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ABSTRACT

With the increasing capabilities of Large Language Models (LLMs), the prolifera-
tion of AI-generated texts has become a serious concern. Given the diverse range
of organizations providing LLMs, it is crucial for governments and third-party
entities to identify the origin LLM of a given text to enable accurate infringement
and mitigation of potential misuse. However, existing detection methods, primar-
ily designed to distinguish between human-generated and LLM-generated texts,
often fail to accurately identify the origin LLM due to the high similarity of AI-
generated texts from different sources. In this paper, we propose a novel black-box
AI-generated text origin detection method, dubbed PROFILER, which accurately
predicts the origin of an input text by extracting distinct context inference pat-
terns through calculating and analyzing novel context losses between the surrogate
model’s output logits and the adjacent input context. Extensive experimental results
show that PROFILER outperforms 10 state-of-the-art baselines, achieving more
than a 25% increase in AUC score on average across both natural language and
code datasets when evaluated against five of the latest commercial LLMs under
both in-distribution and out-of-distribution settings.

1 INTRODUCTION

As Large Language Models (LLMs) achieve superior capabilities in understanding and generating
human-like text, they have become deeply integrated into everyday life (Lo, 2023). However, this
growing reliance on LLMs has also raised significant concerns regarding the misuse of AI-generated
content (Cotton et al., 2024; Kreps et al., 2022; Perkins, 2023). The European Union’s draft Artificial
Intelligence (AI) Act (Madiega, 2021) highlights the risks posed by such AI systems, identifying
various “high-risk” scenarios where AI misuse could harm fundamental human rights, such as
generating phishing emails (Roy et al., 2024). In response, the Act mandates that providers of general-
purpose AI models, including LLMs, as well as third-party researchers, develop and implement
policies to ensure compliance with copyright laws, so that when severe violations occur, accountability
and remediation measures can be enforced effectively.

One key aspect of adhering to these emerging legal and ethical frameworks is the ability to detect the
origin of AI-generated text. A large number of detection techniques have recently been developed.
Some of these techniques are based on watermarking (Kirchenbauer et al., 2023; Kuditipudi et al.,
2024; Hou et al., 2024; Yang et al., 2023). These techniques typically involve fine-tuning LLMs or
adjusting their decoding processes to produce text with a distinctive, model-specific distribution. For
example, after watermarking, text produced by ChatGPT would exhibit a different distribution from
text generated by other LLMs. While watermarking can be effective, it is exclusively controlled by
model providers, creating a potential conflict of interest. Since providers are the only entities capable
of verifying watermarks, they may be incentivized to obscure evidence of misuse and avoid admitting
fault, undermining transparency and accountability.

To mitigate this limitation, surrogate-model-based methods have gained increasing attention (Bhat-
tacharjee & Liu, 2024; He et al., 2023; Wang et al., 2023b). These techniques enable external parties
to conduct forensic analyses without requiring cooperation from model providers, relying only on
black-box access to the text generation process. By feeding partial or full text to a surrogate model
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(i.e., an LLM of a relatively small scale), researchers can analyze its internal states to infer the
likely origin of the text. The underlying rationale is that sufficiently powerful surrogate models can
capture statistical or representational differences, which help reveal the source. Existing approaches
along this line largely focus on identifying next-token prediction patterns, referred to as the
token-level inference pattern. While these techniques have shown promising results in distinguishing
human-generated from AI-generated text, they are less effective in differentiating outputs from
various LLMs, as demonstrated in our evaluation (Section 5). Further investigation reveals that, unlike
the clear distinction between human and AI-generated text (Jawahar et al., 2020; Bakhtin et al., 2019;
Guo et al., 2023), different LLMs often converge on similar next-token predictions due to shared
linguistic distributions from large corpora. This similarity introduces a more subtle variation, making
token-level inference patterns alone insufficient to capture these nuances (as discussed in Section 3).

Building on this observation, we introduce a novel approach that incorporates contextual information
to enlarge the representational differences between text generated by various LLMs, improving the
precision of text origin detection. Specifically, rather than relying solely on token-level features
(e.g., next token prediction commonly used in existing detection methods), our method broadens
the analysis to capture the model’s inference behavior over a window of surrounding tokens (i.e.,
context), referred to as the context-level inference pattern. This approach calculates novel context
losses by utilizing the output logits from the surrogate model and the adjacent input context tokens at
each output logits position. It then extracts both independent features (features derived from a single
context loss subsequence) and correlated features (features derived from each pair of context loss
subsequences) from these context losses. Based on this, we develop PROFILER, the first black-box
detection method that leverages rich contextual information for identifying the origin of AI-generated
text. To further evaluate the effectiveness of PROFILER, we extend existing datasets by incorporating
diverse text samples generated by multiple recent commercial LLMs across various text domains. Our
comprehensive evaluation demonstrates PROFILER’s superior performance in detecting text origin.

Our contributions are summarized as follows:

• We propose a novel AI-generated text origin detection algorithm PROFILER that incorporates
rich contextual information for improved accuracy.

• We introduce a new feature extraction algorithm that effectively captures contextual informa-
tion for text origin detection. This algorithm extracts both independent features, i.e., output
logits for each token, and correlated features, i.e., pairwise cross-entropy losses between
tokens and their neighbors.

• We present a new evaluation dataset for text origin detection, which extends existing datasets
by incorporating diverse text samples generated by recent commercial LLMs across various
domains and tasks. The dataset includes samples originating from four existing natural
language datasets, an existing code dataset, and a newly collected C++ code dataset (GCJ).

• We develop a prototype, PROFILER, and conduct a comprehensive evaluation against 10
baselines. The results demonstrate that PROFILER significantly improves origin detection
accuracy, particularly in distinguishing outputs from different LLMs, such as GPT-3.5-
Turbo (OpenAI, 2023), GPT-4-Turbo (Achiam et al., 2023), Claude3-Sonnet (Anthropic,
2023), Claude-3-Opus (Anthropic, 2023), and Gemini-1.0-Pro (Team et al., 2023). PRO-
FILER achieves a more than 45.5% and 12.5% increase in detection AUC scores under
in-distribution (compared to both zero-shot and supervised-trained methods) and out-of-
distribution (compared to supervised-trained methods) settings, respectively.

2 BACKGROUND AND RELATED WORK

2.1 AI-GENERATED TEXT DETECTION

Existing AI-generated text detection methods can be broadly categorized into two primary approaches:
watermark-based methods and surrogate-model-based methods. Watermark-based methods (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2024; Hou et al., 2024; Yang et al., 2023) typically modify the
decoding strategy during the LLM’s generation process to force or encourage the generated tokens
to fall within a predefined subset of the model’s vocabulary. However, these requirements limit the
applicability of watermark-based methods, making them less practical compared to surrogate-model-
based methods. In contrast, surrogate-model-based methods operate in a completely black-box setting
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without requiring prior modifications to the text generation process, where detectors only have access
to a limited amount of AI-generated data.

Existing surrogate-model-based detection methods can be further divided into zero-shot detection
and supervised-trained detection:

Zero-shot Detection. Zero-shot detection methods assign a confidence score to each text sample
and use a predefined threshold to differentiate between human-written and AI-generated texts. For
instance, GLTR (Gehrmann et al., 2019) measures the average token rank of the input text based on a
surrogate LLM’s output logits, where a higher average rank indicates a higher likelihood of the text
being AI-generated. LRR (Su et al., 2023), an improved version of GLTR, utilizes both log-rank and
log-probability metrics. DetectGPT (Mitchell et al., 2023) detects AI-generated texts by measuring
the similarity of the input text with its repeatedly masked and reconstructed versions using a pre-
trained LLM, while Fast-DetectGPT (Bao et al., 2024) further optimizes this approach with a rapid
text sampling technique. Binoculars (Hans et al., 2024) utilizes the cross-entropy between output
logits from two different surrogate LLMs to detect AI-generated texts, achieving more consistent
performance across LLMs. Other works (Yang et al., 2024; Mireshghallah et al., 2024; Tulchinskii
et al., 2023) explore various advanced metrics for zero-shot detection.

Supervised-trained Detection. In contrast, supervised-trained detection methods employ more
complex features and train classification models to identify distinct patterns in human-written and AI-
generated texts. For example, Solaiman et al. (2019) fine-tunes a RoBERTa (Liu et al., 2019) model to
detect texts generated by GPT-2 (Radford et al., 2019). RADAR (Hu et al., 2023) and Outfox (Koike
et al., 2024) enhance detection robustness against paraphrasing attacks using adversarial training.
Raidar (Mao et al., 2024) compares the differences between the original text and LLM-rewritten text
to identify AI-generated content. GhostBuster (Verma et al., 2024) explores feature combinations
derived from multiple surrogate LLMs’ output logits to optimize detection performance. Recent
studies (McGovern et al., 2024) also investigate more advanced features for supervised detection.

2.2 BLACK-BOX TEXT ORIGIN DETECTION

Despite the significant advancements in AI-generated text detection techniques, only a few methods
have demonstrated the capability to further identify the origin LLM of a given AI-generated text.
For example, TuringBench (Uchendu et al., 2021) evaluates the effectiveness of various methods,
including GLTR (Gehrmann et al., 2019), Grover (Zellers et al., 2019), and fine-tuning-based
approaches (Devlin et al., 2019; Yang et al., 2019) using over 160k samples. However, these methods
struggle to keep up with the rapid evolution of LLMs. Sniffer (Li et al., 2023) attempts to detect
text origin by comparing the output logits from multiple surrogate LLMs using metrics such as the
percentage of perplexity scores. SeqXGPT (Wang et al., 2023a) further enhances Sniffer by leveraging
a specialized detection model based on convolutional and self-attention networks. Nevertheless, the
effectiveness of these approaches against more advanced commercial LLMs remains uncertain and
requires further validation.

