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ABSTRACT

First-person object-interaction tasks in high-fidelity, 3D, simulated environments
such as the AI2Thor virtual home-environment pose significant sample-efficiency
challenges for reinforcement learning (RL) agents learning from sparse task re-
wards. To alleviate these challenges, prior work has provided extensive supervision
via a combination of reward-shaping, ground-truth object-information, and expert
demonstrations. In this work, we show that one can learn object-interaction tasks
from scratch without supervision by learning an attentive object-model as an auxil-
iary task during task learning with an object-centric relational RL agent. Our key
insight is that learning an object-model that incorporates object-relationships into
forward prediction provides a dense learning signal for unsupervised representation
learning of both objects and their relationships. This, in turn, enables faster policy
learning for an object-centric relational RL agent. We demonstrate our agent by
introducing a set of challenging object-interaction tasks in the AI2Thor environ-
ment where learning with our attentive object-model is key to strong performance.
Specifically, we compare our agent and relational RL agents with alternative auxil-
iary tasks to a relational RL agent equipped with ground-truth object-information,
and show that learning with our object-model best closes the performance gap in
terms of both learning speed and maximum success rate. Additionally, we find that
incorporating object-attention into an object-model’s forward predictions is key to
learning representations which capture object-category and object-state.

1 INTRODUCTION

Consider a robotic home-aid agent given the task of cooking a potato. In order to perform this
task, it needs to transport both a potato and a pot to the stove and place them appropriately so that
turning on the stove will heat the pot, which in turn will cook the potato. Learning to perform such
object-interaction tasks is challenging for a number of reasons: (A) the agent needs to transport
objects to each other so they can be used together; (B) it needs to learn a view-invariant representation
to facilitate object-recognition and object-selection; (C) it needs to recognize combinations of objects
that affect each other; (D) it needs to learn to discriminate objects across object-state transitions. In
our example, the agent must recognize the pot and potato from different viewpoints, pick them up,
transport them to the stove, place the potato in the pot and turn on the stove, recognizing that this
will heat both objects. In learning and performing such skills, manipulating object relationships and
appropriately responding to them is paramount.

In order to study object-interaction tasks like the one above, we adopt the virtual home-environment
AI2Thor (Kolve et al., 2017) (or Thor). Thor is an open-source environment that is high-fidelity, 3D,
partially observable, and enables object-interactions. Thor poses significant learning challenges due
to a large action space induced by many available object-interaction and navigation actions, and a
relatively complex first-person visual input. No work has yet learned sparse-reward object-interaction
tasks without imitation learning in this domain. Prior work has relied extensively on supervision in
the form of reward-shaping, ground-truth object-information, or from expert demonstrations (Jain
et al., 2019; Gordon et al., 2018; Zhu et al., 2017; Shridhar et al., 2019). We assume no access to
supervision. Instead, we find that we can learn tasks without imitation learning by incorporating
attention and an object-centric model into a reinforcement learning agent.
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Our primary conceptual contribution is ROMA, a Relational, Object-Model Learning Agent. ROMA
is composed of a base relational object-centric policy (Relational Object-DQN, §4.1) that leverages
attention to integrate information about other important objects when estimating the action-value for
interacting with a particular object. Without ground-truth information to identify objects, ROMA
must learn object-representations that are both invariant across object-views and discriminative
across object-states so that correct actions are chosen as object-states change over a task. To address
this and the representation learning challenge induced by a sparse reward signal, ROMA learns an
Attentive Object-Model (§4.2) with a contrastive learning loss (Arora et al., 2019; Sohn, 2016) that
seeks to separate object-interactions based on their resultant transition. Critically, by incorporating
object-attention into the model’s forward predictions for a particular object, the object-attention is
trained to attend to relevant objects that help predict how the interaction object will change.

