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Abstract

In this paper, we investigate one of the most fun-
damental non-convex learning problems—ReLU
regression—in the Differential Privacy (DP) model.
Previous studies on private ReLU regression heav-
ily rely on stringent assumptions, such as constant-
bounded norms for feature vectors and labels. We
relax these assumptions to a more standard setting,
where data can be i.i.d. sampled from O(1)-sub-
Gaussian distributions. We first show that when
ε = Õ(

√
1
N ) and there is some public data, it is

possible to achieve an upper bound of Õ( d2

N2ε2 ) for
the excess population risk in (ε, δ)-DP, where d is
the dimension and N is the number of data samples.
Moreover, we relax the requirement of ε and public
data by proposing and analyzing a one-pass mini-
batch Generalized Linear Model Perceptron algo-
rithm (DP-MBGLMtron). Additionally, using the
tracing attack argument technique, we demonstrate
that the minimax rate of the estimation error for
(ε, δ)-DP algorithms is lower bounded by Ω( d2

N2ε2 ).
This shows that DP-MBGLMtron achieves the op-
timal utility bound up to logarithmic factors. Ex-
periments further support our theoretical results.

1 INTRODUCTION

Privacy preservation has become a critical consideration,
posing a significant challenge for machine learning models
that process sensitive data. To address this issue, Differential
Privacy (DP) [Dwork et al., 2006] has emerged as a widely
used approach, providing verifiable protection against iden-
tification and resistance to any auxiliary information that
attackers might have.

*Correspondence to: Di Wang <di.wang@kaust.edu.sa>, Jin-
hui Xu <jhxu@ustc.edu.cn>

Stochastic Optimization (SO) and its empirical counterpart,
Empirical Risk Minimization (ERM), represent some of
the most fundamental challenges in machine learning and
statistics, which are especially susceptible to privacy leaks
when involved with sensitive data. Therefore, significant
efforts have been made to develop differentially private algo-
rithms tailored to these challenges, specifically referred to as
DP-SO and DP-ERM. Although there is an extensive body
of research on DP-SO and DP-ERM [Bassily et al., 2014,
Wang et al., 2017, 2023b, Feldman et al., 2020, Song et al.,
2020, Su and Wang, 2021, Asi et al., 2021, Bassily et al.,
2021b, Kulkarni et al., 2021, Hu et al., 2022, Zhang et al.,
2025, Su et al., 2024, 2023], the majority of existing studies
primarily focus on convex loss functions. This focus inadver-
tently neglects the crucial role of nonconvex optimization,
which is essential for the development of advanced machine
learning models. Recent progress has introduced algorithms
for DP nonconvex optimization [Zhang et al., 2017, Wang
et al., 2017, 2019, Wang and Xu, 2019a, Zhang et al., 2021,
Bassily et al., 2021a, Wang et al., 2023c, Wang and Xu,
2024]. However, unlike the convex loss function, DP-SO
with non-convex loss is still far from well-understood due
to its intrinsic difficulties (see Section 2 for details).

ReLU regression, a fundamental non-convex model, is
widely recognized for its effectiveness in deep learning
applications and serves as a foundational step toward un-
derstanding multi-layer neural networks [Du et al., 2018].
Despite the extensive studies in the non-private setting that
have been conducted, the theoretical exploration of ReLU
regression in the DP model remains relatively limited. Par-
ticularly, in DP ReLU regression, we have an N -size dataset
D = {(xi, yi)}N−1

i=0 , where each data point consisting of a
feature vector xi ∈ X ⊆ Rd and a response variable yi ∈ Y
is i.i.d. sampled from a ReLU regression model. Specifically,
each pair of (xi, yi) is a realization of the ReLU regression
model

y = ReLU(x⊤w∗) + z, (1)

where ReLU(·) := max{·, 0}; z is a zero mean random-
ized noise; w∗ ∈ Rd is the optimal model parameter.



The objective of the problem is to develop a DP model
wpriv that minimizes the excess population risk, defined as
L(wpriv) − L(w∗), where the risk function L(w) is given
by:

L(w) =
1

2
E(x,y)∼D[(ReLU(x⊤w)− y)2]. (2)

Recently, Shen et al. [2023] explored DP ReLU regres-
sion in both well-specified and misspecified settings, yet
the problem remains largely unexplored, with numerous
challenges yet to be addressed. Specifically, their methods
rely on stringent assumptions, including bounded norms
for feature vectors and labels, with ∥x∥2 ≤ O(1) and
∥y∥ ≤ O(1)—assumptions that do not hold even for typical
Gaussian distributions. Even when ∥x∥2 ≤ O(

√
d) such as

Bernoulli or uniform distributions, the bound in Shen et al.
[2023] is only sub-optimal (see Remark 4 and Theorem 7 for
details). Moreover, their proposed differentially private pro-
jected gradient descent (DP-PGD) requires at least O(N2)
gradient computations, rendering it inefficient.

