
Discrete Modeling via Boundary Conditional Diffusion
Processes

Yuxuan Gu† Xiaocheng Feng†‡ Lei Huang† Yingsheng Wu† Zekun Zhou†

Weihong Zhong† Kun Zhu† Bing Qin†‡
†Harbin Institute of Technology ‡ Peng Cheng Laboratory

{yxgu,xcfeng,lhuang,yswu,zkzhou,whzhong,kzhu,qinb}@ir.hit.edu.cn

Abstract

We present an novel framework for efficiently and effectively extending the power-
ful continuous diffusion processes to discrete modeling. Previous approaches have
suffered from the discrepancy between discrete data and continuous modeling. Our
study reveals that the absence of guidance from discrete boundaries in learning
probability contours is one of the main reasons. To address this issue, we propose a
two-step forward process that first estimates the boundary as a prior distribution and
then rescales the forward trajectory to construct a boundary conditional diffusion
model. The reverse process is proportionally adjusted to guarantee that the learned
contours yield more precise discrete data. Experimental results indicate that our
approach achieves strong performance in both language modeling and discrete
image generation tasks. In language modeling, our approach surpasses previous
state-of-the-art continuous diffusion language models in three translation tasks and
a summarization task, while also demonstrating competitive performance compared
to auto-regressive transformers. Moreover, our method achieves comparable results
to continuous diffusion models when using discrete ordinal pixels and establishes a
new state-of-the-art for categorical image generation on the CIFAR-10 dataset.

1 Introduction

Discrete modeling is essential due to the natural prevalence of discreteness in numerous domains,
including proteins [Madani et al., 2020, 2023], images [Parmar et al., 2018, Dosovitskiy et al., 2021],
and natural language [Sutskever et al., 2014, Brown et al., 2020]. Recent dominant framework
for discrete modeling is the Transformer [Vaswani et al., 2017] with an autoregressive manner.
While achieving impressive performance, it does suffer from a slow step-by-step generation process,
especially for long sequences. Continuous Diffusion models [Sohl-Dickstein et al., 2015, Ho et al.,
2020], on the contrary, exhibit the ability to recover high-dimensional data from noise in parallel
with limited iteration steps. Although proved to be effective in continuous data generation [Rombach
et al., 2022, Kong et al., 2021], they continue to encounter challenges in discrete modeling [Austin
et al., 2021, Chen et al., 2023b, Li et al., 2022, Gong et al., 2023b].

In this paper, we reveal a significant discrepancy pertaining to the modeling of discrete data using
continuous diffusion models. Current approaches represent a discrete sample with a vector point in
the continuous space. The diffusion process learns a neural network to model the probability distribu-
tions that recovers this continuous point from Gaussian noise. However, the discrete data actually
corresponds to an area in the continuous space rather than a single point, where the oversimplified
assumption leads to a mismatch between learned probability contours and the boundary of the discrete
area. Take language generation as an example, a word is represented with an embedding vector in the
embedding space. To generate this word, it is impractical to strictly enforce the predicted vector to be
an exact match to the embedding. On the contrary, vectors around this embedding can also generate

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



the same word, thereby defining the collective area they encompass as a discrete area of this word.
As illustrated in Figure 1A, suppose the learned probability density function is pθ(x) and two points
xi and xo are sampled in the same density contour where pθ(xi) = pθ(x

o). It is obvious that xi lies
in the discrete area and is able to recover the discrete data while xo can not. This means that the
diffusion model only learns a simplified scenario that does not match the real probability distribution.

(A) (B)

Discrete Area ⇐
x0 ⇐

(A) (B)

Discrete Area ⇐
x0 ⇐

∇p(x|x0)

∇pθ(x)

xi xo

Figure 1: (A) Blue and green curves are the learned prob-
ability density contours of the diffusion model for two data
points. The red area is the discrete area of the blue data x0

and the boundary of this area is naturally a density contour.
The discrete boundary is a complex hypersurface in the high-
dimensional continuous space and we simplify it into a red
line for convenience of description. As observed in the mag-
nified part, the learned contours deviate from the boundary
contour, resulting in inconsistent probability densities and
gradient directions. (B) We consider the discrete boundary
as priors for the diffusion process to estimate a more appro-
priate probability distribution, where the learned contours
are expected to follow the shape of the discrete boundary.

To address the issues above, we pro-
posed to take the boundaries of dis-
crete areas as priors, as shown in Fig-
ure 1B, where boundary curves are re-
garded as oracle contours. As it grad-
ually approaches the discrete bound-
ary, the learned density contours of
diffusion models are expected to trans-
form from Gaussian distributions to
the boundary distribution. Therefore,
we propose to divide the forward pro-
cess into two steps. First is the bound-
ary estimation where we precisely cal-
culate the stopping time t0 and po-
sition xt0 at which the forward tra-
jectory cross the boundary. Then we
rescale the trajectory for both train-
ing and inference stages to make the
sampling probability of noisy point xt

conditioned on the boundary. To make
the boundary estimation tractable (ap-
pendix A) and eliminate randomness
in conditional state transitions xt0 →
xt, we utilize the Ordinary Differential Equations (ODEs) to describe the forward trajectory.

Our approach is experimented in both language modeling and discrete image generation. On three
machine translation datasets (IWSLT14 DE-EN [Cettolo et al., 2012], WMT14 EN-DE, WMT16
EN-RO) and a text summarization dataset (GIGAWORD [Rush et al., 2015]) for language modeling,
our proposed approach not only significantly improves existing diffusion models to at most 7.8%
but also achieves competitive performance to autoregressive transformers. For image generation on
CIFAR-10 [Krizhevsky et al., 2009], our model realizes a comparable result to continuous diffusion
models with discrete ordinal pixels and establishes a new state-of-the-art for categorical pixels.

2 Preliminaries

Diffusion Models To model a real distribution q(x0), diffusion models utilize a forward process
pt(x|x0) with T steps to gradually add Gaussian noise π(x) = N (0, I) into the data distribution,
where pT (x|x0) = π(x). There are different architectures for the forward process. A common
approach [Ho et al., 2020] considers the forward process as the Markovian process, where pt(x|x0) =∏t

s=1 ps(xs|xs−1) combines a series of Gaussian distributions. Thus the forward process follows a
Gaussian distribution that pt(x|x0) = N (

√
ᾱtx0, (1− ᾱt)I) (Variance Preserving) or pt(x|x0) =

N (x0, σ
2
t I) (Variance Exploding) [Song et al., 2021b], where noise scheduler ᾱt monotonically

decreases from 1 to 0 and σt increases from sufficiently small to the maximum pairwise distance
between all training data points. To recover data from noise, diffusion processes train neural networks
xθ(xt, t) to predict x0 (other equivalent targets include ϵ and ∇ log p(xt)) from xt ∼ pt(x|x0):

Lθ = Et∼U(1,T ),x0∼q(x0),xt∼pt(x|x0)

[
∥x0 − xθ(xt, t)∥2

]
. (1)

Samples are generated with a series of reverse state transition p(xt−1|xt,xθ(xt, t)).

Flow Matching Another architecture [Lipman et al., 2023] utilizes the ODEs and defines a
time-dependent flow function ϕt(x) = σt(x0)x + µt(x0) that maps pt(x|x0) = [ϕt]∗π(x) =

π(ϕ91t (x))
∣∣∣detdϕ

91
t (x)
dx

∣∣∣ = N (µt(x0), σ
2
t (x0)I), where µt and σt can be the same as in diffusion

2



1σ

1σ

xr
0

xb
0

t = 0

=⇒
⇐=

1σ

1σ

xr
0

xb
0

t = T/2

=⇒
⇐=

1σ

1σ

xr
0

xb
0

t = T
(A) Rescaled Probability Contours (B) Rescaled Forward Trajectory

Gaussian Distribution

Discrete Area of x0

xT ≃ϵ → x̃T

xτ → x̃t

xt0→x̃1

x0

Figure 2: (A) Rescaled Probability Contours. The bold curve 1σ is the density contour of one
standard deviation. As the time t decreases from T to 0, the rescaled contours will gradually fit
the discrete boundary and probability densities will also concentrate to this boundary. (B) Rescaled
Forward Trajectory. Original forward trajectory x0 → xt0 → xτ is rescaled to be a boundary
conditional trajectory x̃1→ x̃t that starts from x̃1 = xt0 . The rescaled forward distribution p̃t(x̃t|x0)
is transformed from the discrete boundary to Gaussian distributions.

models or a more straightforward form that µt = (1 − t
T )x0 and σt = t

T . Recovering data
from noises relies on the vector field ut(x|x0) that generates the probability path with the ODE
dϕT−t(x) = uT−t(ϕT−t(x)|x0)dt, t : 0 → T . Neural networks uθ(x, t) are trained to estimate the
vector field ut(x|x0) via the following objective:

Lθ = Et∼U(1,T ),x0∼q(x0),xT∼π(x)

[∥∥∥∥uθ(ϕt(xT ), t)−
dϕt(xT )

dt

∥∥∥∥2
]
. (2)

Besides, the vector field is proved to have the form:

ut(x|x0) =
σ′
t(x0)

