
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROFILER: BLACK-BOX AI-GENERATED TEXT ORI-
GIN DETECTION VIA CONTEXT-AWARE INFERENCE PAT-
TERN ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing capabilities of Large Language Models (LLMs), the prolifera-
tion of AI-generated texts has become a serious concern. Given the diverse range
of organizations providing LLMs, it is crucial for governments and third-party
entities to identify the origin LLM of a given text to enable accurate infringement
and mitigation of potential misuse. However, existing detection methods, primar-
ily designed to distinguish between human-generated and LLM-generated texts,
often fail to accurately identify the origin LLM due to the high similarity of AI-
generated texts from different sources. In this paper, we propose a novel black-box
AI-generated text origin detection method, dubbed PROFILER, which accurately
predicts the origin of an input text by extracting distinct context inference pat-
terns through calculating and analyzing novel context losses between the surrogate
model’s output logits and the adjacent input context. Extensive experimental results
show that PROFILER outperforms 10 state-of-the-art baselines, achieving more
than a 25% increase in AUC score on average across both natural language and
code datasets when evaluated against five of the latest commercial LLMs under
both in-distribution and out-of-distribution settings.

1 INTRODUCTION

As Large Language Models (LLMs) achieve superior capabilities in understanding and generating
human-like text, they have become deeply integrated into everyday life (Lo, 2023). However, this
growing reliance on LLMs has also raised significant concerns regarding the misuse of AI-generated
content (Cotton et al., 2024; Kreps et al., 2022; Perkins, 2023). The European Union’s draft Artificial
Intelligence (AI) Act (Madiega, 2021) highlights the risks posed by such AI systems, identifying
various “high-risk” scenarios where AI misuse could harm fundamental human rights, such as
generating phishing emails (Roy et al., 2024). In response, the Act mandates that providers of general-
purpose AI models, including LLMs, as well as third-party researchers, develop and implement
policies to ensure compliance with copyright laws, so that when severe violations occur, accountability
and remediation measures can be enforced effectively.

One key aspect of adhering to these emerging legal and ethical frameworks is the ability to detect the
origin of AI-generated text. A large number of detection techniques have recently been developed.
Some of these techniques are based on watermarking (Kirchenbauer et al., 2023; Kuditipudi et al.,
2024; Hou et al., 2024; Yang et al., 2023). These techniques typically involve fine-tuning LLMs or
adjusting their decoding processes to produce text with a distinctive, model-specific distribution. For
example, after watermarking, text produced by ChatGPT would exhibit a different distribution from
text generated by other LLMs. While watermarking can be effective, it is exclusively controlled by
model providers, creating a potential conflict of interest. Since providers are the only entities capable
of verifying watermarks, they may be incentivized to obscure evidence of misuse and avoid admitting
fault, undermining transparency and accountability.

To mitigate this limitation, surrogate-model-based methods have gained increasing attention (Bhat-
tacharjee & Liu, 2024; He et al., 2023; Wang et al., 2023b). These techniques enable external parties
to conduct forensic analyses without requiring cooperation from model providers, relying only on
black-box access to the text generation process. By feeding partial or full text to a surrogate model

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(i.e., an LLM of a relatively small scale), researchers can analyze its internal states to infer the
likely origin of the text. The underlying rationale is that sufficiently powerful surrogate models can
capture statistical or representational differences, which help reveal the source. Existing approaches
along this line largely focus on identifying next-token prediction patterns, referred to as the
token-level inference pattern. While these techniques have shown promising results in distinguishing
human-generated from AI-generated text, they are less effective in differentiating outputs from
various LLMs, as demonstrated in our evaluation (Section 5). Further investigation reveals that, unlike
the clear distinction between human and AI-generated text (Jawahar et al., 2020; Bakhtin et al., 2019;
Guo et al., 2023), different LLMs often converge on similar next-token predictions due to shared
linguistic distributions from large corpora. This similarity introduces a more subtle variation, making
token-level inference patterns alone insufficient to capture these nuances (as discussed in Section 3).

Building on this observation, we introduce a novel approach that incorporates contextual information
to enlarge the representational differences between text generated by various LLMs, improving the
precision of text origin detection. Specifically, rather than relying solely on token-level features
(e.g., next token prediction commonly used in existing detection methods), our method broadens
the analysis to capture the model’s inference behavior over a window of surrounding tokens (i.e.,
context), referred to as the context-level inference pattern. This approach calculates novel context
losses by utilizing the output logits from the surrogate model and the adjacent input context tokens at
each output logits position. It then extracts both independent features (features derived from a single
context loss subsequence) and correlated features (features derived from each pair of context loss
subsequences) from these context losses. Based on this, we develop PROFILER, the first black-box
detection method that leverages rich contextual information for identifying the origin of AI-generated
text. To further evaluate the effectiveness of PROFILER, we extend existing datasets by incorporating
diverse text samples generated by multiple recent commercial LLMs across various text domains. Our
comprehensive evaluation demonstrates PROFILER’s superior performance in detecting text origin.

Our contributions are summarized as follows:

• We propose a novel AI-generated text origin detection algorithm PROFILER that incorporates
rich contextual information for improved accuracy.

• We introduce a new feature extraction algorithm that effectively captures contextual informa-
tion for text origin detection. This algorithm extracts both independent features, i.e., output
logits for each token, and correlated features, i.e., pairwise cross-entropy losses between
tokens and their neighbors.

• We present a new evaluation dataset for text origin detection, which extends existing datasets
by incorporating diverse text samples generated by recent commercial LLMs across various
domains and tasks. The dataset includes samples originating from four existing natural
language datasets, an existing code dataset, and a newly collected C++ code dataset (GCJ).

• We develop a prototype, PROFILER, and conduct a comprehensive evaluation against 10
baselines. The results demonstrate that PROFILER significantly improves origin detection
accuracy, particularly in distinguishing outputs from different LLMs, such as GPT-3.5-
Turbo (OpenAI, 2023), GPT-4-Turbo (Achiam et al., 2023), Claude3-Sonnet (Anthropic,
2023), Claude-3-Opus (Anthropic, 2023), and Gemini-1.0-Pro (Team et al., 2023). PRO-
FILER achieves a more than 45.5% and 12.5% increase in detection AUC scores under
in-distribution (compared to both zero-shot and supervised-trained methods) and out-of-
distribution (compared to supervised-trained methods) settings, respectively.

2 BACKGROUND AND RELATED WORK

2.1 AI-GENERATED TEXT DETECTION

Existing AI-generated text detection methods can be broadly categorized into two primary approaches:
watermark-based methods and surrogate-model-based methods. Watermark-based methods (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2024; Hou et al., 2024; Yang et al., 2023) typically modify the
decoding strategy during the LLM’s generation process to force or encourage the generated tokens
to fall within a predefined subset of the model’s vocabulary. However, these requirements limit the
applicability of watermark-based methods, making them less practical compared to surrogate-model-
based methods. In contrast, surrogate-model-based methods operate in a completely black-box setting

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

without requiring prior modifications to the text generation process, where detectors only have access
to a limited amount of AI-generated data.

Existing surrogate-model-based detection methods can be further divided into zero-shot detection
and supervised-trained detection:

Zero-shot Detection. Zero-shot detection methods assign a confidence score to each text sample
and use a predefined threshold to differentiate between human-written and AI-generated texts. For
instance, GLTR (Gehrmann et al., 2019) measures the average token rank of the input text based on a
surrogate LLM’s output logits, where a higher average rank indicates a higher likelihood of the text
being AI-generated. LRR (Su et al., 2023), an improved version of GLTR, utilizes both log-rank and
log-probability metrics. DetectGPT (Mitchell et al., 2023) detects AI-generated texts by measuring
the similarity of the input text with its repeatedly masked and reconstructed versions using a pre-
trained LLM, while Fast-DetectGPT (Bao et al., 2024) further optimizes this approach with a rapid
text sampling technique. Binoculars (Hans et al., 2024) utilizes the cross-entropy between output
logits from two different surrogate LLMs to detect AI-generated texts, achieving more consistent
performance across LLMs. Other works (Yang et al., 2024; Mireshghallah et al., 2024; Tulchinskii
et al., 2023) explore various advanced metrics for zero-shot detection.

Supervised-trained Detection. In contrast, supervised-trained detection methods employ more
complex features and train classification models to identify distinct patterns in human-written and AI-
generated texts. For example, Solaiman et al. (2019) fine-tunes a RoBERTa (Liu et al., 2019) model to
detect texts generated by GPT-2 (Radford et al., 2019). RADAR (Hu et al., 2023) and Outfox (Koike
et al., 2024) enhance detection robustness against paraphrasing attacks using adversarial training.
Raidar (Mao et al., 2024) compares the differences between the original text and LLM-rewritten text
to identify AI-generated content. GhostBuster (Verma et al., 2024) explores feature combinations
derived from multiple surrogate LLMs’ output logits to optimize detection performance. Recent
studies (McGovern et al., 2024) also investigate more advanced features for supervised detection.

2.2 BLACK-BOX TEXT ORIGIN DETECTION

Despite the significant advancements in AI-generated text detection techniques, only a few methods
have demonstrated the capability to further identify the origin LLM of a given AI-generated text.
For example, TuringBench (Uchendu et al., 2021) evaluates the effectiveness of various methods,
including GLTR (Gehrmann et al., 2019), Grover (Zellers et al., 2019), and fine-tuning-based
approaches (Devlin et al., 2019; Yang et al., 2019) using over 160k samples. However, these methods
struggle to keep up with the rapid evolution of LLMs. Sniffer (Li et al., 2023) attempts to detect
text origin by comparing the output logits from multiple surrogate LLMs using metrics such as the
percentage of perplexity scores. SeqXGPT (Wang et al., 2023a) further enhances Sniffer by leveraging
a specialized detection model based on convolutional and self-attention networks. Nevertheless, the
effectiveness of these approaches against more advanced commercial LLMs remains uncertain and
requires further validation.

3 EXPLORING THE LIMITATION OF EXISTING DETECTION METHODS

The fundamental assumption of existing AI-generated text detection methods is that AI-generated
texts exhibit unique next-token prediction patterns, which can be effectively identified using surrogate
LLMs. However, these prediction patterns are strikingly similar across texts generated by different
LLMs, limiting the effectiveness of such methods in handling text origin detection. Figure 1 illustrates
the scores of one latest detector, Binoculars, on texts from human and four distinct LLMs. The
x-axis represents Binoculars scores, while the y-axis shows the frequency of samples. Gray bars
indicate the score distribution for human-written texts, whereas colored bars represent texts generated
by various LLMs. Although the Binoculars score successfully distinguishes between human and
AI-generated texts, it shows limited capability in classifying texts based on their specific AI sources.
This observation validates our assumption that next-token prediction patterns are highly consistent
among different LLMs.

To address the challenge of uncovering distinguishable patterns in AI-generated texts, we propose
PROFILER, which goes beyond next-token prediction in the output logits. Figure 2 illustrates the
intuition behind our method by comparing text patterns generated by GPT-4-Turbo and Claude-3-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Human Text
GPT-3.5-Turbo
GPT-4-Turbo
Claude-3-Sonnet
Gemini-1.0-pro

Fr
eq

ue
nc

y
(%

)

0

5

10

15

20

25

Binoculars Score
0.6 0.8 1.0

Figure 1: Distribution difference
of Binoculars scores between
texts from human and four dis-
tinct LLMs.

When a three-dimensional object moves relative to an observer, a
change occurs on the observer's

When a three-dimensional object moves relative to an observer, a
change occurs on the observer's

Given Prompt GPT-4-Turbo Generation

Claude-3-Sonnet Generation

perception of the object

ret inal image ,
Given Prompt

Surrogate Model
(GPT-2)

Input

Input Inference

Output
Logits

Context
CE Losses

Loss
Differences

GPT-4-Turbo

Claude-3
Sonnet

−8
0

−6
0

of the object
0

5
10

of the object 0

5

10

of
the

the
object

of
object

−8
0

−6
0

inal image ,
0

5
10

inal image , 0

5

10

inal
image

image
,

inal
,

Figure 2: Text patterns generated by GPT-4-Turbo and
Claude-3-Sonnet across different metrics. Bars colored in
darker colors in the six subfigures highlight features tied to
next-token prediction.

Sonnet. As a standard practice when generating texts using LLMs, a prompt is provided to the
model. In this example, both GPT-4-Turbo and Claude-3-Sonnet are given the same prompt, "When
a three-dimensional object moves relative to an observer, a change occurs on the observer’s". Each
model then generates new tokens following its intrinsic pattern, i.e., the texts in green and orange,
respectively. During the detection phase, a small surrogate model (i.e., GPT-2 in this example) is
used to extract features of the generated texts by inferring them token-by-token, and Profiler analyzes
the surrogate model’s output logits of those tokens and their cross-entropy losses. The figure shows
that given the original prompt (in gray) and part of the generated text (i.e., “perception of” for GPT
and “ret inal” for Claude), how Profiler engineers the features. The first feature (i.e., the bar charts
in the first column) is the output logits of context. For example, the top-left bar chart shows the
output logits of tokens “of”, “the”, and “object”, given the input inside the green dashed box. Ideally,
we hope this feature denotes the likelihoods that the model stutters and repeats the previous word
“of”, correctly predicts the expected word “the”, and skips a word and fast-forwards to “object”. In
contrast, existing techniques only use the logit value of “the”. Observe from the two bar charts in
the left column that the two features appear similar, meaning that the probabilities follow a similar
pattern. To zoom in, Profiler computes the cross-entropy losses between the current output logits
(e.g., the logits for “the”) and the one-hot encodings of the context (e.g., encodings of “of”, “the”,
and “object”, respectively), yielding the charts in the second column. Intuitively, this feature makes
the probabilities of stuttering, saying-the-right-word, and skipping more prominent by using the
ground-truth tokens as a strong reference. Observe that differences start to emerge. In the last column,
we further enhance the distinguishability by subtracting neighboring cross-entropy losses.

4 DESIGN OF PROFILER

4.1 OVERVIEW OF PROFILER

The entire pipeline of PROFILER consists of three key stages: Surrogate Model Inference, Context
Loss Computation, and Inference Pattern Extraction, as shown in Figure 3. The primary objective
of PROFILER is to determine whether a given text is generated by a specific text origin.

