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ABSTRACT

Long-form video understanding, characterized by long-range temporal dependen-
cies and multiple events, remains a challenge. Existing methods often rely on
static reasoning or external visual-language models (VLMs), which face issues
like complexity and sub-optimal performance due to the lack of end-to-end train-
ing. In this paper, we propose Video-MTR, a reinforced multi-turn reasoning
framework designed to enable iterative key video segment selection and question
comprehension. Unlike traditional video reasoning pipeline, which generates pre-
dictions in a single turn, Video-MTR performs reasoning in multiple turns, select-
ing video segments progressively based on the evolving understanding of previ-
ously processed segments and the current question. This iterative process allows
for a more refined and contextually aware analysis of the video. To ensure in-
termediate reasoning process, we introduce a novel gated bi-level reward system,
combining trajectory-level rewards based on answer correctness and turn-level
rewards emphasizing frame-query relevance. This system optimizes both video
segment selection and question comprehension, eliminating the need for external
VLMs and allowing end-to-end training. Extensive experiments on benchmarks
like VideoMME, MLVU, LongVideoBench, LVBench and EgoSchema demon-
strate that Video-MTR outperforms existing methods in both accuracy and effi-
ciency, advancing the state-of-the-art in long video understanding.

1 INTRODUCTION

As a foundational computer vision task, video understanding finds widespread applications in nu-
merous domains ranging from intelligent surveillance, content-based retrieval, to autonomous driv-
ing. With the explosive growth of user-generated videos and the ubiquity of cameras in daily life,
the demand for robust and scalable video-understanding tools has grown substantially. Owing to the
advanced reasoning capabilities, Multimodal Large Language Models (MLLMs) (Dai et al., 2023;
Wu & Xie, 2024; Weng et al., 2024; Chen et al., 2024b) have demonstrated breakthroughs in vi-
sual understanding tasks for images and short videos in recent years. However, long-form video
understanding(LVU), characterized by multiple events and long-range temporal dependencies, still
presents significant challenges.

Existing approaches (Wang et al., 2024c; Lin et al., 2023; Feng et al., 2025) either employ instruc-
tion tuning or integrate reinforcement learning to adapt current MLLMs for long-term temporal
reasoning. However, these methods primarily transfer training paradigms designed for language and
image modalities, relying on a static reasoning approach that generates predictions based on a fixed,
uniform set of sampled frames in a single turn. This single-turn, uniform sampling strategy creates a
bottleneck for downstream reasoning tasks when dealing with long-form videos, as it risks omitting
critical information due to the extended video duration. Alternatively, other approaches (Fan et al.,
2024; Wang et al., 2024b; Ma et al., 2025) explore the agentic paradigm, where large language mod-
els (LLMs) serve as agents, utilizing external visual-language models (VLMs) (Radford et al., 2021;
Zhao et al., 2023) to identify key video segments. These methods depend on pretrained VLMs and
carefully designed pipelines. While they achieve superior performance, they are hindered by high
complexity due to the reliance on heterogeneous external components and sub-optimal tool usage
strategies, as they lack end-to-end training.
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In this work, we propose Video-MTR, a reinforced multi-turn reasoning framework that leverages
the intrinsic capabilities of MLLMs, equipped with bi-level rewards, for iterative key video seg-
ment selection and question comprehension within a unified model. Unlike existing video reasoning
models, Video-MTR enables iterative selection of key video segments based on the current state, de-
rived from previously selected segments and the question. This approach facilitates the progressive
identification of more informative video segments. Compared to the agentic paradigm, Video-MTR
eliminates the reliance on external VLMs and carefully designed pipelines, enabling end-to-end
training that optimizes video segment selection and, in turn, enhances question comprehension.

Formally, Video-MTR builds upon an existing MLLM model, Qwen2.5-VL-7B (Bai et al., 2025)
and is trained to develop iterative video reasoning capabilities through an end-to-end reinforcement
learning strategy. However, current reward systems based solely on answer accuracy offer limited
guidance for intermediate video segment selection, particularly in complex long videos. To address
this challenge, we introduce a novel gated bi-level reward system, consisting of trajectory-level re-
wards based on answer correctness and turn-level rewards that capture frame-query relevance. This
reward system relies on key segment annotations for turn-level rewards and the final answer for
trajectory-level rewards. To enable this, we leverage the limited-scale QA-grounded corpus and
augment it with a curated video temporal grounding dataset, using a tailored curation pipeline to
align the original annotations with our QA-centric paradigm. Leveraging carefully designed reward
functions, Video-MTR substantially alleviates reliance on large-scale datasets: whereas existing
approaches typically require 256K-4.4M examples, Video-MTR achieves competitive or superior
performance with only about 8K samples. Moreover, to maintain video understanding as the pri-
mary optimization objective, we anchor frame-level rewards exclusively to final answer correctness,
enforcing that intermediate operations must genuinely contribute to the core task.

The contributions of this work are three-fold. First, we introduce Video-MTR, a reinforced multi-
turn reasoning framework designed for long-form video understanding, enabling iterative video
segment selection and question comprehension. To the best of our knowledge, this is the first at-
tempt to incorporate end-to-end reinforcement learning with explicit multi-turn reasoning in this
domain. Second, we propose a novel gated bi-level reward mechanism, which includes trajectory-
level rewards based on answer correctness and turn-level rewards focused on frame-query rele-
vance, facilitating more effective and informed video segment selection and substantially reduces
dependence on large training corpora. Finally, we conduct extensive experiments on several video
understanding benchmarks, including VideoMME (Fu et al., 2025), MLVU (Zhou et al., 2024),
LongVideoBench(Wu et al., 2024), LVBench(Wang et al., 2024a) and EgoSchema (Mangalam et al.,
2023), demonstrating the effectiveness and robustness of Video-MTR. Codes, trained models, and
dataset will be released for further research.

2 RELATED WORK

2.1 MLLMS FOR VIDEO UNDERSTANDING

Building on image MLLMs’ visual reasoning capabilities, researchers develop temporal extensions
for video understanding. However, long-form videos remain challenging due to their extended dura-
tion exceeding contemporary MLLMs’ context windows. Approaches like Video-LLaVA (Lin et al.,
2023), ShareGPT4Video (Chen et al., 2024a), InternVideo2 (Wang et al., 2024c) and Video-R1(Feng
et al., 2025) still resort to uniformly sampling the entire video and rely on post-training with large-
scale video-instruction data to boost reasoning abilities. Yet the inevitable loss of information at the
input stage creates a performance ceiling. Other approaches explicitly address this bottleneck. One
category of methods, exemplified by LongVA (Zhang et al., 2024), LLaMA-VID (Li et al., 2024c),
Kangaroo (Liu et al., 2024) and Video-XL (Shu et al., 2025), employs token compression techniques
to extend context windows, enabling direct processing of hour-long videos. However, this approach
floods the model with redundant information and sacrifices interpretability. Another category, like
VideoAgent (Wang et al., 2024b), VideoMemAgent (Fan et al., 2024) and DrVideo (Ma et al., 2025)
adopt agent mechanisms (Li et al., 2023; Wu et al., 2023) that dynamically integrate external tools,
including video captioning, video object tracking, and key-frame search, through single-turn or
multi-turn iterations. Despite outperforming uniform sampling baselines, these systems exhibit high
complexity from heterogeneous external components and suboptimal tool utilization due to the ab-
sence of end-to-end training.