σt(x0)
(x− µt(x0)) + µ′

t(x0), where apostrophe indicates derivative to t. (3)

3 Methodology

As illustrated in Figure 2, our objective is to refine the probability density contours of pt(x|x0) so that
they better fit the boundaries of discrete samples while still allowing for the ease of sampling. Let x0

denote the samples from a real distribution q(x0). Obtaining a boundary-aware corresponding noisy
data x at time t ∈ [1, T ] is pt(x|x0) =

∫
pt(x,xt0 , t0|x0)dxt0dt0, where t0 is a random variable

distributed according to when the diffusion trajectory and the discrete boundary intersect, and xt0 is
the corresponding sample point at t0. Then the forward process is rescaled in two steps:

p̃t(x|x0) =

∫
p̃t(x|xt0 , t0,x0)︸ ︷︷ ︸

Trajectory Rescaling

p(xt0 , t0|x0)︸ ︷︷ ︸
Boundary Estimation

dxt0dt0, (4)

where the latter term is to calculate the discrete boundaries and the former term is to rescale the
forward trajectory. In order to make the equation tractable and ensure that x and xt0 are on the same
trajectory, we model the forward process with flow functions ϕt(x) and extend the notation as:

ψt(x) = u(x0, t) x0 + v(x0, t) x, pt(x|x0) = [ψt]∗π(x) (5)

where u(·) and v(·) are coefficient functions and sampling xt from pt(x|x0) equals to

xt = ψt(ϵ), ϵ ∼ π(x) = N (0, I). (6)

3.1 Estimate Discrete Boundaries

Before figuring out the joint distribution p(xt0 , t0|x0), let’s start by discussing how to verify whether
an arbitrary point x in the continuous space belongs to the discrete area of x0. Suppose x0, which
exists in the continuous space S, is the representation vector of a discrete random variable I in a
discrete space with K states. Besides, J is another discrete random variable i.i.d. with I. We define
the discrete area of x0 in the continuous space S as:

CI = {∀x ∈ S|f(x, I) > f(x,J ),∀J ̸= I}, (7)

3



where f(x, I) is a function assessing the likelihood of an arbitrary continuous point x inside the
discrete area of x0. For instance, in language modeling, K is the vocabulary size. I,J ∈ Kn are two
different sequences of n tokens and x0 ∈ R[n,m] is a sequence of m-dimensional vector embeddings
for I. f(x, I) is the dot similarity function. CI collects all vectors in the embedding space that will
be decoded to generate I and excludes vectors associated with any other token sequences J .

Given a noisy point xt0 locating at the boundary between CI and CJ , we can get |f(xt0 , I) −
f(xt0 ,J )| = 0 based on previous definition. Replacing xt0 with eqs. (5) and (6), there is:

f(ut0x0 + vt0ϵ, I) = f(ut0x0 + vt0ϵ,J ). (8)

In language modeling and categorical images, f(·) is a linear projection function that:

ut0(f(x0, I)− f(x0,J )) = vt0(f(ϵ,J )− f(ϵ, I)). (9)

Further simplification of this equation can not be universally applied to all arbitrary forms of ut0 and
vt0 . Therefore, we calculate separately for several commonly occurring special cases.

Diffusion Process For variance preserving, there is u2
t + v2

t = 1 and we have:

ut0 = 1

/√
1 +

(
f(x0, I)− f(x0,J )

f(ϵ,J )− f(ϵ, I)

)2

and vt0 = 1

/√
1 +

(
f(ϵ,J )− f(ϵ, I)
f(x0, I)− f(x0,J )

)2

.

(10)
For variance exploding, there are ut = 1 and vt = σt. We can obtain:

ut0 = 1 and vt0 = (f(ϵ,J )− f(ϵ, I)) / (f(x0, I)− f(x0,J )) . (11)

Flow Matching For optimal transport, there is ut + vt = 1 and similarly we get:

ut0 = 1

/(
1 +

f(x0, I)− f(x0,J )

f(ϵ,J )− f(ϵ, I)

)
and vt0 = 1

/(
1 +

f(ϵ,J )− f(ϵ, I)
f(x0, I)− f(x0,J )

)
. (12)

As a result, t0 can be directly derived by inverting the coefficient function ut or vt, which depends
on the choice of noise scheduling strategies. Since their differences do not affect our results, we omit
the detailed calculation (appendix E) and denote this process with a function G(·):

t0 = G(x0, ϵ), where u(x0, G(x0, ϵ)) = ut0 and v(x0, G(x0, ϵ)) = vt0 . (13)

It’s worth noting that t0 is not a scalar but a vector, where the dimension is the number of elements in
x0. If x0 is a sequence of n tokens, t0 ∈ [1, T ]n. If x0 is a RGB image with 3-channel × h-height ×
w-width of pixels, t0 ∈ [1, T ]3×h×w. Furthermore, the corresponding noisy sample xt0 is derived as:

xt0 = u(x0, G(x0, ϵ))x0 + v(x0, G(x0, ϵ))ϵ = ψG(x0,ϵ)(ϵ), (14)

which is a time-independent function of the Gaussian noise ϵ. It’s worth mentioning that both p(t0|x0)
and p(xt0 |x0) are intractable, since G(x0, ϵ) and ψG(x0,ϵ)(ϵ) are not invertible to ϵ. Different ϵs
can be mapped to a same t0 or xt0 . Fortunately, there is an one-to-one mapping between ϵ and the
[xt0 ; t0] pair. We denote the boundary flow function and the corresponding inversion as

Ψ(ϵ) = [ψG(x0,ϵ)(ϵ);G(x0, ϵ)], Ψ91([xt0 ; t0]) = (xt0 − u(x0, t0)x0)/v(x0, t0), (15)

and the joint boundary distribution is calculated as

p(xt0 , t0|x0) = [Ψ]∗π([xt0 ; t0]). (16)

The support set of xt0 is restricted to the boundary contour, while other regions in the space are
assigned a probability of 0. To obtain the complete boundary, it is necessary to iterate over all possible
choices of J and perform pairwise comparisons with I. The complexity is O(n × K), where n
elements in x0 is independently iterated. In practical implementation, obtaining the tightest boundary
only requires one step of parallel calculation and an extra min(·) function over all t0 candidates.

4



Confidence Factor The discrete area defined by eq. (7) represents an ideal scenario in which the
confidence of the boundary is insufficiently reliable for practical application. Due to the intractability
of obtaining the probability density function across the entire discrete area and calculating its
confidence interval, we employ an empirical strategy. This approach involves utilizing a confidence
factor, denoted as r, ranging from 0 to 1, which is multiplied by t0 to strike a balance between
confidence and discreteness. Therefore, r = 0 implies the exclusion of discrete priors, causing
the discrete area to collapse into a single point, which is the original diffusion process. As the
value of r increases, the modeling of discrete boundaries improves at the expense of reliability.
Empirically, when the model is conditioned with good guidance, setting a larger value for r allows
us to obtain better discrete priors. However, in the case of unconditional modeling, maintaining
reliability becomes more crucial to prevent oscillations and even collapses during training.

3.2 Rescale the Forward Trajectory

In this section, we introduce how to formulate the forward trajectory conditioned on discrete bound-
aries and derive the rescaled noisy sampling distribution. We start with the boundary-independent
forward process pt(x|x0). Let xt denote a noisy point at time t sampled from pt(x|x0), there is
ϵt = (xt − u(x0, t)x0) /v(x0, t) given eq. (5). Equations (13) and (14) provide the corresponding
[xt0 ; t0] pair on the same trajectory, which is deterministically calculated with no randomness:

[xt0 ; t0] = Ψ(ϵt), where ϵt = (xt − u(x0, t)x0) /v(x0, t). (17)
To model the transition probability pt(xt0 , t0|xt,x0), we utilize the Dirac delta function δ(x) ≃
limσ→0 N (0, σ2I), which can be loosely thought of as aggregating all probability densities toward
the origin, assigning an infinite density at the origin and zero densities elsewhere. Therefore, we have
pt(xt0 , t0|xt,x0) = δ ([xt0 ; t0]−Ψ(ϵt)) . Then the forward process, conditioned on the discrete
boundary, is simply derived via Bayes’ rule:

pt(xt|xt0 , t0,x0) = pt(xt0 , t0|xt,x0)
pt(xt|x0)

p(xt0 , t0|x0)
=


0, [xt0 ; t0] ̸= Ψ(ϵt)

+∞× pt(xt|x0)

p(xt0 , t0|x0)
, otherwise

.

(18)
Since pt(xt|x0) > 0 and p(xt0 , t0|x0) > 0, pt(xt|xt0 , t0,x0) is also a delta function that

pt(xt|xt0 , t0,x0) = δ
(
xt − u(x0, t)x0 − v(x0, t)Ψ

91([xt0 ; t0])
)
. (19)

Based on the translation property of the Dirac delta function, i.e.
∫
f(x)δ(x − a)dx = f(a), the

original forward process pt(xt|x0) = [ψt ◦ Ψ91 ◦ Ψ]∗π(xt) = [ψt]∗π(xt) naturally ignores the
influence of discrete boundaries, even if the boundary information is explicitly added as a condition.