3 EXPLORING THE LIMITATION OF EXISTING DETECTION METHODS

The fundamental assumption of existing AI-generated text detection methods is that AI-generated
texts exhibit unique next-token prediction patterns, which can be effectively identified using surrogate
LLMs. However, these prediction patterns are strikingly similar across texts generated by different
LLMs, limiting the effectiveness of such methods in handling text origin detection. Figure 1 illustrates
the scores of one latest detector, Binoculars, on texts from human and four distinct LLMs. The
x-axis represents Binoculars scores, while the y-axis shows the frequency of samples. Gray bars
indicate the score distribution for human-written texts, whereas colored bars represent texts generated
by various LLMs. Although the Binoculars score successfully distinguishes between human and
AI-generated texts, it shows limited capability in classifying texts based on their specific AI sources.
This observation validates our assumption that next-token prediction patterns are highly consistent
among different LLMs.

To address the challenge of uncovering distinguishable patterns in AI-generated texts, we propose
PROFILER, which goes beyond next-token prediction in the output logits. Figure 2 illustrates the
intuition behind our method by comparing text patterns generated by GPT-4-Turbo and Claude-3-
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Figure 1: Distribution difference
of Binoculars scores between
texts from human and four dis-
tinct LLMs.
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Figure 2: Text patterns generated by GPT-4-Turbo and
Claude-3-Sonnet across different metrics. Bars colored in
darker colors in the six subfigures highlight features tied to
next-token prediction.

Sonnet. As a standard practice when generating texts using LLMs, a prompt is provided to the
model. In this example, both GPT-4-Turbo and Claude-3-Sonnet are given the same prompt, "When
a three-dimensional object moves relative to an observer, a change occurs on the observer’s". Each
model then generates new tokens following its intrinsic pattern, i.e., the texts in green and orange,
respectively. During the detection phase, a small surrogate model (i.e., GPT-2 in this example) is
used to extract features of the generated texts by inferring them token-by-token, and Profiler analyzes
the surrogate model’s output logits of those tokens and their cross-entropy losses. The figure shows
that given the original prompt (in gray) and part of the generated text (i.e., “perception of” for GPT
and “ret inal” for Claude), how Profiler engineers the features. The first feature (i.e., the bar charts
in the first column) is the output logits of context. For example, the top-left bar chart shows the
output logits of tokens “of”, “the”, and “object”, given the input inside the green dashed box. Ideally,
we hope this feature denotes the likelihoods that the model stutters and repeats the previous word
“of”, correctly predicts the expected word “the”, and skips a word and fast-forwards to “object”. In
contrast, existing techniques only use the logit value of “the”. Observe from the two bar charts in
the left column that the two features appear similar, meaning that the probabilities follow a similar
pattern. To zoom in, Profiler computes the cross-entropy losses between the current output logits
(e.g., the logits for “the”) and the one-hot encodings of the context (e.g., encodings of “of”, “the”,
and “object”, respectively), yielding the charts in the second column. Intuitively, this feature makes
the probabilities of stuttering, saying-the-right-word, and skipping more prominent by using the
ground-truth tokens as a strong reference. Observe that differences start to emerge. In the last column,
we further enhance the distinguishability by subtracting neighboring cross-entropy losses.

4 DESIGN OF PROFILER

4.1 OVERVIEW OF PROFILER

The entire pipeline of PROFILER consists of three key stages: Surrogate Model Inference, Context
Loss Computation, and Inference Pattern Extraction, as shown in Figure 3. The primary objective
of PROFILER is to determine whether a given text is generated by a specific text origin.

Stage 1: Surrogate Model Inference (Section 4.2). In this stage, the tokenized input sequence is fed
into surrogate model to obtain the sequence of output logits. At each token position, output logits are
computed based on all preceding input tokens up to that point.

Stage 2: Context Loss Computation (Section 4.3). With the sequence of output logits from the
first stage, PROFILER computes the context loss. At each position, cross-entropy losses between the
current output logits and adjacent input tokens within a fixed context window are calculated. These
losses, referred to as context losses, are used in the next stage.
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M

Figure 3: Overview of PROFILER. We take context window size W = 4 as an example.

Stage 3: Inference Pattern Extraction (Section 4.4). Finally, PROFILER extracts inference patterns
from the context loss, including independent patterns (statistical and residual patterns of a single
context loss) and correlated patterns (distribution similarity between each context loss pair). These
patterns are then either used to train a lightweight classifier (e.g., random forest) for text origin
detection during the training phase or fed into a pre-trained classifier to obtain predictions.

4.2 SURROGATE MODEL INFERENCE

Given the input text to be detected, PROFILER first tokenizes the text and feeds the input tokens into
the surrogate model M . PROFILER then applies the Teacher Forcing algorithm (Williams & Zipser,
1989; Lamb et al., 2016), allowing the surrogate model to infer the input tokens and generate the
corresponding output logits sequentially.

Specifically, let the entire input token sequence be x1:n, and each component oi(i ∈ {1, · · · , n}) in
the output logits sequence o1:n is calculated as:

oi = PM (Yi|Xi = x1:i), (1)

where PM (Yi|Xi) represents the output logits distribution over M ’s vocabulary list V at position i,
given the input token sequence Xi.

The output logits sequence o1:n reflects the surrogate model M ’s next-word or next-few-words
predictions, based on its internal knowledge, preferences, and also contains the reduced information
of the input tokens up to each position in the sequence. This sequence of output logits o1:n is then
used in the next stage to compute the context losses, capturing the inference pattern of the surrogate
model with respect to the input text. Notably, though the surrogate model M differ from the origin
model of the input text in terms of architecture, size, and training methodology, the potentially
overlapping training data, and the powerful statistical and representational understanding capabilities
make it a promising tool for uncovering hidden features embedded within the given text.

4.3 CONTEXT LOSS COMPUTATION

Compared with existing detection techniques that primarily utilize next-word prediction information
contained in the output logits, PROFILER captures and analyzes the information of the surrounding
input context at each output position (i.e., inference pattern) by calculating and comparing the cross-
entropy losses between each component in the output logits with its adjacent input tokens. These
losses are denoted as context losses L. In PROFILER, we use a hyper-parameter W to control the
width of the analyzed context at each component of the output logits. PROFILER also drops some of
the output logits in o1:n if they lack sufficient context. For example, the first token lacks context from
preceding tokens, while the last token lacks context from subsequent tokens. Hence L ∈ RW×(n−W ).
Note that, we expect the context to be symmetric (an equal number of preceding and subsequent
tokens) in PROFILER, and thus W is always an even number.

For each context loss Lj ∈ L where j ∈ {1, · · · ,W}, PROFILER computes its component at each
position i ∈ {1, · · · , n−W} as:

Lj
i = −

||V ||∑
v=1

P̃ v
i−1+j · log ovi−1+W

2
, (2)
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where V is the vocabulary of the surrogate model M , and P̃k ∈ R||V ||×1 is the one-hot encoded
vector of input token xk over the vocabulary list V . The calculated context losses L = [L1, · · · ,LW ]
are then used in the next stage to extract the inference pattern.

4.4 INFERENCE PATTERN EXTRACTION

With the calculated context losses L, PROFILER then extracts the inference pattern of the surrogate
model M regarding the input text x1:n, including independent patterns and correlated patterns.

Independent Patterns. For each context loss Lj ∈ L, PROFILER first analyzes it independently
from other context losses in L. The features extracted from a single context loss are referred to as
independent patterns IP , which include both statistical and residual features, representing how each
input token in the context is encoded in the output logits during the surrogate model inference. The
statistical features sj of each Lj consist of six key properties: average, minimum, maximum, standard
deviation, median, and variance. The residual features, which are first utilized by PROFILER in
AI-generated text origin detection, include the statistical properties of the discrete differences and
second-order central differences (Fornberg, 1988; Durran, 2013; Quarteroni et al., 2010) for each
context loss Lj . Specifically, the discrete differences dj for Lj are calculated as:

djk = Lj
k+1 − Lj

k, for k ∈ {1, · · · , n−W − 1}, (3)

and the second-order central differences gj for Lj are approximated as:

gjk =
Lj
k+1 − Lj

k−1

2
, for k ∈ {2, · · · , n−W − 1}, (4)

where gj1 = Lj
2 − Lj

1, and gjn−W = Lj
n−W − Lj

n−W−1. Thus, the independent patterns of all the
context losses can be represented as IP = concat(s1, · · · , sW , d̂1, · · · , d̂W , ĝ1, · · · , ĝW ), where
d̂j and ĝj represent the statistical properties of the discrete differences dj and second-order central
differences gj , respectively. These components have the same size as the corresponding sj values.

Correlated Patterns. The correlated patterns, denoted as CP , capture how differently the input
tokens in the context are encoded in the output logits during surrogate model inference. In PROFILER,
we formulate the correlated patterns as the Symmetric Kullback-Leibler (KL) Divergence (Moreno
et al., 2003) between each context loss pair ⟨Lj ,Lk⟩, which is calculated as:

Dj,k = D(Lj′||Lk′) +D(Lk′||Lj′), (5)

where Lj′ is the soft-maxed version of Lj and D represents the KL Divergence (Cover, 1999).
Therefore, the correlated patterns CP consists of

(
W
2

)
Symmetric KL Divergence values.

PROFILER finally utilizes the complete inference pattern [IP, CP] of the input token sequence x1:n

to either train a classifier (e.g., random forest by default in PROFILER) during the training phase or
predict the given text’s origin during testing.

5 EVALUATION RESULTS

5.1 EXPERIMENTAL SETTINGS

Datasets. To comprehensively evaluate our proposed PROFILER, we use six datasets, consisting
of two short natural language datasets, two long natural language datasets, and two code datasets.
Specifically, the two short natural language datasets include the Arxiv dataset (Mao et al., 2024) and
the Yelp dataset (Mao et al., 2024), which consist of both academic and casual texts. The two long
natural language datasets are the Creative dataset (Verma et al., 2024) and the Essay dataset (Verma
et al., 2024), which include creative writing samples and student essays, representing fields where
LLM misuse is a significant concern. The two code datasets are the HumanEval dataset (Mao et al.,
2024; Chen et al., 2021) and the Google Code Jam (GCJ)(Google, 2008-2020; Petrik & Chuda,
2021) dataset, covering short Python code and long C++ code, respectively. Notably, we are the
first to introduce a more realistic long C++ code dataset to the AI-generated text detection field.
All AI-generated texts are sourced from five of the latest commercial LLMs, including GPT-3.5-
Turbo(OpenAI, 2023), GPT-4-Turbo (Achiam et al., 2023), Claude-3-Sonnet (Anthropic, 2023),
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Figure 4: Detection Performance of PROFILER and four supervised-trained baselines on six
datasets in out-of-distribution (OOD) setting.

