) traces its origins
to several seminal works (Chen et al., 1999; Jordan & Jacobs, 1994). Recently, the sparse MoE
architecture (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021; Clark et al., 2022) has
regained attention due to its capacity to support the creation of vast (language) models with trillions
of parameters (Clark et al., 2022; Hoffmann et al., 2022). Given its stability and generalizability,
sparse MoE is now broadly implemented in modern frameworks across various domains, including
vision (Riquelme et al., 2021), multi-modal (Mustafa et al., 2022), and multi-task learning (Ma et al.,
2018; Zhu et al., 2022). As for graph learning, MoE has been explored for applications in graph clas-
sification (Hu et al., 2022), scene graph generation (Zhou et al., 2022), molecular representation (Kim
et al., 2023), graph fairness (Liu et al., 2023a), and graph diversity modeling (Wang et al., 2024).
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Figure 2: The overview of our proposed method. MoG primarily comprises ego-graph decomposition,
expert routing, expert customization, and the final graph mixture. For simplicity, we only showcase
three pruning criteria including Jaccard similarity, gradient magnitude, and effective resistance.

3 METHODOLOGY

3.1 OVERVIEW

Figure 2 illustrates the workflow of our proposed MoG. Specifically, for an input graph, MoG first
decomposes it into 1-hop ego graphs for each node. For each node and its corresponding ego graph, a
routing network calculates the expert scores. Based on the router’s decisions, sparsifier experts with
different sparsity levels and pruning criteria are allocated to different nodes. Ultimately, a mixture of
graphs is obtained based on the weighted consensus of the sparsifier experts. In the following sections,
we will first detail how to route different experts in Section 3.2, then describe how to explicitly model
various sparsifier experts in Section 3.3 and how to ensemble the sparse graphs output by experts
on the Grassmann manifold in Section 3.4. Finally, the overall optimization process and complexity
analysis of MoG is placed in Section 3.5.

3.2 ROUTING TO DIVERSE EXPERTS

Following the classic concept of a (sparsely-gated) mixture-of-experts (Zhao et al., 2024), which as-
signs the most suitable expert(s) to each input sample, MoG aims to allocate the most appropriate spar-
sity level and pruning criteria to each input node. To achieve this, we first decompose the input graph
G = {V, E} into 1-hop ego graphs centered on different nodes, denoted as {G(1),G(2), · · · ,G(N)},
where G(i) = {V(i), E(i)}, V(i) = {vj |vj ∈ N (vi)}, E(i) = {eij |(vi, vj) ∈ E}. Assuming we have
K sparsifier experts, for each node vi and its corresponding ego graph G(i), we aim to select k most
suitable experts. We employ the noisy top-k gating mechanism following Shazeer et al. (2017):

Ψ(G(i)) = Softmax(TopK(ψ(xi), k)), (3)
ψ(xi) = xiWg + ϵ · Softplus(xiWn), (4)

where ψ(xi) ∈ RK is the calculated scores of vi for total K experts, TopK(·) is a selection function
that outputs the largest k values, and Ψ(G(i)) ∈ Rk = [E

(i)
1 , E

(i)
2 , · · · , E(i)

k ] represents those for
selected k experts. In Ψ(G(i)), ϵ ∈ N (0, 1) denotes the standard Gaussian noise, Wg ∈ RK×F and
Wn ∈ RK×F are trainable parameters that learn clean and noisy scores, respectively.

After determining the appropriate experts, we proceed to generate different sparse graphs with diverse
sparsifiers. We denote each sparsifier by κ(·), which takes in a dense graph G and outputs a sparse
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one G̃ = κ(G). Based on this, for each node vi and its ego graph G(i), the routing network selects k
experts that produce k sparse ego graphs. Notably, sparsifiers differ in their pruning rates (i.e. the
proportion of the edges to be removed) and the pruning criteria, which will be detailed in Section 3.3.
MoG’s dynamic selection of different sparsifiers for each node aids in identifying pruning strategies
truly adapted to the node’s local context. Formally, the mixture of k sparse graphs can be written as:

Ĝ(i) = ESMB({G̃(i)m }km=1), G̃(i)m = κm(G(i)), (5)

where ESM(·) is a combination function that receives k sparse graphs and ideally outputs an emsemble
version Ĝ(i) = {V̂(i), Ê(i)} that preserves their desirable properties. It is noteworthy that, MoG
can seamlessly integrate with any GNN backbone after obtaining each node’s sparse ego graph.
Specifically, we modify the aggregation method in Equation (2) as follows:

h
(l)
i = COMB

(
h
(l−1)
i , AGGR{h(k−1)

j : vj ∈ V̂(i)}
)
. (6)

MoG acts as a plug-and-play module that can be pre-attached to any GNN architecture, leveraging
multi-expert sparsification to enhance GNNs with (1) performance improvements from removing
task-irrelevant edges (validated in Section 4.3); (2) resistance to high graph sparsity through precise
and customized sparsification (validated in Section 4.2). The remaining questions now are: how can
we design explicitly different sparsifiers? and further, how can we develop an effective combination
function that integrates the sparse graphs from different experts?

3.3 CUSTOMIZED SPARSIFIER MODELING

With the workflow of MoG in mind, in this section, we will delve into how to design sparsifiers
driven by various pruning criteria and different levels of sparsity. Revisiting graph-related learning
tasks, their objective can generally be considered as learning P (Y|G), which means learning the
distribution of the target Y given an input graph. Based on this, a sparsifier κ(·) can be formally
expressed as follows:

P (Y|G) ≈
∑
g∈SG

P (Y | G̃)P (G̃ | G) ≈
∑
g∈SG

QΘ(Y | G̃)Qκ(G̃ | G) (7)

where SG is a class of sparsified subgraphs of G. The second term in Equation (7) aims to approximate
the distribution of Y using the sparsified graph G̃ as a bottleneck, while the third term uses two
approximation functions QΘ and Qκ for P (Y | G̃) and P (G̃ | G) parameterized by Θ and κ
respectively. The parameter Θ typically refers to the parameters of the GNN, while the sparsifier κ(·),
on the other hand, is crafted to take an ego graph G(i) and output its sparsified version ˜G(i), guided
by a specific pruning paradigm C and sparsity sm%:

κm(G(i)) = {V(i), E(i) \ E(i)p }, E(i)p = TopK
(
−Cm(E), ⌈|E(i)| × sm%⌉

)
, (8)

where Cm(·) acts as the m-th expert’s scoring function that evaluates edge importance. We leverage
long-tail gradient estimation (Liu et al., 2020) to ensure the TopK(·) operator is differentiable.
Furthermore, to ensure different sparsity criteria drive the sparsifier, we implement Cm(·) as follows:

Cm(eij) = FFN (xi, xj , c(eij)) , c
m(eij) ∈


Degree: (|N (vi) +N (vj)|) /2

Jaccard Similarity: |N (vi)∩N (vj)|
|N (vi)∪N (vj)|

ER: (ei − ej)TL−1(ei − ej)
Gradient Magnitude: |∂L/∂eij |

 , (9)

where FFN(·) is a feed-forward network, cm(eij) represents the prior guidance on edge significance.
By equipping different sparsifiers with various priors and sparsity levels, we can customize the most
appropriate pruning strategy for each node’s local scenario. In practice, we select four widely-used
pruning criteria including edge degree (Seo et al., 2024), Jaccard similarity (Murphy, 1996a; Satuluri
et al., 2011b), effective resistance (Spielman & Srivastava, 2008; Liu et al., 2023b) and gradient
magnitude (Wan & Schweitzer, 2021; Zhang et al., 2024a). Details regarding these criteria and their
implementations are in Appendix B.
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3.4 GRAPH MIXTURE ON GRASSMANN MANIFOLD

After employing k sparsifiers driven by different criteria and sparsity levels, we are in need of an
effective mechanism to ensemble these k sparse subgraphs and maximize the aggregation of their
advantages. A straightforward approach is voting or averaging (Sagi & Rokach, 2018); however,
such simple merging may fail to capture the intricate relationships among multi-view graphs (Kang
et al., 2020), potentially resulting in the loss of advantageous properties from all experts. Inspired by
recent advances in manifold representations (Dong et al., 2013; Bendokat et al., 2024), we develop a
subspace-based sparse graph ensembling mechanism. We first provide the definition of the Grassmann
manifold (Bendokat et al., 2024) as follows:
Definition 1 (Grassmann manifold). Grassmann manifold Gr(n, p) is the space of n-by-p matrices
(e.g., M) with orthonormal columns, where 0 ≤ p ≤ n, i.e.,

Gr(n, p) =
{
M|M ∈ Rn×p,M⊤M = I

}
. (10)

According to Grassmann manifold theory, each orthonormal matrix represents a unique subspace and
thus corresponds to a distinct point on the Grassmann manifold (Lin et al., 2020). This applies to the
eigenvector matrix of the normalized Laplacian matrix (U = L[:, : p] ∈ Rn×p), which comprises
the first p eigenvectors and is orthonormal (Merris, 1995), and thereby can be mapped onto the
Grassmann manifold.