2
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Reasoning: Let me think. I should retrieve more frames to be sure.
Action: retrieve (29, 58)
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frames to confirm
Action : retrieve (37, 53)

Reasoning: Let me think. The frames clearly show C is playing the 
ukulele and using the phone, not singing, dancing, eating, or sleeping. 
The sequence of frames confirms this multitasking activity
Action: answer(F)

Updated

instruction tokens"

%! %" %#
Turn 1

Figure 1: Overview of the proposed Video-MTR framework. Left: The lower part shows the multi-
turn interaction loop between the MLLM agent and the video environment, while the upper part
visualizes the collected trajectory and the gated bi-level reward shaping process during optimization.
Right: Detailed logs of the agent’s interaction steps across turns.

2.2 MLLMS WITH REINFORCEMENT LEARNING

Recent studies (Shen et al., 2025; Meng et al., 2025), inspired by advances in the text domain,
have explored reinforcement learning (RL) to improve the reasoning abilities of MLLMs. VLM-
R1 (Shen et al., 2025) extends the DeepSeek-R1 paradigm (Guo et al., 2025), showing that an
RL-trained MLLM can outperform a supervised fine-tuning baseline and generalize better on visual
tasks. DeepEyes (Zheng et al., 2025) incentivizes “thinking with images” over multiple turns via RL.
In the video domain, VideoChat-R1 (Li et al., 2025) enhances spatio-temporal perception through
reinforcement fine-tuning (RFT) with GRPO, while Video-R1 (Feng et al., 2025) employs a tailored
T-GRPO algorithm to emphasize temporal cues. However, these methods primarily target static
images or short clips, leaving long-form video understanding largely unaddressed.

3 METHODS

3.1 OVERVIEW

We propose Video-MTR, a framework that reconceptualizes long-form video understanding as a
multi-turn interactive reasoning task, closely aligned with the way humans process complex visual
information. When presented with a video and a question, humans typically begin by forming a
holistic understanding of the overall content, then iteratively attend to specific segments to gather
more informative details, and finally integrate the accumulated evidence to derive an answer.

To instantiate this reasoning paradigm, we formulate the task as a reinforcement learning problem.
In this formulation, the video functions as a dynamic environment that updates the set of observed
frames F in response to retrieval actions. An MLLM serves as the decision-making agent, interact-
ing with the environment through a learned policy πθ. As illustrated in Figure 1, the agent operates
in a multi-turn manner, and at each step it samples an action ak ∼ πθ(·|sk) to either retrieve addi-
tional frames or produce the final answer. The state sk is a multimodal context that concatenates (i)
the last w interactions and (ii) the currently observed frames, providing both temporal history and
updated visual evidence, and can be represented as

sk = (Fk−w, xk−w, yk−w, . . . ,Fk−1, xk−1, yk−1,Fk, xk)

where x is the text instruction, F is the set of observed frames, y is the generated response that
consists of reasoning process and executable action a. The environment is initialized by uniformly
sampling n0 frames to form F0 from the whole video. Thereafter, the environment responds to each
retrieval action with a new set of frames that become the observation for the next turn. The agent
may execute multiple retrieval actions until it is either confident enough to answer or the turn limit
Kmax is reached. The complete trajectory is recorded as:

τ = { (Fk, xk, yk) }Kk=0.

where k indexes the turns starting from the initial turn k = 0, and K denotes the terminal turn, with
0 ≤ K ≤ Kmax.

3
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The complete rollout process is outlined in Algorithm 1.

Algorithm 1 Rollout of Multi-turn Reasoning Trajectory
Input: Long video V , Policy MLLM πθ, Question x0, Input frame set F0 , Maximum turn Kmax

Output: Final trajectory τ
Initialize: k ← 0, rollout trajectory τ ← (F0, x0)

1: while k < Kmax do
2: Generate response yk ∼ πθ(· | sk)
3: τ ← τ + yk
4: ⟨reasonk, ak⟩ ← Parse(yk)
5: if ak matches "Retrieval" format then
6: Extract (tstart, tend) from ak
7: Fk+1 ← RETRIEVEFRAMES(V, tstart, tend)
8: xk+1 ← x0 ▷ question remains unchanged
9: τ ← τ + (Fk+1, xk+1)

10: else if ak matches "Answer" format then
11: break ▷ Get final answer
12: else
13: xk ←“Invalid action. Let me rethink.” ▷ Regenerate response for invalid action
14: τ ← τ + (xk)
15: end if
16: k ← k + 1
17: end while
18: Collect final trajectory τ

While prior studies have applied reinforcement learning to MLLMs for temporal reasoning tasks,
they predominantly adopt a single-turn reasoning settings. However, standard RL frameworks for
MLLMs struggle with multi-turn optimization due to uniform credit assignment of sparse terminal
rewards across turns. This hinders learning nuanced intermediate behaviors that are critical to final
success. Furthermore, optimizing solely based on final-task accuracy generally demands extensive
training data because terminal supervision is sparse. To address these multi-turn challenges, we
introduce a gated bi-level reward system that augments conventional trajectory-level rewards with
turn-level rewards. The turn-level rewards encode frame–query relevance, yielding more informative
and discriminative signals. As most video question answering datasets provide only QA annotations,
we increase data diversity by incorporating a video temporal grounding dataset and curating it to our
QA-centric setup. Additionally, observing limited proactive frame retrieval in pretrained MLLMs,
we adopt a dynamic exploration-bootstrapping strategy to encourage multi-turn evidence seeking.

3.2 GATED BI-LEVEL REWARD

This section details our fine-grained reward design for RL training. We first describe the computation
of the basic bi-level reward. We then present a goal-gated mechanism that prioritizes trajectory-level
signals over turn-level ones to align intermediate decisions with the final goal, fostering coherent,
goal-oriented multi-turn reasoning.

3.2.1 BI-LEVEL REWARD

This bi-level architecture comprises two complementary components: a trajectory-level reward
Racc providing global supervision, and intermediate turn-level rewards to deliver localized feed-
back within individual turns. The trajectory-level reward Racc is binary, set to 1 if the final answer
is correct and 0 otherwise.

Rk
fms measures the quality of frame retrieval at the turn level, with a maximum reward of 0.5. At

each intermediate turn k, the relevance of the retrieved frames Fk to the QA pair is quantified by
the IoU with the ground-truth frames G. The IoU score is tracked across turns, and a reward of
0.5 is assigned only if the current retrieval improves upon the best IoU achieved so far; otherwise,
a penalty proportional to the IoU drop is applied. This design emphasizes marginal improvements

4
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Turn 1

Turn 2

54:1500:00

VideoMME_long,  2237 

Problem：What are the rules for the initial 2v2 basketball mini-game?
A. The first person to hit 7 balls in a row wins.
B. If a person misses a hit, the total number of previous consecutive hits is added to his score, and they’re out if their score reaches 7.
C. The first to 7 hits wins.
D. This is the famous H.O.R.S.E. game

- Think: I need to identify the rules of the initial 2v2 basketball mini-game. Let's verify if there are any specific rules mentioned and see if the game is 
following the H.O.R.S.E. game rules.