Claude-3-Opus (Anthropic, 2023), and Gemini-1.0-Pro (Team et al., 2023). We also collect the
corresponding paraphrased versions of the six datasets following existing studies (Hu et al., 2023) to
test the robustness of the detection. More details about the datasets are presented in Appendix B.

Baselines. We compare PROFILER with 10 state-of-the-art baselines, including six zero-shot de-
tection baselines and four supervised-trained detection baselines. The zero-shot baselines are Lo-
gRank (Gehrmann et al., 2019), LRR (Su et al., 2023), DetectGPT (Mitchell et al., 2023), RADAR (Hu
et al., 2023), OpenAI Detector (Solaiman et al., 2019), and Binoculars (Hans et al., 2024). For
RADAR and OpenAI Detector, we use their officially released detection models, treating them as
zero-shot detectors, even though they were originally designed as supervised-trained detectors. The
four supervised-trained detection baselines are Raidar (Mao et al., 2024), GhostBuster (Verma et al.,
2024), Sniffer (Li et al., 2023), and SeqXGPT (Wang et al., 2023a), with Sniffer and SeqXGPT
officially claiming and evaluating their text origin detection capabilities. We evaluate PROFILER and
all baselines in a one-vs-all setting for each text origin, which is a standard evaluation approach in the
image origin detection domain (Wang et al., 2024; 2023c) and is suitable for existing baselines since
most of them are designed for binary classification tasks.

PROFILER’s Hyper-parameter Settings. We typically set the context window size W for PROFILER
to 6 in most of the experiments, except for the ablation studies. In PROFILER, we employ six
open-source LLMs as surrogate models and explore the contribution of each: Llama2-7B (Touvron
et al., 2023), Llama2-13B (Touvron et al., 2023), Llama3-8B (Dubey et al., 2024), Mistral-7B (Jiang
et al., 2023), Gemma-2B (Team et al., 2024), and Gemma-7B (Team et al., 2024). Notably, these
surrogate models are also used by other baseline methods for comparative analysis.

5.2 DETECTION PERFORMANCE ON NATURAL LANGUAGE DATASETS

We first evaluate PROFILER against 10 baselines on natural language datasets, including both the
original and paraphrased versions of the texts in both the in-distribution and out-of-distribution
(OOD) settings. Specifically, under the in-distribution setting, the training and test data are sourced
from the same distribution (e.g., both are non-paraphrased samples generated by GPT-3.5-Turbo).
In contrast, under the OOD setting, the detectors are trained on the non-paraphrased data but tested
on the paraphrased data, providing a more realistic evaluation scenario. The results are presented
in Table 1 and Figure 4. Overall, under the in-distribution setting, PROFILER outperforms all 10
baselines, achieving an average improvement of more than 0.30 (45% ↑) in AUC score. Under the
OOD setting, PROFILER continues to surpass existing baselines, demonstrating an average AUC
score improvement of more than 0.11 (13% ↑). Detailed analysis is shown as follows.

In-distribution Performance. The in-distribution performance evaluation results on natural language
datasets are presented in Table 1. For each method, we report the 5-fold cross-validated average AUC
score. We first evaluate PROFILER alongside 10 baselines on the original dataset. The results highlight
the limitations of zero-shot detection methods in identifying the origin of a text, as all zero-shot
baselines achieve only around 0.5 average AUC across the six text origins, despite occasionally
performing well on specific origins. In contrast, supervised-trained baselines, which leverage more
complex features, exhibit significantly better average performance, achieving 0.30 (46% ↑) AUC
increase on average. Compared to the zero-shot baselines, PROFILER achieves more than a 0.43 (85%
↑) increase in average AUC score. Additionally, PROFILER outperforms the four supervised-trained
baselines by more than 0.10 (12% ↑) in average AUC score. Notably, PROFILER surpasses Sniffer
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Table 1: In-distribution performance comparison on natural language datasets. Gray color
indicates zero-shot baselines, blue and yellow colors indicate supervised-trained baselines, with
yellow representing those baselines that officially claim text origin detection capabilities. Our
proposed PROFILER is represented by green color.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

LogRank 0.8284 0.6295 0.6515 0.4070 0.2533 0.2320 0.5003 0.3308 0.7447 0.6321 0.4561 0.2287 0.6085 0.5002
LRR 0.1588 0.4044 0.3611 0.5894 0.7346 0.7501 0.4997 0.6688 0.3161 0.3658 0.5346 0.7099 0.4035 0.4998
DetectGPT 0.8543 0.1917 0.2544 0.5364 0.6051 0.5566 0.4998 0.9747 0.1706 0.2327 0.5858 0.5999 0.4369 0.5001
RADAR 0.1473 0.9229 0.4402 0.4297 0.4561 0.6033 0.4999 0.2030 0.8916 0.3823 0.5168 0.3835 0.6234 0.5001
OpenAI Detector 0.3425 0.7542 0.3277 0.4064 0.5151 0.6537 0.5000 0.5657 0.8234 0.3725 0.3449 0.3714 0.5213 0.4999
Binoculars 0.9789 0.4818 0.6073 0.4596 0.2565 0.2111 0.4992 0.7981 0.5908 0.6100 0.3226 0.2246 0.4544 0.5001
Raidar 0.8558 0.8872 0.7739 0.6270 0.7547 0.6801 0.7631 0.9082 0.9024 0.7255 0.6489 0.8095 0.7306 0.7875
GhostBuster 0.9920 0.9635 0.8878 0.7103 0.7722 0.6873 0.8355 0.9847 0.9765 0.8687 0.7311 0.8255 0.6521 0.8398
Sniffer 0.9875 0.9668 0.9208 0.7296 0.8413 0.7509 0.8662 0.9598 0.9699 0.8733 0.7552 0.8729 0.7331 0.8607
SeqXGPT 0.9311 0.9066 0.8763 0.6946 0.7920 0.7343 0.8225 0.8854 0.9054 0.8146 0.7591 0.7903 0.6629 0.8030

PROFILER 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 0.9160 0.9998 0.9861 0.9311 0.8870 0.9238 0.8823 0.9350

Y
el

p

LogRank 0.6252 0.4341 0.6154 0.3870 0.3470 0.6025 0.5019 0.4864 0.3792 0.6500 0.5073 0.3871 0.6061 0.5027
LRR 0.4969 0.5827 0.3893 0.5618 0.5851 0.3692 0.4975 0.6812 0.6580 0.3844 0.4318 0.4879 0.3311 0.4957
DetectGPT 0.3187 0.4910 0.3958 0.5959 0.7029 0.4952 0.4999 0.3837 0.4096 0.2946 0.6363 0.6817 0.6105 0.5027
RADAR 0.3255 0.6400 0.3730 0.4556 0.5660 0.6567 0.5028 0.3979 0.7070 0.4029 0.4248 0.5039 0.5754 0.5020
OpenAI Detector 0.3994 0.6916 0.3021 0.4341 0.5540 0.6329 0.5023 0.5391 0.8226 0.3947 0.3121 0.4235 0.5094 0.5003
Binoculars 0.7820 0.4216 0.6684 0.4042 0.2627 0.4574 0.4994 0.6705 0.4591 0.7041 0.3961 0.3161 0.4464 0.4987
Raidar 0.9640 0.8468 0.8108 0.7505 0.7172 0.7578 0.8079 0.9667 0.9117 0.7398 0.8169 0.7287 0.7613 0.8209
GhostBuster 0.8936 0.7251 0.6829 0.6696 0.6951 0.7509 0.7362 0.9123 0.8245 0.7020 0.7618 0.7547 0.6984 0.7756
Sniffer 0.9236 0.7520 0.7654 0.7127 0.7584 0.7238 0.7726 0.9350 0.8410 0.8059 0.7935 0.8196 0.7544 0.8249
SeqXGPT 0.8392 0.7167 0.6940 0.6787 0.7363 0.7110 0.7293 0.8619 0.7873 0.7168 0.7453 0.7609 0.7538 0.7710

PROFILER 0.9839 0.8563 0.8595 0.8513 0.8758 0.8471 0.8790 0.9881 0.9233 0.8847 0.9071 0.8946 0.8511 0.9081

C
re

at
iv

e

LogRank 0.9201 0.1376 0.7439 0.4138 0.2722 0.5147 0.5004 0.7061 0.3084 0.8241 0.4476 0.2733 0.4244 0.4973
LRR 0.1450 0.8646 0.2419 0.5560 0.7225 0.4652 0.4992 0.4944 0.6525 0.1475 0.5242 0.6537 0.5350 0.5012
DetectGPT 0.1949 0.6443 0.3758 0.5760 0.6283 0.5921 0.5019 0.3259 0.4949 0.3564 0.6362 0.5705 0.6489 0.5054
RADAR 0.0364 0.7726 0.3109 0.5614 0.6627 0.6797 0.5039 0.0493 0.7105 0.3266 0.6475 0.6022 0.7093 0.5076
OpenAI Detector 0.5389 0.7637 0.1826 0.4189 0.5914 0.5044 0.5000 0.7246 0.4593 0.3379 0.4148 0.4935 0.5880 0.5030
Binoculars 0.9978 0.3854 0.7251 0.3346 0.2542 0.2732 0.4950 0.9722 0.3870 0.7394 0.3519 0.2553 0.2371 0.4905
Raidar 0.9209 0.8542 0.7478 0.6888 0.6898 0.7479 0.7749 0.8761 0.7833 0.7796 0.7267 0.6795 0.7233 0.7614
GhostBuster 0.9847 0.9066 0.9053 0.6865 0.7807 0.8282 0.8487 0.9768 0.7669 0.9079 0.7286 0.8057 0.7592 0.8242
Sniffer 0.9992 0.9256 0.9846 0.8369 0.8527 0.9610 0.9267 0.9979 0.9245 0.9673 0.8225 0.8936 0.9461 0.9253
SeqXGPT 0.9682 0.8071 0.9172 0.7397 0.7601 0.8650 0.8429 0.9642 0.7848 0.8788 0.7812 0.8122 0.8510 0.8453