Consider the k sparse subgraphs {G̃(i)m }km=1, their subspace representations are {U(i)
m ∈

R|N (vi)|×p}km=1. We aim to identify an oracle subspace U(i) on the Grassmann manifold, which
essentially represents a graph, that serves as an informative combination of k base graphs. Formally,
we present the following objective function:

min
U(i)∈R|N(vi)|×p

k∑
m=1

tr(U(i)⊤LmU(i))︸ ︷︷ ︸
(1) node connectivity

+

expert score︷︸︸︷
E(i)

m ·d2(U(i),U(i)
m )︸ ︷︷ ︸

(2) subspace distance

 , s. t.U(i)⊤U(i) = I (11)

where tr(·) calculates the trace of matrices, Lm is the graph Laplacian of G(i)m , d2(U1,U2) denotes
the project distance between two subspaces (Dong et al., 2013), and E(i)

m is the expert score for the
m-th expert, calculated by the routing network Ψ, which determines which expert’s subspace the
combined subspace should more closely align with. In Equation (11), the first term is designed to
preserve the original node connectivity based on spectral embedding, and the second term controls
that individual subspaces are close to the final representative subspace U(i). Using the Rayleigh-Ritz
Theorem (Jia & Stewart, 2001), we provide a closed-form solution for Equation (11) and obtain the
graph Laplacian of the ensemble sparse graph Ĝ(i) as follows:

L̂(i) =

k∑
m=1

(
Lm − E(i)

m ·U(i)⊤U(i)
)
. (12)

We provide detailed derivations and explanations for Equations (11) and (12) in Appendix C. Conse-
quently, we can reformulate the function ESMB(·) in Equation (5) as follows:

ESMB({G̃(i)
m }km=1) = {D(i) − L̂(i),X(i)} =

{
D(i) −

k∑
m=1

(
Lm − E(i)

m ·U(i)⊤U(i)
)
,X(i)

}
, (13)

where D(i) is the degree matrix of vi’s ego-graph. On the Grassmann manifold, the subspace
ensemble effectively captures the beneficial properties of each expert’s sparse graph. After obtaining
the final version of each node’s ego-graph, Ĝ(i) = {Â(i),X(i)}, we conduct a post-sparsification step
as the graph ensembled on the Grassmann manifold can become dense again. Specifically, we obtain
the final sparsity s(i)% for vi by weighting the sparsity of each expert and sparsifying Ĝ(i).

Ĝ(i) ← {TopK(Â(i), |E(i)| × s(i)%),X(i)}, s(i)% =
1

k

k∑
m=1

sm%. (14)

Post-sparsified Ĝ(i) are then reassembled together into Ĝ ← {Ĝ(1), Ĝ(2), · · · , Ĝ(|V|)}, with detailed
explanations in appendix I. Ultimately, the sparsified graph Ĝ produced by MoG can be input into
any MPNN (Gilmer et al., 2017) or graph transformer (Min et al., 2022) for end-to-end training.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.5 TRAINING AND OPTIMIZATION

Additional Loss Functions Following classic MoE works (Shazeer et al., 2017; Wang et al., 2024),
we introduce an expert importance loss to prevent MoG from converging to a trivial solution where
only a single group of experts is consistently selected:

Importance(V) =
|V|∑
i=1

k∑
j=1

E(i)
m , Limportance(V) = CV(Importance(V))2, (15)

where Importance(V) represents the sum of each node’s expert scores across the node-set, CV(·)
calculates the coefficient of variation, and Limportance ensures the variation of experts. Therefore, the
final loss function combines both task-specific and MoG-related losses, formulated as follows:

L = Ltask + λ · Limportance, (16)

where λ is a hand-tuned scaling factor, with its sensitivity analysis placed in Section 4.4.

Complexity Analysis To better illustrate the effectiveness and clarity of MoG, we provide a
comprehensive algorithmic table in Appendix D and detailed complexity analysis in Appendix E. To
address concerns regarding the runtime efficiency of MoG, we have included an empirical analysis of
efficiency in Section 4.5.

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
Can MoG effectively help GNNs combat graph sparsity? (RQ2) Does MoG genuinely accelerate the
GNN inference? (RQ3) Can MoG help boost GNN performance? (RQ4) How sensitive is MoG to
its key components and parameters?

4.1 EXPERIMENT SETUP

Datasets and Backbones We opt for four large-scale OGB benchmarks (Hu et al., 2020), including
OGBN-ARXIV, OGBN-PROTEINS and OGBN-PRODUCTS for node classification, and OGBG-PPA for
graph classification. The dataset splits are given by (Hu et al., 2020). Additionally, we choose two
superpixel datasets, MNIST and CIFAR-10 (Knyazev et al., 2019). We select GraphSAGE (Hamilton
et al., 2017), DeeperGCN (Li et al., 2020a), and PNA (Corso et al., 2020) as the GNN backbones.
More details are provided in Appendix F.

Parameter Configurations For MoG, we adopt the m = 4 sparsity criteria outlined in Section 3.3,
assigning n = 3 different sparsity levels {s1, s2, s3} to each criterion, resulting in a total of K =
m× n = 12 experts. We select k = 2 sparsifier experts for each node, and set the loss scaling factor
λ = 1e− 2 across all datasets and backbones. By adjusting the sparsity combination, we can control
the global sparsity of the entire graph. We present more details on parameter settings in Appendix F.4,
and a recipe for adjusting the graph sparsity in Appendix F.6.

4.2 MOG AS GRAPH SPARSIFIER (RQ1 & RQ2)

To answer RQ1 and RQ2, we comprehensively compare MoG with eleven widely-used topology-
guided sparsifiers and five semantic-guided sparsifiers, as outlined in Table 1, with more detailed
explanations in Appendix F.5. The quantitative results on five datasets are shown in Tables 1 and 9
to 12 and the efficiency comparison is in Figure 3. We give the following observations (Obs.):
Obs. ❶ MoG demonstrates superior performance in both transductive and inductive settings.
As shown in Tables 1, 2 and 9 to 11, MoG outperforms other sparsifiers in both transductive and
inductive settings. Specifically, for node classification tasks, MoG achieves a 0.09% performance
improvement while sparsifying 30% of the edges on OGBN-PROTEINS+GraphSAGE. Even when
sparsifying 50% of the edges on OGBN-PROTEINS+DeeperGCN, the ROC-AUC only drops by 0.81%.
For graph classification tasks, MoG can remove up to 50% of the edges on MNIST with a 0.14%
performance improvement, surpassing other sparsifiers by 0.99% ∼ 12.97% in accuracy.

Obs. ❷ Different datasets and backbones exhibit varying sensitivities to sparsification. As
shown in Tables 1 and 10, despite OGBN-PROTEINS being relatively insensitive to sparsification,
sparsification at extremely high levels (e.g., 70%) causes more performance loss for GraphSAGE
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Table 1: Node classification performance comparison to state-of-the-art sparsification methods. All
methods are trained using GraphSAGE, and the reported metrics represent the average of five runs.
We denote methods with † that do not have precise control over sparsity; their performance is reported
around the target sparsity ±2%. “Sparsity %” refers to the ratio of removed edges as defined in
Section 2. “OOM” and “OOT” denotes out-of-memory and out-of-time, respectively.

Dataset OGBN-ARXIV (Accuracy↑) OGBN-PROTEINS (ROC-AUC↑)

Sparsity % 10 30 50 70 10 30 50 70

To
po

lo
gy

-g
ui

de
d

Random 70.03↓1.46 68.40↓3.09 64.32↓7.17 61.18↓10.3 76.72↓0.68 75.03↓2.37 73.58↓3.82 72.30↓5.10
Rank Degree† (Voudigari et al., 2016) 68.13↓3.36 67.01↓4.48 65.58↓5.91 62.17↓9.32 77.47↑0.07 76.15↓1.25 75.59↓1.81 74.23↓3.17
Local Degree† (Hamann et al., 2016) 68.94↓2.55 67.20↓4.29 65.45↓6.04 65.59↓5.90 76.20↓1.20 76.05↓1.35 76.09↓1.31 72.88↓4.52
Forest Fire† (Leskovec et al., 2006) 68.39↓3.10 68.10↓3.39 67.36↓4.13 65.22↓6.27 76.50↓0.90 75.37↓2.03 74.29↓3.11 72.11↓5.29

G-Spar (Murphy, 1996b) 71.30↓0.19 69.29↓2.20 65.56↓5.93 65.49↓6.00 77.38↓0.02 77.36↓0.04 76.02↓1.38 75.89↓1.51
LSim† (Satuluri et al., 2011a) 69.22↓2.27 66.15↓5.34 61.07↓10.4 60.32↓11.2 76.83↓0.57 76.01↓1.39 74.83↓2.57 73.65↓3.75

SCAN (Xu et al., 2007) 71.55↑0.06 69.27↓2.22 65.14↓6.35 64.72↓6.77 77.60↑0.20 76.88↓0.52 76.19↓1.21 74.32↓3.08
ER (Spielman & Srivastava, 2008) 71.63↑0.14 69.48↓2.01 69.00↓2.49 67.15↓4.34 OOT

DSpar (Liu et al., 2023b) 71.23↓0.26 68.50↓2.99 64.79↓6.70 63.11↓8.38 77.34↓0.06 77.06↓0.34 76.38↓1.02 75.49↓1.91

Se
m

an
tic

-g
ui

de
d UGS† (Chen et al., 2021) 68.77↓2.72 66.30↓5.19 65.72↓5.77 63.10↓8.39 76.80↓0.60 75.46↓1.94 73.28↓4.12 73.31↓4.09

GEBT (You et al., 2022) 69.04↓2.45 65.29↓6.20 65.88↓5.61 65.62↓5.87 76.30↓1.10 76.17↓1.23 74.43↓2.97 74.12↓3.28
MGSpar (Wan & Schweitzer, 2021) 70.22↓1.27 69.13↓2.36 68.27↓3.22 66.55↓4.94 OOM

ACE-GLT† (Wang et al., 2023b) 71.88↑0.39 70.14↓1.35 68.08↓3.41 67.04↓4.45 77.59↑0.19 76.14↓1.26 75.43↓1.97 73.28↓4.12
WD-GLT† (Hui et al., 2023) 71.92↑0.43 70.21↓1.28 68.30↓3.19 66.57↓4.92 OOM

AdaGLT (Zhang et al., 2024a) 71.22↓0.27 70.18↓1.31 69.13↓2.36 67.02↓4.47 77.49↑0.09 76.76↓1.64 76.00↓2.40 75.44↓2.96

MoG (Ours)† 71.93↑0.44 70.53↓0.96 69.06↓2.43 67.31↓4.18 77.78↑0.38 77.49↑0.09 76.46↓0.94 76.12↓1.28

Whole Dataset 71.49±0.01 77.40±0.1

Table 2: Graph classification performance comparison to state-of-the-art sparsification methods. The
reported metrics represent the average of five runs.