- Action: retrieve(29, 39) 

- Think: I need to verify if the game is following the H.O.R.S.E. game rules. The game is seen to be a 2v2 basketball mini-game where the first person to 
hit 7 balls in a row wins. Let's verify if this is the case and see if the game is following the H.O.R.S.E. game rules. 

- Action: answer(B)

54:1533:0324:2900:00

Figure 2: Illustration of Video-MTR’s Multi-turn Reasoning Process, visualizing sampled frames,
reasoning process, and model actions per turn. The ground-truth answer is highlighted in orange.
The green timeline indicates the positions of sampled frames in the video, reflecting the model’s
frame selection strategy at each reasoning turn.

in the retrieved frame set, effectively preventing reward hacking through redundant frame selection
while encouraging more efficient evidence gathering.

We also apply a formatting reward of Rk
format = 0.1 at each turn if the model’s output conforms to

the required format. The details of format and implementation are provided in Appendix A.2.

3.2.2 GOAL-GATED REWARD SHAPING

To ensure that intermediate actions contribute to the ultimate goal of video understanding, we in-
troduce a goal-gated reward shaping mechanism. In this design, frame-retrieval rewards are granted
only when the final answer is correct, ensuring that only retrieval operations leading to successful
outcomes are reinforced. This couples retrieval and answering within the policy, rather than opti-
mizing them in isolation. In our experiments, this setting proved critical. Without such constraints,
since frame-retrieval actions can be issued multiple times, the model tended to prioritize optimizing
retrieval actions to accumulate positive signals, while neglecting the primary objective of improving
video understanding accuracy.

R(τ) = 1{Racc>0} ·
K−1∑
k=0

(Rk
fms +Rk

format) +Racc +RK
format

We aggregate the refined rewards into final reward-annotated trajectories, which then serve as train-
ing data for policy optimization.

3.3 REINFORCEMENT LEARNING

The standard RL objective function of the trajectory is defined as:maxπθ
Eτ∼πθ

[
R(τ)

]
. We train

the policy with Proximal Policy Optimization (PPO) and extend its default formulation to accom-
modate multi-turn reasoning. The multi-turn interactions trajectory is treated as an entire token
sequence z = (z0, z1, . . . , zT ). Instead of relying solely on sparse final-step feedback, the bi-level
rewards are applied at every turn boundary and then propagated across all tokens zt, enabling ef-
fective end-to-end learning. Specifically, two discount factors jointly shape the rewards during the
calculation of token-level advantages AGAE

t :

• γturn: a cross-turn discount factor (0.95) applied to the accuracy reward Racc, propagating
the final answer signal back to earlier turns. At the boundary of turn k, the assigned reward
is the original frame-retrieval reward of that turn plus a discounted accuracy term: Rk

fms +

γK−k
turn Racc.

5
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Model Size Frames VideoMME MLVU LongVideoBench LVBench EgoSchema

Overall(w/o sub.) Test Val Overall Subset

Proprietary Models or Input Frame Budget: > 256 frames
GPT-4o (Hurst et al., 2024) - 0.5 fps / 384 71.9 54.9 66.7 48.9 72.2
Gemini-1.5-Pro (Team et al., 2024) - 0.5 fps 75.0 - 64.0 33.1 71.1
DrVideo(GPT-4) (Ma et al., 2025) - 0.2/0.5 fps 51.7 - - - 66.4
Qwen2.5-VL-7B† (Bai et al., 2025) 7B 768 65.1 - 56.0 45.3 65.0

VideoLLaMA2 (Cheng et al., 2024) 8×7B 8 47.9 45.6 - - 53.3
Video-CCAM (Fei et al., 2024) 9B 96 50.3 42.9 43.1 - -
LongVA (Zhang et al., 2024) 7B 128 / 256 52.6 41.1 47.8 37.9 -
Video-XL (Shu et al., 2025) 7B 128 / 256 55.5 45.6 50.7 - -
VideoAgent (Wang et al., 2024b) - 87 56.0 - - - 60.2
VideoMemAgent (Fan et al., 2024) - 72 57.4 - - - 62.8
Video-LLaVA (Lin et al., 2023) 7B 8 39.9 30.7 39.1 - 36.8
VideoChat2 (Li et al., 2024b) 7B 16 39.5 30.1 39.3 - -
LLaVA-OneVision (Li et al., 2024a) 7B 32 58.2 - 56.3 - 60.1
Video-R1 (Feng et al., 2025) 7B 32 59.3 45.4 - 35.9 48.8
Video-R1 (Feng et al., 2025) 7B 64 61.4 47.6 - 38.0 51.8
Qwen2.5-VL-7B∗ (Bai et al., 2025) 7B 32 53.6 41.6 45.8 30.3 59.4
Qwen2.5-VL-7B∗ (Bai et al., 2025) 7B 64 58.4 41.8 47.0 33.7 62.6
Qwen2.5-VL-7B∗ (Bai et al., 2025) 7B 80 59.5 45.2 48.4 33.6 63.5

Video-MTR 7B 32 59.0 48.4 52.3 38.2 62.4
Video-MTR 7B 64 62.2 49.8 54.8 41.8 63.4
Video-MTR (Ours) 7B 80 62.7 50.4 57.1 42.3 68.8

Table 1: Performance on mainstream long-video benchmarks. †: results reported in the original
paper; ∗: results from our re-implementation/evaluation under different input settings. Best and
second-best per category are bolded and underlined, respectively.

• γtoken: a within-turn discount factor (1.0) that propagates the turn boundary reward to tokens
within the same turn.

The computed token-level advantages AGAE
t are then used in the standard PPO surrogate objective,

ensuring that the sparse bi-level supervision signals jointly guide policy optimization. In practice,
optimizing this objective presents two core challenges: (1) precisely estimating the intermediate
frame-retrieval rewards; and (2) shifting a model originally biased toward single-turn reasoning
into a multi-turn paradigm. We address these challenges with two strategies: a high-quality data
curation pipeline that delivers fine-grained temporal supervision, and an exploration bootstrapping
mechanism that incentivizes multi-turn retrieval behavior during early training.

Data Curation Computing turn-level frame-retrieval rewards requires temporally grounded annota-
tions aligned with the problem, which most video-understanding datasets lack. A notable exception
is NExT-GQA (Xiao et al., 2024) with 10.5K explicit grounding annotations. We retain instances
with a relevant-segment ratio below 0.5 to enforce tighter temporal grounding, yielding roughly
5K high-quality samples. To scale and diversify training data, we additionally leverage video tem-
poral grounding datasets such as QVHighlights (Lei et al., 2021), which provide precise temporal
annotations for query-relevant segments. We adapt them to our QA-centric training by using GPT-
4o (Hurst et al., 2024) to convert each query into a QA pair while preserving the original temporal
alignment. To ensure quality, we apply a two-stage filter: (i) the LLM judges whether a query is
suitable for QA conversion (discarding overly short or generic queries); (ii) we keep only instances
with a relevant-segment ratio < 0.5. This produces nearly 3K QA-grounded samples from QVHigh-
lights. This produces nearly 3K QA-grounded samples from QVHighlights. In total, we curate an
8K, compact yet supervision-rich set of temporally grounded examples. Departing from large-scale
collection, we prioritize reward-signal fidelity over data volume, enabling efficient RL that attains
competitive performance with far less data. We validate this in experiments by comparing efficiency
and effectiveness against alternative approaches that rely on larger-scale data.