PROFILER 0.9999 0.9617 0.9935 0.9056 0.8837 0.9307 0.9458 1.0000 0.9558 0.9820 0.9220 0.8898 0.9139 0.9439

E
ss

ay

LogRank 0.9854 0.1349 0.7635 0.4617 0.2719 0.3711 0.4981 0.8642 0.3144 0.7413 0.4175 0.1705 0.4911 0.4998
LRR 0.0205 0.8804 0.2333 0.5399 0.7377 0.5964 0.5014 0.2467 0.6752 0.2212 0.5850 0.7938 0.4759 0.4996
DetectGPT 0.0401 0.6341 0.4332 0.6268 0.6306 0.6486 0.5022 0.1165 0.5152 0.4070 0.6778 0.6382 0.6602 0.5025
RADAR 0.0151 0.8331 0.3317 0.6718 0.6220 0.5303 0.5007 0.0397 0.7092 0.3176 0.7618 0.5910 0.5891 0.5014
OpenAI Detector 0.6124 0.8426 0.1033 0.4204 0.6024 0.4110 0.4987 0.8874 0.5609 0.2112 0.4392 0.5074 0.3828 0.4982
Binoculars 0.9999 0.4192 0.6470 0.2931 0.2918 0.3348 0.4976 0.9872 0.3682 0.7134 0.2732 0.1603 0.4980 0.5000
Raidar 0.9923 0.8843 0.8865 0.7839 0.7646 0.7621 0.8456 0.9698 0.8303 0.8629 0.7670 0.7693 0.7775 0.8295
GhostBuster 0.9986 0.8992 0.8634 0.6585 0.7648 0.8823 0.8445 0.9927 0.7979 0.8662 0.6655 0.8401 0.8741 0.8394
Sniffer 0.9992 0.9389 0.9938 0.8565 0.8644 0.9398 0.9321 0.9987 0.9306 0.9769 0.8617 0.9190 0.9361 0.9372
SeqXGPT 0.9920 0.8258 0.9354 0.7375 0.7273 0.8489 0.8445 0.9674 0.8530 0.8758 0.7616 0.8222 0.8418 0.8536

PROFILER 1.0000 0.9763 0.9970 0.9297 0.9176 0.9812 0.9670 1.0000 0.9622 0.9748 0.9445 0.9427 0.9728 0.9662

and SeqXGPT—two supervised-trained baselines specifically designed for text origin detection—by
0.05 (6% ↑) and 0.12 (15% ↑) higher AUC scores on average, respectively.

We further evaluate PROFILER and all baselines on the paraphrased datasets using the same evaluation
methodology. Similarly, all zero-shot baselines achieve only around a 0.5 average AUC score, while
supervised-trained baselines reach an average AUC of 0.31 (44% ↑). PROFILER outperforms the
zero-shot baselines by more than 0.44 (78% ↑) in average AUC and surpasses the supervised-trained
baselines by more than 0.11 (12% ↑) on average. While paraphrasing is typically an effective
technique to test the robustness of detection methods in the binary AI-generated text detection
domain, its impact is reduced in the text origin detection domain, as indicated by the consistent results
of supervised-trained baselines and PROFILER across both original and paraphrased datasets. We
attribute this to two reasons: 1) all the supervised-trained baselines evaluated in this paper claim to
be paraphrasing-robust, and 2) the paraphrasing process might reveal more distinctive characteristics
of the specific LLM, providing additional information for text origin detection.

The above results emphasize the superior effectiveness of PROFILER in accurately identifying the
origin LLM of a text under the in-distribution setting.
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Figure 5: ROC curves of PROFILER and four supervised-trained baselines on Yelp dataset in
out-of-distribution (OOD) setting.

Out-of-distribution (OOD) Performance. Following the in-distribution evaluation, we also assess
PROFILER and the baselines under a more realistic out-of-distribution (OOD) setting. Given the poor
performance of zero-shot methods in the in-distribution setting, we only consider supervised-trained
baselines for the OOD evaluation, shown in Figure 4. We train PROFILER and the four supervised-
trained baselines on the original datasets and test them on the paraphrased versions of the same
datasets. The OOD experiments aim to evaluate the robustness of the detectors against customized
prompts (e.g., paraphrasing prompts in our experiments) used during LLM text generation.

PROFILER outperforms all four baselines across the four natural language datasets, achieving an
average AUC improvement of 0.11 (13% ↑). Specifically, under the OOD setting, PROFILER
demonstrates a 0.13 (15% ↑) increase in average AUC on the two short natural language datasets
(Arxiv and Yelp) compared to the baselines, while exceeding the baselines by more than 0.09 (11% ↑)
average AUC on the two long natural language datasets (Creative and Essay). These results not only
highlight PROFILER’s superior detection performance across different natural language datasets in the
OOD setting but also show its significant advantage in handling short text inputs, which are regarded
as more challenging in previous studies. More detailed OOD results are presented in Appendix C.

In real-world deployment, detection methods are expected to achieve a high true positive rate (TPR)
while maintaining a low false positive rate (FPR). Therefore, we further present the ROC curves of
PROFILER and the four supervised-trained baselines under the OOD setting using the Yelp dataset in
Figure 5. The ROC curves of PROFILER consistently lie above those of the four supervised-trained
baselines across different text origins. Specifically, PROFILER achieves an average TPR of over 0.5
when the FPR is less than 0.1. It is important to note that these results are tested under the OOD
setting; PROFILER would demonstrate even better performance under the in-distribution setting.
Additional ROC curves and detailed analyses for the other five datasets are provided in Appendix F.

5.3 DETECTION PERFORMANCE ON CODE DATASETS

Existing detection methods are seldom tested on code datasets, despite the growing misuse of LLMs
in code generation. We evaluate PROFILER and all baselines on two code datasets: HumanEval (short
Python codes) and GCJ (long C++ codes), providing realistic test scenarios. According to the results
presented in Table 2 and Figure 4, PROFILER outperforms existing baselines by more than 0.29 (46%
↑) in average AUC score under the in-distribution setting and achieves more than 0.10 (12% ↑) higher
average AUC score under the OOD setting on the two code datasets.

In-distribution Performance. According to the results presented in Table 2, PROFILER outperforms
existing baselines by more than 0.26 (49% ↑) and 0.32 (43% ↑) in AUC scores on the original and
paraphrased datasets, respectively, under the in-distribution setting. Specifically, PROFILER surpasses
the zero-shot baselines and supervised-trained baselines by 0.34 (68% ↑) and 0.14 (20% ↑) in AUC
score on the original dataset, respectively. These results confirm the inadequacy of zero-shot detection
scores in the text origin detection domain, as all zero-shot methods only achieve around a 0.5 AUC
score on the two code datasets. Furthermore, PROFILER outperforms Sniffer and SeqXGPT with
more than 0.16 (25% ↑) and 0.13 (18% ↑) higher AUC scores, respectively, demonstrating its superior
effectiveness in detecting the origin of AI-generated code.

The superiority of PROFILER becomes even more evident on the paraphrased dataset, where PROFILER
outperforms the zero-shot baselines and supervised-trained baselines by 0.43 (86% ↑) and 0.14 (18%
↑) in AUC score, respectively, across the two paraphrased code datasets. Especially, PROFILER
surpasses Sniffer and SeqXGPT with over 0.15 (19% ↑) and 0.14 (18% ↑) AUC scores, respectively.
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Table 2: In-distribution performance comparison on code datasets.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

H
um

an
E

va
l

LogRank 0.5780 0.4297 0.4819 0.4901 0.4401 0.5775 0.4995 0.4049 0.4371 0.5659 0.7525 0.4328 0.4084 0.5003
LRR 0.5435 0.4932 0.4573 0.5029 0.5448 0.4610 0.5004 0.2467 0.6752 0.2212 0.5850 0.7938 0.4759 0.4996
DetectGPT 0.5224 0.4311 0.4666 0.4869 0.5347 0.5498 0.4986 0.6482 0.4490 0.4074 0.2810 0.6025 0.6153 0.5006
RADAR 0.4960 0.5575 0.5147 0.4955 0.4598 0.4709 0.4991 0.3454 0.5278 0.5474 0.7335 0.4546 0.3932 0.5003
OpenAI Detector 0.3471 0.6882 0.5901 0.5111 0.5118 0.3526 0.5001 0.4913 0.8077 0.5931 0.2185 0.4561 0.4332 0.5000
Binoculars 0.6400 0.3234 0.4175 0.5002 0.5088 0.6134 0.5006 0.7236 0.4116 0.5100 0.2978 0.4221 0.6403 0.5009
Raidar 0.7609 0.7944 0.6691 0.4985 0.4619 0.6904 0.6459 0.8438 0.8991 0.7862 0.8563 0.7579 0.7498 0.8155
GhostBuster 0.7535 0.7547 0.6894 0.5385 0.5510 0.7396 0.6711 0.7078 0.8421 0.7247 0.8527 0.6370 0.6985 0.7438
Sniffer 0.7301 0.7161 0.5404 0.4380 0.4694 0.7117 0.6009 0.7931 0.8039 0.6774 0.8690 0.6641 0.7535 0.7602
SeqXGPT 0.8480 0.7542 0.6611 0.5477 0.5296 0.7341 0.6791 0.8534 0.8206 0.6748 0.8496 0.5489 0.7654 0.7521