Dataset MNIST + PNA (Accuracy ↑) OGBN-PPA + DeeperGCN (Accuracy ↑)

Sparsity % 10 30 50 70 10 30 50 70

To
po

lo
gy

-g
ui

de
d

Random 94.61↓2.74 87.23↓10.1 84.82↓12.5 80.07↓17.3 75.44↓1.65 73.81↓4.09 71.97↓5.12 69.62↓7.47
Rank Degree† (Voudigari et al., 2016) 96.42↓0.93 94.23↓3.12 92.36↓4.99 89.20↓8.15 75.81↓1.28 74.99↓2.10 74.12↓2.97 70.68↓6.41
Local Degree† (Hamann et al., 2016) 95.95↓1.40 93.37↓3.98 90.11↓7.24 86.24↓11.1 76.43↓0.66 75.87↓1.22 72.11↓4.98 69.93↓7.16
Forest Fire† (Leskovec et al., 2006) 96.75↓0.60 95.42↓1.93 95.03↓2.32 93.10↓4.25 76.38↓0.71 75.33↓1.76 73.18↓3.91 71.49↓5.60

G-Spar (Murphy, 1996b) 97.10↓0.25 96.59↓0.76 94.36↓2.99 92.48↓4.87 77.68↑0.59 73.90↓3.19 69.52↓7.57 68.10↓8.99
LSim† (Satuluri et al., 2011a) 95.79↓1.56 92.14↓5.21 92.29↓5.06 91.95↓5.40 76.04↓1.05 74.40↓2.69 72.78↓4.31 68.21↓8.88

SCAN (Xu et al., 2007) 95.81↓1.54 93.48↓3.87 90.18↓7.17 86.48↓10.9 75.23↓1.86 75.18↓1.91 72.48↓4.61 71.11↓5.98
ER (Spielman & Srivastava, 2008) 94.77↓2.58 93.91↓3.44 93.45↓3.90 91.07↓6.28 77.94↑0.85 75.15↓1.94 73.23↓3.86 72.74↓4.35

DSpar (Liu et al., 2023b) 94.97↓2.38 93.80↓3.55 92.23↓5.12 90.48↓6.87 76.33↓0.76 73.37↓3.72 72.98↓4.11 70.77↓6.32

Se
m

an
tic ICPG (Sui et al., 2023) 97.69↑0.34 97.39↑0.04 96.80↓0.55 93.77↓3.58 77.36↑0.27 75.24↓1.85 73.18↓3.91 71.09↓6.00

AdaGLT (Zhang et al., 2024a) 97.31↓0.04 96.58↓0.77 94.14↓3.21 92.08↓5.27 76.22↓0.87 73.54↓3.55 70.10↓6.99 69.28↓7.81

MoG (Ours)† 97.80↑0.45 97.74↑0.39 97.79↑0.44 95.30↓2.05 78.43↑1.34 77.90↑0.81 75.23↓1.86 73.09↓4.00

Whole Dataset 97.35±0.07 77.09±0.04

compared to DeeperGCN, with the former experiencing a 2.28% drop and the latter only 1.07%,
which demonstrates the varying sensitivity of different GNN backbones to sparsification. Similarly,
we observe in Table 2 that the MNIST dataset shows a slight accuracy increase even with 50%
sparsification, whereas the OGBG-PPA dataset suffers a 1.86% performance decline, illustrating the
different sensitivities to sparsification across graph datasets.

Obs. ❸ MoG can effectively accelerate GNN inference with negligible performance loss.
Figure 3 illustrates the actual acceleration effects of MoG compared to other baseline sparsifiers.
It is evident that MoG achieves 1.6× lossless acceleration on OGBN-PROTEINS+DeeperGCN and
OGBN-PRODUCTS+GraphSAGE, meaning the performance is equal to or better than the vanilla
backbone. Notably, on OGBN-PRODUCTS+DeeperGCN, MoG achieves 3.3× acceleration with less
than a 1.0% performance drop. Overall, MoG provides significantly superior inference acceleration
compared to its competitors.

4.3 MOG AS PERFORMANCE BOOSTER (RQ3)
In the context of RQ3, MoG is developed to augment GNN performance by selectively remov-
ing a limited amount of noisy and detrimental edges, while simultaneously preventing excessive
sparsification that could degrade GNN performance. Consequently, we uniformly set the sparsity
combination to {90%, 85%, 80%}. We combine MoG with state-of-the-art GNNs on both node-level
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Figure 3: The trade-off between inference speedup and model performance for MoG and other
sparsifiers. The first and second rows represent results on GraphSAGE and DeeperGCN, respectively.
The gray pentagon represents the performance of the original GNN without sparsification.

Table 3: Node classification results on OGBN-PROTEINS with RevGNN and GAT+BoT and graph
classification results on OGBG-PPA with PAS and DeeperGCN. Mean and standard deviation values
from five random runs are presented.

OGBN-PROTEINS (ROC-AUC↑) OGBG-PPA (Accuracy↑)
Model RevGNN GAT+BoT PAS DeeperGCN

w/o MoG 88.14± 0.24 88.09 ± 0.16 78.28 ± 0.24 77.09 ± 0.04

w/ MoG 89.04 ± 0.72 88.72 ± 0.50 78.66 ± 0.47 78.43 ± 0.19
(Sparsity: 9.2%) (Sparsity: 12.7%) (Sparsity: 6.6%) (Sparsity: 10.8%)

and graph-level tasks. The former include RevGNN (Li et al., 2021) and GAT+BoT (Wang et al.,
2021), which rank fourth and seventh, respectively, on the OGBN-PROTEINS benchmark, and the
latter include PAS (Wei et al., 2021) and DeeperGCN (Li et al., 2020a), ranking fourth and sixth on
the OGBN-PPA benchmark. We observe from Table 3:

Obs. ❹ MoG can assist the “top-student” backbones to learn better. Despite RevGNN and PAS
being high-ranking backbones for OGBN-PROTEINS and OGBG-PPA, MoG still achieves non-marginal
performance improvements through moderate graph sparsification: 1.02% ↑ on RevGNN+OGBN-
PROTEINS and 1.74% ↑ on DeeperGCN+OGBG-PPA. This demonstrates that MoG can effectively
serve as a plugin to boost GNN performance by setting a relatively low sparsification rate.

4.4 SENSITIVITY ANALYSIS (RQ4)

To answer RQ4, we perform a sensitivity analysis on the two most important parameters in MoG:
the number of selected experts k and the expert importance loss coefficient λ. We compared the
performance of MoG when choosing different numbers of experts per node, as outlined in Figure 4.
The effect of different scaling factors λ on OGBN-PROTEINS+DeeperGCN is shown in Table 4. Based
on the results of the above sensitivity analysis, we observe that:

Obs. ❺ Sparse expert selection helps customized sparsification. It can be observed FROM
Figure 4 that the optimal k varies with the level of graph sparsity. At lower sparsity (10%), k = 1
yields relatively good performance. However, as sparsity increases to 50%, model performance peaks
at k = 4, suggesting that in high sparsity environments, more expert opinions contribute to better
sparsification. Notably, when k increases to 6, MoG’s performance declines, indicating that a more
selective approach in sparse expert selection aids in better model generalization. For a balanced
consideration of performance and computational efficiency, we set k = 2 in all experiments. We
further provide sensitivity analysis results of parameter k on more datasets, as shown in Appendix G.2.

Obs. ❻ Sparsifier load balancing is essential. We conduct a sensitivity analysis of the expert
importance loss coefficient λ. A larger λ indicates greater variation in the selected experts. As shown

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

in Table 4, λ = 0 consistently resulted in the lowest performance, as failing to explicitly enforce
variation among experts leads to the model converging to a trivial solution with the same set of
experts (Wang et al., 2024; Shazeer et al., 2017). Conversely, λ = 1e− 1 performed slightly better
than λ = 1e − 2 at higher sparsity levels, supporting the findings in Obs. 5 that higher sparsity
requires more diverse sparsifier experts.

Sparsity=10% Sparsity=30% Sparsity=50%

Figure 4: Sensitivity study on parameter k, i.e., how many
experts are chosen per node. The results are reported based
on OGBN-ARXIV+GraphSAGE.