Exploration Bootstrapping During early rollouts, we observe that the pretrained MLLM rarely
initiates evidence seeking. We omit supervised instruction tuning and introduce an adaptive explo-
ration bonus: within each mini-batch, if the agent’s frame–retrieval rate falls below a threshold,
each retrieval action receives a small positive reward regardless of relevance; once retrievals become
routine, the bonus is automatically disabled. This dynamic shaping bootstraps exploration, enabling
pure RL to learn multi-turn evidence-seeking behavior.

6
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Video-MTR is built upon the Qwen2.5-VL-7B and trained using the VAGEN framework, which
supports multi-turn reinforcement learning. The policy is trained with PPO using a batch size of 32,
an actor learning rate of 1× 10−6, and a critic learning rate of 1× 10−5.

Number of Turns We set the maximum number of turns Kmax to 3, achieving a balanced compro-
mise between accuracy and efficiency. A detailed examination, including quantitative comparisons
under varying settings, is reported in the Appendix A.3.

Input Frame Budget Most LVD post-training methods operate with ≤ 128 frames to align with
training sequence lengths and manage computation. Given our practical resource constraints and
to emphasize reasoning paradigm rather than raw capacity, we cap the input at 80 frames. Under
the same budget, we compare: (i) a single-turn baseline with uniformly sampled frames; and (ii)
our multi-turn framework that actively retrieves non-uniform subsets across turns, holding other
factors fixed to isolate the effect of multi-turn reasoning. We evaluate budgets of 32, 64 and 80,
and results consistently show that distributing frames over multiple retrieval–reasoning steps out-
performs single-turn baseline. Concretely, the first turn uniformly samples half the budget, and each
subsequent turn retrieves up to one quarter, ensuring the total never exceeds the frame budget.

4.2 BENCHMARKS

We select five representative long-form video benchmarks for comprehensive evaluation. Among
them, VideoMME(Fu et al., 2025) is one of the most widely used benchmarks for general video un-
derstanding. To more closely target the challenges of long-form video reasoning, we further include
MLVU(Zhou et al., 2024), LongVideoBench(Wu et al., 2024) and LVBench(Wang et al., 2024a),
both featuring significantly extended video durations and complex task designs that rigorously test
the capabilities and limitations of current MLLMs. Finally, we include the egocentric benchmark
EgoSchema(Mangalam et al., 2023) of first-person human activities to evaluate the model’s gener-
alization across diverse scenarios.

4.3 PERFORMANCE OF LONG-FORM VIDEO UNDERSTANDING

4.3.1 MAIN RESULTS

We use objective questions across all benchmarks. The main results are summarized in Table 1.
For long video understanding, achieving strong performance in prior work typically relies on either
ultra-large proprietary models with hundreds of billions of parameters, or processing a substantial
number of sampled frames, both of which are highly resource-intensive. For fairness, we report
model size and input frame count alongside accuracy. Under comparable parameter and frame
scales, Video-MTR shows clear advantages across all benchmarks. Notably, despite using only 7B
parameters, Video-MTR achieves comparable performance on some of the most challenging long-
video datasets, such as MLVU and LVBench, when compared to ultra-large proprietary models like
GPT-4o and Gemini-1.5-Pro, which have significantly larger parameter sizes and more input frames.
For example, on LVBench, Gemini-1.5-Pro processes > 3000 frames for 33.1% accuracy, whereas
Video-MTR attains 42.3% with only 80 frames. Video-MTR with 80 input frames already achieves
performance comparable to Qwen2.5-VL-7B with 768 frames across most of the datasets, and even
outperforms it on EgoSchema (+3.8%) and LongVideoBench (+1.1%). We further analyze Video-
MTR’s advantages and summarize key findings below.

Data-Efficient Supervision Beyond accuracy, we compare training paradigms and data require-
ments across approaches in Table 2. For a strictly fair comparison, we only compare the data used
during the fine-tuning stage for LVU. Most counterparts rely on hundreds of thousands to millions of
supervised multimodal pairs, whereas Video-MTR is post-trained in a single RL stage with only 8K
supervision-rich examples. Despite the drastic reduction in data scale, our model matches or even
surpasses methods trained on vastly larger datasets across mainstream long-video benchmarks. To
further validate this RL training paradigm, we applied the same procedure to Qwen2.5-VL-3B. Even
with this smaller backbone, the model rapidly gained multi-turn reasoning capability, outperform-
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ing its original single-turn baseline. Detailed results are provided in Appendix A.4. These findings
show that the proposed paradigm is scalable and highly data-efficient. With just one to two training
epochs, Video-MTR transforms an open-source MLLM from a single-turn to an iterative reasoner,
offering a practical, cost-effective solution for long-video understanding.

Benefits of Extended Frame Budgets We compare performance under frame budgets of 32, 64 and
80, observing consistent gains across nearly all benchmarks. This trend holds for both Qwen2.5-
VL-7B and Qwen2.5-VL-3B backbones, suggesting that extending models to handle longer video
inputs is a promising avenue for future research.

4.3.2 CASE STUDY

Figure 2 illustrates Video-MTR’s multi-turn reasoning on a 54-minute video for a single-detail query
hinging on a critical plot point. In Turn 1, frames are uniformly sampled across the entire video.
Noting that key evidence is missing, Video-MTR autonomously retrieves densely sampled segments
semantically aligned with the query. In Turn 2, it re-examines the refined, query-relevant frames,
extracts the required detail, and outputs the correct answer. This case shows how iterative retrieval
and focused inspection overcome the limitations of uniform sampling in long videos.

4.4 ABLATION STUDY

Plot QA

Needle
Reasoning

Sports
QAAction

Order

Action
Count

Tutorial 
QA

Anomaly
Recognition 

Topic
Reasoning

Ego 
Reasoning

Single-Detail Multi-DetailHolistic

Qwen2.5-VL-7B Video-MTR

Figure 3: Task Diagnosis.

Reward-Hacking

w/ goal-gated

Total Rewards w/o goal-gated
w/ goal-gated

w/o goal-gated
w/ goal-gated

ICLR提交版本

QA Accuracy w/o goal-gated
w/ goal-gated

Intermediate Turns w/o goal-gated
w/ goal-gated

3

ICLR Rebuttal 版本

Figure 4: Reward hacking example. The red curve shows in
the w/o goal-gated setting, the agent may simply accumulat-
ing more turns to increase reward, but with no correspond-
ing gain in QA accuracy, whereas the green curve shows
both increasing consistently.

Method Paradigm Modalities Volume

Video-CCAM SFT img/vid-text 4.4M
VideoChat2 SFT img/vid-text 2M
LongVA SFT img-text 1.3M
Video-XL SFT img/vid-text 257K
Video-R1 SFT+RL (S) img/vid-text 260K

Video-MTR (Ours) RL(M) vid-text 8K

Table 2: Comparison of training paradigms,
data modalities and volumes. (M)/(S) denote
multi-turn and single-turn respectively.

Model Frames VideoMME (w/o sub.)