We evaluate ROMA against Relational Object-DQN combined with alternative representation learning
methods, and show that ROMA best closes the performance gap to an agent supplied with ground-truth
object-information. Specifically, we find that learning an attentive object-model is key to achieving
both the learning speed and the maximum success rate of the ground-truth-information-supplied
agent. By analyzing the object-representations learned by various auxiliary tasks, we find that
incorporating object-attention into forward prediction is key to learning representations discriminative
of object-category and object-state, which we hypothesize is the source of our strong performance.

In summary, the key contributions of our proposal are: (1) ROMA: an RL agent that demonstrates
how to learn sparse-reward object-interaction tasks with egocentric vision without imitation learning
or access to other supervision. (2) a novel Attentive Object-Model that bootstraps representation
learning of objects and attention over them. (3) Relational Object-DQN: a novel relational RL
architecture for object-centric observation- and action-spaces.

2 RELATED WORK

Reinforcement learning for 3D, egocentric object-interaction tasks. Jain et al. (2019) formulate
a multi-agent reinforcement learning problem where agents coordinate picking up a large object,
and Gordon et al. (2018) developed a hierarchical reinforcement learning agent for visual question-
answering. In contrast to our work, both provide strong supervision from expert trajectories. The
work most closely related to ours is Oh et al. (2017) (in Minecraft) and Zhu et al. (2017) (in Thor).
Both develop a hierarchical reinforcement learning agent where a meta-controller provides goal
object-interactions for a low-level controller to complete using ground-truth object-information. Both
provide agents with knowledge of all objects, both assume lower-level policies pretrained to navigate
to objects and to select interactions with a desired object. In contrast, we do not provide the agent
with any ground-truth object information; nor do we pretrain navigation to objects or selection of
them.

Object-models for improved sample-efficiency. Prior work here has focused on how an object-
model can improve sample-efficiency in a model-based reinforcement learning setting by enabling
superior planning (Ye et al., 2020; Veerapaneni et al., 2020; Watters et al., 2019). In contrast, we do
not use our model for planning and instead show that it can be leveraged for object-representation and
object-attention learning to support faster policy learning in a model-free setting. Our attentive object-
model is most similar to the Contrastive Structured World Model (CSWM) (Kipf et al., 2019), which
also uses contrastive learning to learn an object-model. However, they use a graph neural network
(GNN) to learn relations between all objects in a scene, whereas we employ attention to attend to
the objects most important for predicting dynamics. We note that these benefits are orthogonal and
could be combined in future work for a GNN-based object-model with reduced connectivity between
objects. We also note that they applied their model towards video-prediction and not reinforcement
learning.

Relational RL. Most work here has used hand-designed relational representations. Xu et al. (2020)
showed improved sample-efficiency, Zaragoza et al. (2010) showed improved policy quality, and
Van Hoof et al. (2015) showed generalization to unseen objects. In contrast, we seek to learn
object-relations implicitly via attention without our network. Most similar to our work is Zambaldi
et al. (2018)–which applies attention to the feature vector outputs of a CNN. They then apply a
max-pooling operation to produce a vector input for a policy that selects a coordinate on a screen
with a corresponding modifier action. In this work, Relational Object-DQN is a novel architecture
extension for a setting with an object-centric observation- and action-space. Additionally, we show
that attention can further be exploited by an object-model to improve sample-efficiency.
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Figure 1: We present the steps required to complete two of our tasks. In the top panel, we present “Toast Bread
Slice”, where an agent must pickup a bread slice, bring it to the toaster, place it in the toaster, and turn the toaster
on. In order to complete the task, the agent needs to recognize the toaster across angles, and it needs to recognize
that when the bread is inside the toaster, turning the toaster on will cook the bread. In the bottom panel, we
present “Place Apple on Plate & Both on Table”, where an agent must pickup an apple, place it on a plate, and
move the plate to a table. Like “Toast Bread Slice”, it must recognize that because the objects are combined,
moving the plate to the table will also move the apple. We observe that learning to use objects together such as
in the tasks above poses a representation learning challenge – and thus policy learning challenge – when learning
from only a task-completion reward.