λ 0 1e-2 1e-1

10% 81.19±0.08 83.32±0.19 83.04±0.23

30% 79.77±0.08 82.14±0.23 82.08±0.25

50% 79.40±0.06 81.79±0.21 82.04±0.20

70% 78.22±0.13 80.90±0.24 80.97±0.28

Table 4: Sensitivity study on scaling fac-
tor λ. The results are reported on OGBN-
PROTEINS+DeeperGCN.

Table 5: Running time efficiency comparison on OGBN-PRODUCTS+GraphSAGE. We consistently
set n = 4, k = 2, corresponding to utilizing 4 pruning criteria and selecting 2 experts for each node,
and vary m ∈ {1, 2, 3} to check how the training cost grows with m increasing.

Sparsity 30% 50%

Metric Per-epoch Time (s) Accuracy (%) Per-epoch Time (s) Accuracy (%)

Random 18.71± 0.14 74.21± 0.28 15.42 ± 0.24 71.08± 0.34
AdaGLT 23.55± 0.20 77.30 ± 0.54 21.68 ± 0.26 74.38 ± 0.79

MoG(m = 1, K = 3) 20.18± 0.14 77.75 ± 0.22 18.19 ± 0.30 76.10 ± 0.49
MoG(m = 2, K = 6) 21.25± 0.22 78.23 ± 0.29 19.70 ± 0.30 76.43 ± 0.49
MoG(m = 3, K = 12) 23.19± 0.18 78.15 ± 0.32 20.83 ± 0.29 76.98 ± 0.49

4.5 EFFICIENCY ANALYSIS AND ABLATION STUDY (RQ4)

Efficiency Analysis To verify that MoG can achieve better results with less additional training cost
than the previous SOTA methods, we compare the accuracy and the time efficiency of MoG with
AdaGLT on OGBN-PRODUCT+GraphSAGE, as outlined in Table 5. We have:

Obs. ❼ MoG can achieve better accuracy with less additional training cost. It is evident
in Table 5 that MoG incurs less additional training cost compared to AdaGLT while achieving
significant improvements in sparsification performance. More importantly, we demonstrate that
with k = 2, MoG does not incur significantly heavier training burdens as the number of sparsifiers
increases. Specifically, at s% = 50%, the difference in per epoch time between MoG (K = 3)
and MoG (K = 12) is only 2.63 seconds, consistent with the findings of mainstream sparse MoE
approaches (Wang et al., 2024).

Ablation Study We test three different settings of ϵ (in Equation (3)) on OGBN-
ARXIV+GraphSAGE: (1) ϵ ∼ N (0, I), (2) ϵ = 0, and (3) ϵ = 0.2, presented in Table 15. Our
key finding is that randomness in gating networks consistently benefits our model. More results and
detailed analysis can be found in Appendix G.3.

5 CONCLUSION & LIMITATION

In this paper, we introduce a new graph sparsification paradigm termed MoG, which leverages
multiple graph sparsifiers, each equipped with distinct sparsity levels and pruning criteria. MoG
selects the most suitable sparsifier expert based on each node’s local context, providing a customized
graph sparsification solution, followed by an effective mixture mechanism on the Grassmann manifold
to ensemble the sparse graphs produced by various experts. Extensive experiments on four large-scale
OGB datasets and two superpixel datasets have rigorously demonstrated the effectiveness of MoG. A
potential limitation of MoG is its current reliance on 1-hop decomposition to represent each node’s
local context. The performance of extending this approach to k-hop contexts remains unexplored,
suggesting a possible direction for future research.
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A NOTATIONS

We conclude the commonly used notations throughout the manuscript in Table 6.
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Table 6: The notations that are commonly used in the manuscript.

Notation Definition

G = {V, E} = {A,X} Input graph
A Input adjacency matrix
X Node feature matrix
L Graph Laplacian matrix

COMB(·) GNN ego-node transformation function
AGGR(·) GNN message aggregation function
ESM(·) Sparse graph combination function
s% Sparsity ratio (the ratio of removed edges)
vi The i-th node in G
xi Node feature vector for vi
G(i) The 1-hop ego-graph for vi

ϕ(G(i)) Routing network
K The number of total sparsifier experts
k The number of selected sparsifier experts per node

Wg,Wn Trainable parameters in the routing network
κ(G) A graph sparsifier
G(i)
m The sparse ego-graph of vi produced by the m-th graph sparsifier

Ĝ(i) = {V̂(i), Ê(i)} The ensemble sparse graph produced by MoG for vi
E(i)
p Edges removed surrounding vi

cm(eij) Prior guidance on edge importance eij

B DEATILS ON PRUNING CRITERIA

In this section, we will thoroughly explain the four pruning criteria we selected and the rationale
behind these choices.

• Edge degree of eij is defined as follows:

Degree (eij) =
1

2
(|N (vi) +N (vj)|) . (17)

Previous methods (Wang et al., 2022b; Seo et al., 2024) have explicitly or implicitly used edge
degree for graph sparsification. Intuitively, edges with higher degrees are more replaceable. (Wang
et al., 2022b) further formalizes this intuition from the perspective of bridge edges.

• Jaccard Similarity (Murphy, 1996b) measures the similarity between two sets by computing the
portion of shared neighbors between two nodes (viand vj), as defined below:

JaccradSimilarity vi, vj) =
|N (vi) ∩N (vj)|
|N (vi) ∪N (vj)|

. (18)

Jaccard similarity is widely used for its capacity for detecting clusters, hubs, and outliers on social
networks (Murphy, 1996b; Xu et al., 2007; Satuluri et al., 2011a).

• Effective Resistance, derived from the analogy to electrical circuits, is applied to graphs where
edges represent resistors. The effective resistance of an edge is defined as the potential difference
generated when a unit current is introduced at one vertex and withdrawn from the other. Once the
effective resistance is calculated, a sparsified subgraph can be constructed by selecting edges with
probabilities proportional to their effective resistances. Notably, (Spielman & Srivastava, 2008)
proved that the quadratic form of the Laplacian for such sparsified graphs closely approximates
that of the original graph. Consequently, the following inequality holds for the sparsified subgraph
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with high probability:

∀x ∈ R|V| (1− ϵ)xTLx ≤ xT L̃x ≤ (1 + ϵ)xTLx, (19)

where L̃ is the Laplacian of the sparsified graph, and ϵ > 0 is a small number. The insight is that
effective resistance reflects the significance of an edge. Effective resistance aims to preserve the
quadratic form of the graph Laplacian. This property makes it suitable for applications relying on
the quadratic form of the graph Laplacian, such as min-cut/max-flow problems. For computation
simplicity, we do not directly utilize the definition of effective resistance, and use its approximation
version (Liu et al., 2023b).

• Gradient Magnitude, a widely used pruning criterion, is prevalent not only in the field of graph
sparsification but also in classical neural network pruning. Numerous studies (Lee et al., 2018;
Tessera et al., 2021; Dettmers et al., 2019) leverage gradient magnitude to estimate parameter
importance. Specifically for graph sparsification, MGSpar (Wan & Schweitzer, 2021) was the
first to propose using meta-gradient to estimate edge importance. We consider gradient magnitude
a crucial indicator of the graph’s topological structure during training. Therefore, we explicitly
design some sparsifier experts to focus on this information.

C GRAPH MIXTURE ON GRASSMANN MANIFOLD

In this section, we detail how we leverage the concept of Grassmann Manifold to effectively combine
different sparse (ego-)graphs output by various sparsifiers.

According to Equation (10), each orthonormal matrix represents a unique subspace and thus corre-
sponds to a distinct point on the Grassmann manifold (Lin et al., 2020). This applies to the eigenvector
matrix of the normalized Laplacian matrix (U = L[:, : p] ∈ Rn×p), which comprises the first p
eigenvectors and is orthonormal (Merris, 1995), and thereby can be mapped onto the Grassmann
manifold. Additionally, each row of the eigenvector matrix encapsulates the spectral embedding of
each node in a p-dimensional space, where adjacent nodes have similar embedding vectors. This
subspace representation, summarizing graph information, is applicable to various tasks such as
clustering, classification, and graph merging (Dong et al., 2013).

In the context of MoG, we aim to efficiently find the final version that aggregates all the excellent
properties of each point’s k versions of sparse ego-graph {G̃(i)m }km=1 on the Grassmann Manifold.
Moreover, this should guided by the expert scores computed by the routing network in Section 3.2.
Let Dm and Am denote the degree matrix and the adjacency matrix for G̃(i)m (we omit the superscript
(·)(i) denoting vi for simplicity in the subsequent expressions), then the normalized graph Laplacian
is defined as:

Lm = D
− 1

2
m (Dm −Am)D

1
2
m. (20)

Given the graph Laplacian Lm for each sparse graph, we calculate the spectral embedding matrix
Um through trace minimization:

min
Um∈R|N(vm)|×p

tr (U⊤
mLmUm), s. t. U⊤

mUm = I, (21)

which can be solved by the Rayleigh-Ritz theorem. As mentioned above, each point on the Grassmann
manifold can be represented by an orthonormal matrix Y ∈ R|N (vi)|×p whose columns span the
corresponding p-dimensional subspace in R|N (vi)|×p. The distance between such subspaces can be
computed as a set of principal angles {θi}ki=1 between these subspaces. (Dong et al., 2013) showed
that the projection distance between two subspaces Y1 and Y2 can be represented as a separate trace
minimization problem:

d2proj(Y1,Y2) =

p∑
i=1

sin2 θi = k − tr (Y1Y
⊤
1 Y2Y

⊤
2 ). (22)

Based on this, we further define the projection of the final representative subspace U and the k sparse
candidate subspace {Um}km=1:

d2proj(U, {Um}km=1) =

k∑
m=1

d2proj(U,Um) = p× k −
k∑

m=1

tr (UU⊤UmU⊤
m), (23)
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which ensures that individual subspaces are close to the final representative subspace U.