Short Medium Long

Qwen2.5-VL-7B 32 65.8 50.3 44.7
Video-MTR 32 70.4+4.6 55.6+5.3 51.0+6.3

Qwen2.5-VL-7B 64 72.1 55.9 47.1
Video-MTR 64 72.8+0.7 62.3+6.4 51.4+4.3

Qwen2.5-VL-7B 80 73.1 56.7 48.3
Video-MTR (Ours) 80 74.8+1.7 60.6+5.9 52.7+4.4

Table 3: Comparisons of accuracy improve-
ments across video durations.

We further investigate the contributions of several key components through detailed ablation studies.

4.4.1 ANALYSIS OF THE MULTI-TURN REASONING

We analyze the advantages of the proposed multi-turn reasoning framework over the conventional
single-turn paradigm. Since Video-MTR is built on Qwen2.5-VL-7B, we compare directly against
this base model to isolate performance gains. As multi-turn reasoning is expected to be particularly
beneficial for complex tasks, we empirically assess its impact across diverse task types and video
durations. (1)Task types. Using the MLVU benchmark, which categorizes evaluation tasks into
three types: holistic tasks (global understanding of the entire video), single-detail tasks (focusing
on one critical plot), and multi-detail tasks (requiring reasoning over multiple events), we observe
distinct trends in Figure 3. For holistic tasks, typically lower in complexity, the base model achieves
up to 72% accuracy, with Video-MTR providing a modest improvement of +3.8%. In contrast,
detail-oriented tasks are substantially harder. The base model remains below 40% accuracy, while
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Ablation Setting VideoMME (w/o sub.) LVBench

Short Medium Long Overall Overall

Ours 74.8 60.6 52.7 62.7 42.3
Ours Multi-turn w/o Bi-Level Reward 69.4 56.2 49.4 58.3 37.7
Ours Single-turn 68.8 54.8 47.9 57.2 35.3

Table 4: Ablation study. The first variant keeps the multi-turn paradigm but removes the bi-level
reward. The second variant switches to a single-turn paradigm.

Video-MTR yields larger gains: +7.5% on single-detail and +8.1% on multi-detail. These results
suggest a near-linear relationship between task complexity and the benefits of multi-turn reasoning.
(2)Video durations. We further examine the impact of duration on VideoMME. We also observe a
positive correlation between video length and performance gains. As shown in Table 3, under the 32-
frame constraint, Video-MTR achieves accuracy improvements of +4.6% (Short), +5.3% (Medium),
and +6.3% (Long) compared to Qwen2.5-VL-7B. Similarly, under the 64/80-frame constraint, the
improvements for Medium and Long videos are notably higher than for Short videos.

To ensure a fair comparison, we further post-train Qwen2.5-VL-7B on the same data as Video-MTR.
This yields our single-turn baseline, which processes the same number of uniformly sampled frames
in a single forward pass. Compared with Video-MTR, it uses the same accuracy-based reward but
removes multi-turn instructions from the prompts. Both models use identical optimization hyperpa-
rameters. Results for the single-turn baseline are reported in the third row of Table 4. While this
single-turn variant yields modest improvements over Qwen2.5-VL-7B, it falls short when compared
to Video-MTR, particularly on complex tasks in LVBench and long-form videos in VideoMME, con-
sistent with our earlier analysis. This performance gap highlights the effectiveness of the multi-turn
reasoning paradigm for complex inference.

4.4.2 EFFECTIVENESS OF BI-LEVEL REWARD

We evaluate the bi-level reward design against a multi-turn variant that omits this component, which
removes turn-level supervision and relies solely on the final accuracy reward to guide the multi-
turn behavior. As shown in Table 4, even with identical prompts and preserved multi-turn behavior,
accuracy declines across benchmarks (including a significant 4.6% drop on LVBench). These find-
ings highlight that, without intermediate supervision, relying solely on a final accuracy reward is
insufficient to guide the model toward effective temporal localization, thereby limiting its reasoning
capability.

4.4.3 NECESSITY OF GOAL-GATED REWARD SHAPING

To assess the effectiveness of our goal-gated reward shaping in mitigating reward hacking, we com-
pare Video-MTR with an ablated variant that removes this mechanism and instead receives uncondi-
tioned turn-level rewards. Figure 4 shows the resulting failure mode that emerges early in training:
during training, the ablated agent inflates reward by repeatedly retrieving frames with more turns
rather than answering correctly. By contrast, the goal-gated model keeps reward and task success
closely aligned. These results confirm that goal-gated shaping is crucial for preventing superficial
reward exploitation and preserving genuine video understanding capability.

5 CONCLUSION

We present Video-MTR, a reinforced multi-turn reasoning framework for long-form video under-
standing. To the best of our knowledge, it is the first work to integrate end-to-end reinforcement
learning with explicit multi-turn reasoning in this domain. At the core of the framework is a
gated bi-level reward mechanism, designed to incentivize both relevant frame retrieval and step-
by-step reasoning. Extensive experiments on VideoMME, MLVU, LongVideoBench, LVBench
and EgoSchema demonstrate that Video-MTR achieves strong and robust performance across di-
verse task types and varying temporal lengths. Notably, the framework exhibits excellent temporal
scalability, yielding higher gains as video duration increases, highlighting its particular advantage
in extra-long video understanding. Future work includes extending the framework to even longer
videos and more complex reasoning tasks, pushing the boundaries of long-video understanding.
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A TRAINING DETAILS

A.1 PROMPT DESIGN

This section details our prompt design and provides an illustrative example in Figure 6. To in-
centivize multi-turn reasoning, we craft an instruction template that guides the MLLM to follow a
predefined interaction protocol. The prompt is multimodal: visual tokens corresponding to frames
observed in the current turn are inserted immediately after their textual description. We then append
a format template that constrains the model’s output to a structured schema. We define two actions
per turn: (i) answer, which outputs only the single option letter; and (ii) retrieve, which out-
puts start frame and end frame. In each turn, the model is explicitly required to first provide
a brief rationale and then emit the action in the specified format.

A.2 FRAME RETRIEVAL PROTOCOL

We next describe the frame-retrieval format and implementation. At preprocessing, we uniformly
subsample up to M frames from each video to form a candidate pool Fall and index them accord-
ingly; in our implementation we set M = 128 , which worked well empirically. In the frame budget
settings of 32, the agent receives a sparse overview of 16 uniformly spaced frames in the initial
turn. In subsequent turns, the agent may issue a retrieval action that selects a temporal interval
by outputting start frame and end frame (Fall). The environment then returns frames from
this interval at an appropriate stride, capped at most 8 frames. This procedure allows the model to
iteratively focus on key segments by selecting targeted subsets of frames.
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A.3 ANALYSIS OF TURN LIMIT

Although multi-turn reasoning improves accuracy through iterative evidence gathering, it requires
multiple forward passes, leading to increased inference latency. This creates a fundamental trade-
off between efficiency and performance. To quantify it, we conducted controlled experiments under
different maximum-turn settings (Kmax). All experiments are performed with the Qwen2.5-VL-7B
backbone, using a fixed total input frame budget of 32 frames to ensure comparability across settings.
The model is evaluated on benchmark datasets with identical training and inference conditions, while
varying only the maximum number of turns allowed during training. Results in Table 5 show that
while additional turns improve accuracy, the gains diminish beyond a certain point, whereas latency
grows nearly linearly. Based on this analysis, we set the maximum number of turns Kmax to 3 and
retain the last 2 turns as context, achieving a balanced compromise between accuracy and efficiency.