To enable the discrete priors, we propose a simple and intuitive approach: rescale the forward
trajectory. As shown in Figure 2B, the original forward process flows from x0 to a random noise ϵ,
and we reset the starting point to xt0 . Accordingly, the intermediate noisy points xt, t ∈ [1, T ] will
be proportionally mapped on this new path, which is

x̃t = xτ , τ = T (t, t0) = r × t0 + t× (T − r × t0)/T

= u(x0, T (t, t0))x0 + v(x0, T (t, t0))Ψ
91 ([xt0 ; t0]) .

(20)

Similar to eq. (19), the rescaled conditional forward process is a Dirac delta function:
p̃t(x̃t|xt0 , t0,x0) = δ

(
x̃t − u(x0, T (t, t0))x0 − v(x0, T (t, t0))Ψ

91 ([xt0 ; t0])
)
. (21)

However, p̃t(x̃t|x0) faces the same problem of irreversibility as in eq. (14) and we derive it as:

p̃t(x̃t|x0) =

∫
p̃t(x̃t, τ |x0)dτ =

∫
p̃t(x̃t, τ |xt0 , t0,x0)p(xt0 , t0|x0)d[xt0 ; t0]dτ

=

∫
[ψτ ◦Ψ91 ◦Ψ]∗π([x̃t; τ ])dτ =

∫
[ψτ ]∗π([x̃t; τ ])dτ.

(22)

Obtaining the probability density function requires gathering together the probability densities of
the same location x̃t with different τ , which is intractable. Fortunately, we only need to sample noiy
points from this probability distribution x̃t ∼ p̃t(x̃t|x0), which is easy to implement:

x̃t = u (x0, T (t, G(x0, ϵ)))x0 + v(x0, T (t, G(x0, ϵ)))ϵ, ϵ ∼ π(x). (23)

3.3 Recover Data from Noise

5



Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0), ϵ ∼ π(x) = N (0, I)
3: t ∼ Uniform({1, . . . , T})
4: τ := T (t, G(x0, ϵ)) // eqs. (13) and (20)
5: x̃t := u(x0, τ)x0 + v(x0, τ)ϵ // eq. (23)
6: Take gradient descent step on

∇θ||x0 − xθ(x̃t, t)||2 // eq. (24)
7: until converged

Training Objective Theoretically, the diffu-
sion neural networks can be trained as in eq. (2),
where the rescaled vector field is derived as
ũt = dx̃t

dt = dx̃t

dτ
dτ
dt . However, since a low

error estimation on x0 is of significant impor-
tance to our trajectory rescaling method, accord-
ing to eqs. (10) to (13), we convert the objec-
tive to an upper bound of the eq. (2) (See ap-
pendix F for more details) and train a neural
network xθ(x̃t, t) to predict x0 directly:

Lθ = Ex0∼q(x0),t∼U(1,T ),x̃t∼p̃t(x|x0)

[
∥x0 − xθ(x̃t, t)∥2

]
. (24)

The training procedure is demonstrated in algorithm 1 and key steps are summarized in the line 4.

Algorithm 2 Sampling
1: t := T , τ := T
2: ϵ̂ ≃ x̃t ∼ N (0, I) // Initialing
3: for ∆t := ∆t1, . . . ,∆ts do //

∑
∆t = T

4: x̂0 := xθ(x̃t, t) // Pseudo Target
5: t := t−∆t // Updating
6: τ := T (t, G(x̂0, ϵ̂)) // eq. (25)
7: x̃t := u(x̂0, τ)x̂0 + v(x̂0, τ)ϵ̂
8: ϵ̂ := Ψ91([x̃t; τ ]) // Trajectory Alteration
9: end for

10: x0 := xθ(x̃t, t) // x1 → x0

11: return x0

Reverse Process A direct approach that fol-
lows the flow matching is to solve the ODE of
dψT−t(x) = ũT−t(ψT−t(x)|x0)dt, ψT (x) ∼
π(x). This form of transformation is ineffi-
cient with x0-prediction during inference be-
cause we have to solve the equation of τ =

T
(
t, G

(
xθ,

x̃t−u(xθ,τ)xθ

v(xθ,τ)

))
to get the τ with

respect to the change of x̃t and xθ in real time.
Therefore, we provide a deterministic reverse
process as an alternative, which is a special
case of DDIM [Song et al., 2021a] or the ODE
with discrete timesteps. Given the time intervals
∆t ∈ [∆t1, . . .∆ts],

∑
∆t = T , we general-

ize the boundary conditions [xt0 ; t0] in p̃t(x̃t|xt0 , t0,x0) of eq. (21) and Ψ91([xt0 ; t0]) of eq. (15) to
any arbitrary condition pairs [x̃t; τ ] and obtain the reverse process:

p̃([x̃t−∆t; τ∆]|[x̃t; τ ], x̂0) =

δ

([
x̃t−∆t

τ∆

]
−
[
u(x̂0, τ∆)x̂0 + v(x̂0, τ∆)ϵ̂

T (t−∆t, G(x̂0, ϵ̂))

])
,

(25)

where x̂0 = xθ(x̃t, t) and τ∆ is the previous timestep of τ on the same rescaled trajectory.

Sampling from the reverse process is illustrated in algorithm 2. Similar to the sampling process of
DDIM [Song et al., 2021a], it starts from the Gaussian noise, iteratively predicts the pseudo target x̂0,
and updates the reverse trajectory. However, since the τ and ϵ̂ are mutually conditioned, we have to
keep track of the t, τ , x̃t, and ϵ̂ during each iteration and split the update of ϵ̂ into an asynchronous
step (line 8). Because reverse trajectory keeps changing due to different pseudo targets x̂0 predicted
by learned neural networks, which brings severe instability, sometimes simply fixing the initial path
(removing the line 8) exhibits better performance in experiments.

4 Language Modeling

Recent diffusion language models [Li et al., 2022, Gong et al., 2023b] inherit the embedding-rounding
framework that a sentence with n discrete tokens W = [w1, . . . , wn] is embedded to a continuous
space via a trainable embedding layer EMB(W ) = [EMB(w1), . . . , EMB(wn)]. The vocabulary set
is K that ∀wn ∈ K. Besides, the token embeddings are used as the target points x0 = [x1

0, . . . ,x
n
0 ],

xn
0 = EMB(wn), for continuous diffusion trajectories. Hence, generating tokens from embeddings is:

p(W |x0) =
∑n

i=1
p(wi|xi

0) =
∑n

i=1

exp(f(xi
0, wi))∑

j∈K exp(f(xi
0, j))

, (26)

where f(x, j) = EMB(j) · x is the dot production distance. It’s also the function assessing the
likelihood of point x inside the discrete area of j. The coefficient functions follow the DDPM [Ho
et al., 2020], which are u(x0, t) =

√
ᾱt and v(x0, t) =

√
1− ᾱt. Besides, the objectives are

Lθ = EW,t,x̃t

[∑n

i=1
∥EMB(wi)− xθ(x̃

i
t, t)∥2/n

]
(27)

6



Table 1: Result of BLEU scores on machine translation and ROUGE scores on text summarization.

Models IWSLT14 DE-EN WMT14 EN-DE WMT16 EN-RO GIGAWORD
BLEU (BLEU-1/2/3/4)⇑ BLEU (BLEU-1/2/3/4)⇑ BLEU (BLEU-1/2/3/4)⇑ ROUGE-1/2/L⇑

Auto-Regressive Modeling
Transformers 34.31 (67.3/41.6/27.9/19.1) 28.01 (58.2/33.5/21.7/14.6) 34.05 (63.1/39.9/27.6/19.6) 37.57/18.90/34.69
Ours+Rerank 35.02 (68.7/43.3/29.2/20.1) 27.67 (57.9/33.2/21.4/14.3) 34.33 (63.1/40.1/27.8/19.8) 37.49/18.68/34.82

Diffusion Process
D3PM 27.61 (65.4/37.7/22.8/14.2) 22.94 (54.9/28.8/16.9/10.4) 27.84 (59.8/34.9/22.1/14.5) 33.92/14.96/31.72
DiffuSeq 28.78 ( - / - / - / - ) 15.37 ( - / - / - / - ) 25.45 ( - / - / - / - ) 31.17/12.23/29.24
SeqDiffuSeq 30.03 ( - / - / - / - ) 17.14 ( - / - / - / - ) 26.17 ( - / - / - / - ) 31.90/12.36/29.22
Difformer 31.58 (68.6/41.4/26.7/17.5) 24.80 (58.7/32.0/19.7/12.5) 30.08 (64.4/39.5/26.5/18.2) 35.47/15.17/32.82
SEDD 31.87 (68.7/41.8/27.2/18.0) 24.98 (59.2/32.4/20.1/12.9) 29.38 (62.2/38.0/24.9/16.9) 34.33/15.22/32.06
Dinoiser 31.91 (67.1/40.9/26.7/17.7) 24.77 (57.2/31.0/19.0/12.0) 31.49 (62.8/38.4/25.5/17.3) 35.17/15.63/32.53
Ours 33.42 (68.0/42.0/27.7/18.6) 26.69 (57.7/32.3/20.4/13.4) 33.15 (63.4/39.9/27.4/19.2) 36.44/16.09/33.56

and an additional rounding objective, which is commonly used in language modeling,

Lr = − log pθ(W |x0) = − log pθ(W |xθ(x̃t, t)). (28)

The final training target is given by L = Lθ +Lr, where the x0 of the same token sequence W keeps
changing because the embedding layer EMB is trainable, which makes the model hard to be trained.
Since previous work does not model discrete areas, a large number of noisy samples inside this area
will make Lr too small to guide the training of the embedding layer, leading to a mode collapse.