Finally, to maintain the original vertex connectivity from all k sparse ego-graphs and emphasize the
connectivity relationship from more reliable sparsifiers (with higher expert scores), we propose the
following objective function:

min
Um∈R|N(vm)|×p

k∑
m=1

E(i)
m

(
p× k −

k∑
m=1

tr (UU⊤UmU⊤
m)

)
, (24)

whereE(i)
m represents the expert score of the node vi’sm-th sparsifier expert. Based on Equations (21)

and (24), we present the overall objective:

min
U(i)∈R|N(vi)|×p

k∑
m=1

tr(U(i)⊤LmU(i))︸ ︷︷ ︸
(1) node connectivity

+E(i)
m · d2(U(i),U(i)

m )︸ ︷︷ ︸
(2) subspace distance

 , s. t.U(i)⊤U(i) = I. (25)

For simplicity, we omit the superscript (i) in the following content. Substituting Equation (23) into
Equation (25), we obtain:

min
U

k∑
m=1

tr(UTLmU) + Em ·

(
p× k −

k∑
m=1

tr(UUTUmUT
m)

)
, s.t.UTU = I. (26)

Further simplification by neglecting constant terms like Em × p× k yields:

min
U

k∑
m=1

tr(UTLmU)− Em ·
k∑

m=1

tr(UUTUmUT
m), s.t.UTU = I. (27)

Reorganizing the trace form of the second term, we obtain:

min
U

tr

[
UT (

M∑
k=1

Lm − Em

M∑
k=1

UmUT
m)U

]
, s.t.UTU = I. (28)

At this point, the optimization problem essentially becomes a trace minimization problem, and thus
the solution to this minimization problem is essentially the term between UT and U, which is:

L̂ = (

M∑
k=1

Lm − Em

M∑
k=1

UmUT
m) =

M∑
k=1

(Lm − Em ·UmUT
m). (29)

Since computations involving the Grassmann manifold unavoidably entail eigenvalue decomposition,
concerns about computational complexity may arise. However, given that MoG only operates
mixtures on the ego-graph of each node, such computational burden is entirely acceptable. Specific
complexity analyses are presented in Appendix E.

C.1 FURTHER DISCUSSION ON THE USE OF GRASSMANN MANIFOLD

In this section, we visualize the impact of different ego-graph ensemble methods on the eigenvalue
distribution. Specifically, we select node [2458] from the OGBN-ARXIV dataset and compare its
original ego-graph, the sparse ego-graphs produced by three different sparsifiers, and the ensembled
ego-graphs obtained through simple averaging and Grassmann optimization. The eigenvalue distri-
butions are shown in Figure 5. As observed, when the three candidate sparse graphs are combined
through simple averaging followed by sparsification, the resulting graph’s eigenvalue distribution can
deviate significantly from the original distribution. In contrast, the Grassmann ensembling method
effectively preserves the spectral properties of each graph view, resulting in a sparse ego-graph whose
eigenvalue distribution closely aligns with that of the original graph.

D ALGORITHM WORKFLOW

The algorithm framework is presented in Algo. 1.
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Figure 5: Case study on the eigenvalue distribution of ego-graph.

E COMPLEXITY ANALYSIS

In this section, we delve into a comprehensive analysis of the time and space complexity of MoG.
Without loss of generality, we consider the scenario where MoG is applied to vanilla GCN. It is worth
recalling that the forward time complexity of vanilla GCN is given by:

O(L× |E| ×D + L× |V| ×D2), (30)
whereL is the number of GNN layers, |E| and |V| denotes the number of edges and nodes, respectively,
and D is the hidden dimension. Similarly, the forward space complexity of GCN is:

O(L× |E|+ L×D2 + L× |V| ×D) (31)
When MoG is applied to GCN, each sparsifier expert κ(·) essentially introduces additional complexity
equivalent to that of an FFN(·), as depicted in Equation (9). Incorporating the Sparse MoE-style
structure, the forward time complexity of GCN+MoG becomes:

O(L× |E| ×D + L× |V| ×D2 + k × |E| ×D ×Ds), (32)
where Ds represents the hidden dimension of the feed-forward network in Equation (9) and k denotes
the number of selected experts. Similarly, the forward space complexity is increased to:

O(L× |E|+ L×D2 + L× |V| ×D + k × |E| ×D ×Ds). (33)
It is noteworthy that we omit the analysis for the routing network, as its computational cost is
meanwhile negligible compared to the cost of selected experts, since both Wg ∈ RK×F and Wn ∈
RK×F is in a much smaller dimension that the weight matrix W ∈ RF×F in GCN.

Furthermore, we present the additional complexity introduced by the step of graph mixture on the
Grassmann manifold. For each center node’s k sparse ego-graphs, we need to compute the graph
Laplacian and the eigenvector matrix, which incurs an extra time complexity of O(k × ( |E||V| )

3);

to compute the Laplacian L̂(i) of the final ensemble sparse graph, an additional complexity of
O(k × ( |E||V| )

2 × p) is required. In the end, the complete time complexity of MoG is expressed as:

O

L× |E| ×D + L× |V| ×D2︸ ︷︷ ︸
vanilla GCN

+ k × |E| ×D ×Ds︸ ︷︷ ︸
sparsifier experts

+ k

(
|E|
|V|

)3

+ k

(
|E|
|V|

)2

p︸ ︷︷ ︸
graph mixture

 . (34)

To empirically verify that MoG does not impose excessive computational burdens on GNN backbones,
we conduct experiments in Section 4.5 to compare the per-epoch time efficiency metric of MoG with
other sparsifiers.
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Algorithm 1: Algorithm workflow of MoG
Input :G = (A,X), GNN model f(G,Θ), , epoch number Q.
Output :Sparse graph Gsub = {V, E ′}
for iteration q ← 1 to Q do

/* Ego-graph decomposition */

Decompose G into ego-graph representations {G(1),G(2), · · · ,G(N)}.
/* Sparsifier expert allocation */
for node i← 1 to |V| do

Calculate the total K expert score of vi by routing network ψ(xi); ▷ Eq. 3
Select k sparsifier expert for node vi by Softmax(TopK(ψ(xi), k)); ▷ Eq. 3

end
/* Produce sparse graph condidates */
for iteration i← 1 to |V| do

for sparsifier index m← 1 to m do
Sparisifier κm determines which edges to remove by
E(i)p = TopK

(
−Cm(E), ⌈|E(i)| × s%⌉

)
; ▷ Eq. 8

Produce sparse graph candidate G̃(i) = κm(G(i)) = {V(i), E(i) \ E(i)p }.
end
/* Ensenmble sparse graphs on Grassmann manifold */
Calculate the ensemble graph’s graph Laplacian by
L̂(i) =

∑k
m=1

(
Lm − E(i)

m ·U(i)⊤U(i)
)

; ▷ Eq. 12

Obtain vi’s final sparse graph by ESM({Ĝ(i) = {D− L̂(i),X(i)}); ▷ Eq. 13

Compute vi’s weighted sparsity by s(i)% = 1
k

∑k
m=1 s

m%; ▷ Eq. 14

Post-sparsify Ĝ(i): Ĝ(i) ← {TopK(Â(i), |E(i)| × s(i)%),X(i)}; ▷ Eq. 14
end
/* Combine ego-graphs */

Ĝ ← {Ĝ(1), Ĝ(2), · · · , Ĝ(|V|)}
/* Standard GNN training */

Feed the sparse graph Ĝ into GNN model for any kinds of downstream training ; ▷ Eq. 6
Compute loss Ltask + λ · Limportance; ▷ Eq. 16
Backpropagate to update GNN f(G,Θ), routing network ψ and sparsifiers {κm}Km=1.

end

F EXPERIMENTAL DETAILS

F.1 DATASET STATISTICS

We conclude the dataset statistics in Tab. 7

Table 7: Graph datasets statistics.
Dataset #Graph #Node #Edge #Classes Metric

OGBN-ARXIV 1 169,343 1,166,243 40 Accuracy
OGBN-PROTEINS 1 132,534 39,561,252 2 ROC-AUC
OGBN-PRODUCTS 1 2,449,029 61,859,140 47 Accuracy

OGBG-PPA 158,100 243.4 2,266.1 47 Accuracy

MNIST 70,100 50.5 564.5 10 Accuracy
CIFAR-10 60,000 117.6 914.0 10 Accuracy
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F.2 EVALUATION METRICS

Accuracy represents the ratio of correctly predicted outcomes to the total predictions made. The
ROC-AUC (Receiver Operating Characteristic-Area Under the Curve) value quantifies the probability
that a randomly selected positive example will have a higher rank than a randomly selected negative
example.

F.3 DATASET SPLITS

For node-level tasks, the data splits for OGBN-ARXIV, OGBN-PROTEINS, and OGBN-PRODUCTS
were provided by the benchmark (Hu et al., 2020). Specifically, for OGBN-ARXIV, we train on
papers published until 2017, validate on papers from 2018 and test on those published since 2019.
For OGBN-PROTEINS, protein nodes were segregated into training, validation, and test sets based on
their species of origin. For OGBN-PRODUCTS, we sort the products according to their sales ranking
and use the top 8% for training, next top 2% for validation, and the rest for testing.