Stage 1: Surrogate Model Inference (Section 4.2). In this stage, the tokenized input sequence is fed
into surrogate model to obtain the sequence of output logits. At each token position, output logits are
computed based on all preceding input tokens up to that point.

Stage 2: Context Loss Computation (Section 4.3). With the sequence of output logits from the
first stage, PROFILER computes the context loss. At each position, cross-entropy losses between the
current output logits and adjacent input tokens within a fixed context window are calculated. These
losses, referred to as context losses, are used in the next stage.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="mLsLw+LgQsFZ/Zeub87vterPUD0=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GjLV2roruHFZ0T6gHUomzbShmWRIMkIZ+gluXCji1i9y59+YTkdQ0QMXDufcy733BDFn2iD04RRWVtfWN4qbpa3tnd298v5BR8tEEdomkkvVC7CmnAnaNsxw2osVxVHAaTeYXi387j1VmklxZ2Yx9SM8FixkBBsr3cohG5YryL2s184Qghmp1r2cNBrQc1GGCsjRGpbfByNJkogKQzjWuu+h2PgpVoYRTuelQaJpjMkUj2nfUoEjqv00O3UOT6wygqFUtoSBmfp9IsWR1rMosJ0RNhP921uIf3n9xIQNP2UiTgwVZLkoTDg0Ei7+hiOmKDF8ZgkmitlbIZlghYmx6ZRsCF+fwv9Jp+p6F27t5rzSRHkcRXAEjsEp8EAdNME1aIE2IGAMHsATeHa48+i8OK/L1oKTzxyCH3DePgHYbo4l</latexit>oi

<latexit sha1_base64="otIIiU0v7YL6O8JN8VqSoUaoImE=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgxWU2GhNvAS8eI5hESJYwO5lNhsw+mJkVw5KP8OJBEa9+jzf/xslmBRUtaCiquunu8mLBlcb4wyosLa+srhXXSxubW9s75d29jooSSVmbRiKStx5RTPCQtTXXgt3GkpHAE6zrTS7nfveOScWj8EZPY+YGZBRyn1OijdS9H6T8xJkNyhVsX9RrpxijjFTrTk4aDeTYOEMFcrQG5ff+MKJJwEJNBVGq5+BYuymRmlPBZqV+olhM6ISMWM/QkARMuWl27gwdGWWI/EiaCjXK1O8TKQmUmgae6QyIHqvf3lz8y+sl2m+4KQ/jRLOQLhb5iUA6QvPf0ZBLRrWYGkKo5OZWRMdEEqpNQiUTwten6H/SqdrOuV27Pqs0cR5HEQ7gEI7BgTo04Qpa0AYKE3iAJ3i2YuvRerFeF60FK5/Zhx+w3j4Bh2OPrA==</latexit>xi�1
<latexit sha1_base64="fxv1KNdPI50t8YrrDchkaowxAQQ=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0iqtfVW8OKxgmkLbSib7aZdutmE3Y1YQn+DFw+KePUHefPfuG0jqOiDgcd7M8zMCxLOlHacD6uwsrq2vlHcLG1t7+zulfcP2ipOJaEeiXksuwFWlDNBPc00p91EUhwFnHaCydXc79xRqVgsbvU0oX6ER4KFjGBtJO9+kLHZoFxx7Mt67cxx0IJU625OGg3k2s4CFcjRGpTf+8OYpBEVmnCsVM91Eu1nWGpGOJ2V+qmiCSYTPKI9QwWOqPKzxbEzdGKUIQpjaUpotFC/T2Q4UmoaBaYzwnqsfntz8S+vl+qw4WdMJKmmgiwXhSlHOkbzz9GQSUo0nxqCiWTmVkTGWGKiTT4lE8LXp+h/0q7a7oVduzmvNJ08jiIcwTGcggt1aMI1tMADAgwe4AmeLWE9Wi/W67K1YOUzh/AD1tsnqwGPOg==</latexit>xi

<latexit sha1_base64="5382/U2OUEg3buntzPVTpPAsNAg=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoMgCMtsNCbeAl48RjCJkCxhdjKbDJl9MDMrhiUf4cWDIl79Hm/+jZPNCipa0FBUddPd5cWCK43xh1VYWl5ZXSuulzY2t7Z3yrt7HRUlkrI2jUQkbz2imOAha2uuBbuNJSOBJ1jXm1zO/e4dk4pH4Y2exswNyCjkPqdEG6l7P0j5iTMblCvYvqjXTjFGGanWnZw0GsixcYYK5GgNyu/9YUSTgIWaCqJUz8GxdlMiNaeCzUr9RLGY0AkZsZ6hIQmYctPs3Bk6MsoQ+ZE0FWqUqd8nUhIoNQ080xkQPVa/vbn4l9dLtN9wUx7GiWYhXSzyE4F0hOa/oyGXjGoxNYRQyc2tiI6JJFSbhEomhK9P0f+kU7Wdc7t2fVZp4jyOIhzAIRyDA3VowhW0oA0UJvAAT/Bsxdaj9WK9LloLVj6zDz9gvX0ChFePqg==</latexit>xi+1
<latexit sha1_base64="6Rz2tj74/WtdzSOIQYjZobC28AY=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoMgCMtsNCbeAl48RjCJkCxhdjKbDJl9MDMrhiUf4cWDIl79Hm/+jZPNCipa0FBUddPd5cWCK43xh1VYWl5ZXSuulzY2t7Z3yrt7HRUlkrI2jUQkbz2imOAha2uuBbuNJSOBJ1jXm1zO/e4dk4pH4Y2exswNyCjkPqdEG6l7P0j5SXU2KFewfVGvnWKMMlKtOzlpNJBj4wwVyNEalN/7w4gmAQs1FUSpnoNj7aZEak4Fm5X6iWIxoRMyYj1DQxIw5abZuTN0ZJQh8iNpKtQoU79PpCRQahp4pjMgeqx+e3PxL6+XaL/hpjyME81CuljkJwLpCM1/R0MuGdViagihkptbER0TSag2CZVMCF+fov9Jp2o753bt+qzSxHkcRTiAQzgGB+rQhCtoQRsoTOABnuDZiq1H68V6XbQWrHxmH37AevsEhdyPqw==</latexit>xi+2

Context Window

CE Losses
Computation

<latexit sha1_base64="dwRDmstAiAD0I/ZnBpLEosd/Kp8=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgaclWa+ut4MVjBdcW2qVk02wbmk2WJCuUpb/BiwdFvPqDvPlvTLcrqOiDgcd7M8zMCxPOtEHowymtrK6tb5Q3K1vbO7t71f2DOy1TRahPJJeqF2JNORPUN8xw2ksUxXHIaTecXi387j1Vmklxa2YJDWI8FixiBBsr+XKYefNhtYbcy2bjDCGYk3rTK0irBT0X5aiBAp1h9X0wkiSNqTCEY637HkpMkGFlGOF0XhmkmiaYTPGY9i0VOKY6yPJj5/DEKiMYSWVLGJir3ycyHGs9i0PbGWMz0b+9hfiX109N1AoyJpLUUEGWi6KUQyPh4nM4YooSw2eWYKKYvRWSCVaYGJtPxYbw9Sn8n9zVXe/Cbdyc19qoiKMMjsAxOAUeaII2uAYd4AMCGHgAT+DZEc6j8+K8LltLTjFzCH7AefsESCGO+Q==</latexit>o1
<latexit sha1_base64="17eFWe/NXDRBvdY6f2eVSZfBcvc=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgaclWa+ut4MVjBdcW2qVk02wbmk2WJCuUpb/BiwdFvPqDvPlvTLcrqOiDgcd7M8zMCxPOtEHowymtrK6tb5Q3K1vbO7t71f2DOy1TRahPJJeqF2JNORPUN8xw2ksUxXHIaTecXi387j1Vmklxa2YJDWI8FixiBBsr+XKYifmwWkPuZbNxhhDMSb3pFaTVgp6LctRAgc6w+j4YSZLGVBjCsdZ9DyUmyLAyjHA6rwxSTRNMpnhM+5YKHFMdZPmxc3hilRGMpLIlDMzV7xMZjrWexaHtjLGZ6N/eQvzL66cmagUZE0lqqCDLRVHKoZFw8TkcMUWJ4TNLMFHM3grJBCtMjM2nYkP4+hT+T+7qrnfhNm7Oa21UxFEGR+AYnAIPNEEbXIMO8AEBDDyAJ/DsCOfReXFel60lp5g5BD/gvH0CpNKPNg==</latexit>on

Stage 2
Context Loss
Computation

Independent
Patterns

Correlated
Patterns

<latexit sha1_base64="A2qm9S883+fMrHoQK3EspGwNXxs=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8LbPRmHgLePEY0TwgWcLsZDYZMvtgZlYMSz7BiwdFvPpF3vwbJ5sVVLSgoajqprvLiwVXGuMPa2l5ZXVtvbBR3Nza3tkt7e23VZRIylo0EpHsekQxwUPW0lwL1o0lI4EnWMebXM79zh2TikfhrZ7GzA3IKOQ+p0Qb6eZ+4AxKZWxf1KqnGKOMVGpOTup15Ng4QxlyNAel9/4woknAQk0FUarn4Fi7KZGaU8FmxX6iWEzohIxYz9CQBEy5aXbqDB0bZYj8SJoKNcrU7xMpCZSaBp7pDIgeq9/eXPzL6yXar7spD+NEs5AuFvmJQDpC87/RkEtGtZgaQqjk5lZEx0QSqk06RRPC16fof9Ku2M65Xb0+KzdwHkcBDuEITsCBGjTgCprQAgojeIAneLaE9Wi9WK+L1iUrnzmAH7DePgGRRI32</latexit>x1
<latexit sha1_base64="otIIiU0v7YL6O8JN8VqSoUaoImE=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgxWU2GhNvAS8eI5hESJYwO5lNhsw+mJkVw5KP8OJBEa9+jzf/xslmBRUtaCiquunu8mLBlcb4wyosLa+srhXXSxubW9s75d29jooSSVmbRiKStx5RTPCQtTXXgt3GkpHAE6zrTS7nfveOScWj8EZPY+YGZBRyn1OijdS9H6T8xJkNyhVsX9RrpxijjFTrTk4aDeTYOEMFcrQG5ff+MKJJwEJNBVGq5+BYuymRmlPBZqV+olhM6ISMWM/QkARMuWl27gwdGWWI/EiaCjXK1O8TKQmUmgae6QyIHqvf3lz8y+sl2m+4KQ/jRLOQLhb5iUA6QvPf0ZBLRrWYGkKo5OZWRMdEEqpNQiUTwten6H/SqdrOuV27Pqs0cR5HEQ7gEI7BgTo04Qpa0AYKE3iAJ3i2YuvRerFeF60FK5/Zhx+w3j4Bh2OPrA==</latexit>xi�1

<latexit sha1_base64="fxv1KNdPI50t8YrrDchkaowxAQQ=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0iqtfVW8OKxgmkLbSib7aZdutmE3Y1YQn+DFw+KePUHefPfuG0jqOiDgcd7M8zMCxLOlHacD6uwsrq2vlHcLG1t7+zulfcP2ipOJaEeiXksuwFWlDNBPc00p91EUhwFnHaCydXc79xRqVgsbvU0oX6ER4KFjGBtJO9+kLHZoFxx7Mt67cxx0IJU625OGg3k2s4CFcjRGpTf+8OYpBEVmnCsVM91Eu1nWGpGOJ2V+qmiCSYTPKI9QwWOqPKzxbEzdGKUIQpjaUpotFC/T2Q4UmoaBaYzwnqsfntz8S+vl+qw4WdMJKmmgiwXhSlHOkbzz9GQSUo0nxqCiWTmVkTGWGKiTT4lE8LXp+h/0q7a7oVduzmvNJ08jiIcwTGcggt1aMI1tMADAgwe4AmeLWE9Wi/W67K1YOUzh/AD1tsnqwGPOg==</latexit>xi
<latexit sha1_base64="5382/U2OUEg3buntzPVTpPAsNAg=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoMgCMtsNCbeAl48RjCJkCxhdjKbDJl9MDMrhiUf4cWDIl79Hm/+jZPNCipa0FBUddPd5cWCK43xh1VYWl5ZXSuulzY2t7Z3yrt7HRUlkrI2jUQkbz2imOAha2uuBbuNJSOBJ1jXm1zO/e4dk4pH4Y2exswNyCjkPqdEG6l7P0j5iTMblCvYvqjXTjFGGanWnZw0GsixcYYK5GgNyu/9YUSTgIWaCqJUz8GxdlMiNaeCzUr9RLGY0AkZsZ6hIQmYctPs3Bk6MsoQ+ZE0FWqUqd8nUhIoNQ080xkQPVa/vbn4l9dLtN9wUx7GiWYhXSzyE4F0hOa/oyGXjGoxNYRQyc2tiI6JJFSbhEomhK9P0f+kU7Wdc7t2fVZp4jyOIhzAIRyDA3VowhW0oA0UJvAAT/Bsxdaj9WK9LloLVj6zDz9gvX0ChFePqg==</latexit>xi+1