Experimental Setup Datasets used for experiments include three translation tasks (IWSLT14
DE-EN [Cettolo et al., 2012], WMT14 EN-DE, and WMT16 EN-RO1) and one text summarization task
(GIGAWORD [Rush et al., 2015]). We mainly follow the setting of Gao et al. [2022], which is inherited
from previous non-auto-regressive text generation works [Gu et al., 2018, 2019, Ghazvininejad et al.,
2019], where translation datasets are distilled [Kim and Rush, 2016]. Baselines are mainly continuous
diffusion language models. DiffuSeq [Gong et al., 2023b] and SeqDiffuSeq [Yuan et al., 2022] are
derived from Diffusion-LM [Li et al., 2022]. Difformer [Gao et al., 2022] and Dinoiser [Ye et al.,
2023] are recent empirical studies highlighting that scaling up the noise is beneficial for language
modeling. We also compare with discrete diffusion language models, including D3PM [Austin et al.,
2021] and SEDD [Lou et al., 2023]. Since SEDD is a pre-trained language model, we configure its
framework and train it from scratch specifically for our tasks. In addition, auto-regressive transformer
[Vaswani et al., 2017] is still one of the most powerful architectures for language generation.

Our boundary conditional diffusion language model is constructed from Difformer [Gao et al., 2022],
where the model configuration is transformer-iwslt-de-en in FAIRSEQ framework [Ott et al., 2019]
for IWSLT14 DE-EN and transformer-base for other datasets. Sentences are tokenized with Byte-Pair
Encoding [Sennrich et al., 2016] and evaluated by detokenized BLEU [Papineni et al., 2002] for
machine translation and ROUGE [Lin, 2004] for summarization. During training, the diffusion step is
T = 2000 and the confidence factor r = 1 for translation tasks since they have strong conditions,
while r = 0.5 for summarization. Sentences are generated deterministically with 20 steps.

Results Performances are demonstrated in Table 1. Our approach achieves the state-of-the-art
compared with continuous diffusion language models and outperforms the two discrete baselines on
three machine translation and one text summarization tasks. Our method shows advantages, with a
73.6% significant improvement at most on WMT14 EN-DE, over DiffuSeq [Gong et al., 2023b] and
SeqDiffuSeq [Yuan et al., 2022], which are two basic methods directly applying diffusion process to
language modeling. Compared with recent strong diffusion language models like Difformer [Gao
et al., 2022] and Dinoiser [Ye et al., 2023], which have deployed various effective noise scheduling
strategies on diffusion processes from the empirical perspective, our model is still superior with
at most 3.07 advancement of BLEU score on WMT16 EN-RO. This implies the effectiveness of
modeling discrete priors. In addition, we illustrate the performance of auto-regressive modeling,
where we use the transformer [Vaswani et al., 2017] to rerank the generated sentence candidates (7

1https://github.com/shawnkx/Fully-NAT

7

https://github.com/shawnkx/Fully-NAT


Table 3: Analysis on the training objectives.

Objectives Ex̃t∥x0 − x̂0∥2 Ex̃t∥ũt(x̃t|x0)− ũt(x̃t|x̂0)∥2 Ex̃t [p(x̂0 ∈ Cx0)] BLEU

Lx0 (eq. 24) 8.44 1.56 51.81% 33.42

Lũt
8.41 1.55 52.34% 33.49

length beam × 3 sentence beams) of our model. The reranked performance can even outperform
transformers on IWSLT14 DE-EN and WMT16 EN-RO.

Table 2: Ablation studies.
Models IWSLT14 WMT16
Base (Difformer) 31.58 30.08
+ forward only 33.02 32.86
+ forward & reverse 33.42 33.15
Optimal Transport 32.77 33.65

Ablation Our approach is a general frame-
work applicable to almost all continuous dif-
fusion models, providing them with discrete
boundaries as priors. We choose Difformer [Gao
et al., 2022] as the base model and follow the
configurations. As proved in eq. (19), the orig-
inal forward process will ignore the discrete pri-
ors although explicitly demonstrated. We conduct ablation experiments on the rescaling module. As
illustrated in Table 2, our approach rescales the trajectory of both forward and reverse processes on
Difformer. Only rescaling the forward trajectory is also effective but sub-optimal due to the inconsis-
tent distribution during inference. Due to computational cost and fair comparison, our method leaves
room for improvement. For example, replacing the forward trajectory with optimal transport in Flow
Matching, u(x0, t) = 1− t/T and v(x0, t) = t/T , achieves better performance on WMT16.

Analysis Our training objective, eq. (24), is an upper bound of the eq. (2). We demonstrate the
influence of this approximation in Table 3 on IWSLT14 DE-EN to reveal the thought of our formula.
On the one hand, Lx0 brings theoretical errors at a constant scale. On the other hand, Lx0 mitigates
some experimental errors from the neural networks. The first row Lx0

is the objective we used
in eq. (24) and the second row Lũt

= E{t,x0,x̃t}
[
∥ũt(x̃t|xθ(x̃t, t))− dx̃t

dt ∥2
]

is directly derived
from the eq. (2). The first two columns represent the error expectations of x0 and ũt on the test
set. It is easy to observe that, with the dynamic coefficient dτ

dt = T−r×G(x0,ϵ)
T (appendix F), the

value of x0’s error (8.44) is much larger than the ũt’s error (1.56). Therefore, Lx0
is beneficial for

reducing the impact of the prediction error from the neural network. The third column in Table 3
illustrates the one-step accuracy of predicting x0 and the fourth column is the BLEU score on the
test set. Experimental results show that optimizing the upper bound has a negligible impact on the
final performance (only a 0.2% drop of the BLEU score), while can improve the efficiency of the loss
calculation during the training phase.

5 Discrete Image Generation

Image pixels are usually treated as real numbers in continuous space since adjacent pixel values
exhibit linear continuity.They are essentially discrete and quantized data with a finite state space,
such as 256 states in RGB format. We utilize two discrete image representations. One is binary
coding provided by Bit Diffusion [Chen et al., 2023b] that converts a sub-pixel with 256 integers to a
8-bit binary code. It is more efficient as it stores ordinal relationships, but the representation space it
constructs will be sparse. Another is pixel embedding, which is a more discrete form of representation
because the relationships between pixels are thoroughly broken down and reconstructed by learning
the embedding representation. Each pixel is regarded as a one-hot vector and transformed with
an embedding layer EMB as used in language. Furthermore, we design an intermediate state to
demonstrate the correlation between discreteness and modeling difficulty, which is initializing a fixed
embedding with binary coding. The optimization target for binary coding is the MSE loss, and pixel
embeddings take the same objective as in language.

Experimental Setup We use CIFAR-10 [Krizhevsky et al., 2009] for discrete image generation.
The evaluation metric is FID [Heusel et al., 2017], which compares 50K generated samples with the
training set. Our image generation model is constructed on Bit Diffusion [Chen et al., 2023b], where
the architecture is U-Net [Ronneberger et al., 2015] with 3 stages, 256 channels and 3 residual blocks

8



(A) Bit Diffusion repro (FID 10.37) (B) DDIM (FID 4.04) (C) Ours (FID 3.86)

Figure 3: Generated images of Bit Diffusion repro, DDIM, and Ours on CIFAR-10.

Table 4: FID scores on CIFAR-10.
Models CIFAR-10 (FID ⇓)

200K 500K Final
Continuous Pixels

DDPM - - 3.17
DDIM - - 4.04

Discrete Ordinal Pixels
D3PM GAUSS - - 7.34
τLDR-0 - - 8.10
τLDR-10 - - 3.74
BINARY CODING (UINT8):
Bit Diffusion - - 3.48
Bit Diffusion repro 22.12 13.23 10.37
Ours 8.17 5.03 3.86
FIXED EMBEDDING:
Bit Diffusion repro 19.69 16.61 12.96
Ours 12.32 10.09 9.15

Categorical Pixels
D3PM UNIFORM - - 51.27
D3PM ABSORBING - - 30.97
VECTOR QUANTIZATION:
D3PM-VQ - - 16.47
τLDR-VQ - - 40.06
SDDM-VQ - - 12.23
TRAINABLE EMBEDDING:
Bit Diffusion repro 33.09 27.21 19.26
Ours 21.17 15.32 10.99

per stage. Diffusion steps are T = 1000 for both the train-
ing and inference stages. The model is trained for 1.5M
steps with the learning rate of 1e94 and batch size of 128.
Since the training script and detailed hyperparameters of
Bit Diffusion are not available, we have to reproduce it by
ourselves and our boundary conditional diffusion model
shares exactly the same configuration. Our confidence
factors are r = 0.5 for all three settings. Other baselines
include D3PM [Austin et al., 2021] and τLDR [Campbell
et al., 2022] which are discrete diffusion models. SDDM
[Sun et al., 2023] utilizes vector quantization from VQ-
GAN [Esser et al., 2021] as a continuous space for discrete
data. We also compare with DDPM [Ho et al., 2020] and
DDIM [Song et al., 2021a] on continuous pixels.