In this paper, we revisit the problem of DP ReLU regression
and offer (nearly) optimal guarantees for excess population
risk under more standard assumptions where the data can be
i.i.d. sampled from O(1)-sub-Gaussian distributions. Our
contributions can be summarized as follows:

1) We provide the analysis on the Differentially Private Gen-
eralized Linear Model Perceptron algorithm (DP-GLMtron),
which utilizes a one-pass training strategy where data points
are permuted and sampled without replacement. To make
the gradient norm bounded, instead of using a fixed clipping
threshold, we incorporate adaptive clipping by estimating
from additional public data points. This allows the noise to
be set adaptively based on the excess error in each iteration.
We demonstrate that our (ε, δ)-DP method can achieve an
excess population risk upper bound of Õ( d2

N2ε2 ).

2) Key concerns with the analysis of DP-GLMtron include
that its upper bound only holds with a small privacy bud-

get ε = O(
√

log(N/δ)
N ) and its reliance on additional pub-

lic data for the adaptive clipping mechanism. To address
these limitations, we modify DP-GLMtron to introduce a
new method—DP-MBGLMtron (DP-Mini-Batch General-
ized Linear Model Perceptron)—which divides the data
into mini-batches and performs one pass of the mini-batch
GLMtron. We show that DP-MBGLMtron can achieve the
same excess population risk upper bound as DP-GLMtron,
even with larger privacy budgets and without available pub-
lic data.

3) To illustrate the tightness of our analysis, we derive a
lower bound of the estimation error for any (ε, δ)-DP al-
gorithms. Specifically, our analysis uses a tracing attack
argument, illustrating that estimators with overly precise
estimates would compromise privacy guarantees. According

to this property, we can establish that any such algorithm
must incur an excess population risk of Ω( d2

N2ε2 ), indicating
that the upper bound is optimal up to logarithmic factors.

2 RELATED WORK

Private Convex Optimization. Differentially private con-
vex optimization has been extensively studied over the past
decade Chaudhuri et al. [2011], Jain et al. [2012], Kifer et al.
[2012], Bassily et al. [2014], Jain and Thakurta [2014],
Wang et al. [2017], Feldman et al. [2020]. Existing ap-
proaches in this field can broadly be categorized into three
main categories: output perturbation, objective perturba-
tion, and gradient perturbation. Output perturbation ensures
differential privacy by adding calibrated noise to the final
model parameters Dwork et al. [2006], Chaudhuri et al.
[2011], Kifer et al. [2012], Zhang et al. [2017], Wu et al.
[2017]; Objective perturbation modifies the optimization
objective itself by injecting noise into the loss function be-
fore solving the problem, thereby inherently privatizing the
optimization process Chaudhuri et al. [2011], Kifer et al.
[2012], Talwar et al. [2014], Iyengar et al. [2019]; Gradi-
ent perturbation privatizes iterative optimization algorithms
(e.g., stochastic gradient descent) by perturbing the gradi-
ent updates at each iteration Bassily et al. [2014], Wang
et al. [2017], Jayaraman et al. [2018], Wang and Xu [2019a],
Bassily et al. [2019]. All of these approaches have been
demonstrated to achieve the asymptotically optimal bound
Õ(

√
d

εN ) for smooth convex loss.

Private Nonconvex Optimization. In the domain of DP-SO
and DP-ERM with convex loss functions, excess popula-
tion risk has traditionally been the main metric for utility
evaluation. However, in non-convex settings, utility assess-
ment methods generally fall into three categories: first-order
stationarity-based, second-order stationarity-based, and di-
rect measurement of excess population risk. First-order
stationarity-based methods [Wang and Xu, 2019a, Zhou
et al., 2020, Song et al., 2021, Bassily et al., 2021a, Zhang
et al., 2021, Xiao et al., 2023, Wang et al., 2023a, Tao et al.,
2025] evaluate utility by analyzing the ℓ2-norm of the gradi-
ent of the population risk function. While widely adopted,
these methods face notable challenges. For example, Agar-
wal et al. [2017] showed that as the sample size increases
indefinitely, the gradient norm approaches zero. However,
a vanishing gradient does not necessarily indicate that a
differentially private estimator converges to, or is near, a
local minimum. Second-order stationarity-based methods
[Wang and Xu, 2019a, 2021] assess both the gradient norm
and the minimal eigenvalue of the Hessian matrix of the
population risk function. These approaches work well in
specific settings where any second-order stationary point is
a local minimum, and all local minima are global minima,
such as in problems like matrix completion and dictionary
learning. The third category directly uses excess population



risk to evaluate utility [Shen et al., 2023, Wang and Xu,
2019a], which aligns with the focus of our work.

One of the concurrent works, Ding et al., addresses the same
private ReLU regression problem with similar assumptions,
but our work differs significantly in several key aspects,
including threshold estimation, privacy amplification tech-
niques, theoretical bounds, and data assumptions. Specifi-
cally, Ding et al. uses a threshold estimation method based
on Liu et al. [2023b] and a tree aggregation mechanism
for privacy amplification, whereas we leverage statistical
properties and minibatch sampling. Additionally, the theo-
retical results in Ding et al. include an upper bound with a
term Γ dependent on unknown intermediate parameters wt,
while our results depend only on the problem parameters
d, n, and ε, making them more natural. Furthermore, the
lower bound in Ding et al. is algorithm-specific and relies
on intermediate models, whereas our lower bound is gen-
eral, depending solely on d, n, and ε, and achieves nearly
optimal rates. Finally, Ding et al. assumes the eigenvalue
decomposition of the data covariance matrix is well-defined,
which our approach does not require.