<latexit sha1_base64="6Rz2tj74/WtdzSOIQYjZobC28AY=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoMgCMtsNCbeAl48RjCJkCxhdjKbDJl9MDMrhiUf4cWDIl79Hm/+jZPNCipa0FBUddPd5cWCK43xh1VYWl5ZXSuulzY2t7Z3yrt7HRUlkrI2jUQkbz2imOAha2uuBbuNJSOBJ1jXm1zO/e4dk4pH4Y2exswNyCjkPqdEG6l7P0j5SXU2KFewfVGvnWKMMlKtOzlpNJBj4wwVyNEalN/7w4gmAQs1FUSpnoNj7aZEak4Fm5X6iWIxoRMyYj1DQxIw5abZuTN0ZJQh8iNpKtQoU79PpCRQahp4pjMgeqx+e3PxL6+XaL/hpjyME81CuljkJwLpCM1/R0MuGdViagihkptbER0TSag2CZVMCF+fov9Jp2o753bt+qzSxHkcRTiAQzgGB+rQhCtoQRsoTOABnuDZiq1H68V6XbQWrHxmH37AevsEhdyPqw==</latexit>xi+2
<latexit sha1_base64="EToLSQz/Zmq0MEwbQzxj3leA2wk=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0iqtfVW8OKxgmkLbSib7aZdutmE3Y1YQn+DFw+KePUHefPfuG0jqOiDgcd7M8zMCxLOlHacD6uwsrq2vlHcLG1t7+zulfcP2ipOJaEeiXksuwFWlDNBPc00p91EUhwFnHaCydXc79xRqVgsbvU0oX6ER4KFjGBtJO9+kInZoFxx7Mt67cxx0IJU625OGg3k2s4CFcjRGpTf+8OYpBEVmnCsVM91Eu1nWGpGOJ2V+qmiCSYTPKI9QwWOqPKzxbEzdGKUIQpjaUpotFC/T2Q4UmoaBaYzwnqsfntz8S+vl+qw4WdMJKmmgiwXhSlHOkbzz9GQSUo0nxqCiWTmVkTGWGKiTT4lE8LXp+h/0q7a7oVduzmvNJ08jiIcwTGcggt1aMI1tMADAgwe4AmeLWE9Wi/W67K1YOUzh/AD1tsnspqPPw==</latexit>xn

<latexit sha1_base64="mLsLw+LgQsFZ/Zeub87vterPUD0=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GjLV2roruHFZ0T6gHUomzbShmWRIMkIZ+gluXCji1i9y59+YTkdQ0QMXDufcy733BDFn2iD04RRWVtfWN4qbpa3tnd298v5BR8tEEdomkkvVC7CmnAnaNsxw2osVxVHAaTeYXi387j1VmklxZ2Yx9SM8FixkBBsr3cohG5YryL2s184Qghmp1r2cNBrQc1GGCsjRGpbfByNJkogKQzjWuu+h2PgpVoYRTuelQaJpjMkUj2nfUoEjqv00O3UOT6wygqFUtoSBmfp9IsWR1rMosJ0RNhP921uIf3n9xIQNP2UiTgwVZLkoTDg0Ei7+hiOmKDF8ZgkmitlbIZlghYmx6ZRsCF+fwv9Jp+p6F27t5rzSRHkcRXAEjsEp8EAdNME1aIE2IGAMHsATeHa48+i8OK/L1oKTzxyCH3DePgHYbo4l</latexit>oi
<latexit sha1_base64="lJrcFRbu86LiEiBgS+QniM2Yqqw=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4cchUa+uu4MZlBfuAdiiZNNOGZpIhyQhl6Ee4caGIW7/HnX9jOh1BRQ9cOJxzL/feE8ScaYPQh1NYWV1b3yhulra2d3b3yvsHHS0TRWibSC5VL8CaciZo2zDDaS9WFEcBp91ger3wu/dUaSbFnZnF1I/wWLCQEWys1JXDlJ1582G5gtyreu0cIZiRat3LSaMBPRdlqIAcrWH5fTCSJImoMIRjrfseio2fYmUY4XReGiSaxphM8Zj2LRU4otpPs3Pn8MQqIxhKZUsYmKnfJ1IcaT2LAtsZYTPRv72F+JfXT0zY8FMm4sRQQZaLwoRDI+HidzhiihLDZ5Zgopi9FZIJVpgYm1DJhvD1KfyfdKqud+nWbi8qTZTHUQRH4BicAg/UQRPcgBZoAwKm4AE8gWcndh6dF+d12Vpw8plD8APO2yd5iY+j</latexit>oi�1

<latexit sha1_base64="iopE8uPekiDxIXFu8LXSb+dxEfE=">AAAB7nicdVDLSgMxFM3UV62vqks3wSIIwpCp1tZdwY3LCvYB7VAyaaYNzSRDkhHK0I9w40IRt36PO//GdDqCih64cDjnXu69J4g50wahD6ewsrq2vlHcLG1t7+zulfcPOlomitA2kVyqXoA15UzQtmGG016sKI4CTrvB9Hrhd++p0kyKOzOLqR/hsWAhI9hYqSuHKTvz5sNyBblX9do5QjAj1bqXk0YDei7KUAE5WsPy+2AkSRJRYQjHWvc9FBs/xcowwum8NEg0jTGZ4jHtWypwRLWfZufO4YlVRjCUypYwMFO/T6Q40noWBbYzwmaif3sL8S+vn5iw4adMxImhgiwXhQmHRsLF73DEFCWGzyzBRDF7KyQTrDAxNqGSDeHrU/g/6VRd79Kt3V5UmiiPowiOwDE4BR6ogya4AS3QBgRMwQN4As9O7Dw6L87rsrXg5DOH4Aect092fY+h</latexit>oi+1
<latexit sha1_base64="GC0tptZinGdLQve+5wPH1AsfuYU=">AAAB7nicdVDLSgMxFM3UV62vqks3wSIIwpCp1tZdwY3LCvYB7VAyaaYNzSRDkhHK0I9w40IRt36PO//GdDqCih64cDjnXu69J4g50wahD6ewsrq2vlHcLG1t7+zulfcPOlomitA2kVyqXoA15UzQtmGG016sKI4CTrvB9Hrhd++p0kyKOzOLqR/hsWAhI9hYqSuHKTurzoflCnKv6rVzhGBGqnUvJ40G9FyUoQJytIbl98FIkiSiwhCOte57KDZ+ipVhhNN5aZBoGmMyxWPat1TgiGo/zc6dwxOrjGAolS1hYKZ+n0hxpPUsCmxnhM1E//YW4l9ePzFhw0+ZiBNDBVkuChMOjYSL3+GIKUoMn1mCiWL2VkgmWGFibEIlG8LXp/B/0qm63qVbu72oNFEeRxEcgWNwCjxQB01wA1qgDQiYggfwBJ6d2Hl0XpzXZWvByWcOwQ84b594Ao+i</latexit>oi+2

<latexit sha1_base64="dwRDmstAiAD0I/ZnBpLEosd/Kp8=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgaclWa+ut4MVjBdcW2qVk02wbmk2WJCuUpb/BiwdFvPqDvPlvTLcrqOiDgcd7M8zMCxPOtEHowymtrK6tb5Q3K1vbO7t71f2DOy1TRahPJJeqF2JNORPUN8xw2ksUxXHIaTecXi387j1Vmklxa2YJDWI8FixiBBsr+XKYefNhtYbcy2bjDCGYk3rTK0irBT0X5aiBAp1h9X0wkiSNqTCEY637HkpMkGFlGOF0XhmkmiaYTPGY9i0VOKY6yPJj5/DEKiMYSWVLGJir3ycyHGs9i0PbGWMz0b+9hfiX109N1AoyJpLUUEGWi6KUQyPh4nM4YooSw2eWYKKYvRWSCVaYGJtPxYbw9Sn8n9zVXe/Cbdyc19qoiKMMjsAxOAUeaII2uAYd4AMCGHgAT+DZEc6j8+K8LltLTjFzCH7AefsESCGO+Q==</latexit>o1
<latexit sha1_base64="17eFWe/NXDRBvdY6f2eVSZfBcvc=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgaclWa+ut4MVjBdcW2qVk02wbmk2WJCuUpb/BiwdFvPqDvPlvTLcrqOiDgcd7M8zMCxPOtEHowymtrK6tb5Q3K1vbO7t71f2DOy1TRahPJJeqF2JNORPUN8xw2ksUxXHIaTecXi387j1Vmklxa2YJDWI8FixiBBsr+XKYifmwWkPuZbNxhhDMSb3pFaTVgp6LctRAgc6w+j4YSZLGVBjCsdZ9DyUmyLAyjHA6rwxSTRNMpnhM+5YKHFMdZPmxc3hilRGMpLIlDMzV7xMZjrWexaHtjLGZ6N/eQvzL66cmagUZE0lqqCDLRVHKoZFw8TkcMUWJ4TNLMFHM3grJBCtMjM2nYkP4+hT+T+7qrnfhNm7Oa21UxFEGR+AYnAIPNEEbXIMO8AEBDDyAJ/DsCOfReXFel60lp5g5BD/gvH0CpNKPNg==</latexit>on

Embedding

Inference

Stage 1
Surrogate Model Inference

Stage 3
Inference
Pattern

Extraction

Input
Tokens

Output
Logits Classification

Input
Text

To
ke

ni
ze

Surrogate Model
<latexit sha1_base64="U12Mh/l+fY9arUZdybtd3pdPRIU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQixchAfOAZAmzk04yZnZ2mZkVwpIv8OJBEa9+kjf/xkmyB00saCiquunuCmLBtXHdbye3srq2vpHfLGxt7+zuFfcPGjpKFMM6i0SkWgHVKLjEuuFGYCtWSMNAYDMY3U795hMqzSP5YMYx+iEdSN7njBor1e67xZJbdmcgy8TLSAkyVLvFr04vYkmI0jBBtW57bmz8lCrDmcBJoZNojCkb0QG2LZU0RO2ns0Mn5MQqPdKPlC1pyEz9PZHSUOtxGNjOkJqhXvSm4n9eOzH9az/lMk4MSjZf1E8EMRGZfk16XCEzYmwJZYrbWwkbUkWZsdkUbAje4svLpHFW9i7LF7XzUuUmiyMPR3AMp+DBFVTgDqpQBwYIz/AKb86j8+K8Ox/z1pyTzRzCHzifP6hNjNs=</latexit>

M

Figure 3: Overview of PROFILER. We take context window size W = 4 as an example.

Stage 3: Inference Pattern Extraction (Section 4.4). Finally, PROFILER extracts inference patterns
from the context loss, including independent patterns (statistical and residual patterns of a single
context loss) and correlated patterns (distribution similarity between each context loss pair). These
patterns are then either used to train a lightweight classifier (e.g., random forest) for text origin
detection during the training phase or fed into a pre-trained classifier to obtain predictions.

4.2 SURROGATE MODEL INFERENCE

Given the input text to be detected, PROFILER first tokenizes the text and feeds the input tokens into
the surrogate model M . PROFILER then applies the Teacher Forcing algorithm (Williams & Zipser,
1989; Lamb et al., 2016), allowing the surrogate model to infer the input tokens and generate the
corresponding output logits sequentially.

Specifically, let the entire input token sequence be x1:n, and each component oi(i ∈ {1, · · · , n}) in
the output logits sequence o1:n is calculated as:

oi = PM (Yi|Xi = x1:i), (1)

where PM (Yi|Xi) represents the output logits distribution over M ’s vocabulary list V at position i,
given the input token sequence Xi.

The output logits sequence o1:n reflects the surrogate model M ’s next-word or next-few-words
predictions, based on its internal knowledge, preferences, and also contains the reduced information
of the input tokens up to each position in the sequence. This sequence of output logits o1:n is then
used in the next stage to compute the context losses, capturing the inference pattern of the surrogate
model with respect to the input text. Notably, though the surrogate model M differ from the origin
model of the input text in terms of architecture, size, and training methodology, the potentially
overlapping training data, and the powerful statistical and representational understanding capabilities
make it a promising tool for uncovering hidden features embedded within the given text.

4.3 CONTEXT LOSS COMPUTATION

Compared with existing detection techniques that primarily utilize next-word prediction information
contained in the output logits, PROFILER captures and analyzes the information of the surrounding
input context at each output position (i.e., inference pattern) by calculating and comparing the cross-
entropy losses between each component in the output logits with its adjacent input tokens. These
losses are denoted as context losses L. In PROFILER, we use a hyper-parameter W to control the
width of the analyzed context at each component of the output logits. PROFILER also drops some of
the output logits in o1:n if they lack sufficient context. For example, the first token lacks context from
preceding tokens, while the last token lacks context from subsequent tokens. Hence L ∈ RW×(n−W).
Note that, we expect the context to be symmetric (an equal number of preceding and subsequent
tokens) in PROFILER, and thus W is always an even number.

For each context loss Lj ∈ L where j ∈ {1, · · · ,W}, PROFILER computes its component at each
position i ∈ {1, · · · , n−W} as:

Lj
i = −

||V ||∑
v=1

P̃ v
i−1+j · log ovi−1+W

2
, (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where V is the vocabulary of the surrogate model M , and P̃k ∈ R||V ||×1 is the one-hot encoded
vector of input token xk over the vocabulary list V . The calculated context losses L = [L1, · · · ,LW]
are then used in the next stage to extract the inference pattern.

4.4 INFERENCE PATTERN EXTRACTION

With the calculated context losses L, PROFILER then extracts the inference pattern of the surrogate
model M regarding the input text x1:n, including independent patterns and correlated patterns.

Independent Patterns. For each context loss Lj ∈ L, PROFILER first analyzes it independently
from other context losses in L. The features extracted from a single context loss are referred to as
independent patterns IP , which include both statistical and residual features, representing how each
input token in the context is encoded in the output logits during the surrogate model inference. The
statistical features sj of each Lj consist of six key properties: average, minimum, maximum, standard
deviation, median, and variance. The residual features, which are first utilized by PROFILER in
AI-generated text origin detection, include the statistical properties of the discrete differences and
second-order central differences (Fornberg, 1988; Durran, 2013; Quarteroni et al., 2010) for each
context loss Lj . Specifically, the discrete differences dj for Lj are calculated as:

djk = Lj
k+1 − Lj

k, for k ∈ {1, · · · , n−W − 1}, (3)

and the second-order central differences gj for Lj are approximated as:

gjk =
Lj
k+1 − Lj

k−1

2
, for k ∈ {2, · · · , n−W − 1}, (4)

where gj1 = Lj
2 − Lj

1, and gjn−W = Lj
n−W − Lj

n−W−1. Thus, the independent patterns of all the
context losses can be represented as IP = concat(s1, · · · , sW , d̂1, · · · , d̂W , ĝ1, · · · , ĝW), where
d̂j and ĝj represent the statistical properties of the discrete differences dj and second-order central
differences gj , respectively. These components have the same size as the corresponding sj values.