Results For binary coding, as shown in Table 4, our
approach outperforms the reproduced Bit Diffusion and
attains competitive results to state-of-the-art models. For
pixel embedding where ordinal information is decon-
structed and reconstituted, our method exhibits a notable
improvement of 3.81 FID score over replicated Bit Dif-
fusion. Moreover, in the case of categorical pixels, this
advantage increases to 8.25, positioning our approach with
trainable embedding as a new state-of-the-art solution. Ad-
ditionally, as deterministic diffusion processes, our model
with binary coding can slightly exceed the performance of
DDIM, where the generated samples are in Figure 3.

Analysis We analyze the influence of the confidence
factor r in Table 5. The factor r is selected from
[0, 0.2, 0.3, 0.5], where r = 0 is the reproduced Bit Diffusion that discards the discrete priors. As the
confidence factor increases, the impact of discreteness gradually improves, simultaneously enhancing
the model’s performance across all three settings. Since there is no guidance for unconditional image
generation, we do not use a larger factor to prevent mode collapses.

6 Related Work
Table 5: Confidence factors.

Models r = 0 0.2 0.3 0.5

BINARY CODING 10.37 7.39 5.33 3.86
FIXED EMBEDDING 12.96 11.35 10.80 9.15
TRAINABLE EMBEDDING 19.26 15.32 11.56 10.99

Discrete Modeling Auto-regressive models
have demonstrated a domination over dis-
crete modeling, especially for text generation
[Vaswani et al., 2017, Brown et al., 2020,
Achiam et al., 2023]. However, the computation

9



cost increases drastically as the size of sentence length or the image resolution increases. Diffusion
models [Sohl-Dickstein et al., 2015, Ho et al., 2020, Dhariwal and Nichol, 2021, Saharia et al.,
2022] can generate data in parallel, but are tailored for continuous problems. To generalize diffusion
models for discrete data, the most straightforward methods define discrete processes in discrete
spaces [Sohl-Dickstein et al., 2015, Hoogeboom et al., 2021b, Austin et al., 2021, Campbell et al.,
2022, Zhang et al., 2023, Sun et al., 2023, Lou et al., 2023], which will be bothered by large number
of discrete status. Besides, a simplified version of discrete diffusion processes is recently used in
language modeling [He et al., 2023, Chen et al., 2023a]. Approaches in another line argue to located
discrete data in continuous spaces, which is more flexible and efficient, with the mapping functions
including binary bits [Chen et al., 2023b] and embeddings [Li et al., 2022, Gong et al., 2023b,a, Yuan
et al., 2022, Gulrajani and Hashimoto, 2023, Han et al., 2023]. Other generative models adapted
for discrete modeling includes Variational Autoencoders [Kingma and Welling, 2014], Generative
Adversarial Networks [Hjelm et al., 2018, Fedus et al., 2018], and Normalizing Flows [Lindt and
Hoogeboom, 2021, Hoogeboom et al., 2021a, Tan et al., 2022].

Diffusion Models with Deterministic Trajectory Deterministic diffusion process is usually used
in the inference stage to speed up sampling, where DDIM [Song et al., 2021a] derives a serial of
non-Markovian diffusion processes and the deterministic one is a special case from this implicit
perspective. Additionally, deterministic diffusion processes can be converted to ordinary differential
equations [Song et al., 2021b], which is utilized by recent sampling acceleration approaches such as
DEIS [Zhang and Chen, 2023] and DPM-Solvers [Lu et al., 2022b,a, Zheng et al., 2023]. Our approach
requires a deterministic forward trajectory to eliminate the randomness between the boundary point
and sampled point. Flow matching [Liu, 2022, Lipman et al., 2023, Albergo and Vanden-Eijnden,
2023, Liu et al., 2023] is a collection of generative models that employ ordinary differential equations
to facilitate both forward and reverse processes. They can be regarded as generally equivalent to
Diffusion models. Therefore, we extend the framework of flow matching for our method.

7 Conclusion

We studied the gap between discrete modeling and continuous spaces, focusing on the inconsistency
between probability density contours learned by continuous diffusion models and discrete boundaries.
We have proposed a novel and general approach to address this issue by enabling continuous diffusion
models to be conditioned on discrete priors, which is achieved via discrete boundary estimation and
trajectory rescaling. An important limitation is that our method is designed for continuous diffusion
models, where discrete diffusion models constructed specially on the discrete state space would not
encounter the problem. However, discrete diffusion models also possess their own shortcomings, and
the practical applications of continuous diffusion models are more extensive. We believe that our
method has the potential to advance the development of unified and general diffusion models. By
bridging the gap between discrete and continuous modeling, we hope to inspire new possibilities for
modeling complex systems and phenomena.

Acknowledgements

Bing Qin is the corresponding author of this work, We thank the anonymous reviewers for their
insightful comments. This work was supported by the National Natural Science Foundation of
China (NSFC) (U22B2059, grant 62276078), the Key R&D Program of Heilongjiang via grant
2022ZX01A32, the International Cooperation Project of PCL, PCL2022D01 and the Fundamental
Research Funds for the Central Universities (Grant No.HIT.OCEF.2023018).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=li7qeBbCR1t.

10

https://openreview.net/forum?id=li7qeBbCR1t


Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

Mauro Cettolo, Christian Girardi, and Marcello Federico. WIT3: Web inventory of transcribed
and translated talks. In Mauro Cettolo, Marcello Federico, Lucia Specia, and Andy Way, editors,
Proceedings of the 16th Annual Conference of the European Association for Machine Translation,
pages 261–268, Trento, Italy, May 28–30 2012. European Association for Machine Translation.

Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, and Diyi Yang. A cheaper and better diffusion
language model with soft-masked noise. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages
4765–4775, Singapore, December 2023a. Association for Computational Linguistics.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. In The Eleventh International Conference on Learning
Representations, 2023b.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 8780–8794. Curran Associates, Inc.,
2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12873–12883, 2021.

William Fedus, Ian Goodfellow, and Andrew M. Dai. Maskgan: Better text generation via filling in
the _. In International Conference on Learning Representations, 2018.

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu. Dif-
former: Empowering diffusion model on embedding space for text generation. arXiv preprint
arXiv:2212.09412, 2022.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6112–6121, Hong Kong, China, November 2019. Association for
Computational Linguistics.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy


Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq-v2: Bridging
discrete and continuous text spaces for accelerated Seq2Seq diffusion models. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 9868–9875, Singapore, December 2023a. Association for Computational
Linguistics.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. In The Eleventh International Conference on
Learning Representations, 2023b.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Ishaan Gulrajani and Tatsunori Hashimoto. Likelihood-based diffusion language models. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 11575–11596, Toronto, Canada,
July 2023. Association for Computational Linguistics.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu.
DiffusionBERT: Improving generative masked language models with diffusion models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4521–4534,
Toronto, Canada, July 2023. Association for Computational Linguistics.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

R Devon Hjelm, Athul Paul Jacob, Adam Trischler, Gerry Che, Kyunghyun Cho, and Yoshua Bengio.
Boundary seeking gans. In International Conference on Learning Representations, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 12454–12465. Curran Associates, Inc., 2021a.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021b.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Kevin
Duh, and Xavier Carreras, editors, Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1317–1327, Austin, Texas, November 2016. Association for
Computational Linguistics.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

12



Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

Alexandra Lindt and Emiel Hoogeboom. Discrete denoising flows. In ICML Workshop on Invertible
Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In International conference on learning representations (ICLR),
2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022b.

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R Eguchi,
Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation. arXiv
preprint arXiv:2004.03497, 2020.

Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language models
generate functional protein sequences across diverse families. Nature Biotechnology, 41(8):
1099–1106, 2023.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin, editors,
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.

Niki J. Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International Conference on Machine Learning (ICML), 2018.
URL http://proceedings.mlr.press/v80/parmar18a.html.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, June 2022.

13

http://proceedings.mlr.press/v80/parmar18a.html


Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In Lluís Màrquez, Chris Callison-Burch, and Jian Su, editors, Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 379–389,
Lisbon, Portugal, September 2015. Association for Computational Linguistics.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 36479–36494. Curran
Associates, Inc., 2022.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith, editors, Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany, August 2016. Association for Computational Linguistics.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. In The Eleventh International Conference on Learning Representations,
2023.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Shawn Tan, Chin-Wei Huang, Alessandro Sordoni, and Aaron Courville. Learning to dequantise with
truncated flows. In International Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused
conditional sequence learning by manipulating noises. arXiv preprint arXiv:2302.10025, 2023.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Seqdiffuseq: Text
diffusion with encoder-decoder transformers. ArXiv, abs/2212.10325, 2022.