PROFILER 0.9366 0.8349 0.7149 0.6720 0.7448 0.9261 0.8049 1.0000 0.9003 0.8602 0.9458 0.8392 0.9166 0.9103

G
C

J

LogRank 0.6131 0.4212 0.5893 0.4434 0.4395 0.4972 0.5006 0.5161 0.3235 0.4853 0.7185 0.5009 0.4592 0.5006
LRR 0.5659 0.4230 0.3526 0.5620 0.5328 0.5673 0.5006 0.5002 0.7194 0.5376 0.4552 0.2449 0.4445 0.5995
DetectGPT 0.2698 0.5817 0.7597 0.4836 0.4951 0.4108 0.5001 0.3808 0.6300 0.8557 0.2609 0.4318 0.4409 0.5000
RADAR 0.4600 0.6672 0.4148 0.4724 0.4848 0.4973 0.4994 0.3794 0.5699 0.3801 0.6763 0.5183 0.4778 0.5003
OpenAI Detector 0.5641 0.5268 0.4103 0.5117 0.5207 0.4640 0.4996 0.6472 0.6490 0.4130 0.2611 0.4721 0.5533 0.4993
Binoculars 0.7117 0.2901 0.5866 0.4616 0.4824 0.4721 0.5008 0.7124 0.3899 0.7011 0.2732 0.4400 0.4863 0.5005
Raidar 0.9898 0.7704 0.7939 0.6999 0.6638 0.8608 0.7965 0.9852 0.8893 0.8203 0.8864 0.7473 0.8630 0.8653
GhostBuster 0.8642 0.7652 0.6992 0.5969 0.5872 0.7497 0.7104 0.8638 0.8024 0.6747 0.8314 0.6931 0.6908 0.7594
Sniffer 0.9679 0.8085 0.7362 0.6382 0.6609 0.7524 0.7607 0.9646 0.8260 0.7876 0.8909 0.7230 0.7200 0.8187
SeqXGPT 0.9646 0.7990 0.6658 0.6688 0.6657 0.7329 0.7495 0.9529 0.8515 0.8866 0.9212 0.7099 0.7102 0.8387

PROFILER 0.9966 0.9218 0.8509 0.8119 0.7340 0.9524 0.8780 1.0000 0.9722 0.9804 0.9702 0.9011 0.9616 0.9642

Our-of-distribution (OOD) Performance. Similar to the OOD evaluation on the natural language
datasets, we also assess PROFILER and the baselines under the OOD setting on the two code datasets,
shown in Figure 4. PROFILER outperforms all four supervised-trained baselines across both code
datasets, achieving an average AUC improvement of 0.10 (12% ↑). Specifically, under the OOD
setting, PROFILER demonstrates a 0.09 (12% ↑) increase in AUC score on the HumanEval dataset
and a 0.11 (11% ↑)increase on the GCJ dataset. More detailed results are provided in Appendix C.

5.4 ABLATION STUDY

To investigate the impact of each hyper-parameter on PROFILER ’s performance, we conduct several
ablation studies, including the effects of context window size and the choice of surrogate model. The
results indicate that the hyper-parameters of PROFILER have limited impact on its overall performance,
demonstrating the robustness and compatibility of PROFILER across various configurations.

Impact of Context Window Size. We evaluate PROFILER using different context window sizes,
specifically W = 2, 4, 6, 8, where W = 6 is the default configuration. The performance of PROFILER
fluctuates within a range of 3% across varying window sizes. When W ≤ 6, a larger window size
generally results in a higher average detection AUC. However, when W ≥ 6, the detection AUC
begins to degrade. Therefore, we select W = 6 as the default configuration for PROFILER to balance
performance and efficiency. More details are presented in Appendix D.

Impact of Surrogate Model Selection. We also evaluate the influence of different surrogate models
on PROFILER ’s performance. While some fluctuation in detection AUC is observed, PROFILER
demonstrates consistent performance across various surrogate LLMs. In most cases, using a single
surrogate model achieves at least 95% of the detection performance of the ensemble version, indi-
cating PROFILER ’s high generality and compatibility when applied with different surrogate models.
This flexibility allows PROFILER to be adapted according to different configurations and resource
constraints in real-world deployment scenarios. More details are presented in Appendix E.

6 CONCLUSION

In this paper, we propose a novel black-box AI-generated text origin detection algorithm that leverages
the rich contextual information in the surrogate model’s output logits (i.e., inference patterns). Our
method comprises three main stages: surrogate model inference, context loss computation, and
inference pattern extraction. Extensive experiments on four natural language datasets and two code
datasets demonstrate the superiority of PROFILER, achieving more than a 25% average increase in
AUC compared to 10 baselines under both in-distribution and out-of-distribution settings.
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To further demonstrate the effectiveness of our proposed PROFILER and evaluate the contribution of
each component in PROFILER, we provide the following supportive materials in the appendix:

• Appendix A presents the visualization of the classification result of PROFILER.
• Appendix B provides additional details about the process of crafting the AI-generated text,

including the specific prompts used and the step-by-step procedure. It also presents basic
information about the generated datasets, such as the number of samples and the average
sample length.

• Appendix C presents the detailed performance comparison of PROFILER and four supervised-
trained baselines in OOD setting.

• Appendix D presents detailed ablation study results on the context window size W in
PROFILER.

• Appendix E presents the detailed ablation study results on different types of surrogate LLM
in PROFILER.

• Appendix F shows the roc curves on other five datasets.

A VISUALIZATION OF PROFILER
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Figure 6: Visualization of PROFILER’s inference patterns on texts from both human and four
distinct source LLMs.

To further validate the effectiveness of our approach, we employ t-SNE (Van der Maaten & Hinton,
2008) to visualize PROFILER ’s scores on Essay data in Figure 6. The two axes represent two
most representative features extracted by PROFILER. Gray points denote human-written texts, while
colored points represent texts generated by different models. Notably, human samples are distinctly
separated from AI-generated texts, similar to the performance of Binoculars. However, PROFILER
further distinguishes texts generated by different source models, which Binoculars can not. This
enhancement is attributed to PROFILER ’s incorporation of features that correspond to the contextual
tokens in the surrogate model’s output logits, remaining distinguishable even among various models.

B ADDITIONAL DETAILS OF DATASET CONSTRUCTION

In this paper, we used six datasets in total, including two short natural language datasets (Arxiv and
Yelp), two long natural language datasets (Essay and Creative), and two code datasets (HumanEval
and GCJ). In this section, we provide further details on how we constructed each of these datasets.

Arxiv Dataset. The human-written data is sourced from Mao et al. (2024), which includes 350
abstracts collected from papers published at ICLR between 2015 and 2021. These papers were
published before commercial LLMs became publicly available, ensuring that no AI-generated
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We show that deep narrow Boltzmann machines are 
universal approximators of probability distributions on the 
activities of their visible units, provided they have 
sufficiently many hidden layers, each containing the same 
number of units as the visible layer. We show that, within 
certain parameter domains, deep Boltzmann machines can 
be studied as feed forward networks. We provide upper and 
lower bounds on the sufficient depth and width of universal 
approximators. These results settle various intuitions 
regarding undirected networks and, in particular, they show 
that deep narrow Boltzmann machines are at least as 
compact universal approximators as narrow sigmoid belief 
networks and restricted Boltzmann machines, with respect to 
the currently available bounds for those models.

We show that deep narrow Boltzmann machines are 
universal approximators of probability distributions on the 
discrete cube. More specifically, we prove that any 
probability distribution on the discrete cube can be 
approximated arbitrarily well by a deep narrow Boltzmann 
machine with a sufficient number of hidden layers. This 
result holds for any fixed width of the hidden layers, 
demonstrating the expressive power of depth in these 
models. Our findings contribute to the understanding of the 
representational capabilities of deep learning architectures 
and provide a theoretical foundation for the effectiveness of 
deep narrow Boltzmann machines in various applications, 
such as unsupervised learning and generative modeling.

In this study, we demonstrate that deep narrow Boltzmann 
machines possess the remarkable ability to serve as 
universal approximators of probability distributions on the 
discrete cube. Specifically, we establish a rigorous proof that 
any probability distribution on the discrete cube can be 
approximated to an arbitrary degree of precision by a deep 
narrow Boltzmann machine, provided that it is equipped 
with a sufficient number of hidden layers. Notably, this 
result holds true regardless of the fixed width of the hidden 
layers, underscoring the immense expressive power that 
depth confers upon these models. Our groundbreaking 
findings significantly advance the understanding of the 
representational capabilities inherent in deep learning 
architectures and lay a robust theoretical foundation for the 
impressive effectiveness of deep narrow Boltzmann 
machines across a wide range of applications, including 
unsupervised learning and generative modeling.

If you decide to eat here, just be aware it is going to take 
about 2 hours from beginning to end. We have tried it 
multiple times, because I want to like it! I have been to it's 
other locations in NJ and never had a bad experience.

The food is good, but it takes a very long time to come out. 
The waitstaff is very young, but usually pleasant. We have 
just had too many experiences where we spent way too long 
waiting. We usually opt for another diner or restaurant on 
the weekends, in order to be done quicker.

Lengthy dining experience with good food

This restaurant consistently provides good food but suffers 
from slow service. Despite multiple attempts to enjoy the 
dining experience, meals tend to take around two hours from 
start to finish. While the young waitstaff is generally 
pleasant, the prolonged wait times have led to diners opting 
for alternative restaurants, especially on weekends, when a 
quicker meal is preferred. The restaurant's other locations 
in NJ seem to offer a better overall experience.

This eatery never fails to deliver delectable cuisine, but 
unfortunately, it is plagued by sluggish service. Despite 
numerous attempts to savor the dining experience, meals 
often span a laborious two hours from the first morsel to the 
final bite. While the youthful waitstaff exudes a pleasant 
demeanor, the protracted wait times have compelled diners 
to seek out alternative culinary establishments, particularly 
on weekends when a more expeditious repast is desired. The 
restaurant's other Garden State locales appear to provide a 
more satisfying overall experience.