Correlated Patterns. The correlated patterns, denoted as CP , capture how differently the input
tokens in the context are encoded in the output logits during surrogate model inference. In PROFILER,
we formulate the correlated patterns as the Symmetric Kullback-Leibler (KL) Divergence (Moreno
et al., 2003) between each context loss pair ⟨Lj ,Lk⟩, which is calculated as:

Dj,k = D(Lj′||Lk′) +D(Lk′||Lj′), (5)

where Lj′ is the soft-maxed version of Lj and D represents the KL Divergence (Cover, 1999).
Therefore, the correlated patterns CP consists of

(
W
2

)
Symmetric KL Divergence values.

PROFILER finally utilizes the complete inference pattern [IP, CP] of the input token sequence x1:n

to either train a classifier (e.g., random forest by default in PROFILER) during the training phase or
predict the given text’s origin during testing.

5 EVALUATION RESULTS

5.1 EXPERIMENTAL SETTINGS

Datasets. To comprehensively evaluate our proposed PROFILER, we use six datasets, consisting
of two short natural language datasets, two long natural language datasets, and two code datasets.
Specifically, the two short natural language datasets include the Arxiv dataset (Mao et al., 2024) and
the Yelp dataset (Mao et al., 2024), which consist of both academic and casual texts. The two long
natural language datasets are the Creative dataset (Verma et al., 2024) and the Essay dataset (Verma
et al., 2024), which include creative writing samples and student essays, representing fields where
LLM misuse is a significant concern. The two code datasets are the HumanEval dataset (Mao et al.,
2024; Chen et al., 2021) and the Google Code Jam (GCJ)(Google, 2008-2020; Petrik & Chuda,
2021) dataset, covering short Python code and long C++ code, respectively. Notably, we are the
first to introduce a more realistic long C++ code dataset to the AI-generated text detection field.
All AI-generated texts are sourced from five of the latest commercial LLMs, including GPT-3.5-
Turbo(OpenAI, 2023), GPT-4-Turbo (Achiam et al., 2023), Claude-3-Sonnet (Anthropic, 2023),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.721

0.819

0.749

0.652

0.866
Av

er
ag

e A
U

C

0.5

0.6

0.7

0.8

0.9

Detection Method

0.701
0.734

0.787

0.719

0.867

0.5

0.6

0.7

0.8

0.9

Detection Method

0.666

0.788
0.832

0.663

0.836

0.5

0.6

0.7

0.8

0.9

Detection Method

0.741

0.810

0.750

0.622

0.822

0.5

0.6

0.7

0.8

0.9

Detection Method

0.701
0.659

0.699

0.596

0.755

0.5

0.6

0.7

0.8

Detection Method

0.765

0.643

0.765
0.724

0.835

0.5

0.6

0.7

0.8

0.9

Detection Method

(a) Arxiv (b) Yelp (c) Creative (d) Essay (e) HumanEval (f) GCJ
Raidar GhostBuster Sniffer SeqXGPT Profiler (Ours)

Figure 4: Detection Performance of PROFILER and four supervised-trained baselines on six
datasets in out-of-distribution (OOD) setting.

Claude-3-Opus (Anthropic, 2023), and Gemini-1.0-Pro (Team et al., 2023). We also collect the
corresponding paraphrased versions of the six datasets following existing studies (Hu et al., 2023) to
test the robustness of the detection. More details about the datasets are presented in Appendix B.

Baselines. We compare PROFILER with 10 state-of-the-art baselines, including six zero-shot de-
tection baselines and four supervised-trained detection baselines. The zero-shot baselines are Lo-
gRank (Gehrmann et al., 2019), LRR (Su et al., 2023), DetectGPT (Mitchell et al., 2023), RADAR (Hu
et al., 2023), OpenAI Detector (Solaiman et al., 2019), and Binoculars (Hans et al., 2024). For
RADAR and OpenAI Detector, we use their officially released detection models, treating them as
zero-shot detectors, even though they were originally designed as supervised-trained detectors. The
four supervised-trained detection baselines are Raidar (Mao et al., 2024), GhostBuster (Verma et al.,
2024), Sniffer (Li et al., 2023), and SeqXGPT (Wang et al., 2023a), with Sniffer and SeqXGPT
officially claiming and evaluating their text origin detection capabilities. We evaluate PROFILER and
all baselines in a one-vs-all setting for each text origin, which is a standard evaluation approach in the
image origin detection domain (Wang et al., 2024; 2023c) and is suitable for existing baselines since
most of them are designed for binary classification tasks.

PROFILER’s Hyper-parameter Settings. We typically set the context window size W for PROFILER
to 6 in most of the experiments, except for the ablation studies. In PROFILER, we employ six
open-source LLMs as surrogate models and explore the contribution of each: Llama2-7B (Touvron
et al., 2023), Llama2-13B (Touvron et al., 2023), Llama3-8B (Dubey et al., 2024), Mistral-7B (Jiang
et al., 2023), Gemma-2B (Team et al., 2024), and Gemma-7B (Team et al., 2024). Notably, these
surrogate models are also used by other baseline methods for comparative analysis.

5.2 DETECTION PERFORMANCE ON NATURAL LANGUAGE DATASETS

We first evaluate PROFILER against 10 baselines on natural language datasets, including both the
original and paraphrased versions of the texts in both the in-distribution and out-of-distribution
(OOD) settings. Specifically, under the in-distribution setting, the training and test data are sourced
from the same distribution (e.g., both are non-paraphrased samples generated by GPT-3.5-Turbo).
In contrast, under the OOD setting, the detectors are trained on the non-paraphrased data but tested
on the paraphrased data, providing a more realistic evaluation scenario. The results are presented
in Table 1 and Figure 4. Overall, under the in-distribution setting, PROFILER outperforms all 10
baselines, achieving an average improvement of more than 0.30 (45% ↑) in AUC score. Under the
OOD setting, PROFILER continues to surpass existing baselines, demonstrating an average AUC
score improvement of more than 0.11 (13% ↑). Detailed analysis is shown as follows.

In-distribution Performance. The in-distribution performance evaluation results on natural language
datasets are presented in Table 1. For each method, we report the 5-fold cross-validated average AUC
score. We first evaluate PROFILER alongside 10 baselines on the original dataset. The results highlight
the limitations of zero-shot detection methods in identifying the origin of a text, as all zero-shot
baselines achieve only around 0.5 average AUC across the six text origins, despite occasionally
performing well on specific origins. In contrast, supervised-trained baselines, which leverage more
complex features, exhibit significantly better average performance, achieving 0.30 (46% ↑) AUC
increase on average. Compared to the zero-shot baselines, PROFILER achieves more than a 0.43 (85%
↑) increase in average AUC score. Additionally, PROFILER outperforms the four supervised-trained
baselines by more than 0.10 (12% ↑) in average AUC score. Notably, PROFILER surpasses Sniffer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: In-distribution performance comparison on natural language datasets. Gray color
indicates zero-shot baselines, blue and yellow colors indicate supervised-trained baselines, with
yellow representing those baselines that officially claim text origin detection capabilities. Our
proposed PROFILER is represented by green color.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

LogRank 0.8284 0.6295 0.6515 0.4070 0.2533 0.2320 0.5003 0.3308 0.7447 0.6321 0.4561 0.2287 0.6085 0.5002
LRR 0.1588 0.4044 0.3611 0.5894 0.7346 0.7501 0.4997 0.6688 0.3161 0.3658 0.5346 0.7099 0.4035 0.4998
DetectGPT 0.8543 0.1917 0.2544 0.5364 0.6051 0.5566 0.4998 0.9747 0.1706 0.2327 0.5858 0.5999 0.4369 0.5001
RADAR 0.1473 0.9229 0.4402 0.4297 0.4561 0.6033 0.4999 0.2030 0.8916 0.3823 0.5168 0.3835 0.6234 0.5001
OpenAI Detector 0.3425 0.7542 0.3277 0.4064 0.5151 0.6537 0.5000 0.5657 0.8234 0.3725 0.3449 0.3714 0.5213 0.4999
Binoculars 0.9789 0.4818 0.6073 0.4596 0.2565 0.2111 0.4992 0.7981 0.5908 0.6100 0.3226 0.2246 0.4544 0.5001
Raidar 0.8558 0.8872 0.7739 0.6270 0.7547 0.6801 0.7631 0.9082 0.9024 0.7255 0.6489 0.8095 0.7306 0.7875
GhostBuster 0.9920 0.9635 0.8878 0.7103 0.7722 0.6873 0.8355 0.9847 0.9765 0.8687 0.7311 0.8255 0.6521 0.8398
Sniffer 0.9875 0.9668 0.9208 0.7296 0.8413 0.7509 0.8662 0.9598 0.9699 0.8733 0.7552 0.8729 0.7331 0.8607
SeqXGPT 0.9311 0.9066 0.8763 0.6946 0.7920 0.7343 0.8225 0.8854 0.9054 0.8146 0.7591 0.7903 0.6629 0.8030

PROFILER 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 0.9160 0.9998 0.9861 0.9311 0.8870 0.9238 0.8823 0.9350

Y
el

p

LogRank 0.6252 0.4341 0.6154 0.3870 0.3470 0.6025 0.5019 0.4864 0.3792 0.6500 0.5073 0.3871 0.6061 0.5027
LRR 0.4969 0.5827 0.3893 0.5618 0.5851 0.3692 0.4975 0.6812 0.6580 0.3844 0.4318 0.4879 0.3311 0.4957
DetectGPT 0.3187 0.4910 0.3958 0.5959 0.7029 0.4952 0.4999 0.3837 0.4096 0.2946 0.6363 0.6817 0.6105 0.5027
RADAR 0.3255 0.6400 0.3730 0.4556 0.5660 0.6567 0.5028 0.3979 0.7070 0.4029 0.4248 0.5039 0.5754 0.5020
OpenAI Detector 0.3994 0.6916 0.3021 0.4341 0.5540 0.6329 0.5023 0.5391 0.8226 0.3947 0.3121 0.4235 0.5094 0.5003
Binoculars 0.7820 0.4216 0.6684 0.4042 0.2627 0.4574 0.4994 0.6705 0.4591 0.7041 0.3961 0.3161 0.4464 0.4987
Raidar 0.9640 0.8468 0.8108 0.7505 0.7172 0.7578 0.8079 0.9667 0.9117 0.7398 0.8169 0.7287 0.7613 0.8209
GhostBuster 0.8936 0.7251 0.6829 0.6696 0.6951 0.7509 0.7362 0.9123 0.8245 0.7020 0.7618 0.7547 0.6984 0.7756
Sniffer 0.9236 0.7520 0.7654 0.7127 0.7584 0.7238 0.7726 0.9350 0.8410 0.8059 0.7935 0.8196 0.7544 0.8249
SeqXGPT 0.8392 0.7167 0.6940 0.6787 0.7363 0.7110 0.7293 0.8619 0.7873 0.7168 0.7453 0.7609 0.7538 0.7710

PROFILER 0.9839 0.8563 0.8595 0.8513 0.8758 0.8471 0.8790 0.9881 0.9233 0.8847 0.9071 0.8946 0.8511 0.9081

C
re

at
iv

e

LogRank 0.9201 0.1376 0.7439 0.4138 0.2722 0.5147 0.5004 0.7061 0.3084 0.8241 0.4476 0.2733 0.4244 0.4973
LRR 0.1450 0.8646 0.2419 0.5560 0.7225 0.4652 0.4992 0.4944 0.6525 0.1475 0.5242 0.6537 0.5350 0.5012
DetectGPT 0.1949 0.6443 0.3758 0.5760 0.6283 0.5921 0.5019 0.3259 0.4949 0.3564 0.6362 0.5705 0.6489 0.5054
RADAR 0.0364 0.7726 0.3109 0.5614 0.6627 0.6797 0.5039 0.0493 0.7105 0.3266 0.6475 0.6022 0.7093 0.5076
OpenAI Detector 0.5389 0.7637 0.1826 0.4189 0.5914 0.5044 0.5000 0.7246 0.4593 0.3379 0.4148 0.4935 0.5880 0.5030
Binoculars 0.9978 0.3854 0.7251 0.3346 0.2542 0.2732 0.4950 0.9722 0.3870 0.7394 0.3519 0.2553 0.2371 0.4905
Raidar 0.9209 0.8542 0.7478 0.6888 0.6898 0.7479 0.7749 0.8761 0.7833 0.7796 0.7267 0.6795 0.7233 0.7614
GhostBuster 0.9847 0.9066 0.9053 0.6865 0.7807 0.8282 0.8487 0.9768 0.7669 0.9079 0.7286 0.8057 0.7592 0.8242
Sniffer 0.9992 0.9256 0.9846 0.8369 0.8527 0.9610 0.9267 0.9979 0.9245 0.9673 0.8225 0.8936 0.9461 0.9253
SeqXGPT 0.9682 0.8071 0.9172 0.7397 0.7601 0.8650 0.8429 0.9642 0.7848 0.8788 0.7812 0.8122 0.8510 0.8453

PROFILER 0.9999 0.9617 0.9935 0.9056 0.8837 0.9307 0.9458 1.0000 0.9558 0.9820 0.9220 0.8898 0.9139 0.9439

E
ss

ay

LogRank 0.9854 0.1349 0.7635 0.4617 0.2719 0.3711 0.4981 0.8642 0.3144 0.7413 0.4175 0.1705 0.4911 0.4998
LRR 0.0205 0.8804 0.2333 0.5399 0.7377 0.5964 0.5014 0.2467 0.6752 0.2212 0.5850 0.7938 0.4759 0.4996
DetectGPT 0.0401 0.6341 0.4332 0.6268 0.6306 0.6486 0.5022 0.1165 0.5152 0.4070 0.6778 0.6382 0.6602 0.5025
RADAR 0.0151 0.8331 0.3317 0.6718 0.6220 0.5303 0.5007 0.0397 0.7092 0.3176 0.7618 0.5910 0.5891 0.5014
OpenAI Detector 0.6124 0.8426 0.1033 0.4204 0.6024 0.4110 0.4987 0.8874 0.5609 0.2112 0.4392 0.5074 0.3828 0.4982
Binoculars 0.9999 0.4192 0.6470 0.2931 0.2918 0.3348 0.4976 0.9872 0.3682 0.7134 0.2732 0.1603 0.4980 0.5000
Raidar 0.9923 0.8843 0.8865 0.7839 0.7646 0.7621 0.8456 0.9698 0.8303 0.8629 0.7670 0.7693 0.7775 0.8295
GhostBuster 0.9986 0.8992 0.8634 0.6585 0.7648 0.8823 0.8445 0.9927 0.7979 0.8662 0.6655 0.8401 0.8741 0.8394
Sniffer 0.9992 0.9389 0.9938 0.8565 0.8644 0.9398 0.9321 0.9987 0.9306 0.9769 0.8617 0.9190 0.9361 0.9372
SeqXGPT 0.9920 0.8258 0.9354 0.7375 0.7273 0.8489 0.8445 0.9674 0.8530 0.8758 0.7616 0.8222 0.8418 0.8536

PROFILER 1.0000 0.9763 0.9970 0.9297 0.9176 0.9812 0.9670 1.0000 0.9622 0.9748 0.9445 0.9427 0.9728 0.9662

and SeqXGPT—two supervised-trained baselines specifically designed for text origin detection—by
0.05 (6% ↑) and 0.12 (15% ↑) higher AUC scores on average, respectively.