Pengze Zhang, Hubery Yin, Chen Li, and Xiaohua Xie. Formulating discrete probability flow through
optimal transport. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode solver
with empirical model statistics. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

14



A Stopping Time for Forward Process

The forward diffusion process X = {xn, n ≥ 0} is a markovian stochastic process with a transition
probability p(xi|xi−1) = N

(
xi;

√
αixi−1, (1− αi) I

)
. And a stopping time t0 with respect to X

is a random time such that for each n ≥ 0, the event {t0 = n} is completely determined by the
total information known up to time n, {x0, . . . ,xn}. Suppose the random variables {xn} are in
a one-dimensional space and the forward process starts with x0 = 0. Besides, let A,x0 ∈ A be
the discrete area belonging to x0 that for each points in area A will be regarded as x0 during data
generation. Our expected stopping time is defined as:

t0 = min{n ≥ 0,xn /∈ A},

which represents the first time xn leaves area A. We can write the probability of stopping time as:

P (t0 = 0) = P (x0 /∈ A) = 0

P (t0 = 1) = P (x0 ∈ A,x1 /∈ A)

=

∫
x1 /∈A

N (x1;
√
α1x0, (1− α1) I) dx1

P (t0 = 2) = P (x0 ∈ A,x1 ∈ A,x2 /∈ A)

= P (x0 ∈ A,x1 ∈ A)× P (x2 /∈ A|x1 ∈ A)

=

∫
x2 /∈A

[ ∫
x1∈A

N (x1;
√
α1x0, (1− α1) I)×

N (x2;
√
α2x1, (1− α2) I) dx1

]
dx2

· · · · · ·
P (t0 = n) = P (x0 ∈ A, . . . ,xn−1 ∈ A,xn /∈ A)

=

∫
xn /∈A

∫
x≤n∈A

n−1∏
i=1

N (xi;
√
αixi−1, (1− αi) I) dx1:n.

Since the diffusion process is established in continuous space, calculating the probability of the
stopping time requires integrating over each intermediate state x1:n−1, rather than a simple state
transfer as in the discrete space. Hence, directly obtain the stopping time is intractable. Additionally,
even if we are able to get probability of the stopping time, we can only get a distribution over
the time dimension, without knowing the exact time of xn leaving area A. Therefore, we need to
eliminate randomness from the state transition xi−1 → xi and find a deterministic forward trajectory
to estimate the stopping time.

B Properties of Dirac Delta Function

There are several useful properties of Dirac delta function:

• Symmetry Property: δ(−x) = δ(x)

• Scaling Property: δ(ax) = δ(x)
|a|

• Translation Property:
∫
f(x)δ(x− a)dx = f(a)

C Bridging Flow Matching and DDPM

In this work, we utilizes the framework of Flow Matching to model the diffusion processes, where
the forward process is defined by flow functions in eq. (5). Although having different mathematical
forms, it is essentially equivalent to traditional diffusion processes. Here, we provide an alternative
form from the perspective of state transfer pt(xt|xt−1).

15



C.1 Deterministic Forward Process

Equation (5) gives the definition pt(xt|x0) = [ψt]∗π(x), where ψt(x) = utx0 + vtx. Here we
provide the equivalent derivation of pt(xt|x0) from the perspective of diffusion processes:

pt(xt|x0) =

∫
pt(x1:t|x0)dx1:t−1

=

∫
p(x1|x0)

t∏
s=2

ps(xs|xs−1,x0)dx1:t−1,

(29)

where p(x1|x0) = N (u1x0,v
2
1I) is the first step of the forward process at which the global

noise is introduced into the forward trajectory. The state transfer probability of forward process
ps(xs|xs−1,x0) = δ(xs − usx0 − vsψ

91
s−1(xs−1)) is a Dirac delta function. Therefore,

pt(xt|x0) =

∫ t∏
s=3

ps(xs|xs−1,x0)dx2:t−1

×
∫
p2(x2|x1,x0)p(x1|x0)dx1︸ ︷︷ ︸

Q1

,
(30)

where we denote the integral of x1 as Q1. Based on
Q0 = q(x1|x0) = N (u1x0,v

2
1I)

q2(x2|x1,x0) = δ
(
x2 − u2x0 − v2ψ

91
1 (x1)

)
= δ

[
x2 −

v2

v1
x1 −

(
u2 −

v2u1

v1

)
x0

]

= δ

[
x1 −

v1

v2
x2 −

(
u1 −

v1u2

v2

)
x0

]
(Symmetry Property of Dirac Delta Function)

(31)

and the Translation Property of the Dirac delta function, we can calculate Q1 as:

Q1 =

∫
p2(x2|x1,x0)︸ ︷︷ ︸

δ(x−a)

p(x1|x0)︸ ︷︷ ︸
f(x)

dx1,

where


x : x1

a :
v1

v2
x2 +

(
u1 −

v1u2

v2

)
x0

=⇒ Q1 = N (u2x0,v
2
2I.)

(32)

Then we can continue the deviation of pt(xt|x0) as:

pt(xt|x0) =

∫
Q0

t∏
s=2

ps(xs|xs−1,x0)dx1:t−1

=

∫
Q1

t∏
s=3

ps(xs|xs−1,x0)dx2:t−1

= · · · · · ·

=

∫
pt(xt|xt−1)Qt−2dxt−1

= Qt−1 = N (utx0,v
2
t I)

(33)

Therefore, the probability distribution of xt conditioned on x0 follows a Gaussian distribution
N (utx0,v

2
t I), which is the same as in original DDPMs when the coefficient functions are defined

as ut =
√
ᾱt and vt =

√
1− ᾱt. This provides an important benefit that the Flow Matching and

diffusion models share the same training procedure.

16



C.2 Deterministic Reverse Process

The reverse tranfer probability follows Bayes’ rule:

p(xt−1|xt,x0) = pt(xt|xt−1,x0)
pt−1(xt−1|x0)

pt(xt|x0)

=
pt−1(xt−1|x0)

pt(xt|x0)
× δ

[
xt −

vt

vt−1
xt−1 −

(
ut −

vtut−1

vt−1

)
x0

]
.

(34)

Since Dirac delta function has another form of

δ(x) =

{
+∞, x = 0

0, x ̸= 0
, (35)

and pt(xt|x0) > 0, pt−1(xt−1|xt) > 0, we have

p(xt−1|xt,x0) = pt(xt|xt−1,x0)
pt−1(xt−1|x0)

pt(xt|x0)

=


+∞×

>0︷ ︸︸ ︷
pt−1(xt−1|x0)

pt(xt|x0)
, xt =

[
vt

vt−1
xt−1 +

(
ut −

vtut−1

vt−1

)
x0

]

0, xt ̸=
[

vt

vt−1
xt−1 +

(
ut −

vtut−1

vt−1

)
x0

]

≃


+∞, xt−1 =

[
vt−1

vt
xt +

(
ut−1 −

utvt−1

vt

)
x0

]

0, xt−1 ̸=
[
vt−1

vt
xt +

(
ut−1 −

utvt−1

vt

)
x0

]

= δ

[
xt−1 −

vt−1

vt
xt −

(
ut−1 −

utvt−1

vt

)
x0

]

= lim
σ→0

N
(
vt−1

vt
xt +

(
ut−1 −

utvt−1

vt

)
x0, σ

2I

)
.

(36)

C.3 Deterministic Optimization Objective

We first include the derivation of the variational bound for diffusion models provided by Sohl-
Dickstein et al. [2015]. The probability the generative model assigns to the data is:

p(x0) =

∫
p(x0:T )dx1:T

=

∫
p(x0:T )

pT (x1:T |x0)

pT (x1:T |x0)
dx1:T

=

∫
pT (x1:T |x0)

p(x0:T )

pT (x1:T |x0)
dx1:T

=

∫
pT (x1:T |x0)p(xT )

T∏
t=1

p(xt−1|xt)

pt(xt|xt−1)
dx1:T .

(37)

17



Markovian Diffusion Process Deterministic Diffusion Process Flow Matching

Figure 4: We demonstrate the trajectory differences among Markovian Diffusion Process, Determin-
istic Diffusion and Flow Matching.