3 SPARSE-REWARD OBJECT-INTERACTION TASKS IN A FIRST-PERSON
SIMULATED 3D ENVIRONMENT

Observations. We focus on an embodied agent that has a 2D camera for experiencing egocentric
observations xego of the environment. Our agent also has a pretrained vision system that enables it to
extract bounding box image-patches corresponding to the visible objects in its observation Xo =
{xo,i} (but not object labels or identifiers). We also assume that the agent has access to its (x, y, z)
location and body rotation (ϕ1, ϕ2, ϕ3) in a global coordinate frame, xloc = (x, y, z, ϕ1, ϕ2, ϕ3).

Actions. In this work, we focus on the Thor environment. Here, the agent has 8 base object-
interactions: I = {Pickup, Put, Open, Close, Turn on, Turn off, Slice, Fill}. The agent interacts
with objects by selecting (object-image-patch, interaction) pairs a = (b, xo,c) ∈ I ×Xo, where xo,c
corresponds to the chosen image-patch. For example, the agent can Turn on the stove by selecting the
image-patch containing the stove-knob and the Turn on interaction (see Figure 2 for a diagram). Each
action is available at every time-step and can be applied to all objects (i.e. no affordance information
is given/used). Interactions occur over one time-step, though their effect may occur over multiple.
For the example above, when the agent applies “Turn on” to the stove knob, food on the stove will
take several time-steps to heat.

In addition to object-interactions, the agent can select from 8 base navigation actions: AN = {Move
ahead, Move back, Move right, Move left, Look up, Look down, Rotate right, Rotate left}. With
{Look up, Look down}, the agent can rotate its head up or down in increments of 30◦ between angles
{0◦,±30◦,±60◦} where 0◦ represents looking straight ahead. With {Rotate Left, Rotate Right}, the
agent can rotate its body by {±90o}. While we forgo the complexity of learning to control actuators
required for locomotion and dexterous manipulation, by defining interactions over visible objects, we
maintain the complexity of needing to recognize and decide between visible objects and navigating
towards other objects.

Reward. We consider a single-task setting where the agent receives a terminal reward of 1 upon
task-completion. Due to the large action-space our agent acts in, this leads the agent to face a sparse
reward problem. Please see appendix C for a description of the tasks we study.

4 ROMA: RELATIONAL, OBJECT-MODEL LEARNING AGENT

ROMA is a reinforcement learning agent composed of an object-centric relational policy, Relational
Object-DQN, and an Attentive Object-Model. ROMA uses 2 perceptual modules. The first, foenc, takes
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in an observation x and produces object-encodings {zo,i}ni=1 for the n visible object-image-patches
Xo = {xo,i}ni=1, where zo,i ∈ Rdo. The second, fκenc, takes in the egocentric observation and location
xκ = [xego, xloc] to produce the context for the objects zκ ∈ Rdκ. ROMA treats state as the union
of these variables: s = {zo,i} ∪ {zκ}. Given object encodings, Relational Object-DQN computes
action-values Q(s, a = (b, xo,i)) for interacting with an object xo,i and leverages an attention module
R to incorporate information about other objects xo,j 6=i into this computation (see §4.1).

To address the representation learning challenge induced by a sparse-reward signal, object-
representations zo,i and object-attentionR are trained to predict object-dynamics with an attentive
object-model (see §4.2). We exploit the observation that when ROMA interacts with object-patch
xo,c, relevant object-patches xo,j 6=c that lead to more accurate object-dynamics predictions also lead
to more accurate Q-value esimation. Thus, learning an attentive object-model enables faster learning
of the Relational Object-DQN policy. See Figure 2 for an overview of the full architecture.

Figure 2: Full architecture and processing pipeline of ROMA. A scene is broken down into object-image-patches
{xo,j} (e.g. of a pot, potato, and stove knob). The scene image is combined with the agent’s location to define
the context of the objects, xκ. The objects {xo,j} and their context xκ are processed by different encoding
branches and then recombined by an attention moduleR that selects relevant objects for computing Q-value
estimates. Here,R might select the pot image-patch when computing Q-values for interacting with the stove-
knob image-patch. Actions are selected as (object-image-patch, base action) pairs a = (b, xo,c). The agent then
predicts the consequences of its interactions with our attentive object-model fmodel which reusesR.