We further evaluate PROFILER and all baselines on the paraphrased datasets using the same evaluation
methodology. Similarly, all zero-shot baselines achieve only around a 0.5 average AUC score, while
supervised-trained baselines reach an average AUC of 0.31 (44% ↑). PROFILER outperforms the
zero-shot baselines by more than 0.44 (78% ↑) in average AUC and surpasses the supervised-trained
baselines by more than 0.11 (12% ↑) on average. While paraphrasing is typically an effective
technique to test the robustness of detection methods in the binary AI-generated text detection
domain, its impact is reduced in the text origin detection domain, as indicated by the consistent results
of supervised-trained baselines and PROFILER across both original and paraphrased datasets. We
attribute this to two reasons: 1) all the supervised-trained baselines evaluated in this paper claim to
be paraphrasing-robust, and 2) the paraphrasing process might reveal more distinctive characteristics
of the specific LLM, providing additional information for text origin detection.

The above results emphasize the superior effectiveness of PROFILER in accurately identifying the
origin LLM of a text under the in-distribution setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Raidar
GhostBuster
Sniffer
SeqXGPT
Profiler (Ours)

TP
R

0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0

(a) Human (b) GPT-3.5-Turbo (c) GPT-4-Turbo (d) Claude-3-Sonnet (e) Claude-3-Opus (f) Gemini-1.0-Pro

Figure 5: ROC curves of PROFILER and four supervised-trained baselines on Yelp dataset in
out-of-distribution (OOD) setting.

Out-of-distribution (OOD) Performance. Following the in-distribution evaluation, we also assess
PROFILER and the baselines under a more realistic out-of-distribution (OOD) setting. Given the poor
performance of zero-shot methods in the in-distribution setting, we only consider supervised-trained
baselines for the OOD evaluation, shown in Figure 4. We train PROFILER and the four supervised-
trained baselines on the original datasets and test them on the paraphrased versions of the same
datasets. The OOD experiments aim to evaluate the robustness of the detectors against customized
prompts (e.g., paraphrasing prompts in our experiments) used during LLM text generation.

PROFILER outperforms all four baselines across the four natural language datasets, achieving an
average AUC improvement of 0.11 (13% ↑). Specifically, under the OOD setting, PROFILER
demonstrates a 0.13 (15% ↑) increase in average AUC on the two short natural language datasets
(Arxiv and Yelp) compared to the baselines, while exceeding the baselines by more than 0.09 (11% ↑)
average AUC on the two long natural language datasets (Creative and Essay). These results not only
highlight PROFILER’s superior detection performance across different natural language datasets in the
OOD setting but also show its significant advantage in handling short text inputs, which are regarded
as more challenging in previous studies. More detailed OOD results are presented in Appendix C.

In real-world deployment, detection methods are expected to achieve a high true positive rate (TPR)
while maintaining a low false positive rate (FPR). Therefore, we further present the ROC curves of
PROFILER and the four supervised-trained baselines under the OOD setting using the Yelp dataset in
Figure 5. The ROC curves of PROFILER consistently lie above those of the four supervised-trained
baselines across different text origins. Specifically, PROFILER achieves an average TPR of over 0.5
when the FPR is less than 0.1. It is important to note that these results are tested under the OOD
setting; PROFILER would demonstrate even better performance under the in-distribution setting.
Additional ROC curves and detailed analyses for the other five datasets are provided in Appendix F.

5.3 DETECTION PERFORMANCE ON CODE DATASETS

Existing detection methods are seldom tested on code datasets, despite the growing misuse of LLMs
in code generation. We evaluate PROFILER and all baselines on two code datasets: HumanEval (short
Python codes) and GCJ (long C++ codes), providing realistic test scenarios. According to the results
presented in Table 2 and Figure 4, PROFILER outperforms existing baselines by more than 0.29 (46%
↑) in average AUC score under the in-distribution setting and achieves more than 0.10 (12% ↑) higher
average AUC score under the OOD setting on the two code datasets.

In-distribution Performance. According to the results presented in Table 2, PROFILER outperforms
existing baselines by more than 0.26 (49% ↑) and 0.32 (43% ↑) in AUC scores on the original and
paraphrased datasets, respectively, under the in-distribution setting. Specifically, PROFILER surpasses
the zero-shot baselines and supervised-trained baselines by 0.34 (68% ↑) and 0.14 (20% ↑) in AUC
score on the original dataset, respectively. These results confirm the inadequacy of zero-shot detection
scores in the text origin detection domain, as all zero-shot methods only achieve around a 0.5 AUC
score on the two code datasets. Furthermore, PROFILER outperforms Sniffer and SeqXGPT with
more than 0.16 (25% ↑) and 0.13 (18% ↑) higher AUC scores, respectively, demonstrating its superior
effectiveness in detecting the origin of AI-generated code.

The superiority of PROFILER becomes even more evident on the paraphrased dataset, where PROFILER
outperforms the zero-shot baselines and supervised-trained baselines by 0.43 (86% ↑) and 0.14 (18%
↑) in AUC score, respectively, across the two paraphrased code datasets. Especially, PROFILER
surpasses Sniffer and SeqXGPT with over 0.15 (19% ↑) and 0.14 (18% ↑) AUC scores, respectively.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: In-distribution performance comparison on code datasets.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

H
um

an
E

va
l

LogRank 0.5780 0.4297 0.4819 0.4901 0.4401 0.5775 0.4995 0.4049 0.4371 0.5659 0.7525 0.4328 0.4084 0.5003
LRR 0.5435 0.4932 0.4573 0.5029 0.5448 0.4610 0.5004 0.2467 0.6752 0.2212 0.5850 0.7938 0.4759 0.4996
DetectGPT 0.5224 0.4311 0.4666 0.4869 0.5347 0.5498 0.4986 0.6482 0.4490 0.4074 0.2810 0.6025 0.6153 0.5006
RADAR 0.4960 0.5575 0.5147 0.4955 0.4598 0.4709 0.4991 0.3454 0.5278 0.5474 0.7335 0.4546 0.3932 0.5003
OpenAI Detector 0.3471 0.6882 0.5901 0.5111 0.5118 0.3526 0.5001 0.4913 0.8077 0.5931 0.2185 0.4561 0.4332 0.5000
Binoculars 0.6400 0.3234 0.4175 0.5002 0.5088 0.6134 0.5006 0.7236 0.4116 0.5100 0.2978 0.4221 0.6403 0.5009
Raidar 0.7609 0.7944 0.6691 0.4985 0.4619 0.6904 0.6459 0.8438 0.8991 0.7862 0.8563 0.7579 0.7498 0.8155
GhostBuster 0.7535 0.7547 0.6894 0.5385 0.5510 0.7396 0.6711 0.7078 0.8421 0.7247 0.8527 0.6370 0.6985 0.7438
Sniffer 0.7301 0.7161 0.5404 0.4380 0.4694 0.7117 0.6009 0.7931 0.8039 0.6774 0.8690 0.6641 0.7535 0.7602
SeqXGPT 0.8480 0.7542 0.6611 0.5477 0.5296 0.7341 0.6791 0.8534 0.8206 0.6748 0.8496 0.5489 0.7654 0.7521

PROFILER 0.9366 0.8349 0.7149 0.6720 0.7448 0.9261 0.8049 1.0000 0.9003 0.8602 0.9458 0.8392 0.9166 0.9103

G
C

J

LogRank 0.6131 0.4212 0.5893 0.4434 0.4395 0.4972 0.5006 0.5161 0.3235 0.4853 0.7185 0.5009 0.4592 0.5006
LRR 0.5659 0.4230 0.3526 0.5620 0.5328 0.5673 0.5006 0.5002 0.7194 0.5376 0.4552 0.2449 0.4445 0.5995
DetectGPT 0.2698 0.5817 0.7597 0.4836 0.4951 0.4108 0.5001 0.3808 0.6300 0.8557 0.2609 0.4318 0.4409 0.5000
RADAR 0.4600 0.6672 0.4148 0.4724 0.4848 0.4973 0.4994 0.3794 0.5699 0.3801 0.6763 0.5183 0.4778 0.5003
OpenAI Detector 0.5641 0.5268 0.4103 0.5117 0.5207 0.4640 0.4996 0.6472 0.6490 0.4130 0.2611 0.4721 0.5533 0.4993
Binoculars 0.7117 0.2901 0.5866 0.4616 0.4824 0.4721 0.5008 0.7124 0.3899 0.7011 0.2732 0.4400 0.4863 0.5005
Raidar 0.9898 0.7704 0.7939 0.6999 0.6638 0.8608 0.7965 0.9852 0.8893 0.8203 0.8864 0.7473 0.8630 0.8653
GhostBuster 0.8642 0.7652 0.6992 0.5969 0.5872 0.7497 0.7104 0.8638 0.8024 0.6747 0.8314 0.6931 0.6908 0.7594
Sniffer 0.9679 0.8085 0.7362 0.6382 0.6609 0.7524 0.7607 0.9646 0.8260 0.7876 0.8909 0.7230 0.7200 0.8187
SeqXGPT 0.9646 0.7990 0.6658 0.6688 0.6657 0.7329 0.7495 0.9529 0.8515 0.8866 0.9212 0.7099 0.7102 0.8387

PROFILER 0.9966 0.9218 0.8509 0.8119 0.7340 0.9524 0.8780 1.0000 0.9722 0.9804 0.9702 0.9011 0.9616 0.9642

Our-of-distribution (OOD) Performance. Similar to the OOD evaluation on the natural language
datasets, we also assess PROFILER and the baselines under the OOD setting on the two code datasets,
shown in Figure 4. PROFILER outperforms all four supervised-trained baselines across both code
datasets, achieving an average AUC improvement of 0.10 (12% ↑). Specifically, under the OOD
setting, PROFILER demonstrates a 0.09 (12% ↑) increase in AUC score on the HumanEval dataset
and a 0.11 (11% ↑)increase on the GCJ dataset. More detailed results are provided in Appendix C.

5.4 ABLATION STUDY

To investigate the impact of each hyper-parameter on PROFILER ’s performance, we conduct several
ablation studies, including the effects of context window size and the choice of surrogate model. The
results indicate that the hyper-parameters of PROFILER have limited impact on its overall performance,
demonstrating the robustness and compatibility of PROFILER across various configurations.

Impact of Context Window Size. We evaluate PROFILER using different context window sizes,
specifically W = 2, 4, 6, 8, where W = 6 is the default configuration. The performance of PROFILER
fluctuates within a range of 3% across varying window sizes. When W ≤ 6, a larger window size
generally results in a higher average detection AUC. However, when W ≥ 6, the detection AUC
begins to degrade. Therefore, we select W = 6 as the default configuration for PROFILER to balance
performance and efficiency. More details are presented in Appendix D.

Impact of Surrogate Model Selection. We also evaluate the influence of different surrogate models
on PROFILER ’s performance. While some fluctuation in detection AUC is observed, PROFILER
demonstrates consistent performance across various surrogate LLMs. In most cases, using a single
surrogate model achieves at least 95% of the detection performance of the ensemble version, indi-
cating PROFILER ’s high generality and compatibility when applied with different surrogate models.
This flexibility allows PROFILER to be adapted according to different configurations and resource
constraints in real-world deployment scenarios. More details are presented in Appendix E.

6 CONCLUSION

In this paper, we propose a novel black-box AI-generated text origin detection algorithm that leverages
the rich contextual information in the surrogate model’s output logits (i.e., inference patterns). Our
method comprises three main stages: surrogate model inference, context loss computation, and
inference pattern extraction. Extensive experiments on four natural language datasets and two code
datasets demonstrate the superiority of PROFILER, achieving more than a 25% average increase in
AUC compared to 10 baselines under both in-distribution and out-of-distribution settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude 3 api. https://www.anthropic.com/news/claude-3-family, 2023.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
Real or fake? learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351, 2019.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient
zero-shot detection of machine-generated text via conditional probability curvature. In International
Conference on Learning Representations (ICLR), 2024.

Amrita Bhattacharjee and Huan Liu. Fighting fire with fire: can chatgpt detect ai-generated text?
ACM SIGKDD Explorations Newsletter, 25(2):14–21, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Debby RE Cotton, Peter A Cotton, and J Reuben Shipway. Chatting and cheating: Ensuring academic
integrity in the era of chatgpt. Innovations in Education and Teaching International, 61(2):228–239,
2024.

Thomas M Cover. Elements of Information theory. John Wiley & Sons, 1999.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies (NAACL),
2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dale R Durran. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, volume 32.
Springer Science & Business Media, 2013.

Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of
Computation, 51(184):699–706, 1988.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and
visualization of generated text. In Annual Meeting of the Association for Computational Linguistics:
System Demonstrations (ACL), 2019.

Google. Google code jam, kick start and hash code competitions, 2008-2020. URL https:
//codingcompetitionsonair.withgoogle.com.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and
Yupeng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection.
arXiv preprint arXiv:2301.07597, 2023.

Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection
of machine-generated text. International Conference on Machine Learning (ICML), 2024.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. Mgtbench: Benchmarking
machine-generated text detection. arXiv preprint arXiv:2303.14822, 2023.

11

https://codingcompetitionsonair.withgoogle.com
https://codingcompetitionsonair.withgoogle.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abe Bohan Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei Wang,
Lingfeng Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. Semstamp: A
semantic watermark with paraphrastic robustness for text generation. In Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL), 2024.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. Radar: Robust ai-text detection via adversarial
learning. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Ganesh Jawahar, Muhammad Abdul Mageed, and VS Laks Lakshmanan. Automatic detection
of machine generated text: A critical survey. In International Conference on Computational
Linguistics (COLING), 2020.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning (ICML),
2023.

Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki. Outfox: Llm-generated essay detection
through in-context learning with adversarially generated examples. In AAAI Conference on
Artificial Intelligence (AAAI), 2024.

Sarah Kreps, R Miles McCain, and Miles Brundage. All the news that’s fit to fabricate: Ai-generated
text as a tool of media misinformation. Journal of Experimental Political Science, 9(1):104–117,
2022.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Transactions on Machine Learning Research (TMLR), 2024.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks.
Advances in Neural Information Processing Systems (NeurIPS), 2016.

Linyang Li, Pengyu Wang, Ke Ren, Tianxiang Sun, and Xipeng Qiu. Origin tracing and detecting of
llms. arXiv preprint arXiv:2304.14072, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Chung Kwan Lo. What is the impact of chatgpt on education? a rapid review of the literature.
Education Sciences, 13(4):410, 2023.

Tambiama Madiega. Artificial intelligence act. European Parliament: European Parliamentary
Research Service, 2021.

Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via
rewriting. International Conference on Learning Representations (ICLR), 2024.

Hope McGovern, Rickard Stureborg, Yoshi Suhara, and Dimitris Alikaniotis. Your large language
models are leaving fingerprints. arXiv preprint arXiv:2405.14057, 2024.

Niloofar Mireshghallah, Justus Mattern, Sicun Gao, Reza Shokri, and Taylor Berg-Kirkpatrick.
Smaller language models are better zero-shot machine-generated text detectors. In Conference of
the European Chapter of the Association for Computational Linguistics (EACL), 2024.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning (ICML), 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pedro Moreno, Purdy Ho, and Nuno Vasconcelos. A kullback-leibler divergence based kernel for
svm classification in multimedia applications. Advances in Neural Information Processing Systems
(NeurIPS), 2003.

OpenAI. Gpt-3.5 turbo api. https://platform.openai.com/docs/models/gpt-3-5-turbo, 2023.

Mike Perkins. Academic integrity considerations of ai large language models in the post-pandemic
era: Chatgpt and beyond. Journal of University Teaching & Learning Practice, 20(2):07, 2023.

Juraj Petrik and Daniela Chuda. The effect of time drift in source code authorship attribution: Time
drifting in source code-stylochronometry. In International Conference on Computer Systems and
Technologies (CompSysTech), 2021.

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics, volume 37. Springer
Science & Business Media, 2010.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI Blog, 2019.

Sayak Saha Roy, Poojitha Thota, Krishna Vamsi Naragam, and Shirin Nilizadeh. From chatbots
to phishbots?: Phishing scam generation in commercial large language models. In 2024 IEEE
Symposium on Security and Privacy (SP), pp. 221–221. IEEE Computer Society, 2024.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information
for zero-shot detection of machine-generated text. Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: A family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation
for robust detection of ai-generated texts. Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. Turingbench: A benchmark
environment for turing test in the age of neural text generation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(11), 2008.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwritten
by large language models. In Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL), 2024.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong Zhang, and Xipeng Qiu. Seqxgpt: Sentence-
level ai-generated text detection. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2023a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mahmoud, Alham Fikri Aji, et al. M4: Multi-
generator, multi-domain, and multi-lingual black-box machine-generated text detection. arXiv
preprint arXiv:2305.14902, 2023b.

Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, and Shiqing Ma. Where did i come from? origin
attribution of ai-generated images. Advances in Neural Information Processing Systems (NeurIPS),
2023c.

Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N Metaxas, and Shiqing
Ma. How to trace latent generative model generated images without artificial watermark? In
International Conference on Machine Learning (ICML), 2024.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, 1989.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu, Yuang Qi, Jie Zhang, Han Fang, and Nenghai
Yu. Watermarking text generated by black-box language models. arXiv preprint arXiv:2305.08883,
2023.

Xianjun Yang, Wei Cheng, Linda Petzold, William Yang Wang, and Haifeng Chen. Dna-gpt: Diver-
gent n-gram analysis for training-free detection of gpt-generated text. International Conference on
Learning Representations (ICLR), 2024.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

To further demonstrate the effectiveness of our proposed PROFILER and evaluate the contribution of
each component in PROFILER, we provide the following supportive materials in the appendix:

• Appendix A presents the visualization of the classification result of PROFILER.
• Appendix B provides additional details about the process of crafting the AI-generated text,

including the specific prompts used and the step-by-step procedure. It also presents basic
information about the generated datasets, such as the number of samples and the average
sample length.

• Appendix C presents the detailed performance comparison of PROFILER and four supervised-
trained baselines in OOD setting.

• Appendix D presents detailed ablation study results on the context window size W in
PROFILER.

• Appendix E presents the detailed ablation study results on different types of surrogate LLM
in PROFILER.

• Appendix F shows the roc curves on other five datasets.

A VISUALIZATION OF PROFILER

Human
GPT-3.5-Turbo
GPT-4-Turbo

Claude-3-Sonnet
Gemini-1.0-Pro

Pr
ofi

le
r F

ea
tu

re
 2

−10

−5

0

5

10

Profiler Feature 1
−30 −20 −10 0 10 20 30 40

Figure 6: Visualization of PROFILER’s inference patterns on texts from both human and four
distinct source LLMs.

To further validate the effectiveness of our approach, we employ t-SNE (Van der Maaten & Hinton,
2008) to visualize PROFILER ’s scores on Essay data in Figure 6. The two axes represent two
most representative features extracted by PROFILER. Gray points denote human-written texts, while
colored points represent texts generated by different models. Notably, human samples are distinctly
separated from AI-generated texts, similar to the performance of Binoculars. However, PROFILER
further distinguishes texts generated by different source models, which Binoculars can not. This
enhancement is attributed to PROFILER ’s incorporation of features that correspond to the contextual
tokens in the surrogate model’s output logits, remaining distinguishable even among various models.

B ADDITIONAL DETAILS OF DATASET CONSTRUCTION

In this paper, we used six datasets in total, including two short natural language datasets (Arxiv and
Yelp), two long natural language datasets (Essay and Creative), and two code datasets (HumanEval
and GCJ). In this section, we provide further details on how we constructed each of these datasets.

Arxiv Dataset. The human-written data is sourced from Mao et al. (2024), which includes 350
abstracts collected from papers published at ICLR between 2015 and 2021. These papers were
published before commercial LLMs became publicly available, ensuring that no AI-generated

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We show that deep narrow Boltzmann machines are
universal approximators of probability distributions on the
activities of their visible units, provided they have
sufficiently many hidden layers, each containing the same
number of units as the visible layer. We show that, within
certain parameter domains, deep Boltzmann machines can
be studied as feed forward networks. We provide upper and
lower bounds on the sufficient depth and width of universal
approximators. These results settle various intuitions
regarding undirected networks and, in particular, they show
that deep narrow Boltzmann machines are at least as
compact universal approximators as narrow sigmoid belief
networks and restricted Boltzmann machines, with respect to
the currently available bounds for those models.

We show that deep narrow Boltzmann machines are
universal approximators of probability distributions on the
discrete cube. More specifically, we prove that any
probability distribution on the discrete cube can be
approximated arbitrarily well by a deep narrow Boltzmann
machine with a sufficient number of hidden layers. This
result holds for any fixed width of the hidden layers,
demonstrating the expressive power of depth in these
models. Our findings contribute to the understanding of the
representational capabilities of deep learning architectures
and provide a theoretical foundation for the effectiveness of
deep narrow Boltzmann machines in various applications,
such as unsupervised learning and generative modeling.

In this study, we demonstrate that deep narrow Boltzmann
machines possess the remarkable ability to serve as
universal approximators of probability distributions on the
discrete cube. Specifically, we establish a rigorous proof that
any probability distribution on the discrete cube can be
approximated to an arbitrary degree of precision by a deep
narrow Boltzmann machine, provided that it is equipped
with a sufficient number of hidden layers. Notably, this
result holds true regardless of the fixed width of the hidden
layers, underscoring the immense expressive power that
depth confers upon these models. Our groundbreaking
findings significantly advance the understanding of the
representational capabilities inherent in deep learning
architectures and lay a robust theoretical foundation for the
impressive effectiveness of deep narrow Boltzmann
machines across a wide range of applications, including
unsupervised learning and generative modeling.

If you decide to eat here, just be aware it is going to take
about 2 hours from beginning to end. We have tried it
multiple times, because I want to like it! I have been to it's
other locations in NJ and never had a bad experience.

The food is good, but it takes a very long time to come out.
The waitstaff is very young, but usually pleasant. We have
just had too many experiences where we spent way too long
waiting. We usually opt for another diner or restaurant on
the weekends, in order to be done quicker.

Lengthy dining experience with good food

This restaurant consistently provides good food but suffers
from slow service. Despite multiple attempts to enjoy the
dining experience, meals tend to take around two hours from
start to finish. While the young waitstaff is generally
pleasant, the prolonged wait times have led to diners opting
for alternative restaurants, especially on weekends, when a
quicker meal is preferred. The restaurant's other locations
in NJ seem to offer a better overall experience.

This eatery never fails to deliver delectable cuisine, but
unfortunately, it is plagued by sluggish service. Despite
numerous attempts to savor the dining experience, meals
often span a laborious two hours from the first morsel to the
final bite. While the youthful waitstaff exudes a pleasant
demeanor, the protracted wait times have compelled diners
to seek out alternative culinary establishments, particularly
on weekends when a more expeditious repast is desired. The
restaurant's other Garden State locales appear to provide a
more satisfying overall experience.

Arxiv

Yelp

Human-written Text AI-generated Text w/o Paraphrasing AI-generated Text w/ Paraphrasing

/* C Libs */

 using namespace std;

 #define REP(i,s,t) for(int _t=t,i=s;i<_t;i++)
 #define REPP(i,s,t) for(int _t=t,i=s;i<=_t;i++)

 template<class T>
 void check_max(T&a, T b){
 if (a < b) a = b;
 }
 template<class T>
 void check_min(T&a, T b){
 if (a > b) a = b;
 }

 //#define debug

 map<int,int> mp;
 int ans;
 void deal(int v){
 if (mp[v] <= 1) return;
 mp[v-1] ++;
 mp[v+1] ++;
 mp[v]--;mp[v]--;
 ans++;
 deal(v-1);
 deal(v+1);
 deal(v);
 }
 int main(){
 int T;cin>>T;
 REP(Case,1,T+1){
 int k;cin>>k;
 mp.clear();
 ans = 0;
 REP(i,0,k){
 int v,p;
 cin >>v >>p;
 mp[v] += p;
 deal(v);
 }
 cout << "Case #"<<Case<<": "<<ans<<endl;
 }
 return 0;
 }

#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); ++i)
#define REPP(i, a, b) for(int i = (int)(a); i < (int)(b); ++i)
template<class T> inline bool check_max(T& a, T b) { if(a
< b) { a = b; return true; } return false; }
template<class T> inline bool check_min(T& a, T b) { if(a
> b) { a = b; return true; } return false; }

map<int, int> mp;
int ans;

void deal(int v) {
 if(mp[v] <= 1) return;
 ++mp[v-1], ++mp[v+1], mp[v] -= 2, ++ans;
 deal(v-1), deal(v+1), deal(v);
}

int main() {
 int T;
 cin >> T;
 REP(t, T) {
 int k;
 cin >> k;
 mp.clear(), ans = 0;
 REP(i, k) {
 int v, p;
 cin >> v >> p;
 mp[v] += p;
 }
 for(auto& pr : mp) deal(pr.first);
 cout << "Case #" << t+1 << ": " << ans << endl;
 }
 return 0;
}

#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); ++i)
#define REPP(i, a, b) for(int i = (int)(a); i < (int)(b); ++i)
template<class T> inline bool check_max(T& a, T b) { if(a
< b) { a = b; return true; } return false; }
template<class T> inline bool check_min(T& a, T b) { if(a
> b) { a = b; return true; } return false; }

map<int, int> mp;
int ans;

void handle(int v) {
 if(mp[v] <= 1) return;
 ++mp[v-1], ++mp[v+1], mp[v] -= 2, ++ans;
 handle(v-1), handle(v+1), handle(v);
}

int main() {
 int T;
 cin >> T;
 REP(t, T) {
 int k;
 cin >> k;
 mp.clear(), ans = 0;
 REP(i, k) {
 int v, p;
 cin >> v >> p;
 mp[v] += p;
 }
 for(auto& pr : mp) handle(pr.first);
 cout << "Case #" << t+1 << ": " << ans << endl;
 }
 return 0;
}

GCJ

Figure 7: Examples of human-written text, AI-generated text with paraphrasing, and AI-
generated text without paraphrasing from Arxiv, Yelp, and GCJ datasets. We do not show
examples from two long natural language datasets here due to the length limit.

content is mixed into the human-written samples. We utilize the 350 human-written samples to
generate AI-generated abstracts using five commercial LLMs: GPT-3.5-Turbo (OpenAI, 2023),
GPT-4-Turbo (Achiam et al., 2023), Claude-3-Sonnet (Anthropic, 2023), Claude-3-Opus (Anthropic,
2023), and Gemini-1.0-Pro (Team et al., 2023). Each commercial LLM was given the title of the
paper and the first 15 characters of the corresponding human-written abstract, with the prompt used
by Mao et al. (2024):

The title is {Paper_Title}, start with {Human_Abs[0:15]},
write a short and concise abstract based on this:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Each model generated approximately 350 samples, though some models occasionally refused to
generate due to their output filtering policies. The average length of both human-written and AI-
generated abstracts is approximately 790 characters.