Training amounts to minimizing the negative log likelihood:

L = −
∫
p(x0) log p(x0)dx0

= −
∫
p(x0) log

[∫
pT (x1:T |x0)p(xT )

T∏
t=1

p(xt−1|xt)

pt(xt|xt−1)
dx1:T

]
dx0

≤ −
∫
pT (x0:T ) log

[
p(xT )

T∏
t=1

p(xt−1|xt)

pt(xt|xt−1)

]
dx0:T

= EpT (x0:T )

[
− log p(xT ) +

T∑
t=1

log
pt(xt|xt−1)

p(xt−1|xt)

]

= EpT

[
log

pT (xT |x0)

p(xT )
− log p(x0|x1) +

T∑
t=2

log
p(xt−1|xt,x0)

p(xt−1|xt)

]

= EpT

[
DKL(pT (xT |x0)||p(xT ))︸ ︷︷ ︸

LT

− log p(x0|x1)︸ ︷︷ ︸
L0

+

T∑
t=2

DKL(p(xt−1|xt,x0)||p(xt−1|xt))︸ ︷︷ ︸
Lt−1

]

where LT is usually ignored as a constant and p(xt−1|xt) is parameterized with a neural network
pθ(xt−1|xt) to approximate the conditioned probability distributions in the reverse process. Since
p(xt−1|xt,x0) = lim

σ→0
N
(

vt−1

vt
xt +

(
ut−1 − utvt−1

vt
x0

)
, σ2I

)
, the parameterized pθ(xt−1|xt)

can take the same form N (µθ(xt, t), σ
2
t I) because the Dirac delta function is a special case of

Gaussian distribution and the KL divergence of two Gaussians can be simplified. Finally, the training
objective for the deterministic diffusion process is divided as:

L =



LT : a constant
L0 : − log δ (x0 − xθ(x1, 1))

Lt−1 : c∥x0 − xθ(xt, t)∥2 + lim
σ→0

log
σt
σ

c =
1

2σ2
t

(
ut−1 −

utvt−1

vt−1

)2

,

(38)

where the simplified version ∥x0 − xθ(xt, t)∥2 is the same as DDPMs but with different coefficients.

18



D Different Diffusion Trajectories

We illustrate the trajectories of different diffusion processes in Figure 4. The forward and reverse
generation for the Markovian diffusion process is:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt

xt−1 =

√
ᾱt−1(1− αt)

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

+

√
(1− ᾱt−1)(1− αt)√

1− ᾱt
ϵt−1.

(39)

The deterministic diffusion process:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

xt−1 =

(
√
ᾱt−1 −

√
ᾱt(1− ᾱt−1)√

1− ᾱt

)
x0

+

√
1− ᾱt−1√
1− ᾱt

xt.

(40)

The deterministic flow matching with optimal transport:
xt = (1− t

T
)x0 +

t

T
ϵ

xt−1 =
1

t
x0 +

t− 1

t
xt.

(41)

E Details of the Function G

Equation (13) defines the function G(x, ϵ) as the inversion of coefficient function.

Flow Matching The coefficient is ut = 1− t/T , where t = T × (1− ut). Therefore,

G(x0, ϵ) = t0 = T × (1− ut0) = T

/(
1 +

f(ϵ,J )− f(ϵ, I)
f(x0, I)− f(x0,J )

)
(42)

Diffusion The coefficient for Variance Exploding is vT = σ0

(
σT

σ0

) t
T

, where t = T × log vt−log σ0

log σT−log σ0
.

G(x0, ϵ) = t0 = vt0 = T × logvt − log σ0
log σT − log σ0

= T ×
log f(ϵ,J )−f(ϵ,I)

f(x0,I)−f(x0,J ) − log σ0

log σT − log σ0
. (43)

For Variance Preserving, the function G(x0, ϵ) is more difficult to calculate since ut =
√
ᾱt, where

ᾱ =
∏t

i=1 αi, αt = 1− βt, and βt is also influenced by noise schedulers. This makes G(x0, ϵ) hard
to calculate. Fortunately, we can bypass this function and provide the corresponding pseudo code.

F Details of the Training Objective

The rescaled vector field is calculated as:

ũt =
dx̃t

dt
=

dx̃t

dτ

dτ

dt

=

[
u′ (x0, τ)x0 + v′(x0, τ)ϵ

]
T − r ×G(x0, ϵ)

T

= uτ × T − r ×G(x0, ϵ)

T
.

(44)

19



Considering the expectation form of ũt, there is:

Ex̃t [ũt(x̃t|x0)] =
∑

p(x̃t|x0)ũt(x̃t|x0)

=
∑

p(x̃t|x0)

[
u′ (x0, τ)x0 + v′(x0, τ)ϵ

]
T − r ×G(x0, ϵ)

T︸ ︷︷ ︸
0≤coefficient≤1

≤
∑

p(x̃t|x0)

[
u′ (x0, τ)x0 + v′(x0, τ)ϵ

]
= u′ (x0, τ)

[∑
p(x̃t|x0)x0

]
+ v′(x0, τ)ϵ

= ũt(x̃0|Ex̃t
[x0]).

(45)

Therefore, the training objective E∥ũt − ũθ∥2 ≤ c E∥x0 − xθ∥2, where c is the coefficient.

G Code Implementations

Our framework is a module constructed on current diffusion models. We demonstrate our kernel part
rescale diffusion trajectory with pseudo python code as below:

def rescale_diffusion_trajectory(x_0, epsilon, embedding ,
labels, alphas_cumprod , timesteps , mode):

#embedding: embedding matrix, f(x,i)=(embedding * x)[i]
#labels: I
#alphas_cumprod: list of all u_t
#timesteps: t
#mode: noising or denoising

#1. get f(x,i):
self_dot = torch.sum(embedding * embedding , dim=−1)
f_x_i = self_dot[labels][..., None]
labels = labels[..., None]

#2. get f(x,j) and f(eps,j):
embedding = embedding.permute(1, 0)
f_x_j = torch.matmul(x_0, embedding)
f_eps_j = torch.matmul(epsilon, embedding)

#3. get f(x,i) − f(x,j): (usually >=0; smaller −> closer)
#filter out f(x,i)−f(x,i) with a large positive number 100
fxi_minus_fxj = (f_x_i − f_x_j).scatter(−1, labels, 100)

#4. get f(eps,i) and f(eps,j) − f(eps,i): (larger −> more noise)
f_eps_i = torch.gather(f_eps_j, −1, labels)
#filter out f(eps,i)−f(eps,i) with a large negative number −100
fepsj_minus_fepsi = (f_eps_j − f_eps_i).scatter(−1, labels, −100)

#5. get fraction and u_t_0
#mask results outside the support set
info_mask = (fepsj_minus_fepsi < 0) | (fxi_minus_fxj < 0)
fraction = fix_minus_fjx / fjeps_minus_fieps
fraction[info_mask] = 100
min_frac , _ = fraction.min(dim=−1) # minimum
#Diffusion Variance Preserving eq. (9)
u_t_0 = torch.sqrt(1 / (1 + min_frac ** 2))[..., None]

#6. rescale timesteps
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)

20



###!!!important trick!!!###
#We do not need to calculate the function G(x_0,t) (eq. (12)).
#Timesteps of diffusion processes are discrete and
# we just iterate over and compare with all coefficient functions.
#Besides, function G is easy to calculate for Flow Matching.
index = torch.sum(u_t_0 < sqrt_alphas_cumprod , dim=−1)

#T is the maximum timestep, for example T=2000.
#confactor is the confidency factor
#tau is the rescaled timestep
#delta_tau is the rescaled decoding velocity
if mode == ’noising’:

tau = (timesteps + index − \
(((timesteps + 1) / T) * index)).long().clamp(0, T)

tau = (confactor * tau.float() + \
(1.0 − confactor) * timesteps.float()).long().clamp(0, T)

return tau
elif mode == ’denoising’:

delta_tau = (T − index) / T
delta_tau = (confactor * delta_tau + \

(1 − confactor) * 1.0).clamp(0, 1)
return delta_tau

21



Table 6: FID of difference sampling strategies.

Gaussian Deterministic
BINARY CODING 13.39 3.86
FIXED EMBEDDING 12.21 9.15
TRAINABLE EMBEDDING 22.24 10.99

H Analysis

Algorithm 3 Gaussian Sampling
1: t := T , τ := T
2: x̃t ∼ N (0, I) // Initialing
3: for ∆t := ∆t1, . . . ,∆ts do //

∑
∆t = T

4: z ∼ N (0, σ2
t I) // Gaussian Noise

5: x̂0 := xθ(x̃t, t) // Pseudo Target
6: ϵ̂ := Ψ91([x̃t; τ ]) // Trajectory Alteration
7: τ∆ := T (t−∆t, G(x̂0, ϵ̂)) // eq. (25)
8: x̃t := u(x̂0, τ∆)x̂0 + v(x̂0, τ∆)ϵ̂+ z
9: t := t−∆t, τ := τ∆ // Updating

10: end for
11: x0 := xθ(x̃t, t) // x1 → x0

12: return x0

Gaussian Sampling Our framework is com-
patible with the Gaussian sampling in DDPM,
where random noises can be added into each
iteration step. Algorithm 3 demonstrates the
Gaussian sampling procedure. Compared with
algorithm 2, a Gaussian noise z ∼ N (0, σ2

t I)
with a decreasing variance σt is injected to the
estimated next state x̃t. This noise z will be
mapped as changing the initial sampling x̃T

through the trajectory alteration step. We illus-
trate the deterministic and Gaussian sampling
for our model on CIFAR-10 in Table 6, where
the deterministic sampling can achieve a much
better performance of FID. We assume this is
because our coefficient functions u(x0, t) and
v(x0, t) are dynamically calculated to rescale the deterministic trajectory in the training stage. In
the inference stage, x0 is replaced by xθ(xt, t), where errors will accumulate if the predicted pseudo
target changes frequently. Moreover, Gaussian sampling will further introduce random noises at each
reverse step, making our rescaled timestep τ far away from the training situation. Therefore, errors in
the calculations of trajectory scaling will explode over iterations.