Max Turns Kmax Avg. Turns Used Accuracy (M-AVG, %) Latency (ms)
VideoMME MLVU

1 1.0 54.8 42.6 194.4
2 1.6 57.9 43.1 312.2
3 2.2 59.0 48.4 427.2
5 3.2 60.7 47.4 622.8

Table 5: Accuracy on VideoMME and MLVU, latency, and average number of turns actually used
under different maximum-turn settings Kmax.

A.4 ADDITIONAL RESULTS ON QWEN2.5-VL-3B

To further verify the generality of our end-to-end reinforcement learning training paradigm, we
applied the same procedure to Qwen2.5-VL-3B. Despite its smaller capacity compared to Qwen2.5-
VL-7B, the model rapidly acquired multi-turn reasoning ability and consistently outperformed its
single-turn baseline. These results in Table 6 demonstrate that the proposed framework is not only
effective for larger backbones but also generalizes well to lighter models under limited resources.

A.5 IMPLEMENTATION OF EXPLORATION BOOTSTRAPPING

To address the lack of proactive evidence seeking in early training, we introduce an adaptive explo-
ration bonus that bootstraps multi-turn retrieval. We compute statistics at the mini-batch level (batch
size = 32) and use a two-stage schedule. For each mini-batch, if the retrieval rate (fraction of turns
issuing a retrieve action) falls below a stage-specific threshold, we add a fixed bonus to every
retrieval action in that batch, irrespective of frame relevance.

• Stage I (cold start): threshold = 0.1, bonus = +1.0.

• Stage II (bootstrapping): threshold = 0.5, bonus = +0.5.

Once the retrieval rate remains above the Stage-II threshold for several consecutive mini-batches,
the bonus is disabled. As shown in Figure 5, this dynamic shaping reliably kick-starts and sustains
multi-turn evidence-seeking behavior under pure RL.

Model Frames VideoMME (w/o sub.) MLVU LVBench EgoSchema

Long Overall Test Overall Subset

3B Models
Qwen2.5-VL-3B 32 43.6 51.5 41.2 31.2 57.4
Video-MTR (3B) 32 46.8+3.2 52.5+1.0 42.4+1.2 36.1+4.9 59.5+2.1

Qwen2.5-VL-3B 64 45.9 54.0 43.4 34.7 59.4
Video-MTR (3B) 64 45.4-0.5 54.7+0.7 47.1+3.7 36.7+2.0 64.2+4.8

Table 6: Comparison of single-turn and multi-turn settings on Qwen2.5-VL-3B. The multi-turn
framework consistently improves accuracy.
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Warm-up Reward

Turns Total Rewards

Figure 5: Exploration bootstrapping enables multi-turn behavior. With the bonus (pink), rewards
grow as multi-turn retrieval is maintained; without it (gray), the policy stabilizes at single-turn rea-
soning.

System: conversation between User and Assistant. The user asks a question, and the Assistant solves it. You are
an assistant in analyzing videos. Your will be given a video and a question. Goal: Answer the question correctly
with no more than 3 turns.
User: Turn 1. Now you are given 16 selected frames from the video, with frame idx list: [ 0 4 8 12 16 21 25 29
33 37 42 46 50 54 58 63].
Frames: frame idx:0, <image 0>,frame idx:4, <image 4>,frame idx:8, <image 8>, ..., frame idx:54,
<image 54>,frame idx:58, <image 58>,frame idx:63, <image 63>
Answer the following problem based on the frames: What is the event in the video? Options: [”A. Women’s
synchronized diving”, ’B. Individual diving’, ’C. Swimming’ ”D. Men’s synchronized diving”, ’E. Swimming
relay race’, ’F. Synchronized swimming’] You can choose to retrieve more frames or provide your answer.
Format Template:
<think>...</think><answer>...</answer> or <think>...</think><retrive>...</retrive>
Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using
expressions such as ’let me think’, ’wait’, ’Hmm’, ’oh, I see’, ’let’s break it down’, etc, or other natural language
thought expressions. It’s encouraged to include self-reflection or verification in the reasoning process.Provide your
detailed reasoning between the <think> and </think> tags. If you have enough information, Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.
If you lack some information, think about the most relevant frame index range of the information you need, then
you can retrieve dense frames in the range by sending a retrive request by <retrive> start frame, end frame
</retrive>.
IMPORTANT: start frame and end frame must be integers smaller than 63.

Video-MTR: <think>I need to identify the event and verify if it is men’s synchronized diving. Let’s
look for any indication that this is a synchronized diving event and verify if it is men’s synchronized div-
ing.</think><retrive>12,33</retrive>

User: Turn 2. Now you are given 8 selected frames from the video, with frame idx list: [12 15 18 21 24 27 30
33].
Frames: frame idx:12, <image 12>,frame idx:15, <image 15>,frame idx:27, <image 27>, ...,
frame idx:30, <image 30>,frame idx:33, <image 33>,
Answer the following problem based on the frames: What is the event in the video?
...
If you lack some information, think about the most relevant frame index range of the information you need, then
you can retrieve dense frames in the range by sending a retrive request by <retrive> start frame, end frame
</retrive>.
Video-MTR: <think>I need to verify if this is a synchronized diving event and check if it is men’s synchronized
diving. The frames show two divers performing a synchronized dive, which indicates a synchronized diving event.
</think><answer>D</answer>

Figure 6: An example of Video-MTR with interactions of 2 turns. <image n> will be replaced
with the visual tokens of the specific frames.

B DATASETS

This section details the construction and statistics of our temporally grounded supervision dataset for
reinforcement learning (RL) training. The dataset comprises two components: one curated from a
video-understanding dataset NExT-GQA and one adapted from a video temporal grounding dataset
QVHighlights:
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Goal: Given a declarative sentence to serve as a query for retrieving relevant video segments, generate a multiple
choice question.
Follow these rules:
1. Suitability Check: Return False if the sentence is too short or Lacks distinctive details for discriminative options.
Else, return True and proceed.
2. Question Format: Use one of these interrogatives: Where, How, Why, What, When, Who
3. Options: Derive one correct answer and three incorrect answers from the sentence.
4. Answer: The correct answer to the question.
Format
{

“suitable”: bool, # True/False
“question”: str, # MCQ text (if suitable)
“options”: list,
“answer”: str # Correct option

}
Examples
- Sentence:A man in white shirt discusses the right to have and carry firearms.
- Output:{

“suitable”: True
“question”: What is the man in a white shirt discussing?
“options”: [”A. The war happens in Europe.”, ”B. The recent massacre in the US.”, ”C. The right to have and

carry firearms.”, ”D. The recent crime in the US.”]
“answer”: C

}
- Sentence: Woman holds her shopping bags.
- Output:{

“suitable”: False
“question”:””
“options”: ””
“answer”: ””

}

QA Converted Examples

“- query”:”Asian chef with dyed pink hair cooks food.”
“- question”: ”What is the Asian chef with dyed pink hair doing?”
“- options”: [”A. Preparing ingredients”, ”B. Serving customers”, ”C. Cleaning the kitchen”, ”D. Cooking

food”],
“- answer” : ”D”

“- query”: ”Two people from the same show interview a man at his house.”
“- question”: ”Where do two people from the same show interview a man?”
“- options”: [”A. At his house”, ”B. In a studio”, ”C. Outside”, ”D. In an office”]
“- answer” : ”A”

Figure 7: The GPT-4o prompt template for converting declarative queries into multiple-choice QA
pairs with suitability check, options generation, and converted QA examples.