Yelp Dataset. For the human-written samples, we use 2,000 Yelp reviews collected from the Yelp
Reviews Dataset as compiled by prior work (Mao et al., 2024). To generate the AI-generated data, we
utilize five of the latest commercial LLMs, employing the same prompt as used in Mao et al. (2024):

Write a concise review based on this: {Human_Review}

Each commercial LLM generates ∼2,000 corresponding AI-generated samples, with an average
length of fewer than 500 characters. Due to the short average length of the samples, the Yelp dataset
is considered the most challenging among all four natural language datasets used in this paper.

Essay and Creative Datasets. The human-written samples from both the student essay (Essay)
dataset and creative writing (Creative) dataset are both sourced from Verma et al. (2024), each
containing 1,000 human samples. To generate the corresponding AI samples, we first use the
following prompt to summarize a title from the human-written text:

Given the following essay/creative writing, write a title for it:
{Human_Text}
Just output the title:

Then, we let the LLM to generate a passage with the summarized title in similar number of words:

Write an essay/story in {Length} words to the title:
{Summarized_Title}

The procedure and prompts used to generate the Essay and Creative datasets are identical to those
used by Verma et al. (2024) and the average character length of the samples in these two datasets
exceeds 2,850.

HumanEval and GCJ Datasets. The HumanEval and Google Code Jam (GCJ) datasets are two
code datasets. HumanEval consists of short Python codes, while GCJ contains long C++ codes.
The human-written samples in the HumanEval dataset are sourced from Chen et al. (2021), and the
human-written samples in the GCJ dataset are selectively collected from Google (2008-2020). We
follow the procedure outlined by Mao et al. (2024) to first generate a description of the purpose and
functionality of the human-written codes using the following prompt:

Describe what does this code do, including the names and
descriptions of all the functions and global variables:
{Human_Code}

Next, we prompt each of the five commercial LLMs to generate corresponding Python or C++ code
based on this description:

I want to do this:
{Code_Description}
Help me write the corresponding Python/C++ code, no explanation,
just code:

Typically, the Python codes generated for the HumanEval dataset are fewer than 50 lines, while the
C++ codes generated for the GCJ dataset exceed 100 lines, reflecting their respective complexity and
length differences..

Paraphrased Dataset. To further test the robustness and transferability of PROFILER and other
baselines, we generate six corresponding paraphrased datasets. Following the same procedure as
described in Hu et al. (2023), we prompt each commercial LLM to paraphrase its own samples using
the following prompt:

Enhance the word choices in the sentence to sound more like
that of a human, no explain.
{AI_Sample}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We provide concrete examples in Figure 7, including human-written samples, non-paraphrased
AI-generated samples, and paraphrased AI-generated samples. Due to the page length limit, we
only present samples from two short natural language datasets and one code dataset. Due to space
constraints, we include samples from two short natural language datasets and one code dataset. It is
evident that distinguishing AI-generated samples from human-written ones without prior knowledge
is challenging for humans.

C DETAILED PERFORMANCE COMPARISION UNDER OOD SETTING

Table 3: Detailed performance comparison of PROFILER with four supervised-trained baselines
in OOD setting.

Paraphrased-OOD

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

Raidar 0.7963 0.9003 0.6739 0.5129 0.7663 0.6764 0.7210

E
ss

ay

0.9474 0.7697 0.7601 0.6444 0.6875 0.6382 0.7412
GhostBuster 0.9806 0.9772 0.8672 0.7108 0.8113 0.5684 0.8193 0.9892 0.7555 0.8741 0.5694 0.8149 0.8573 0.8101
Sniffer 0.9376 0.9510 0.6402 0.6215 0.7851 0.5568 0.7487 0.9951 0.7072 0.5399 0.6637 0.8593 0.7361 0.7502
SeqXGPT 0.8149 0.8743 0.4900 0.5709 0.6269 0.5340 0.6518 0.9774 0.5512 0.4743 0.5556 0.5685 0.6062 0.6222

PROFILER 1.0000 0.9815 0.8009 0.6991 0.9175 0.7991 0.8663 1.0000 0.6667 0.6782 0.7796 0.8873 0.9171 0.8215

Y
el

p

Raidar 0.9203 0.8814 0.7073 0.5503 0.5661 0.5818 0.7012

H
um

an
E

va
l 0.8554 0.9054 0.7081 0.4053 0.5676 0.7627 0.7008

GhostBuster 0.8928 0.8068 0.6361 0.6483 0.7289 0.6923 0.7342 0.6614 0.8314 0.7279 0.5175 0.5426 0.6713 0.6587
Sniffer 0.9931 0.8127 0.7841 0.6698 0.7694 0.6898 0.7865 0.8319 0.8243 0.5942 0.6179 0.6467 0.6772 0.6987
SeqXGPT 0.9041 0.7112 0.7097 0.6095 0.6917 0.6863 0.7187 0.8735 0.7549 0.6510 0.3526 0.5191 0.4248 0.5960

PROFILER 0.9947 0.9079 0.8174 0.8140 0.8828 0.7858 0.8671 1.0000 0.8927 0.8410 0.6099 0.6766 0.5093 0.7549

C
re

at
iv

e

Raidar 0.7634 0.7128 0.7394 0.6042 0.4629 0.7139 0.6661

G
C

J

0.9903 0.9266 0.7669 0.4351 0.5847 0.8852 0.7648
GhostBuster 0.9614 0.7085 0.9043 0.6751 0.7260 0.7533 0.7881 0.8606 0.7257 0.5777 0.4222 0.5675 0.7023 0.6427
Sniffer 0.9991 0.8051 0.7589 0.7471 0.7871 0.8930 0.8317 0.9934 0.9303 0.8124 0.3798 0.6881 0.7859 0.7650
SeqXGPT 0.9400 0.5760 0.5219 0.5793 0.5965 0.7657 0.6632 0.8569 0.7974 0.8091 0.4230 0.6763 0.7796 0.7237

PROFILER 1.0000 0.7603 0.8350 0.8294 0.7564 0.8366 0.8363 1.0000 0.9548 0.8251 0.5344 0.7939 0.9040 0.8354

Table 3 presents the detailed OOD experimental results of PROFILER on all the six datasets, compared
to four supervised-trained baselines. PROFILER outperforms the four baselines in 25 of 36 (70%)
cases. Considering the average AUC, PROFILER always reach the best performance, performing
0.8663, 0.8671, 0.8363, 0.8215, 0.7549, and 0.8354 on Arxiv, Yelp, Creative, Essay, HumanEval,
and GCJ datasets, individually. Additionally, PROFILER demonstrate great advantage in short natural
language datasets (Arxiv and Yelp) and code datasets (HumanEval and GCJ), outperforming the four
baselines in 83% and 75% cases, respectively.

Specifically, PROFILER outperforms all four baselines on the Arxiv dataset, achieving an average
AUC of 0.8663 and surpassing the next best method (GhostBuster) by 5.74%. Its performance
is particularly strong when detecting Human text (AUC = 1.0) and maintaining robustness across
various origin LLMs.

On the Yelp dataset, PROFILER demonstrates its effectiveness by achieving the highest average AUC
of 0.8671, outperforming the closest baseline, Sniffer, by 9.27%. Its performance remains strong
across various LLMs, with perfect detection for Human text and high AUC values for GPT-4-Turbo
and Claude-3-Opus.

On the Creative dataset, PROFILER achieves the highest average AUC of 0.8363, marginally outper-
forming Sniffer by 0.46%. It exhibits consistent performance across diverse LLMs and excels in
detecting Human text with a perfect AUC score of 1.0. While Sniffer shows competitive results for a
few origin LLMs, its overall lower average AUC and greater variability indicate lower robustness
compared to PROFILER.

On the Essay dataset, PROFILER demonstrates its effectiveness by achieving the highest average AUC
of 0.8215, marginally outperforming the next best baseline, GhostBuster, by 1.41%. It exhibits stable
performance across diverse LLMs, with perfect detection for Human text and high AUC values for
Claude-3-Opus and Gemini-1.0-Pro models.

On the HumanEval dataset, PROFILER achieves the highest average AUC of 0.7549, surpassing the
next best baseline, Raidar, by 7.72%. It demonstrates robust performance across various origin LLMs
and also excels in detecting Human text with a perfect AUC score of 1.0. Although Raidar performs

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on context window size of PROFILER.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

PROFILER W=2 0.9998 0.9792 0.9420 0.7938 0.8766 0.9023 0.9156 0.9995 0.9852 0.9360 0.8837 0.9231 0.8759 0.9339
PROFILER W=4 0.9998 0.9793 0.9463 0.8012 0.8807 0.9001 0.9179 0.9998 0.9854 0.9400 0.8863 0.9258 0.8790 0.9360
PROFILER W=6 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 0.9160 0.9998 0.9861 0.9311 0.8870 0.9238 0.8823 0.9350
PROFILER W=8 0.9998 0.9801 0.9423 0.7970 0.8851 0.9005 0.9175 0.9999 0.9859 0.9334 0.8788 0.9224 0.8772 0.9329

Y
el

p

PROFILER W=2 0.9840 0.8548 0.8563 0.8437 0.8735 0.8509 0.8772 0.9873 0.9135 0.8810 0.8975 0.8946 0.8459 0.9033
PROFILER W=4 0.9849 0.8597 0.8619 0.8514 0.8737 0.8507 0.8804 0.9885 0.9240 0.8873 0.9057 0.8916 0.8518 0.9082
PROFILER W=6 0.9839 0.8563 0.8595 0.8513 0.8758 0.8471 0.8790 0.9881 0.9233 0.8847 0.9071 0.8946 0.8511 0.9081
PROFILER W=8 1.0000 0.8953 0.8817 0.9268 0.8873 0.8574 0.9081 0.9873 0.9222 0.8819 0.9064 0.8923 0.8477 0.9063

C
re

at
iv

e PROFILER W=2 1.0000 0.9576 0.9924 0.8971 0.8848 0.9255 0.9429 1.0000 0.9501 0.9816 0.9145 0.8914 0.9231 0.9434
PROFILER W=4 1.0000 0.9596 0.9932 0.9071 0.8839 0.9298 0.9456 1.0000 0.9572 0.9851 0.9303 0.8956 0.9250 0.9488
PROFILER W=6 0.9999 0.9617 0.9935 0.9056 0.8837 0.9307 0.9458 1.0000 0.9558 0.9820 0.9220 0.8898 0.9139 0.9439
PROFILER W=8 0.9999 0.9618 0.9929 0.9041 0.8796 0.9325 0.9451 1.0000 0.9557 0.9817 0.9238 0.8881 0.9165 0.9443

E
ss

ay

PROFILER W=2 1.0000 0.9763 0.9975 0.9258 0.9211 0.9821 0.9671 1.0000 0.9609 0.9786 0.9366 0.9438 0.9729 0.9655
PROFILER W=4 1.0000 0.9769 0.9970 0.9326 0.9187 0.9823 0.9679 1.0000 0.9655 0.9795 0.9451 0.9452 0.9739 0.9682
PROFILER W=6 1.0000 0.9763 0.9970 0.9297 0.9176 0.9812 0.9670 1.0000 0.9622 0.9748 0.9445 0.9427 0.9728 0.9662
PROFILER W=8 1.0000 0.9757 0.9967 0.9271 0.9144 0.9813 0.9659 1.0000 0.9612 0.9746 0.9440 0.9406 0.9729 0.9655

H
um

an
E

va
l PROFILER W=2 0.9497 0.8186 0.7212 0.6827 0.7749 0.9396 0.8145 0.9972 0.8836 0.8377 0.9257 0.8102 0.9130 0.8946

PROFILER W=4 0.9423 0.8322 0.7022 0.6694 0.7629 0.9368 0.8076 1.0000 0.9118 0.8472 0.9436 0.8530 0.9219 0.9129
PROFILER W=6 0.9366 0.8349 0.7149 0.6720 0.7448 0.9261 0.8049 1.0000 0.9003 0.8602 0.9458 0.8392 0.9166 0.9103
PROFILER W=8 0.9378 0.8261 0.7208 0.6562 0.7401 0.9258 0.8011 1.0000 0.9006 0.8568 0.9465 0.8387 0.9101 0.9088

G
C

J

PROFILER W=2 0.9970 0.8766 0.8173 0.7395 0.7571 0.9068 0.8490 0.9976 0.9624 0.9764 0.9597 0.8870 0.8974 0.9467
PROFILER W=4 0.9954 0.9146 0.8480 0.7957 0.7543 0.9317 0.8733 1.0000 0.9729 0.9821 0.9707 0.9014 0.9509 0.9630
PROFILER W=6 0.9966 0.9218 0.8509 0.8119 0.7340 0.9524 0.8780 1.0000 0.9722 0.9804 0.9702 0.9011 0.9616 0.9642
PROFILER W=8 0.9949 0.9197 0.8501 0.8082 0.7464 0.9584 0.8796 1.0000 0.9735 0.9821 0.9732 0.9018 0.9650 0.9659

well on GPT-4-Turbo, it struggles significantly on Claude 3 models, which underscores PROFILER’s
superior adaptability and reliability.

On the GCJ dataset, PROFILER achieves the highest average AUC of 0.8354, surpassing the closest
baseline, Sniffer, by 9.19%. It demonstrates strong performance across various origin LLMs. Though
baselines like GhostBuster perform competitively on some models, their overall lower average AUC
and greater variability indicate lower robustness compared to PROFILER.

Overall, the above detailed results under OOD setting confirm PROFILER’s superior effectiveness and
adaptability in both the natural language origin and code origin detection across various origin LLMs.

D DETAILED ABLATION STUDY ON CONTEXT WINDOW SIZE IN PROFILER

Table 4 provides a comprehensive comparison of PROFILER’s detection performance across different
context window sizes in the OOD setting. The results indicate that the size of the context window
significantly influences the system’s effectiveness. Generally, employing a larger context window
leads to improved AUC scores, especially in datasets like Arxiv and Yelp, underscoring the importance
of incorporating more extensive contextual information into the detection process.