Arxiv

Yelp

Human-written Text AI-generated Text w/o Paraphrasing AI-generated Text w/ Paraphrasing

/* C Libs */
 ......
 
 using namespace std;
 
 #define REP(i,s,t) for(int _t=t,i=s;i<_t;i++ )
 #define REPP(i,s,t) for(int _t=t,i=s;i<=_t;i++)
 
 template<class T>
 void check_max( T&a, T b ){
        if ( a <  b ) a = b;
 }
 template<class T>
 void check_min( T&a, T b ){
        if ( a > b ) a = b;
 }
 
 //#define debug
 
 map<int,int> mp;
 int ans;
 void deal( int v ){
        if ( mp[v] <= 1 ) return;
        mp[v-1] ++;
        mp[v+1] ++;
        mp[v]--;mp[v]--;
        ans++;
        deal(v-1);
        deal(v+1);
        deal(v);
 }
 int main(){
        int T;cin>>T;
        REP(Case,1,T+1){
                int k;cin>>k;
                mp.clear();
                ans = 0;
                REP(i,0,k){
                        int v,p;
                        cin >>v >>p;
                        mp[v] += p;
                        deal(v);
                }
                cout << "Case #"<<Case<<": "<<ans<<endl;
        }
        return 0;
 }

#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); ++i)
#define REPP(i, a, b) for(int i = (int)(a); i < (int)(b); ++i)
template<class T> inline bool check_max(T& a, T b) { if(a 
< b) { a = b; return true; } return false; }
template<class T> inline bool check_min(T& a, T b) { if(a 
> b) { a = b; return true; } return false; }

map<int, int> mp;
int ans;

void deal(int v) {
    if(mp[v] <= 1) return;
    ++mp[v-1], ++mp[v+1], mp[v] -= 2, ++ans;
    deal(v-1), deal(v+1), deal(v);
}

int main() {
    int T;
    cin >> T;
    REP(t, T) {
        int k;
        cin >> k;
        mp.clear(), ans = 0;
        REP(i, k) {
            int v, p;
            cin >> v >> p;
            mp[v] += p;
        }
        for(auto& pr : mp) deal(pr.first);
        cout << "Case #" << t+1 << ": " << ans << endl;
    }
    return 0;
}

#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); ++i)
#define REPP(i, a, b) for(int i = (int)(a); i < (int)(b); ++i)
template<class T> inline bool check_max(T& a, T b) { if(a 
< b) { a = b; return true; } return false; }
template<class T> inline bool check_min(T& a, T b) { if(a 
> b) { a = b; return true; } return false; }

map<int, int> mp;
int ans;

void handle(int v) {
    if(mp[v] <= 1) return;
    ++mp[v-1], ++mp[v+1], mp[v] -= 2, ++ans;
    handle(v-1), handle(v+1), handle(v);
}

int main() {
    int T;
    cin >> T;
    REP(t, T) {
        int k;
        cin >> k;
        mp.clear(), ans = 0;
        REP(i, k) {
            int v, p;
            cin >> v >> p;
            mp[v] += p;
        }
        for(auto& pr : mp) handle(pr.first);
        cout << "Case #" << t+1 << ": " << ans << endl;
    }
    return 0;
}

GCJ

Figure 7: Examples of human-written text, AI-generated text with paraphrasing, and AI-
generated text without paraphrasing from Arxiv, Yelp, and GCJ datasets. We do not show
examples from two long natural language datasets here due to the length limit.

content is mixed into the human-written samples. We utilize the 350 human-written samples to
generate AI-generated abstracts using five commercial LLMs: GPT-3.5-Turbo (OpenAI, 2023),
GPT-4-Turbo (Achiam et al., 2023), Claude-3-Sonnet (Anthropic, 2023), Claude-3-Opus (Anthropic,
2023), and Gemini-1.0-Pro (Team et al., 2023). Each commercial LLM was given the title of the
paper and the first 15 characters of the corresponding human-written abstract, with the prompt used
by Mao et al. (2024):

The title is {Paper_Title}, start with {Human_Abs[0:15]},
write a short and concise abstract based on this:
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Each model generated approximately 350 samples, though some models occasionally refused to
generate due to their output filtering policies. The average length of both human-written and AI-
generated abstracts is approximately 790 characters.

Yelp Dataset. For the human-written samples, we use 2,000 Yelp reviews collected from the Yelp
Reviews Dataset as compiled by prior work (Mao et al., 2024). To generate the AI-generated data, we
utilize five of the latest commercial LLMs, employing the same prompt as used in Mao et al. (2024):

Write a concise review based on this: {Human_Review}

Each commercial LLM generates ∼2,000 corresponding AI-generated samples, with an average
length of fewer than 500 characters. Due to the short average length of the samples, the Yelp dataset
is considered the most challenging among all four natural language datasets used in this paper.

Essay and Creative Datasets. The human-written samples from both the student essay (Essay)
dataset and creative writing (Creative) dataset are both sourced from Verma et al. (2024), each
containing 1,000 human samples. To generate the corresponding AI samples, we first use the
following prompt to summarize a title from the human-written text:

Given the following essay/creative writing, write a title for it:
{Human_Text}
Just output the title:

Then, we let the LLM to generate a passage with the summarized title in similar number of words:

Write an essay/story in {Length} words to the title:
{Summarized_Title}

The procedure and prompts used to generate the Essay and Creative datasets are identical to those
used by Verma et al. (2024) and the average character length of the samples in these two datasets
exceeds 2,850.

HumanEval and GCJ Datasets. The HumanEval and Google Code Jam (GCJ) datasets are two
code datasets. HumanEval consists of short Python codes, while GCJ contains long C++ codes.
The human-written samples in the HumanEval dataset are sourced from Chen et al. (2021), and the
human-written samples in the GCJ dataset are selectively collected from Google (2008-2020). We
follow the procedure outlined by Mao et al. (2024) to first generate a description of the purpose and
functionality of the human-written codes using the following prompt:

Describe what does this code do, including the names and
descriptions of all the functions and global variables:
{Human_Code}

Next, we prompt each of the five commercial LLMs to generate corresponding Python or C++ code
based on this description:

I want to do this:
{Code_Description}
Help me write the corresponding Python/C++ code, no explanation,
just code:

Typically, the Python codes generated for the HumanEval dataset are fewer than 50 lines, while the
C++ codes generated for the GCJ dataset exceed 100 lines, reflecting their respective complexity and
length differences..

Paraphrased Dataset. To further test the robustness and transferability of PROFILER and other
baselines, we generate six corresponding paraphrased datasets. Following the same procedure as
described in Hu et al. (2023), we prompt each commercial LLM to paraphrase its own samples using
the following prompt:

Enhance the word choices in the sentence to sound more like
that of a human, no explain.
{AI_Sample}
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We provide concrete examples in Figure 7, including human-written samples, non-paraphrased
AI-generated samples, and paraphrased AI-generated samples. Due to the page length limit, we
only present samples from two short natural language datasets and one code dataset. Due to space
constraints, we include samples from two short natural language datasets and one code dataset. It is
evident that distinguishing AI-generated samples from human-written ones without prior knowledge
is challenging for humans.

C DETAILED PERFORMANCE COMPARISION UNDER OOD SETTING

Table 3: Detailed performance comparison of PROFILER with four supervised-trained baselines
in OOD setting.

Paraphrased-OOD

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

Raidar 0.7963 0.9003 0.6739 0.5129 0.7663 0.6764 0.7210

E
ss

ay

0.9474 0.7697 0.7601 0.6444 0.6875 0.6382 0.7412
GhostBuster 0.9806 0.9772 0.8672 0.7108 0.8113 0.5684 0.8193 0.9892 0.7555 0.8741 0.5694 0.8149 0.8573 0.8101
Sniffer 0.9376 0.9510 0.6402 0.6215 0.7851 0.5568 0.7487 0.9951 0.7072 0.5399 0.6637 0.8593 0.7361 0.7502
SeqXGPT 0.8149 0.8743 0.4900 0.5709 0.6269 0.5340 0.6518 0.9774 0.5512 0.4743 0.5556 0.5685 0.6062 0.6222

PROFILER 1.0000 0.9815 0.8009 0.6991 0.9175 0.7991 0.8663 1.0000 0.6667 0.6782 0.7796 0.8873 0.9171 0.8215

Y
el

p

Raidar 0.9203 0.8814 0.7073 0.5503 0.5661 0.5818 0.7012

H
um

an
E

va
l 0.8554 0.9054 0.7081 0.4053 0.5676 0.7627 0.7008

GhostBuster 0.8928 0.8068 0.6361 0.6483 0.7289 0.6923 0.7342 0.6614 0.8314 0.7279 0.5175 0.5426 0.6713 0.6587
Sniffer 0.9931 0.8127 0.7841 0.6698 0.7694 0.6898 0.7865 0.8319 0.8243 0.5942 0.6179 0.6467 0.6772 0.6987
SeqXGPT 0.9041 0.7112 0.7097 0.6095 0.6917 0.6863 0.7187 0.8735 0.7549 0.6510 0.3526 0.5191 0.4248 0.5960

PROFILER 0.9947 0.9079 0.8174 0.8140 0.8828 0.7858 0.8671 1.0000 0.8927 0.8410 0.6099 0.6766 0.5093 0.7549

C
re

at
iv

e

Raidar 0.7634 0.7128 0.7394 0.6042 0.4629 0.7139 0.6661

G
C

J

0.9903 0.9266 0.7669 0.4351 0.5847 0.8852 0.7648
GhostBuster 0.9614 0.7085 0.9043 0.6751 0.7260 0.7533 0.7881 0.8606 0.7257 0.5777 0.4222 0.5675 0.7023 0.6427
Sniffer 0.9991 0.8051 0.7589 0.7471 0.7871 0.8930 0.8317 0.9934 0.9303 0.8124 0.3798 0.6881 0.7859 0.7650
SeqXGPT 0.9400 0.5760 0.5219 0.5793 0.5965 0.7657 0.6632 0.8569 0.7974 0.8091 0.4230 0.6763 0.7796 0.7237

PROFILER 1.0000 0.7603 0.8350 0.8294 0.7564 0.8366 0.8363 1.0000 0.9548 0.8251 0.5344 0.7939 0.9040 0.8354

Table 3 presents the detailed OOD experimental results of PROFILER on all the six datasets, compared
to four supervised-trained baselines. PROFILER outperforms the four baselines in 25 of 36 (70%)
cases. Considering the average AUC, PROFILER always reach the best performance, performing
0.8663, 0.8671, 0.8363, 0.8215, 0.7549, and 0.8354 on Arxiv, Yelp, Creative, Essay, HumanEval,
and GCJ datasets, individually. Additionally, PROFILER demonstrate great advantage in short natural
language datasets (Arxiv and Yelp) and code datasets (HumanEval and GCJ), outperforming the four
baselines in 83% and 75% cases, respectively.