For graph-level tasks, we follow (Hu et al., 2020) for OGBG-PPA. Concretely, we adopt the species
split, where the neighborhood graphs in the validation and test sets are extracted from protein associa-
tion networks of species not encountered during training but belonging to one of the 37 taxonomic
groups. This split stress-tests the model’s capacity to extract graph features crucial for predicting
taxonomic groups, enhancing biological understanding of protein associations. For MNIST and
CIFAR-10, consistent with (Dwivedi et al., 2020), we split them to 55000 train/5000 validation/10000
test for MNIST, and 45000 train/5000 validation/10000 test for CIFAR10, respectively. We report the
test accuracy at the epoch with the best validation accuracy.

F.4 PARAMETER SETTING

Backbone Parameters For node classification backbones, we utilize a 3-layer Graph-
SAGE with hidden_dim ∈ {128, 256}. As for DeeperGCN, we set layer_num =
28, block = res+, hidden_dim = 64. The other configurations are the
same as in https://github.com/lightaime/deep_gcns_torch/tree/master/
examples/ogb/ogbn_proteins. For graph classification backbones, we leverage a 4-layer
PNA with hidden_dim = 300. Rest configurations are the same as in https://github.com/
lukecavabarrett/pna.

MoG parameters We adopt the m = 4 sparsity criteria outlined in Section 3.3, assigning n = 3
different sparsity levels {s1, s2, s3} to each criterion, resulting in a total of K = m×n = 12 experts.
We select k = 2 sparsifier experts for each node, and set the loss scaling factor λ = 1e− 2 across all
datasets and backbones.

All the experiments are conducted on NVIDIA Tesla V100 (32GB GPU), using PyTorch and PyTorch
Geometric framework.

F.5 SPARSIFIER BASELINE CONFIGURATIONS

• Topology-based sparsification

– Rank Degree (Talati et al., 2022): The Rank Degree sparsifier initiates by selecting a random set
of "seed" vertices. Then, the vertices with connections to these seed vertices are ranked based
on their degree in descending order. Subsequently, the edges linking each seed vertex to its
top-ranked neighbors are chosen and integrated into the sparsified graph. The newly added nodes
in the graph act as new seeds for identifying additional edges. This iterative process continues
until the target sparsification limit is attained. We utilize the implementation in (Chen et al.,
2023).

– Local Degree (Hamann et al., 2016): Local Degree sparsifier, similar to Rank Degree, incor-
porates edges to the top deg(v)α neighbors ranked by their degree in descending order, where
α ∈ [0, 1] represents the degree of sparsification.

– Forest Fire (Leskovec et al., 2006): Forest fire assembles “burning” through edges probabilisti-
cally, and we use the implementation in (Staudt et al., 2016).
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– G-Spar (Murphy, 1996b): G-Spar sorts the Jaccard scores globally and then selects the edges
with the highest similarity score. We opt for the code from (Staudt et al., 2016).

– Local Similarity (Satuluri et al., 2011a): Local Similarity ranks edges using the Jaccard score
and computes log(rank(eij))/ log(deg(eij)) as the similarity score, and selects edges with the
highest similarity scores. We utilize the implementation in (Chen et al., 2023).

– SCAN (Spielman & Srivastava, 2008): SCAN uses structural similarity (called SCAN similarity)
measures to detect clusters, hubs, and outliers. We utilize the implementation in (Chen et al.,
2023)

– DSpar (Liu et al., 2023b): DSpar is an extension of effective resistance sparsifier, which aims to
reduce the high computational budget of calculating effective resistance through an unbiased
approximation. We adopt their official implementation (Liu et al., 2023b).

• Semantic-based sparsification
– UGS (Chen et al., 2021): We utilize the official implementation from the authors. Notably,

UGS was originally designed for joint pruning of model parameters and edges. Specifically,
it sets separate pruning parameters for parameters and edges, namely the weight pruning
ratio pθ and the graph pruning ratio pg. In each iteration, a corresponding proportion of
parameters/edges is pruned. For a fairer comparison, we set pθ = 0%, while maintaining
pg ∈ {5%, 10} (consistent with the original paper).

– GEBT (You et al., 2022): GEBT, for the first time, discovered the existence of graph early-
bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs. (You
et al., 2022) has proposed two variants of graph early bird tickets, and we opt for the graph-
sparsification-only version, dubbed GEB Ticket Identification.

– Meta-gradient sparsifier (Wan & Schweitzer, 2021): The Meta-gradient sparsifier prunes
edges based on their meta-gradient importance scores, assessed over multiple training epochs.
Since no official implementation is provided, we carefully replicated the results following the
guidelines in the original paper.

– ACE-GLT (Wang et al., 2023b): ACE-GLT inherits the iterative magnitude pruning (IMP)
paradigm from UGS. Going beyond UGS, it suggested mining valuable information from
pruned edges/weights after each round of IMP, which in the meanwhile doubled the computa-
tional cost of IMP. We utilize the official implementation provided by (Wang et al., 2023b),
and set pθ = 0%, pg ∈ {5%, 10}.

– WD-GLT (Hui et al., 2023): WD-GLT also inherits the iterative magnitude pruning paradigm
from UGS, so we also set pθ = 0%, pg ∈ {5%, 10%} across all datasets and backbones. The
perturbation ratio α is tuned among {0, 1}. Since no official implementation is provided, we
carefully reproduced the results according to the original paper.

– AdaGLT (Zhang et al., 2024a): AdaGLT revolutionizes the original IMP-based graph
lottery ticket methodology into an adaptive, dynamic, and automated approach, profi-
cient in identifying sparse graphs with layer-adaptive structures. We fix ηθ = 0%, ηg ∈
{1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2}, ω = 2 across all datasets and backbones.

F.6 ADJUSTING GRAPH SPARSITY

In Table 8, we provide detailed guidelines on how to achieve the desired global sparsity by adjusting
the three sparsity levels {s1, s2, s3} in MoG across six datasets.

G ADDTIONAL EXPERIMENT RESULTS

G.1 RESULTS FOR RQ1

We report the performances of MoG and other sparsifiers on OGBN-PRODUCTS in Table 9.

G.2 SENSITIVITY ANALYSIS OF PARAMETER K

Based on the experiments in Section 4.4, we further provide sensitivity analysis results on OGBN-
PROTEINS+RevGNN, as shown in Table 13. It can be observed that MoG achieves peak performance
at k ∈ {2, 3} and begins to decline after k ≥ 4, which is consistent with our finding in Observation 6.
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Table 8: The recipe for adjusting graph sparsity via different sparsifier combinations.
Datasets 1− s1 1− s2 1− s3 k 1− s%

OGBN-ARXIV

1 0.9 0.8 2 [88.0%,90.9%]
0.8 0.7 0.5 2 [69.0%,73.2%]
0.6 0.5 0.3 2 [49.5%,52.7%]
0.5 0.3 0.15 2 [27.1%, 31.6%]

OGBN-PROTEINS

1 0.9 0.8 2 [86.1%,89.3%]
0.8 0.7 0.6 2 [65.1%,69.2%]
0.6 0.5 0.4 2 [45.2%,49.3%]
0.4 0.3 0.2 2 [29.2%,31.1%]

OGBN-PRODUCTS

1 0.9 0.8 2 [90.1%,93.2%]
0.8 0.7 0.6 2 [69.3%,72.0%]
0.6 0.5 0.4 2 [51.5%,54.9%]
0.4 0.3 0.2 2 [28.7%,36.0%]

MNIST

1 0.85 0.8 2 [90.4%,92.7%]
0.8 0.5 0.4 2 [67.1%,68.3%]
0.6 0.3 0.2 2 [46.2%,49.3%]

0.35 0.1 0.1 2 [29.8%,31.3%]

CIFAR-10

1 0.85 0.8 2 [90.6%,93.7%]
0.8 0.5 0.4 2 [67.5%,69.9%]
0.6 0.3 0.2 2 [47.7%,49.3%]

0.35 0.1 0.1 2 [30.1%,31.3%]

OGBG-PPA

0.95 0.9 0.8 2 [86.5%,88.9%]
0.8 0.65 0.6 2 [68.0%,70.1%]
0.6 0.5 0.3 2 [47.8%,48.9%]
0.4 0.3 0.15 2 [30.1%,33.6%]

Table 9: Node classification performance comparison to state-of-the-art sparsification methods. All
methods are trained using GraphSAGE, and the reported metrics represent the average of five runs.
We denote methods with † that do not have precise control over sparsity; their performance is reported
around the target sparsity ±2%. We do not report results for sparsifiers like ER for OOT issues and
those like UGS for their infeasibility in inductive settings (mini-batch training).