4.1 RELATIONAL OBJECT-DQN

Relational Object-DQN uses Q̂(s, a) to estimate the action-value function
Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt|St = s,At = a], which maps state-action pairs to the expected re-
turn on starting from that state-action pair and following policy π thereafter. It leverages Q̂ by
behaving according to a policy that is ε-greedy w.r.t. Q̂(s, a): i.e. π(a|s) = argmaxa Q̂(s, a) with
probability 1− ε and is uniformly random otherwise.

Attending over objects relevant for action-value estimation. In many tasks, an agent must inte-
grate information about multiple objects when estimating Q-values. For example, in the “toast bread”
task, the agent needs to integrate information about the toaster and the bread when deciding to turn
on the toaster. To accomplish this, we exploit the object-centric observations-space and employ
attention Vaswani et al. (2017) to attend to objects that aid in estimating Q-values.

More formally, given an object-encoding zo,i, we can use attention to select relevant objects
R(zo,i,Zo) ∈ Rdo for estimating Q(s, a = (b, xo,i)). With a matrix of object-encodings,
Zo =

[
zo,i
]
i
∈ Rn×do , we can perform this computation efficiently for each object-image-patch via: R(z

o,1,Zo)
...

R(zo,n,Zo)

 = Softmax

(
(ZoW qo)

(
ZoW k

)>
√
dk

)
Zo. (1)

Here, ZoW qo projects each object-encoding to a “query” space and ZoW k projects each encoding to
a “key” space, where their dot-product determines whether a key is selected for a query. The softmax
acts as a soft selection-mechanism for selecting an object-encoding in Zo.
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Estimating object-interaction action-values. We can incorporate attention to estimate Q-values
for selecting an interaction b ∈ I on an object xo,i as follows:

Q̂(s, a = (b, xo,i)) = fint([z
o,i,R(zo,i,Zo), zκ]) ∈ R|I| (2)

Importantly, this enables us to compute Q-values for a variable number of unlabeled objects.

Estimating navigation action-values. We can similarly incorporate attention to compute Q-values
for navigation actions by replacing ZoW qo with (W qκzκ)

> in equation 1. This then selects object-
image-patches in the observation important for selecting a navigation action (e.g. the agent might
want to move ahead if it sees bread). We estimate Q-values for navigation actions b ∈ AN as follows:

Q̂(s, a = b) = fnav([z
κ,R(zκ,Zo)]) ∈ R|AN | (3)

Learning. We estimate Q̂(s, a) as a Deep Q-Network (DQN) by minimizing the following temporal
difference objective:

LDQN = Est,at,rt,st+1

[
||yt − Q̂(st, at; θ)||2

]
, (4)

where yt = rt+γQ̂(st+1, at+1; θold) is the target Q-value, and θold is an older copy of the parameters
θ. To do so, we store trajectories containing transitions (st, at, rt, st+1) in a replay buffer that we
sample from Mnih et al. (2015). To stabilize learning, we use Double-Q-learning Van Hasselt et al.
(2016) to choose the next action: at+1 = argmaxa Q̂(st+1, a; θ).

4.2 ATTENTIVE OBJECT-MODEL

Discriminating object-states based on their source interaction. In order to successfully complete
a task, an agent needs to learn object-representations that are discriminative across object-states
so that correct actions are chosen as object-states change over a task. To address this, we learn an
object-model with a contrastive learning loss that contrasts transitions for a query object based on a
given object-interaction.

Consider the global set of objects {ogt,i}mi=1, where m is the number of objects in the environment.
At each time-step, each object-image-patch the agent observes corresponds to a 2D projection of ogt,i,
ρ(ogt,i) (or ρg,it for short). Given, an object-image-patch, ρg,it and a performed interaction at, we can
define an object-model as F (Xo

t , ρ
g,i
t , at) that produces the resultant encoding for ρg,it+1. We want

F (Xo
t , ρ

g,i
t , at) to be closer to ρg,it+1 than to encodings of other object-image-patches.