Specifically, PROFILER outperforms all four baselines on the Arxiv dataset, achieving an average
AUC of 0.8663 and surpassing the next best method (GhostBuster) by 5.74%. Its performance
is particularly strong when detecting Human text (AUC = 1.0) and maintaining robustness across
various origin LLMs.

On the Yelp dataset, PROFILER demonstrates its effectiveness by achieving the highest average AUC
of 0.8671, outperforming the closest baseline, Sniffer, by 9.27%. Its performance remains strong
across various LLMs, with perfect detection for Human text and high AUC values for GPT-4-Turbo
and Claude-3-Opus.

On the Creative dataset, PROFILER achieves the highest average AUC of 0.8363, marginally outper-
forming Sniffer by 0.46%. It exhibits consistent performance across diverse LLMs and excels in
detecting Human text with a perfect AUC score of 1.0. While Sniffer shows competitive results for a
few origin LLMs, its overall lower average AUC and greater variability indicate lower robustness
compared to PROFILER.

On the Essay dataset, PROFILER demonstrates its effectiveness by achieving the highest average AUC
of 0.8215, marginally outperforming the next best baseline, GhostBuster, by 1.41%. It exhibits stable
performance across diverse LLMs, with perfect detection for Human text and high AUC values for
Claude-3-Opus and Gemini-1.0-Pro models.

On the HumanEval dataset, PROFILER achieves the highest average AUC of 0.7549, surpassing the
next best baseline, Raidar, by 7.72%. It demonstrates robust performance across various origin LLMs
and also excels in detecting Human text with a perfect AUC score of 1.0. Although Raidar performs
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Table 4: Ablation study on context window size of PROFILER.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

PROFILER W=2 0.9998 0.9792 0.9420 0.7938 0.8766 0.9023 0.9156 0.9995 0.9852 0.9360 0.8837 0.9231 0.8759 0.9339
PROFILER W=4 0.9998 0.9793 0.9463 0.8012 0.8807 0.9001 0.9179 0.9998 0.9854 0.9400 0.8863 0.9258 0.8790 0.9360
PROFILER W=6 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 0.9160 0.9998 0.9861 0.9311 0.8870 0.9238 0.8823 0.9350
PROFILER W=8 0.9998 0.9801 0.9423 0.7970 0.8851 0.9005 0.9175 0.9999 0.9859 0.9334 0.8788 0.9224 0.8772 0.9329

Y
el

p

PROFILER W=2 0.9840 0.8548 0.8563 0.8437 0.8735 0.8509 0.8772 0.9873 0.9135 0.8810 0.8975 0.8946 0.8459 0.9033
PROFILER W=4 0.9849 0.8597 0.8619 0.8514 0.8737 0.8507 0.8804 0.9885 0.9240 0.8873 0.9057 0.8916 0.8518 0.9082
PROFILER W=6 0.9839 0.8563 0.8595 0.8513 0.8758 0.8471 0.8790 0.9881 0.9233 0.8847 0.9071 0.8946 0.8511 0.9081
PROFILER W=8 1.0000 0.8953 0.8817 0.9268 0.8873 0.8574 0.9081 0.9873 0.9222 0.8819 0.9064 0.8923 0.8477 0.9063

C
re

at
iv

e PROFILER W=2 1.0000 0.9576 0.9924 0.8971 0.8848 0.9255 0.9429 1.0000 0.9501 0.9816 0.9145 0.8914 0.9231 0.9434
PROFILER W=4 1.0000 0.9596 0.9932 0.9071 0.8839 0.9298 0.9456 1.0000 0.9572 0.9851 0.9303 0.8956 0.9250 0.9488
PROFILER W=6 0.9999 0.9617 0.9935 0.9056 0.8837 0.9307 0.9458 1.0000 0.9558 0.9820 0.9220 0.8898 0.9139 0.9439
PROFILER W=8 0.9999 0.9618 0.9929 0.9041 0.8796 0.9325 0.9451 1.0000 0.9557 0.9817 0.9238 0.8881 0.9165 0.9443

E
ss

ay

PROFILER W=2 1.0000 0.9763 0.9975 0.9258 0.9211 0.9821 0.9671 1.0000 0.9609 0.9786 0.9366 0.9438 0.9729 0.9655
PROFILER W=4 1.0000 0.9769 0.9970 0.9326 0.9187 0.9823 0.9679 1.0000 0.9655 0.9795 0.9451 0.9452 0.9739 0.9682
PROFILER W=6 1.0000 0.9763 0.9970 0.9297 0.9176 0.9812 0.9670 1.0000 0.9622 0.9748 0.9445 0.9427 0.9728 0.9662
PROFILER W=8 1.0000 0.9757 0.9967 0.9271 0.9144 0.9813 0.9659 1.0000 0.9612 0.9746 0.9440 0.9406 0.9729 0.9655

H
um

an
E

va
l PROFILER W=2 0.9497 0.8186 0.7212 0.6827 0.7749 0.9396 0.8145 0.9972 0.8836 0.8377 0.9257 0.8102 0.9130 0.8946

PROFILER W=4 0.9423 0.8322 0.7022 0.6694 0.7629 0.9368 0.8076 1.0000 0.9118 0.8472 0.9436 0.8530 0.9219 0.9129
PROFILER W=6 0.9366 0.8349 0.7149 0.6720 0.7448 0.9261 0.8049 1.0000 0.9003 0.8602 0.9458 0.8392 0.9166 0.9103
PROFILER W=8 0.9378 0.8261 0.7208 0.6562 0.7401 0.9258 0.8011 1.0000 0.9006 0.8568 0.9465 0.8387 0.9101 0.9088

G
C

J

PROFILER W=2 0.9970 0.8766 0.8173 0.7395 0.7571 0.9068 0.8490 0.9976 0.9624 0.9764 0.9597 0.8870 0.8974 0.9467
PROFILER W=4 0.9954 0.9146 0.8480 0.7957 0.7543 0.9317 0.8733 1.0000 0.9729 0.9821 0.9707 0.9014 0.9509 0.9630
PROFILER W=6 0.9966 0.9218 0.8509 0.8119 0.7340 0.9524 0.8780 1.0000 0.9722 0.9804 0.9702 0.9011 0.9616 0.9642
PROFILER W=8 0.9949 0.9197 0.8501 0.8082 0.7464 0.9584 0.8796 1.0000 0.9735 0.9821 0.9732 0.9018 0.9650 0.9659

well on GPT-4-Turbo, it struggles significantly on Claude 3 models, which underscores PROFILER’s
superior adaptability and reliability.

On the GCJ dataset, PROFILER achieves the highest average AUC of 0.8354, surpassing the closest
baseline, Sniffer, by 9.19%. It demonstrates strong performance across various origin LLMs. Though
baselines like GhostBuster perform competitively on some models, their overall lower average AUC
and greater variability indicate lower robustness compared to PROFILER.

Overall, the above detailed results under OOD setting confirm PROFILER’s superior effectiveness and
adaptability in both the natural language origin and code origin detection across various origin LLMs.

D DETAILED ABLATION STUDY ON CONTEXT WINDOW SIZE IN PROFILER

Table 4 provides a comprehensive comparison of PROFILER’s detection performance across different
context window sizes in the OOD setting. The results indicate that the size of the context window
significantly influences the system’s effectiveness. Generally, employing a larger context window
leads to improved AUC scores, especially in datasets like Arxiv and Yelp, underscoring the importance
of incorporating more extensive contextual information into the detection process.

However, this trend is not uniform across all datasets. In the HumanEval and Essay datasets, smaller
context windows yield comparable or better performance than larger ones. The relationship between
context window size and detection performance varies depending on the dataset’s characteristics.

These findings highlight the importance of selecting an appropriate context window size tailored to
the specific dataset. By adjusting the context window, PROFILER can better capture the most relevant
patterns, enhancing its detection capabilities across diverse types of content.

E DETAILED ABLATION STUDY ON SURROGATE LLMS IN PROFILER

Table 5 presents a detailed ablation study on the performance of PROFILER across different surrogate
LLMs, evaluated on both the normal and paraphrased datasets across various domains. In most
cases, the ensemble results outperform those derived from any single surrogate LLM, indicating
that combining multiple surrogate models leads to more robust detection performance. However, a
significant portion of the detection capability can still be preserved when using individual surrogate
models.
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Table 5: Ablation study on surrogate LLMs in PROFILER.