• NExT-GQA Starting from 10.5K explicit temporal grounding annotations (consolidated
into 8.9K QA pairs), we retain instances with a relevant-segment ratio < 0.5 and video
duration > 30s, yielding ∼5K high-quality samples.

• QVHighlights We use GPT-4o to convert each original query into a QA pair aligned with
its temporal annotations, and apply a two-stage quality filter: (i) discriminative-adequacy
screening; and (ii) relevant-segment ratio < 0.5 and video duration > 30s, resulting in
∼3K QA-grounded samples.

In total, we obtain 8K training instances that are compact yet supervision-dense. Table 7 reports
per-source composition and retained counts at each step to facilitate reproduction and extension.
Figure 7 illustrates the GPT-4o prompt design for rewriting and provides before/after examples.
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Source Pre Filter QA Converted Post Filter
NExT-GQA 8.9K - 4.9K
QVHighlights 7.2K 3.5K 3.0K

Table 7: Dataset composition and filtering statistics. Counts denote thousands of samples. NExT-
GQA is directly used as QA pairs.

C CASE STUDIES

We present additional case studies drawn from three evaluation benchmarks—VideoMME (Fu et al.,
2025), MLVU (Zhou et al., 2024), and EgoSchema (Mangalam et al., 2023) to give a comprehensive
picture of Video-MTR’s multi-round reasoning process; these examples include both successes and
failures.

C.1 SUCCESSFUL CASES

From each dataset we randomly selected one correctly solved example. As illustrated in Figure 8,
all three examples exhibit a consistent evidence-seeking pattern with the following characteristics:
(i) an initial global pass over the video produces a tentative hypothesis that roughly answers the
question; (ii) the model then proposes a targeted temporal segment for closer inspection to obtain
discriminative evidence; and (iii) after observing this segment, the model updates or confirms the
hypothesis and outputs the final answer.

Case A (role identification). The query asks for the identities of two people. After the first pass,
Video-MTR hypothesizes that the pair may be a teacher and a student based on coarse contextual
cues from the full video. It then narrows attention to their interaction segment for verification. In that
focused clip, the person in a white shirt is seen giving instructions, and the standing man in a black
shirt follows the instructions and plays the instrument. This instructional exchange provides role-
asymmetric signals: directive speech acts, demonstrative gestures, and action–response ordering,
yielding temporally grounded, discriminative evidence that confirms the teacher–student hypothesis.

Case B (event recognition). The question asks which event is shown, with candidates including
individual/synchronized diving, swimming, relay, and synchronized swimming. After a global pass,
Video-MTR sets a verification subgoal: to confirm synchronized diving—and proposes a discrim-
inative interval for inspection. Focusing on this clip, the model observes two divers executing the
same dive with mirrored body alignment, thereby ruling out individual diving and all swimming
events. The model confirms the hypothesis and outputs (D) Men’s synchronized diving.

Case C (goal reasoning). The query seeks a concise account of C’s objective and decisions. After
a first pass, Video-MTR hypothesizes that C is choosing what to wear and proposes a targeted
interval for verification. In this segment, C looks at various clothes, picks them up, and appears to
be deciding what to wear, with no behaviors indicative of folding, packing, ironing, or washing. The
model confirms the hypothesis and outputs (C) deciding what clothes to wear.

C.2 ERROR ANALYSIS AND LIMITATIONS

We also examine failure cases to diagnose error sources and outline potential remedies. Two repre-
sentative cases, one involving multi-detail reasoning and the other requiring fine-grained perception
are illustrated in Figure 9.

Case A (Action Order). This example falls under the action-order category, a multi-detail task
requiring inspection of multiple, disjoint segments. In Rounds 1–2 the sampled frames do not cover
all events referenced by the options; nevertheless, the model commits to a prediction, exhibiting hal-
lucination under insufficient evidence. More retrieval rounds are needed to reach a reliable decision.
A likely cause is a training-distribution bias: in our data, one to three rounds typically suffice to
locate relevant frames and answer correctly, which encourages early stopping even when evidence
is incomplete. A straightforward remedy is to expand the curriculum with more sequences that de-
mand four to six retrieval rounds and span widely separated events, prompting the model to keep
searching until each candidate answer has been either supported or ruled out.
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Turn 1

Turn 2

31:2500:00

Vi
de

oM
M
E

Problem：According to what is shown in the video, what might be the relationship between the old man in a white shirt and the standing man in a black 
shirt?
A. Father and son .B. Grandfather and grandson. C. Employer and employee. D. Teacher and student.

- Think: I need to identify the relationship between the old man in a white shirt and the standing man in a black shirt. Let's verify if the old man in a white 
shirt is the teacher and the standing man in a black shirt is the student

- Action: retrieve(42,58) 

- Think: I need to verify if the old man in a white shirt is the teacher and the standing man in a black shirt is the student. The old man in a white shirt is 
seen giving instructions and the standing man in a black shirt is seen following the instructions and playing the instrument. Let's verify if this is 
happening multiple times and see if the old man in a white shirt is the teacher and the standing man in a black shirt is the student

- Action: answer(D)

31:2528:2820:3700:00

Turn 1

Turn 2

96:2700:00

Problem：What is the event in the video?
A.    Women's synchronized diving  
C.    Swimming
E.    Swimming relay race

- Think: I need to identify the event and verify if it is men's synchronized diving. Let's look for any indication that this is a synchronized diving event and 
verify if it is men's synchronized diving. 

- Action: retrieve(12,33) 

- Think: I need to verify if this is a synchronized diving event and check if it is men's synchronized diving. The frames show two divers performing a 
synchronized dive, which indicates a synchronized diving event.

- Action: answer(D)

96:2749:4418:0500:00

B.    Individual diving.
D. Men's synchronized diving.
F.    Synchronized swim 

M
LV
U

Turn 1

Turn 2

03:0000:00

Problem：Keeping in mind the ability to compress information, what would be a concise explanation for the main objective and key decisions behind c's 
actions during the video?
A. C is diligently attempting to clean and wash the clothes thoroughly.
B. Currently, c is attempting to carefully fold and organize the clothes.
C. C is trying to decide what clothes to wear.
D. C is trying to iron the clothes.
E. E. Currently, c is attempting to carefully pack the clothes into luggage.

- Think: I need to identify the main objective and see if C is trying to decide what clothes to wear, fold, organize, or pack. Let's verify if C is seen trying to 
decide what clothes to wear, if C is seen folding, organizing, or packing the clothes.