Learning problem. We can formalize this by setting up a classification problem. For an object-
image-patch ρg,it , we define its anchor (or query) by our object-model F (Xo

t , ρ
g,i
t , at). We define the

positive (or correct answer) as the encoding of a visible object-image-patch at the next time-step with
the highest cosine similarity to the original encoding: zo,i+ = argmaxzo,jt+1

cos(zo,it , zo,jt+1). We can
then select K random object-encodings {zo,ik,−}Kk=1 as negatives (or incorrect answers). This leads to:

p(ρg,it+1|Xo
t , at) =

exp(F (Xo
t , ρ

g,i
t , at)

>zo,i+ )

exp(F (Xo
t , ρ

g,i
t , at)>z

o,i
+ ) +

∑
k exp(F (X

o
t , ρ

g,i
t , at)>zok,−)

. (5)

The set of indices corresponding to visible objects at time t is vt = {i : ρg,it is visible at time t}.
Assuming the probability of each object’s next state is conditionally independent given the current set
of objects and the action taken, we arrive at the following objective:

Lmodel = Est,at,st+1

[
− log p(Xo

t+1|Xo
t , at)

]
= Est,at,st+1

− ∑
i∈vt+1

log p(ρg,it+1|Xo
t , at)

 .
L = LDQN + βmodelLmodel.

(6)

Leveraging object-attention for improved accuracy. Consider slicing an apple with a knife. When
selecting “slice” on the apple patch,R(zo,i,Zo) must the select the knife patch to accurately estimate
the Q-values via equation 2. We observe thatR(zo,i,Zo) can also be employed by our object-model
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F (Xo
t , ρ

g,i
t , at) to support higher classification accuracy when predicting how the object-encoding

will change post interaction. We can incorporate this to obtain an attentive object-model as follows:

F (Xo
t , ρ

g,i
t , at) = fmodel([z

o,j
t ,R(zo,jt ,Zo

t ), z
a
t ]). (7)

To learn an action encoding zat for action at, following Oh et al. (2015); Reed et al. (2014), we
employ multiplicative interactions so our learned action representation zat compactly models the
cartesian product of all base actions b and object-image-patch selections oc as

zat =W ozo,ct �W bbt, (8)

where W o ∈ Rda×do , W b ∈ Rda×|AI |, and � is an element-wise hadamard product. In practice,
fmodel is a small 1- or 2-layer neural network making this method compact and simple to implement.

5 EXPERIMENTS
The primary aim of our experiments is to examine how an object-centric observation- and action-
space can best be exploited to improve sample-complexity for sparse-reward object-interaction
tasks. We find that we can learn such tasks without imitation learning by imbuing our object-centric
relational Q-learner with rich hand-designed object-representations. We study strong unsupervised
object-representation learning techniques and find that learning to predict object dynamics with our
attentive object-model best matches the success rate obtained using rich hand-designed features. The
second aim of our experiments is to study the object representations learned by each method. We find
quantitative evidence that learning with our attentive object-model yields representations that best
discriminate object category, object state and object relations.

5.1 EVALUATION TASKS AND REWARD FUNCTION

Using common kitchen activities as inspiration, we constructed 8 tasks in the Thor environment that
require an agent learn to collect objects and use them together using only a sparse task-completion
reward. These tasks vary in their optimal length, the visually complexity of task objects, the number
of objects to be used together, and in whether objects must be combined for further use. Across
tasks, the agent’s spawning location is randomized from 81 grid positions. The agent receives reward
1 if a task is completed successfully and a time-step penalty of −0.04. The agent has a budget of
500K samples to learn a task. We found that this was the budget needed by a relational agent with
oracle object-information. We report results on the 8 tasks that had the highest optimal length. See
descriptions of the tasks in appendix C.