I Limitations

Our framework is proposed to migrate the powerful continuous diffusion models to discrete problems.
There is another technical route that directly designs the diffusion process on the discrete state space
and our method is not useful for this scenario. However, we believe the continuous diffusion models
can be a general framework for generative modeling and our effort can advance this target.

We prefer x0 as the training target because we highly depend on the reliability of the predicted x̂0

during inference. Although it is possible to use other targets, the modeling effect will decrease in
practical use, which limits the flexibility of diffusion modeling. For example, predicting the ϵ̂ and
recovering x̂0 with eq. (23) is inefficient, because a small error in predicting ϵ̂ will be amplified by
eq. (23) and lead to the collapse of G(x̂0, ϵ̂).

Our approach requires extra computational cost. But they are acceptable since our rescaling process
is a series of parallel matrix computations. Considering that our approach is compatible with the
Self-Conditioning [Chen et al., 2023b], our overhead is negligible when it is used.

J Other Experimental Details

For language modeling, we utilize the model configuration transformer-iwslt-de-en in FAIRSEQ
framework [Ott et al., 2019] for IWSLT14 DE-EN, which has 6 transformer layers, 4 attention heads,
512 hidden dimensions, and 1024 feed forward layer dimensions. For other datasets, the configuration
is transformer-base, which has 6 transformer layers, 8 attention heads, 512 hidden dimensions, and
2048 feed forward layer dimensions. The embedding dimension is 128. The beam size is 1 length
prediction beam × 5 generation beam, since the length prediction is unstable for diffusion language
models. For reranking, we take 7 length prediction beam × 3 generation beam as Difformer to let the
transformer choose the best one.

22



(A) Bit Diffusion repro (FID 10.37) (B) Ours (FID 3.86)

Figure 5: Generated BINARY CODING images of reproduced Bit Diffusion and Ours on CIFAR-10.

For image generation, we set the scaling factor r = 0.5 for training. Besides, we find that a smaller
factor for inference is sometime useful. We set r = 0.45 on binary coding and r = 0.2 on fixed
embedding during inference. When the pixel embedding is learnable, the scaling factor is r = 0.5,
which is the same as training.

Our experiments are performed with Nvidia 80G A100. Each language result requires about 2 days
on one single A100. Each image result requires about a week on one single A100.

K Impact Statements

This paper presents work whose goal is to advance the field of Deep Learning. The datasets we used
has been widely deployed for many years and has basically no negative impact. Our approach is a
framework that migrates existing diffusion models to discrete problems, which does not provide a
large pre-trained model that can be used to generate fake contents.

L Case Study

Generated sentences on IWSLT14 DE-EN and GIGAWORD are illustrated in Table 7 and Table 8.
Generated images on CIFAR-10 are depicted in Figure 5, 6, and 7.

23



Table 7: Cases of translation on IWSLT14 DE-EN.

Source: GERMAN
Target: ENGLISH

Difformer Ours Golden
ich möchte ihnen
erzählen , wie wir das
herausgefunden haben .

i want to tell you
about this .

i want to tell you
how we ’ ve figured
that out .

i want to tell you
how we found that
out .

da gingen ganz schön
viele verrückte dinge
vor sich .

lots of crazy things . there were quite a
lot of crazy things
going on .

there was a whole
lot of crazy going on
in there .

man macht etwas , das
eigentlich ein wenig
anders ist .

you do something a
little different .

you ’ re doing some-
thing that ’ s actu-
ally a little bit differ-
ent .

you do something
that ’ s actually a lit-
tle different .

und die welt in der wir
lebten sah so aus .

and the world we
lived like this .

and the world we
lived in looked like
this .

and the world we
used to live in
looked like this .

man erwartet eine
zusätzliche milliarde
spieler im nächsten
jahrzehnt .

you ’ ll expect an
next billion players
.

you expect an extra
billion players in the
next decade .

they expect one bil-
lion more gamers in
the next decade .

b hat diese vorteile und
risiken . was wollen sie
tun ?

b has risks . what do
you want to do ?

b has these benefits
and risks . what do
you want to do ?

b has these benefits
, and these risks .
what do you want to
do ?

wir haben also so eine
situation , wo , je weiter
unsere wissenschaft
fortschreitet , wir uns
um so mehr eingestehen
müssen , dass diese
kategorien , die wir für
stabile anatomische
kategorien gehalten
hatten , welche sehr
einfache zuordnungen
herstellten um
dauerhafte
identitätskategorien zu
schaffen , viel
unschärfer sind , als wir
angenommen haben .

so we have this
situation where
the continuing our
science continues ,
we need to admit
the more that these
categories that
we thought were
stable anatomical
categories , which
made a very simple
collaborations to
create permanent
identity ories are
much unsharers
than we ’ ve as-
sumed .

so we have a situa-
tion where , as the
further our science
goes on , we have
to admit in terms ,
the more that these
categories that we
thought of be a sta-
ble anatomical cate-
gories , which made
a very simple assa-
ments to create per-
manent identity cat-
egories , are much
more blanky than
we ’ ve accepted .

so what we have is
a sort of situation
where the farther
our science goes ,
the more we have to
admit to ourselves
that these categories
that we thought of
as stable anatomi-
cal categories that
mapped very sim-
ply to stable identity
categories are a lot
more fuzzy than we
thought .

24



Table 8: Cases of summarization on GIGAWORD.

Source Target
Difformer Ours Golden

the asian swimming record tumbled
again at the seven-day olympic test
event here on friday .

asian swim-
ming record
falls again

asian swim-
ming tumble
again at
olympic test
event

asian swimming
record tumbles
again at china ’s
olympic trials

a truck carrying illegal north african
immigrants flipped over in
northeastern spain , killing ## and
injuring six others , police said
monday .

truck carrying
illegal immi-
grants crashes
in spain killing
##

## illegal im-
migrants killed
in truck acci-
dent in north-
eastern spain

## immigrants
killed in road ac-
cident in spain

new zealand share prices closed #.##
percent lower wednesday after
investors took their lead from further
weakness in overseas markets ,
dealers said .

new zealand
shares fall #.##
percent

new zealand
shares close
#.## percent
lower

new zealand
shares close
down #.##
percent

the sudanese opposition said here
thursday it had killed more than ###
government soldiers in an ambush in
the east of the country .

sudanese
opposition
claims over
### soldiers
killed

sudanese
opposition
claims ###
soldiers killed
in ambush

sudanese op-
position says
### government
troops killed in
ambush

these sports stories for release tuesday
, september ## , #### , are moving
today to clients of the new york times
news service .

thursday ’s
sports budget

cox news ser-
vice sports bud-
get

cox news ser-
vice tuesday
sports budget

bangladesh and india signed a deal
here thursday giving green signal to
resumption of passenger train service
between the two neighboring
countries after ## years .

bangladesh in-
dia sign agree-
ment on train
service

bangladesh in-
dia sign agree-
ment to resume
train service

bangladesh
india sign
agreement for
resumption of
train service
after ## years

(A) Bit Diffusion repro (FID 12.96) (B) Ours (FID 9.15)

Figure 6: Generated FIXED EMBEDDING images of reproduced Bit Diffusion and Ours on CIFAR-10.

25



(A) Bit Diffusion repro (FID 19.26) (B) Ours (FID 10.99)

Figure 7: Generated TRAINABLE EMBEDDING images of reproduced Bit Diffusion and Ours on
CIFAR-10.

26



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions and scope are in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Discussed in (7) Conclusion and (H) Limitations sections.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27



Justification: From sections (A) to (E) in appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We use algorithms 1 and 2 to demonstrate how to reproduce our algorithm.
We provide a paragraph of Experimental Setup in (4) Language Modeling and (5) Discrete
Image Generation sections. Other details are in section (I) and pseudo code of our kernel
process is in (F).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The pseudo code of our kernel process is demonstrated in (F) and we will
public our code on github.com.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a paragraph of Experimental Setup in (4) Language Modeling and
(5) Discrete Image Generation sections. Other details are in section (I). We provide ablation
studies on the hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Each result in the experiment table needs to be run on an 80G A100 for at least 2 days. The
huge overhead required to obtain a statistically significant error bar makes it impossible for
us to achieve it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are in section (I).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Discussed in section (J).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

30

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our approach is a framework involves algorithms but not pre-trained models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the link or citation of each asset, where licenses are in the link.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

31

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32


	Introduction
	Preliminaries
	Methodology
	Estimate Discrete Boundaries
	Rescale the Forward Trajectory
	Recover Data from Noise

	Language Modeling
	Discrete Image Generation
	Related Work
	Conclusion
	Stopping Time for Forward Process
	Properties of Dirac Delta Function
	Bridging Flow Matching and DDPM
	Deterministic Forward Process
	Deterministic Reverse Process
	Deterministic Optimization Objective

	Different Diffusion Trajectories
	Details of the Function G
	Details of the Training Objective
	Code Implementations
	Analysis
	Limitations
	Other Experimental Details
	Impact Statements
	Case Study