- Action: retrieve(29,58) 

- Think: I need to verify if C is seen trying to decide what clothes to wear, if C is seen folding, organizing, or packing the clothes. The frames show C 
looking at various clothes, picking them up, and seems to be deciding what to wear. Let's verify if C is seen trying to decide what clothes to wear, if C is 
seen folding, organizing, or packing the clothes

- Action: answer(C)

03:0002:4301:2200:00

Eg
os
ch
em

a

A

B

C

Figure 8: Representative success cases from (A) VideoMME, (B) MLVU, and (C) EgoSchema. The
ground-truth answer is highlighted in orange. The green timeline indicates the positions of sampled
frames in the video.
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Turn 1

Turn 2

07:4300:00

Problem：Which of the following options correctly matches the sequence of actions as they actually appear in the video?
A. tossing coin --> javelin throw --> cleaning toilet --> baking cookies 
B. baking cookies --> cleaning toilet --> tossing coin --> javelin throw
C. javelin throw --> tossing coin --> cleaning toilet --> baking cookies
D. baking cookies --> javelin throw --> cleaning toilet --> tossing coin
E. tossing coin --> javelin throw --> baking cookies --> cleaning toilet
F. cleaning toilet --> baking cookies --> javelin throw --> tossing coin

- Think: I need to identify the sequence of events and see if they match the options provided. Let's verify if the sequence of events is correct and see if they 
match the options provided 

- Action: retrieve(33,58) 

- Think: I need to verify the sequence of events and see if they match the options provided. The sequence of events is as follows: baking cookies, javelin 
throw, cleaning toilet, tossing coin. Let's verify if this sequence is correct and see if it matches the options provided 

- Action: answer(F)

07:4307:0003:3600:00

Turn 1

Turn 2

00:00

Problem： Summarize the process c uses to prepare her brush for painting and how it contributes to the artwork's quality
A. C cleans the paint brush in her right hand in the small cup on the floor, which helps to keep the brush clean and free of debris.
B. Skillfully, c mixes paint on the paint board using the brush in her right hand, which enables her to effortlessly create a wide variety of different colors 

and shades for her artwork.
C. Skillfully, c picks paint from the paint board using the brush in her right hand, which conveniently allows her to apply paint gracefully onto the canvas.
D. C loosens the color intensity on the paint brush in her right hand in the small cup on the floor, which allows her to create a more subtle and nuanced 

effect.
E. Carefully, c paints with the paint brush skillfully on the art work displayed on the canvas, which is the ultimate, final step in the entire painting process

- Think: I need to identify the process c uses to prepare her brush for painting and see how it contributes to the artwork's quality. Let's verify if she is 
cleaning her brush, mixing paint, or applying paint to the canvas.

- Action: retrieve(29,58) 

- Think: I need to verify if c is cleaning her brush, mixing paint, or applying paint to the canvas. Let's check if she is cleaning her brush, mixing paint, or 
applying paint to the canvas.

- Action: answer(B)

03:0002:4301:1400:00

03:00
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A

B

Figure 9: Representative failure cases: (A) action-order reasoning error and (B) fine-grained proce-
dural misrecognition.The ground-truth answer is highlighted in orange. The green timeline indicates
the positions of sampled frames in the video.

Case B (Fine-grained Procedural Reasoning). This task requires interpreting micro-actions (e.g.,
dipping or swishing in a cup versus mixing on a palette) and linking them causally to paint subtlety.
Under the current frame-processing pipeline, which must accommodate long temporal sequences,
the spatial resolution is kept relatively coarse; as a result, these discriminative cues are likely to
appear heavily blurred. To address this limitation, the retrieval-and-reasoning loop at the frame-
selection level could be augmented with a hierarchical temporal-to-spatial reasoning mechanism:
once a relevant frame segment is identified, the system would crop the corresponding frames and re-
analyse high-resolution regions of interest, enabling direct verification of micro-movements before
any answer is produced.

These failure cases several structural weaknesses that limit the current version of Video-MTR in
complex scenarios. Together, these issues indicate that Video-MTR needs deeper temporal search
policies, hierarchical zoom-in vision modules to handle multi-event reasoning and fine-grained per-
ception reliably.
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Model Params Backbone (LLM) Post-train Data Frames / fps

GPT-4o (Hurst et al., 2024) – GPT-4o (proprietary) – 0.5 fps / 384
Gemini-1.5-Pro (Team et al., 2024) – Gemini (proprietary) – 0.5 fps
DrVideo (GPT-4) (Ma et al., 2025) – GPT-4 (proprietary) – 0.2 / 0.5 fps
Qwen2.5-VL-7B† (Bai et al., 2025) 7B Qwen2.5-VL-7B – 768
VideoLLaMA2 (Cheng et al., 2024) 8×7B Mixtral-8x7B-Instruct 1.35M 8
Video-CCAM (Fei et al., 2024) 9B Yi-1.5-9B-Chat 4.4M 96
LongVA (Zhang et al., 2024) 7B Qwen2-7B-Instruct 760K 128 / 256
Video-XL (Shu et al., 2025) 7B Qwen2-7B 257K 128 / 256
VideoAgent (Wang et al., 2024b) – GPT-4 (proprietary) – 87
VideoMemAgent (Fan et al., 2024) – GPT-4 (proprietary) – 72
Video-LLaVA (Lin et al., 2023) 7B Vicuna-7B-v1.5 765K 8
VideoChat2 (Li et al., 2024b) 7B Vicuna-7B-v0 2.0M 16
LLaVA-OneVision (Li et al., 2024a) 7B Qwen-2-7B 4.8M 32
Video-R1 (Feng et al., 2025) 7B Qwen2.5-VL-7B 260K 32 / 64
Video-MTR (Ours) 7B Qwen2.5-VL-7B 8K 32 / 64 / 80

Table 8: Summary of compared baseline models, their backbones, frame budgets, and post-training
data scale.

D MORE COMPARISONS

To give a more comprehensive comparison: in addition to the original parameter size and frame
budget Table 1, we now also summarize, for each baseline, its backbone LLM and post-training data
scale. Regarding the backbone comparison, Table 8 shows that our setting is fair across different
implementation choices: Video-MTR shares the exact same 7B Qwen2.5-VL-7B backbone with
Video-R1 and uses the same 7B Qwen2 family as LongVA and Video-XL, yet achieves superior
performance while being trained on significantly less data (only an 8K long-video QA corpus). In
contrast, many strong baselines rely on proprietary GPT-4/Gemini backbones or web-scale multi-
modal data. For the post-training data, to ensure a fair comparison, we compare only the data used
in the post-training stage (instruction tuning or RL), rather than the full pre-training corpora. For
this reason, we do not list the massive datasets used to build GPT-4/Gemini or the Qwen2.5-VL-7B
backbone itself. Most counterparts rely on hundreds of thousands to millions of supervised multi-
modal pairs, whereas Video-MTR is post-trained in a single RL stage with only 8K supervision-rich
examples, clearly highlights the strong data efficiency of our framework.

E FUTURE WORK

Although Video-MTR demonstrates strong reasoning performance on current long-form bench-
marks, ample room for improvement remains when tackling more challenging queries and much
longer videos. Future work should therefore advance the multi-round framework on two fronts:
(i) lengthen the dialogue loop to support deeper chains of reasoning that solve multi-stage tasks,
and (ii) incorporate a hierarchical temporal-to-spatial strategy that begins with coarse video sweeps
and adaptively zooms into high-resolution frame crops, thereby securing reliable evidence at both
event-level and micro-action scales.
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