Normal Dataset - In Distribution Paraphrased- In Distribution

Method Human Turbo
GPT-3.5

Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average Human Turbo

GPT-3.5
Turbo
GPT-4

Sonnet
Claude

Opus
Claude

1.0-pro
Gemini

AUC
Average

A
rx

iv

Gemma-2B 0.9945 0.9653 0.8670 0.7440 0.8427 0.8764 0.8817 0.9862 0.9714 0.8320 0.8364 0.8677 0.8209 0.8858
Gemma-7B 0.9887 0.9715 0.8513 0.7232 0.8366 0.8435 0.8691 0.9706 0.9697 0.8152 0.7788 0.8736 0.7986 0.8678
Llama2-7B 0.9995 0.9708 0.9088 0.7777 0.8568 0.8660 0.8966 0.9982 0.9802 0.8919 0.8478 0.9118 0.8334 0.9106
Mistral-7B 0.9996 0.9747 0.9060 0.7808 0.8530 0.8734 0.8979 0.9986 0.9782 0.8943 0.8625 0.9052 0.8309 0.9116
Llama3-8B 0.9918 0.9704 0.9151 0.7327 0.8532 0.8619 0.8875 0.9633 0.9792 0.8702 0.8199 0.8986 0.8198 0.8918
Llama2-13B 0.9977 0.9704 0.9076 0.7709 0.8467 0.8602 0.8923 0.9944 0.9791 0.8974 0.8630 0.9116 0.8234 0.9115

Ensemble 0.9998 0.9809 0.9386 0.7956 0.8815 0.8994 0.9160 0.9998 0.9861 0.9311 0.8870 0.9238 0.8823 0.9350

Y
el

p

Gemma-2B 0.8490 0.7783 0.7546 0.7735 0.8125 0.8057 0.7956 0.8762 0.8254 0.7567 0.8424 0.8126 0.7821 0.8159
Gemma-7B 0.9391 0.7799 0.7838 0.7631 0.8150 0.7789 0.8100 0.9345 0.8230 0.7600 0.8219 0.8095 0.7445 0.8155
Llama2-7B 0.9664 0.8243 0.8182 0.8246 0.8484 0.8118 0.8489 0.9790 0.9100 0.8553 0.8844 0.8784 0.8175 0.8874
Mistral-7B 0.9539 0.8191 0.8095 0.8313 0.8488 0.7885 0.8419 0.9733 0.8869 0.8460 0.8859 0.8734 0.8143 0.8800
Llama3-8B 0.9564 0.8168 0.8283 0.8166 0.8595 0.7746 0.8420 0.9555 0.8849 0.8427 0.8713 0.8663 0.8071 0.8713
Llama2-13B 0.9744 0.8153 0.8263 0.8269 0.8466 0.8003 0.8483 0.9834 0.9100 0.8583 0.8903 0.8848 0.8142 0.8902

Ensemble 0.9839 0.8563 0.8595 0.8513 0.8758 0.8471 0.8790 0.9881 0.9233 0.8847 0.9071 0.8946 0.8511 0.9081

C
re

at
iv

e

Gemma-2B 0.9935 0.8849 0.9543 0.7950 0.7664 0.8766 0.8785 1.0000 0.8392 0.9472 0.8373 0.8123 0.8725 0.8848
Gemma-7B 0.9952 0.9094 0.9536 0.7878 0.7778 0.8403 0.8774 1.0000 0.8589 0.9524 0.8253 0.7948 0.8135 0.8741
Llama2-7B 0.9998 0.9308 0.9859 0.8712 0.8354 0.8997 0.9205 1.0000 0.8982 0.9643 0.8652 0.8463 0.8516 0.9043
Mistral-7B 0.9999 0.9263 0.9853 0.8683 0.8296 0.8929 0.9170 1.0000 0.8788 0.9625 0.8628 0.8639 0.8711 0.9065
Llama3-8B 0.9994 0.9456 0.9809 0.8697 0.8666 0.9140 0.9294 1.0000 0.9372 0.9708 0.8714 0.8715 0.8829 0.9223
Llama2-13B 0.9999 0.9316 0.9872 0.8731 0.8450 0.9043 0.9235 1.0000 0.9156 0.9668 0.8605 0.8582 0.8600 0.9102

Ensemble 0.9999 0.9617 0.9935 0.9056 0.8837 0.9307 0.9458 1.0000 0.9558 0.9820 0.9220 0.8898 0.9139 0.9439

E
ss

ay

Gemma-2B 0.9991 0.9119 0.9614 0.8438 0.8258 0.9694 0.9186 1.0000 0.8568 0.9415 0.8797 0.8718 0.9445 0.9157
Gemma-7B 0.9991 0.8915 0.9495 0.8146 0.8059 0.9470 0.9013 1.0000 0.8378 0.9204 0.8302 0.8477 0.9417 0.8963
Llama2-7B 1.0000 0.9172 0.9913 0.8578 0.8531 0.9307 0.9250 1.0000 0.9166 0.9572 0.8856 0.9140 0.9138 0.9312
Mistral-7B 1.0000 0.9513 0.9925 0.8695 0.8643 0.9406 0.9364 1.0000 0.8865 0.9538 0.8863 0.9183 0.9318 0.9294
Llama3-8B 1.0000 0.9504 0.9945 0.8805 0.8740 0.9416 0.9402 1.0000 0.9498 0.9668 0.9059 0.9196 0.9341 0.9460
Llama2-13B 1.0000 0.9217 0.9922 0.8572 0.8657 0.9356 0.9287 1.0000 0.9380 0.9624 0.8847 0.9212 0.9342 0.9401

Ensemble 1.0000 0.9763 0.9970 0.9297 0.9176 0.9812 0.9670 1.0000 0.9622 0.9748 0.9445 0.9427 0.9728 0.9662

H
um

an
E

va
l

Gemma-2B 0.8614 0.7964 0.6753 0.6406 0.6714 0.8606 0.7510 1.0000 0.8549 0.8231 0.9026 0.8117 0.8841 0.8794
Gemma-7B 0.8340 0.7942 0.6720 0.6128 0.6349 0.8559 0.7340 1.0000 0.8660 0.8258 0.9005 0.7900 0.8800 0.8770
Llama2-7B 0.9130 0.8186 0.7233 0.6434 0.7227 0.9149 0.7893 1.0000 0.8808 0.8350 0.9330 0.7982 0.8996 0.8911
Mistral-7B 0.9297 0.8278 0.7196 0.6338 0.7360 0.9196 0.7944 1.0000 0.8886 0.8487 0.9438 0.8237 0.9020 0.9011
Llama3-8B 0.7709 0.8301 0.6745 0.4534 0.4946 0.7786 0.6670 1.0000 0.8958 0.8102 0.9332 0.8121 0.8775 0.8881
Llama2-13B 0.9310 0.8192 0.7044 0.6395 0.7335 0.9249 0.7921 1.0000 0.8736 0.8503 0.9375 0.8090 0.9066 0.8962

Ensemble 0.9366 0.8349 0.7149 0.6720 0.7448 0.9261 0.8049 1.0000 0.9003 0.8602 0.9458 0.8392 0.9166 0.9103

G
C

J

Gemma-2B 0.9734 0.8523 0.7708 0.7609 0.6776 0.8625 0.8163 1.0000 0.9589 0.9785 0.9557 0.8796 0.9124 0.9475
Gemma-7B 0.9730 0.8658 0.7626 0.7452 0.6849 0.8642 0.8160 1.0000 0.9476 0.9749 0.9462 0.8743 0.8942 0.9396
Llama2-7B 0.9912 0.8913 0.8123 0.7737 0.7010 0.8827 0.8420 1.0000 0.9642 0.9697 0.9498 0.8593 0.9161 0.9432
Mistral-7B 0.9959 0.8945 0.7931 0.7760 0.7282 0.8956 0.8472 1.0000 0.9679 0.9733 0.9687 0.8782 0.9128 0.9502
Llama3-8B 0.9687 0.8739 0.7890 0.7757 0.6913 0.9354 0.8390 1.0000 0.9608 0.9564 0.9473 0.8863 0.9228 0.9456
Llama2-13B 0.9913 0.9023 0.8114 0.7960 0.7134 0.8866 0.8502 1.0000 0.9614 0.9644 0.9434 0.8731 0.9185 0.9435

Ensemble 0.9966 0.9218 0.8509 0.8119 0.7340 0.9524 0.8780 1.0000 0.9722 0.9804 0.9702 0.9011 0.9616 0.9642

Among all the surrogate LLMs, the Llama series models—including Llama2-7B, Llama3-8B, and
Llama2-13B generally perform the best across different datasets. For instance, on the Arxiv dataset,
Llama2-7B achieves an average AUC of 0.8966 on the normal dataset and 0.9106 on the paraphrased
dataset, outperforming the Gemma series models. Similarly, on the Creative dataset, Llama2-13B
attains an average AUC of 0.9235 on the normal dataset and 0.9102 on the paraphrased dataset.

In contrast, the Gemma series models tend to underperform compared to the Llama series. For
example, Gemma-2B achieves an average AUC of 0.8817 on the Arxiv normal dataset and 0.8858
on the paraphrased dataset, which is lower than the corresponding results from Llama2-7B and
Mistral-7B. Notably, the performance differences among surrogate LLMs are not strictly correlated
with model size. For example, on the HumanEval dataset, Mistral-7B achieves an average AUC of
0.9011, which is higher than both Llama2-7B (0.8911) and the larger Llama2-13B (0.8962). The
ensemble approach consistently yields better performance across all datasets than individual surrogate
LLMs in most cases. This suggests that leveraging the strengths of multiple models can effectively
enhance the detection capabilities of PROFILER.

Overall, PROFILER shows consistent performance across different surrogate LLMs, demonstrating
the compatibility of our method and indicating that PROFILER is able to effectively work with various
surrogate models without significant loss in performance.
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Figure 8: ROC curves of PROFILER and four supervised-trained baselines on Arxiv dataset in
out-of-distribution (OOD) setting.
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Figure 9: ROC curves of PROFILER and four supervised-trained baselines on Creative dataset
in out-of-distribution (OOD) setting.
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Figure 10: ROC curves of PROFILER and four supervised-trained baselines on Essay dataset in
out-of-distribution (OOD) setting.
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Figure 11: ROC curves of PROFILER and four supervised-trained baselines on HumanEval
dataset in out-of-distribution (OOD) setting.
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Figure 12: ROC curves of PROFILER and four supervised-trained baselines on GCJ dataset in
out-of-distribution (OOD) setting.

F ADDITIONAL ROC CURVES UNDER OOD SETTING

We present the OOD ROC curves of PROFILER and four supervised-trained baselines in Figure 8
(Arxiv), Figure 9 (Creative), Figure 10 (Essay), Figure 11 (HumanEval), and Figure 12 (GCJ)
individually. Similar to its performance on the Yelp dataset, PROFILER ranks first or second in 63%
of the cases. Additionally, PROFILER demonstrates a significant advantage when operating in the
low false positive rate (FPR) mode, achieving over 0.4 true positive rate (TPR) when the FPR is
restricted to just 0.1. It is noteworthy that these ROC curves are calculated under the OOD setting.
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The performance gap of PROFILER in the low FPR mode would be even more pronounced under the
in-distribution setting, highlighting its effectiveness in distinguishing the text origin with minimal
false positives.
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