Dataset OGBN-PRODUCTS (Accuracy ↑)

Sparsity % 10 30 50 70

To
po

lo
gy

Random 76.99↓1.05 74.21↓3.83 71.08↓6.96 67.24↓10.80
Rank Degree† (Voudigari et al., 2016) 76.08↓1.96 74.26↓3.89 71.85↓6.19 70.66↓7.38
Local Degree† (Hamann et al., 2016) 77.19↓1.58 76.40↓1.64 72.77↓5.27 72.48↓5.56

G-Spar (Murphy, 1996b) 76.15↓1.89 74.20↓3.84 71.55↓6.49 69.42↓8.62
LSim† (Satuluri et al., 2011a) 77.96↓0.08 74.98↓2.06 72.67↓5.37 70.43↓7.61

SCAN (Xu et al., 2007) 76.30↓1.74 74.33↓3.71 71.25↓6.79 71.12↓6.92
DSpar (Liu et al., 2023b) 78.25↑0.21 75.11↓2.93 74.57↓3.47 73.16↓4.88

Se
m

a AdaGLT (Zhang et al., 2024a) 78.19↑0.15 77.30↓0.74 74.38↓3.66 73.04↓5.00

MoG (Ours)† 78.77↑0.73 78.15↑0.11 76.98↓1.06 74.91↓3.17

Whole Dataset 78.04±0.31
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Table 10: Node classification performance comparison to state-of-the-art sparsification methods.
All methods are trained using DeeperGCN, and the reported metrics represent the average of five
runs. We denote methods with † that do not have precise control over sparsity; their performance is
reported around the target sparsity±2%. “OOM” and “OOT” denotes out-of-memory and out-of-time,
respectively.

Dataset OGBN-ARXIV (Accuracy ↑)

Sparsity % 10 30 50 70

To
po

lo
gy

-g
ui

de
d

Random 70.66↓1.28 68.74↓3.20 65.38↓6.56 63.55↓8.39
Rank Degree† (Voudigari et al., 2016) 69.44↓2.50 67.82↓4.12 65.08↓6.86 63.19↓8.75
Local Degree† (Hamann et al., 2016) 68.77↓3.17 67.92↓4.02 66.10↓5.84 65.97↓5.97
Forest Fire† (Leskovec et al., 2006) 68.70↓3.24 68.95↓3.99 67.23↓4.71 67.29↓4.65

G-Spar (Murphy, 1996b) 70.57↓1.37 70.15↓1.79 68.77↓3.17 65.26↓6.68
LSim† (Satuluri et al., 2011a) 69.33↓2.61 67.19↓4.75 63.55↓8.39 62.20↓9.74

SCAN (Xu et al., 2007) 71.33↓0.61 69.22↓2.72 67.88↓4.06 64.32↓7.62
ER (Spielman & Srivastava, 2008) 71.33↓0.61 69.65↓2.29 69.08↓2.86 67.10↓4.84

DSpar (Liu et al., 2023b) 71.65↓0.29 70.66↓1.28 68.03↓3.91 67.25↓4.69

Se
m

an
tic

-g
ui

de
d UGS† (Chen et al., 2021) 72.01↑0.93 70.29↓1.65 68.43↓3.51 67.85↓4.09

GEBT (You et al., 2022) 70.22↓1.72 69.40↓2.54 67.84↓4.10 67.49↓4.45
MGSpar (Wan & Schweitzer, 2021) 70.02↓1.92 69.34↓2.60 68.02↓3.92 65.78↓6.16

ACE-GLT† (Wang et al., 2023b) 72.13↑0.19 71.96↑0.02 69.13↓2.81 67.93↓4.01
WD-GLT† (Hui et al., 2023) 71.92↓0.02 70.21↓1.73 68.30↓3.64 66.57↓5.37

AdaGLT (Zhang et al., 2024a) 71.98↑0.04 70.44↓1.50 69.15↓2.79 68.05↓3.89

MoG (Ours)† 72.08↑0.14 71.98↑0.05 69.86↓−2.08 68.20↓-3.74

Whole Dataset 71.93±0.04

Table 11: Node classification performance comparison to state-of-the-art sparsification methods.
All methods are trained using DeeperGCN, and the reported metrics represent the average of five
runs. We denote methods with † that do not have precise control over sparsity; their performance is
reported around the target sparsity±2%. “OOM” and “OOT” denotes out-of-memory and out-of-time,
respectively.

Dataset OGBN-PROTEINS (ROC-AUC ↑)

Sparsity % 10 30 50 70

To
po

lo
gy

-g
ui

de
d

Random 80.18↓2.55 78.92↓3.83 76.57↓6.16 72.69↓10.04
Rank Degree† (Voudigari et al., 2016) 80.14↓2.59 79.05↓3.73 78.59↓4.13 76.22↓6.51
Local Degree† (Hamann et al., 2016) 79.40↓3.33 79.83↓3.90 78.50↓4.23 78.25↓4.48
Forest Fire† (Leskovec et al., 2006) 81.49↓1.24 78.47↓4.26 76.14↓6.59 73.89↓9.84

G-Spar (Murphy, 1996b) 81.56↓1.17 81.12↓1.61 79.13↓3.60 77.45↓5.28
LSim† (Satuluri et al., 2011a) 80.30↓2.43 79.19↓3.54 77.13↓5.60 77.85↓4.88

SCAN (Xu et al., 2007) 81.60↓1.13 80.19↓2.54 81.53↓1.20 78.58↓4.15
ER (Spielman & Srivastava, 2008) OOT

DSpar (Liu et al., 2023b) 81.46↓1.27 80.57↓2.16 77.41↓5.32 75.35↓7.39

Se
m

an
tic

-g
ui

de
d UGS† (Chen et al., 2021) 82.33↓0.40 81.54↓1.19 78.75↓4.98 76.40↓6.33

GEBT (You et al., 2022) 80.74↓2.99 80.22↓2.51 79.81↓3.92 76.05↓6.68
MGSpar (Wan & Schweitzer, 2021) OOM

ACE-GLT† (Wang et al., 2023b) 82.93↑0.80 82.01↓0.72 81.05↓1.68 75.92↓6.81
WD-GLT† (Hui et al., 2023) OOM

AdaGLT (Zhang et al., 2024a) 82.60↓0.13 82.76↑0.97 80.55↓2.18 78.42↓4.31

MoG (Ours)† 83.32↑0.41 82.14↓0.59 81.92↓0.81 80.90↓1.83

Whole Dataset 82.73±0.02
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Table 12: Graph classification performance comparison to state-of-the-art sparsification methods.
All methods are trained using PNA, and the reported metrics represent the average of five runs. We
denote methods with † that do not have precise control over sparsity; their performance is reported
around the target sparsity ±2%.

Dataset CIFAR-10 (Accuracy ↑)

Sparsity % 10 30 50 70

To
po

lo
gy

Random 68.04↓1.70 66.81↓2.93 65.35↓4.39 62.14↓7.60
Rank Degree† (Voudigari et al., 2016) 68.27↓1.77 67.14↓2.60 64.05↓5.69 60.22↓9.52
Local Degree† (Hamann et al., 2016) 68.10↓1.64 67.29↓2.45 64.96↓4.78 61.77↓8.97

G-Spar (Murphy, 1996b) 67.13↓2.61 65.06↓4.68 64.86↓4.88 62.92↓6.82
LSim† (Satuluri et al., 2011a) 69.75↑0.01 67.33↓2.41 66.58↓3.16 64.86↓4.88

SCAN (Xu et al., 2007) 68.25↓1.49 66.11↓3.63 64.59↓5.15 63.20↓6.54
DSpar (Liu et al., 2023b) 68.94↑0.53 66.80↓2.94 64.87↓4.87 64.10↓5.64

Se
m

a AdaGLT (Zhang et al., 2024a) 69.77↑0.02 67.97↓1.78 65.06↓4.68 64.22↓5.52

MoG (Ours)† 70.04↑0.30 69.80↑-0.94 68.28↓−1.46 66.55↓−3.19

Whole Dataset 69.74±0.17

Table 13: Sensitivity analysis of parameter k when applying MoG to OGBN-PROTEINS+RevGNN.
k 1 2 3 4 5

MoG 88.37 89.04 89.09 88.55 88.20

We also reported the impact of selecting different values of k on the per-epoch training time and
inference time, when applying MoG to OGBN-ARXIV+GraphSAGE in Table 14. It can be observed
that although the training and inference cost of MoG increases as the number of selected experts
increases, this additional cost is not significant: when k doubles from 2 to 4, the inference time only
increases by 23%. More importantly, we can already achieve optimal performance with k ∈ {2, 3},
so there is no need to select too many experts, therefore avoiding significant inference delay.

Table 14: Sensitivity analysis of parameter k when applying MoG to OGBN-ARXIV+GraphSAGE.
Sparsity Selected Expert k Per-Epoch Time Inference Time Acc.

30% 2 0.213 0.140 70.53
30% 3 0.241 0.161 70.48
30% 4 0.266 0.173 70.13
30% 5 0.279 0.190 69.57

G.3 ABLATION STUDY ON THE NOISE CONTROL OF THE ROUTER NETWORK

We test three different settings of epsilon on GraphSAGE+Ogbn-Arxiv: (1) ϵ ∼ N (0, I), (2) ϵ = 0,
and (3) ϵ = 0.2, and report their performance under different sparsity levels in Table 15. We can see
that trainable noisy parameters always bring the greatest performance gain to the model, which is
consistent with previous practices in MoE that the randomness in the gating network is beneficial.

G.4 SENSITIVITY ANALYSIS OF PARAMETER p

How is p determined in Equation (10)? Since the egographs of individual nodes vary in size, we
calculate p proportionally as p = ⌈rp% · |V(vi)|⌉, where rp% represents the ratio of selected columns
in the ego-graph of vi. In our experiments, we set rp% = 50% for simplicity.