5.2 BASELINE METHODS FOR COMPARISON

In order to study the effects of competing object representation learning methods, we compare
combining Relational Object-DQN with the Attentive Object-Model against four baseline methods:
1. No-Auxiliary Task. This method has no representation learning method and lets us study how

well an agent can learn from the sparse-reward signal alone.
2. Ground-Truth Object-Information. This method has no auxiliary task. Instead, we supply the

agent with the following simulator information: object-category (i.e. an object’s type), object-id (i.e.
an object’s token), object-state (e.g. on, off, etc.), and object-containment (i.e. is the object in/on
another object and if so, which object). We found that this hand-designed object-representation
enabled Relational Object-DQN to learn all our tasks within our sample-budget and it is our basis
for comparing unsupervised object-representation learning methods.

3. OCN. The Object Contrastive Network (Pirk et al., 2019). This method also employs contrastive
learning but seeks to cluster object-images across time-steps. This enables us to study whether
contrasting object-transitions is more effective than contrasting object-images.

4. COBRA Object-Model. This is a non-attentive object-model employed by the COBRA RL
agent (Watters et al., 2019). They also targeted improved sample-efficiency—though in a simpler,
fully-observable 2D environment with basic shapes. This lets us verify our claim that incorporating
attention into an object-model further improves sample-efficiency. We adapt COBRA’s object-
model to assume and predict object-image-patches.

5.3 LEARNING RESULTS

Metrics. We evaluate agent performance by measuring the agent’s success rate over 5K frames every
25K frames of experience. The success rate is the proportion of episodes that the agent completes.
We compute the mean and standard error of these values across 5 seeds. To study sample-efficiency,
we compare each method to “Ground-Truth Object-Information” by computing what percent of
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Figure 3: Top-panel: we present the success rate over learning for competing auxiliary tasks. We seek a
method that best enables our Relational Object-DQN (grey) to obtain the sample-efficiency it would from adding
Ground-Truth Object-Information (black). Bottom-panel: by measuring the % AUC achieved by each agent
w.r.t to the agent with ground-truth information, we can more precisely measure how close each method is
to ground-truth performance. We find learning with an Attentive Object-Model (ROMA, red) best closes the
performance gap on 6/8.

the Ground-Truth Object-Information mean success rate success rate AUC each method achieved.
We present the success rate learning curves and a sample-efficiency bar-graph in Figure 3. We
additionally present the maximum success rate achieved by each method in Table 1.

Performance. Looking at Table 1, we find that using Ground-Truth Object-Information is able to get
the highest success rate on 7/8 tasks and achieves a 90+% success rate for 7/8 tasks. It, and all other
methods, achieve 80% on “Slice Apple, Potato, Lettuce”, a task that requires using 4 objects. We find
that tasks that require more objects have a higher sample-complexity. No-Auxiliary Task performs
below all methods besides OCN on 7/8 tasks. Surprisingly, No-Auxiliary Task outperforms OCN
on 5/8 tasks. OCN learns an embedding space where object-images across time-steps are clustered
together. We hypothesize that this leads it to lose the ability to discriminate object-states, which is
important for our tasks.

auxiliary
Task Slice Bread Slice Lettuce

and Tomato
Slice Apple,

Potato, Lettuce
Cook Potato

on Stove
Fill Cup

with Water
Toast

Bread Slice
Apple on Plate,
Both on Table

Make
Salad

No-Auxiliary Task 80.6± 7.8 89.6± 3.0 23.5± 14.7 80.6± 12.9 96.3± 0.7 48.5± 18.2 20.2± 16.1 81.4± 7.3
Ground-Truth
Object-Info 98.6± 0.2 98.8± 0.2 80.2± 10.8 97.7± 0.2 95.2± 0.4 93.3± 2.3 90.5± 3.2 96.6± 0.2

OCN 77.6± 13.9 72.0± 15.1 43.4± 16.3 70.9± 9.6 38.2± 20.9 3.0± 1.9 23.2± 18.0 90.2± 1.8
COBRA

Object-Model 95.3± 1.2 93.4± 1.4 71.7± 16.2 88.6± 3.3 35.0± 19.3 15.1± 13.5 74.1± 14.8 92.7± 1.4

Attentive
Object-Model 94.4± 1.8 94.2± 0.5 81.9± 4.4 91.7± 2.3 94.5± 1.0 91.1± 2.1 88.1± 3.4 92.8± 0.5

Table 1: Maximum success rate achieved by competing auxiliary tasks during training.