However, this trend is not uniform across all datasets. In the HumanEval and Essay datasets, smaller
context windows yield comparable or better performance than larger ones. The relationship between
context window size and detection performance varies depending on the dataset’s characteristics.

These findings highlight the importance of selecting an appropriate context window size tailored to
the specific dataset. By adjusting the context window, PROFILER can better capture the most relevant
patterns, enhancing its detection capabilities across diverse types of content.

E DETAILED ABLATION STUDY ON SURROGATE LLMS IN PROFILER

Table 5 presents a detailed ablation study on the performance of PROFILER across different surrogate
LLMs, evaluated on both the normal and paraphrased datasets across various domains. In most
cases, the ensemble results outperform those derived from any single surrogate LLM, indicating
that combining multiple surrogate models leads to more robust detection performance. However, a
significant portion of the detection capability can still be preserved when using individual surrogate
models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Ablation study on surrogate LLMs in PROFILER.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

Gemma-2B 0.9945 0.9653 0.8670 0.7440 0.8427 0.8764 0.8817 0.9862 0.9714 0.8320 0.8364 0.8677 0.8209 0.8858
Gemma-7B 0.9887 0.9715 0.8513 0.7232 0.8366 0.8435 0.8691 0.9706 0.9697 0.8152 0.7788 0.8736 0.7986 0.8678
Llama2-7B 0.9995 0.9708 0.9088 0.7777 0.8568 0.8660 0.8966 0.9982 0.9802 0.8919 0.8478 0.9118 0.8334 0.9106
Mistral-7B 0.9996 0.9747 0.9060 0.7808 0.8530 0.8734 0.8979 0.9986 0.9782 0.8943 0.8625 0.9052 0.8309 0.9116
Llama3-8B 0.9918 0.9704 0.9151 0.7327 0.8532 0.8619 0.8875 0.9633 0.9792 0.8702 0.8199 0.8986 0.8198 0.8918
Llama2-13B 0.9977 0.9704 0.9076 0.7709 0.8467 0.8602 0.8923 0.9944 0.9791 0.8974 0.8630 0.9116 0.8234 0.9115

Ensemble 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 0.9160 0.9998 0.9861 0.9311 0.8870 0.9238 0.8823 0.9350

Y
el

p

Gemma-2B 0.8490 0.7783 0.7546 0.7735 0.8125 0.8057 0.7956 0.8762 0.8254 0.7567 0.8424 0.8126 0.7821 0.8159
Gemma-7B 0.9391 0.7799 0.7838 0.7631 0.8150 0.7789 0.8100 0.9345 0.8230 0.7600 0.8219 0.8095 0.7445 0.8155
Llama2-7B 0.9664 0.8243 0.8182 0.8246 0.8484 0.8118 0.8489 0.9790 0.9100 0.8553 0.8844 0.8784 0.8175 0.8874
Mistral-7B 0.9539 0.8191 0.8095 0.8313 0.8488 0.7885 0.8419 0.9733 0.8869 0.8460 0.8859 0.8734 0.8143 0.8800
Llama3-8B 0.9564 0.8168 0.8283 0.8166 0.8595 0.7746 0.8420 0.9555 0.8849 0.8427 0.8713 0.8663 0.8071 0.8713
Llama2-13B 0.9744 0.8153 0.8263 0.8269 0.8466 0.8003 0.8483 0.9834 0.9100 0.8583 0.8903 0.8848 0.8142 0.8902

Ensemble 0.9839 0.8563 0.8595 0.8513 0.8758 0.8471 0.8790 0.9881 0.9233 0.8847 0.9071 0.8946 0.8511 0.9081

C
re

at
iv

e

Gemma-2B 0.9935 0.8849 0.9543 0.7950 0.7664 0.8766 0.8785 1.0000 0.8392 0.9472 0.8373 0.8123 0.8725 0.8848
Gemma-7B 0.9952 0.9094 0.9536 0.7878 0.7778 0.8403 0.8774 1.0000 0.8589 0.9524 0.8253 0.7948 0.8135 0.8741
Llama2-7B 0.9998 0.9308 0.9859 0.8712 0.8354 0.8997 0.9205 1.0000 0.8982 0.9643 0.8652 0.8463 0.8516 0.9043
Mistral-7B 0.9999 0.9263 0.9853 0.8683 0.8296 0.8929 0.9170 1.0000 0.8788 0.9625 0.8628 0.8639 0.8711 0.9065
Llama3-8B 0.9994 0.9456 0.9809 0.8697 0.8666 0.9140 0.9294 1.0000 0.9372 0.9708 0.8714 0.8715 0.8829 0.9223
Llama2-13B 0.9999 0.9316 0.9872 0.8731 0.8450 0.9043 0.9235 1.0000 0.9156 0.9668 0.8605 0.8582 0.8600 0.9102

Ensemble 0.9999 0.9617 0.9935 0.9056 0.8837 0.9307 0.9458 1.0000 0.9558 0.9820 0.9220 0.8898 0.9139 0.9439

E
ss

ay

Gemma-2B 0.9991 0.9119 0.9614 0.8438 0.8258 0.9694 0.9186 1.0000 0.8568 0.9415 0.8797 0.8718 0.9445 0.9157
Gemma-7B 0.9991 0.8915 0.9495 0.8146 0.8059 0.9470 0.9013 1.0000 0.8378 0.9204 0.8302 0.8477 0.9417 0.8963
Llama2-7B 1.0000 0.9172 0.9913 0.8578 0.8531 0.9307 0.9250 1.0000 0.9166 0.9572 0.8856 0.9140 0.9138 0.9312
Mistral-7B 1.0000 0.9513 0.9925 0.8695 0.8643 0.9406 0.9364 1.0000 0.8865 0.9538 0.8863 0.9183 0.9318 0.9294
Llama3-8B 1.0000 0.9504 0.9945 0.8805 0.8740 0.9416 0.9402 1.0000 0.9498 0.9668 0.9059 0.9196 0.9341 0.9460
Llama2-13B 1.0000 0.9217 0.9922 0.8572 0.8657 0.9356 0.9287 1.0000 0.9380 0.9624 0.8847 0.9212 0.9342 0.9401

Ensemble 1.0000 0.9763 0.9970 0.9297 0.9176 0.9812 0.9670 1.0000 0.9622 0.9748 0.9445 0.9427 0.9728 0.9662

H
um

an
E

va
l

Gemma-2B 0.8614 0.7964 0.6753 0.6406 0.6714 0.8606 0.7510 1.0000 0.8549 0.8231 0.9026 0.8117 0.8841 0.8794
Gemma-7B 0.8340 0.7942 0.6720 0.6128 0.6349 0.8559 0.7340 1.0000 0.8660 0.8258 0.9005 0.7900 0.8800 0.8770
Llama2-7B 0.9130 0.8186 0.7233 0.6434 0.7227 0.9149 0.7893 1.0000 0.8808 0.8350 0.9330 0.7982 0.8996 0.8911
Mistral-7B 0.9297 0.8278 0.7196 0.6338 0.7360 0.9196 0.7944 1.0000 0.8886 0.8487 0.9438 0.8237 0.9020 0.9011
Llama3-8B 0.7709 0.8301 0.6745 0.4534 0.4946 0.7786 0.6670 1.0000 0.8958 0.8102 0.9332 0.8121 0.8775 0.8881
Llama2-13B 0.9310 0.8192 0.7044 0.6395 0.7335 0.9249 0.7921 1.0000 0.8736 0.8503 0.9375 0.8090 0.9066 0.8962

Ensemble 0.9366 0.8349 0.7149 0.6720 0.7448 0.9261 0.8049 1.0000 0.9003 0.8602 0.9458 0.8392 0.9166 0.9103

G
C

J

Gemma-2B 0.9734 0.8523 0.7708 0.7609 0.6776 0.8625 0.8163 1.0000 0.9589 0.9785 0.9557 0.8796 0.9124 0.9475
Gemma-7B 0.9730 0.8658 0.7626 0.7452 0.6849 0.8642 0.8160 1.0000 0.9476 0.9749 0.9462 0.8743 0.8942 0.9396
Llama2-7B 0.9912 0.8913 0.8123 0.7737 0.7010 0.8827 0.8420 1.0000 0.9642 0.9697 0.9498 0.8593 0.9161 0.9432
Mistral-7B 0.9959 0.8945 0.7931 0.7760 0.7282 0.8956 0.8472 1.0000 0.9679 0.9733 0.9687 0.8782 0.9128 0.9502
Llama3-8B 0.9687 0.8739 0.7890 0.7757 0.6913 0.9354 0.8390 1.0000 0.9608 0.9564 0.9473 0.8863 0.9228 0.9456
Llama2-13B 0.9913 0.9023 0.8114 0.7960 0.7134 0.8866 0.8502 1.0000 0.9614 0.9644 0.9434 0.8731 0.9185 0.9435

Ensemble 0.9966 0.9218 0.8509 0.8119 0.7340 0.9524 0.8780 1.0000 0.9722 0.9804 0.9702 0.9011 0.9616 0.9642

Among all the surrogate LLMs, the Llama series models—including Llama2-7B, Llama3-8B, and
Llama2-13B generally perform the best across different datasets. For instance, on the Arxiv dataset,
Llama2-7B achieves an average AUC of 0.8966 on the normal dataset and 0.9106 on the paraphrased
dataset, outperforming the Gemma series models. Similarly, on the Creative dataset, Llama2-13B
attains an average AUC of 0.9235 on the normal dataset and 0.9102 on the paraphrased dataset.

In contrast, the Gemma series models tend to underperform compared to the Llama series. For
example, Gemma-2B achieves an average AUC of 0.8817 on the Arxiv normal dataset and 0.8858
on the paraphrased dataset, which is lower than the corresponding results from Llama2-7B and
Mistral-7B. Notably, the performance differences among surrogate LLMs are not strictly correlated
with model size. For example, on the HumanEval dataset, Mistral-7B achieves an average AUC of
0.9011, which is higher than both Llama2-7B (0.8911) and the larger Llama2-13B (0.8962). The
ensemble approach consistently yields better performance across all datasets than individual surrogate
LLMs in most cases. This suggests that leveraging the strengths of multiple models can effectively
enhance the detection capabilities of PROFILER.

Overall, PROFILER shows consistent performance across different surrogate LLMs, demonstrating
the compatibility of our method and indicating that PROFILER is able to effectively work with various
surrogate models without significant loss in performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Raidar
GhostBuster
Sniffer
SeqXGPT
Profiler (Ours)

TP
R

0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0

(a) Human (b) GPT-3.5-Turbo (c) GPT-4-Turbo (d) Claude-3-Sonnet (e) Claude-3-Opus (f) Gemini-1.0-Pro

Figure 8: ROC curves of PROFILER and four supervised-trained baselines on Arxiv dataset in
out-of-distribution (OOD) setting.

Raidar
GhostBuster
Sniffer
SeqXGPT
Profiler (Ours)

TP
R

0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0

(a) Human (b) GPT-3.5-Turbo (c) GPT-4-Turbo (d) Claude-3-Sonnet (e) Claude-3-Opus (f) Gemini-1.0-Pro

Figure 9: ROC curves of PROFILER and four supervised-trained baselines on Creative dataset
in out-of-distribution (OOD) setting.

Raidar
GhostBuster
Sniffer
SeqXGPT
Profiler (Ours)

TP
R

0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0

(a) Human (b) GPT-3.5-Turbo (c) GPT-4-Turbo (d) Claude-3-Sonnet (e) Claude-3-Opus (f) Gemini-1.0-Pro

Figure 10: ROC curves of PROFILER and four supervised-trained baselines on Essay dataset in
out-of-distribution (OOD) setting.

Raidar
GhostBuster
Sniffer
SeqXGPT
Profiler (Ours)

TP
R

0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0

(a) Human (b) GPT-3.5-Turbo (c) GPT-4-Turbo (d) Claude-3-Sonnet (e) Claude-3-Opus (f) Gemini-1.0-Pro

Figure 11: ROC curves of PROFILER and four supervised-trained baselines on HumanEval
dataset in out-of-distribution (OOD) setting.

Raidar
GhostBuster
Sniffer
SeqXGPT
Profiler (Ours)

TP
R

0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0 0

0.5

1.0

FPR
0 0.5 1.0

(a) Human (b) GPT-3.5-Turbo (c) GPT-4-Turbo (d) Claude-3-Sonnet (e) Claude-3-Opus (f) Gemini-1.0-Pro

Figure 12: ROC curves of PROFILER and four supervised-trained baselines on GCJ dataset in
out-of-distribution (OOD) setting.

F ADDITIONAL ROC CURVES UNDER OOD SETTING

We present the OOD ROC curves of PROFILER and four supervised-trained baselines in Figure 8
(Arxiv), Figure 9 (Creative), Figure 10 (Essay), Figure 11 (HumanEval), and Figure 12 (GCJ)
individually. Similar to its performance on the Yelp dataset, PROFILER ranks first or second in 63%
of the cases. Additionally, PROFILER demonstrates a significant advantage when operating in the
low false positive rate (FPR) mode, achieving over 0.4 true positive rate (TPR) when the FPR is
restricted to just 0.1. It is noteworthy that these ROC curves are calculated under the OOD setting.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The performance gap of PROFILER in the low FPR mode would be even more pronounced under the
in-distribution setting, highlighting its effectiveness in distinguishing the text origin with minimal
false positives.

22

	Introduction
	Background and Related Work
	AI-generated Text Detection
	Black-box Text Origin Detection

	Exploring the Limitation of Existing Detection Methods
	Design of Profiler
	Overview of Profiler
	Surrogate Model Inference
	Context Loss Computation
	Inference Pattern Extraction

	Evaluation Results
	Experimental Settings
	Detection Performance on Natural Language Datasets
	Detection Performance on Code Datasets
	Ablation Study

	Conclusion
	Visualization of Profiler
	Additional Details of Dataset Construction
	Detailed Performance Comparision under OOD Setting
	Detailed Ablation Study on Context Window Size in Profiler
	Detailed Ablation Study on Surrogate LLMs in Profiler
	Additional ROC Curves under OOD Setting