What is its impact on performance? We conduct additional tests on GraphSAGE + OGBN-ARXIV
using different values of rp%, as shown in Table 16. It can be observed that while excessively small
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Table 15: Ablation study on the noise control of the router network Ψ. ϵ ∼ N (0, I) corresponds to
the original setting in our paper, ϵ = 0 corresponds to completely remove the noise modeling, and
ϵ = 0.2 corresponds to fixing the noise coefficient.

Sparsity Train Acc Valid Acc Test Acc k

ϵ ∼ N (0, I)

10% 77.20 72.68 71.93 3
30% 76.03 71.90 70.53 3
50% 72.45 69.54 69.06 3

ϵ = 0

10% 76.87 72.05 71.27 3
30% 75.99 71.15 70.14 3
50% 72.09 68.34 67.05 3

ϵ = 0.2

10% 76.98 72.22 71.75 3
30% 75.98 71.48 70.27 3
50% 73.15 69.84 68.45 3

values of p negatively impact the performance of MoG, the model remains largely insensitive to
variations in p within a broader range.

Table 16: The sensitivity analysis of rp% on GraphSAGE+OGBN-ARXIV, with s = 50.
rp% 0.1 0.3 0.5 0.7
s = 30 69.92 70.03 70.53 70.41
s = 50 68.27 69.12 69.06 69.19

G.5 EXPERIMENTS INCORPORATING GLOBAL INFORMATION

While MoG prunes edges based on the node’s local context, the edge importance evaluation func-
tion in Equation (9), Cm(eij) = FFN (xi, xj , c

m(eij)), can incorporate multi-hop or even global
information. Specifically, we explored two approaches and conducted supplementary experiments
accordingly:

1. Expanding xv to x(K)
v with aggregated K-hop features: To integrate multi-hop informa-

tion, we expanded xv into

x(K)
v = CONCAT(h(1)v , h(2)v , . . . , h(K)

v ),

where h(k)v = 1
|Nk(v)|

∑
u∈Nk(v)

xu represents the K-hop features for node v, with Nk(v)

denoting the K-hop neighbors of v.

2. Incorporating cm(eij) with prior global edge significance: For the cm(eij) function in
Equation (9), we can consider global edge significance as prior guidance. This involved
computing edge importance metrics such as PageRank, Betweenness Centrality, or Eigen-
vector Centrality across the entire graph and passing them to each ego graph to improve
edge evaluation.

The results in Table 17 showcase that the performance gain from integrating global information
varies across different tasks: in tasks such as graph classification, which rely more heavily on global
information, MoG-3hop results in a notable 1.15% accuracy improvement compared to MoG-1hop.
However, in node classification tasks, the gains from both hop expansion and global priors are
relatively limited.
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Table 17: Performance of MoG-Khop with multi-hop features and MoG-m incorporating global edge
significance as prior guidance on GraphSAGE+OGBN-ARXIV (node classification, 50% sparsity) and
DeeperGCN+OGBG-PPA (graph classification, 50% sparsity).

Method GraphSAGE+OGBN-ARXIV DeeperGCN+OGBG-PPA
MoG-1hop 69.06 75.23
MoG-2hop 69.54 75.79
MoG-3hop 69.27 76.38
MoG-PageRank 69.03 75.70
MoG-Betweenness 69.14 75.68
MoG-Eigenvector 68.74 75.14

Table 18: Additional experiments on DeeperGCN+OGBL-COLLAB. The reported metrics represent
the average of five runs. (Metric = Hits@50, Baseline = 53.53%)

Sparsity % 10 30 50
Random 52.92 47.38 44.62

Local Degree 53.57 51.80 49.92
UGS 53.65 52.25 49.67

AdaGLT 53.82 53.61 52.69
MoG 53.80 53.77 53.28

G.6 ADDITIONAL EXPERIMENT WITH LINK PREDICTION

We follow the experimental setting in Chen et al. (2021) to test link prediction on PUBMED and
OGBL-COLLAB From Tables 18 and 19, we can further verify that MoG is also effective in the link
prediction task, demonstrating strong generalization across diverse datasets and backbones.

H BROADER IMPACT AND DISCUSSION

H.1 BROADER IMPACT

MoG, as a novel concept in graph sparsification, holds vast potential for general application. It
allows for the sparsification of each node based on its specific circumstances, making it well-suited
to meet the demands of complex real-world scenarios such as financial fraud detection and online
recommender systems, which require customized approaches. More importantly, MoG provides
a selectable pool for future sparsification, enabling various pruning algorithms to collaborate and
enhance the representational capabilities of graphs.

H.2 KEY CONTRIBUTIONS OF MOG

Briefly put, our contributions can be summarized as:

• Node-Granular Customization: We propose a new paradigm of graph sparsification by
introducing, for the first time, a method that customizes both sparsity levels and criteria for
individual node modeling based on their local context.

• MoE for Graph Sparsification: We design an innovative and highly pluggable graph
sparsifier, dubbed Mixture of Graphs (MoG), which pioneers the application of Mixture-of-
Experts (MoE) in graph sparsification, supported by a robust theoretical foundation rooted
in the Grassmann manifold.

• Empirical Evidence: Our extensive experiments on seven datasets and six backbones
demonstrate that MoG is (1) a superior graph sparsifier, maintaining GNN performance
losslessly at 8.67% - 50.85% sparsity levels; (2) a computational accelerator, achieving
a tangible 1.47 - 2.62× inference speedup; (3) a performance booster, which boosts
ROC-AUC by 1.81% on OGBG-MOLHIV, 1.02% on OGBN-PROTEINS.
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Table 19: Additional Experiments on GIN+PUBMED. The reported metrics represent the average of
five runs. (Metric = ROC-AUC, Baseline = 0.895)

Sparsity % 10 30 50
Random 0.889 0.850 0.817

Local Degree 0.905 0.875 0.846
UGS 0.902 0.862 0.839

AdaGLT 0.898 0.884 0.851
MoG 0.910 0.893 0.862

H.3 FURTHER DISCUSSION ON GRAPH STRUCTURE LEARNING

Graph Structure Learning (GSL) has been widely studied in the context of graph sparsification,
drawing from statistics and optimization. These methods (Friedman et al., 2007; Wasserman &
Mateos, 2024; Li et al., 2024) typically employ global sparsity-promoting criteria to reduce graph
complexity while maintaining key structural information. However, many of these approaches take a
coarse, global perspective, which may overlook important local dependencies within the graph.

The primary advantages of our algorithm over GSL methods are as follows:

1. Seamless Integration: Unlike GSL methods, which often operate dependently of the
backbone, MoG can be seamlessly embedded into various downstream graph tasks and
GNN models. It functions as an effective sparsifier, inference accelerator, and performance
enhancer without disrupting existing workflows.

2. Dynamic Local Adaptation: GSL methods typically rely on coarse-grained global metrics
to evaluate topology importance and perform structure optimization. In contrast, MoG
dynamically constructs sparse ego-graphs based on unique local contexts, thereby enhancing
the quality and performance of the sparsified graph.

3. High Customizability: GSL methods often utilize a single metric for structural refinement,
whereas MoG offers extensive customizability. It allows practitioners to tailor both sparsity
criteria and levels to meet specific application needs. For example, in financial fraud
detection, heterophilic pruning criteria can be applied, while in recommendation systems,
PageRank-based pruning can be employed.

H.4 REAL-WORLD USE CASES

SpMM frequently represents the primary computational bottleneck in GNNs, accounting for
50%–70% of the total computational load (Liu et al., 2023b), thereby severely limiting their scalability
on large graphs. There are some real use cases:

• Online Fraud Detection: Financial transaction graphs are often massive, incurring signifi-
cant SpMM costs during inference. The high computational cost of SpMM hinders the rapid
detection and response required for financial fraud prevention, compromising user security.

• Recommender Systems: Large-scale user-item interaction graphs in recommender systems
face substantial SpMM costs, restricting GNN deployment. MoG enhances the feasibility
and responsiveness of GNNs in recommender systems.

• Network Architecture Search (NAS): NAS involves optimizing parameters for each archi-
tecture. The large parameter and gradient storage requirements of GNNs intensify memory
demands. Moreover, NAS evaluates numerous candidate architectures, each requiring
multiple training and validation cycles, amplifying SpMM’s computational cost.

• Federated Graph Learning: The large-scale graph structures in Federated Graph Learning
entail significant local SpMM computations and parameter transmission. MoG mitigates
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this by extracting sparse structures from local GNNs, reducing the parameter load sent to
the central server.

We believe MoG’s potential to alleviate SpMM bottlenecks could unlock broader applications of
GNNs across these domains.

I POST-SPARSIFIED EGO-GRAPHS ASSEMBLING

we provide a detailed explanation of how post-sparsified ego-graphs are assembled as follows:

Ĝ ← {
∣∣∣sign(TopK(Â, |E| × s%)

)∣∣∣ ,X}, s% =
1

|V|

|V|∑
i=1

s(i)%, Â =

|V|∑
i=1

f
(
Â(i)

)
,

where f : R|N (v)|×|N (v)| → R|V|×|V| denotes the mapping of edges from the ego-graph to the
global graph. After generating the post-sparsified ego-graphs, we compute the global sparsity s% by
averaging the sparsity levels of each ego-graph and applying a function f that maps each ego-graph
into the global graph. Afterward, we sum the weights of unpruned edges across all ego-graphs to
form the weighted adjacency matrix Â. Finally, we prune the global graph to achieve the target
sparsity s%, yielding the final sparsified graph.
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