In terms of maximum success rate, looking at Table 1, our Attentive Object-Model comes closest
to Ground-Truth Object-Information on 5/8 tasks and is tied on 3/8 tasks with the COBRA Object-
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Model. However, for tasks that require using objects together, such as “Fill Cup with Water” where
a cup must be used in a sink or “Toast Bread Slice” where bread must be cooked in a toaster, the
COBRA Object-Model exhibits a higher sample-complexity. In terms of sample-efficiency, our
Attentive Object-Model comes closest to Ground-Truth Object-Information on 4/8 tasks and learns
more quickly on 2/8 tasks. We suspect that this is due to its ability to bootstrap object-attention.

5.4 ANALYSIS OF LEARNED OBJECT REPRESENTATIONS

We conjecture that incorporating attention into an object-model is key to having it accurately model
object-transitions and thus learn object-representations that are discriminative of object-category,
object-state, and object-relations. To probe these representations, we analyze each agent’s object-
encoding function foenc. We freeze their parameters, and add a linear layer to predict some of the
Ground-Truth Object-Information features using a dataset of collected object-interactions we con-
struct. The dataset contains (s, a, s′) tuples from an oracle agent we create to complete a tasks such as
“Cook X with Stove”, where X ∈ {Potato, Potato Slice, Cracked Egg}. We study the following fea-
tures: Category is a multi-class label indicating an object’s category. The following are binary labels.

Representation Learning
Method Category Object-State Containment

Relationship

OCN 39.2± 8.2 66.5± 8.5 69.1± 9.0
COBRA Object-Model 79.8± 2.8 73.4± 8.9 83.1± 5.8
Attentive Object-Model 88.6± 3.5 98.6± 0.3 94.3± 0.6

Table 2: Performance of different unsupervised learning methods
for learning object-features (see text above for details). We find
that incorporating attention into an object-model is key to capturing
object-features useful for task-learning.

Object-State indicates whether objects
are closed, turned on, etc. Contain-
ment Relationship indicates if an ob-
ject is inside another object or has
another object inside of it. For each
feature, we present the mean average
precision and standard error for each
method across all 8 tasks in Table 2.
See Appendix C.3 for more details.
We find that an attentive object-model
best captures these features, which we
hypothesize drives our strong task-learning performance.

5.5 OBJECT-ATTENTION ABLATION

Figure 4: Ablation of Object-Attention. We show results
for DQN conditioned only on object-images without object-
attention.

We present results for object-DQN with-
out a relational bias (i.e. without attention).
This amounts to removingR(·) from equa-
tion 2 and equation 3. Without attention,
we see that object-DQN has a hard time
learning tasks, including for “Fill Cup with
Water”, which it was able to excel in as
seen in Figure 3 and Table 1. This indi-
cates that it’s not only good representations
that’s important for efficient learning but
also the ability to relate objects via atten-
tion. We note that ROMA can excel in both
of these settings.

6 CONCLUSION

With ROMA, we have shown that learning a attentive object-model in tandem with a relational
object-centric policy can enable sample-efficient learning in high-fidelity, 3D, object-interaction
domains without access to expert demonstrations or ground-truth object-information. Further, when
compared to strong unsupervised object-representation learning baselines, we have shown that our
attentive object-model is able to best capture ground-truth object information such as object categories,
states of objects, and the presence of interesting object relationships. We believe ROMA and the
components that power it—a relational object-centric policy and an attentive object-model—are
promising steps towards agents that can efficiently learn complex object-interaction tasks.
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