3 PRELIMINARIES

Notations: We use boldface lower letters such as x,w for
vectors and boldface capital letters (e.g., A,H) for matrices.
Let ∥A∥2 denote the spectral norm of A. For two matrices
A and B of appropriate dimension, their inner product is de-
fined as ⟨A,B⟩ := tr(A⊤B). For a positive semi-definite
(PSD) matrix A and a vector v of appropriate dimension,
we write ∥v∥2A := v⊤Av. The outer product is denoted by
⊗.

In this paper, we will employ the definition of classical DP
Dwork et al. [2006] for privacy guarantees.

Definition 1 (Differential Privacy Dwork et al. [2006]). A
randomized algorithm A is considered (ε, δ)-differentially
private (abbreviated as (ε, δ)-DP) if, for any two datasets
D and D′ that differ by a single element, and for any event
S in the output space of A, the following condition holds:
P[A(D) ∈ S] ≤ eε · P[A(D′) ∈ S] + δ

In the following, we will introduce some definitions related
to the model. We first consider the ReLU regression model
to satisfy the following condition, which is commonly re-
ferred to in the literature as the "noisy teacher" setting Frei
et al. [2020] or the well-structured noise model [Goel and
Klivans, 2019], has been extensively studied in prior re-
search [Zou et al., 2021, Varshney et al., 2022, Shen et al.,
2023].

Definition 2 (Well-specified Condition). Assume that there
exists a parameter w∗ ∈ Rd such that E[y | x] =
ReLU(x⊤w∗), and the variance of the model noise can
be denoted by σ2 := E

[
(y − ReLU(x⊤w∗))

2
]
.

Moreover, we give some assumptions on the data to ensure
the analysis of algorithms.

Assumption 1 (Data Covariance). Define H := E[xx⊤] as
the expected data covariance matrix and assume that each
entry and the trace of H are finite.

Assumption 2 (Fourth Moment Conditions). Assume that
the fourth moment of x is finite and there exists a constant
α > 0 such that for any Positive Semi-Definite (PSD) matrix
A, the following holds:

E[xx⊤Axx⊤] ⪯ α · tr(HA) ·H.

Remark 1. For normal Gaussian distribution, it can be ver-
ified that Assumption 2 holds with α = 3 Zou et al. [2021].
Moreover, when the data follows a sub-Gaussian distribu-
tion—more precisely, when x = H− 1

2 z, where z is a sub-
Gaussian random vector with variance σ2

z–Assumption 2
remains valid with α = 16σ2

z [Wang and Xu, 2019b, Varsh-
ney et al., 2022, Zhu et al., 2023, 2024, Liu et al., 2023b,
Ding et al., 2024].

Definition 3 ((H, C2, a, b)-Tail). A random vector x satis-
fies (H, C2, a, bx)-Tail if the following holds:

• ∃a > 0 s.t. with probability ≥ 1− bx,

∥x∥22 ≤ E[∥x∥22] · log
2a(1/bx), (3)

• We have,

max
v,∥v∥=1

E[exp((
|⟨x,v⟩|2

C2
2∥H∥2

)1/2a)] ≤ 1,

That is, for any fixed v, with probability ≥ 1− bx:

(⟨x,v⟩)2 ≤ C2
2∥H∥2∥v∥2 log

2a(1/bx).

Definition 3 has been extensively employed in recent stud-
ies on differential privacy analysis for sub-Gaussian data,
as seen in [Varshney et al., 2022, Liu et al., 2022, 2023a].
In this work, we assume that each sample x satisfies the
(H, C2, a, bx)-Tail condition, while the inherent noise z
satisfies the (σ2, C2, a, bx)-Tail condition. Furthermore,
based on Assumption 2, it directly follows that ∥x∥22 ≤
α tr(H) · log2a(1/bx) with probability at least 1 − bx, as
shown in Equation (3).

Assumption 3 (Symmetricity conditions). Assume that for
every u,v ∈ Rd, it holds that:

E[xx⊤ · 1[x⊤u > 0,x⊤v > 0]]

=E[xx⊤ · 1[x⊤u < 0,x⊤v < 0]],

E[(x⊤v)2xx⊤ · 1[x⊤u > 0,x⊤v > 0]]

=E[(x⊤v)2xx⊤ · 1[x⊤u < 0,x⊤v < 0]].

Remark 2. Here, we impose the assumptions that both
the second and fourth moments of x exhibit symmetry. As-
sumption 3 is satisfied when x and −x follow the same
distribution. This condition naturally holds for symmetric
sub-Gaussian distributions, including symmetric Bernoulli
and Gaussian distributions.



4 DP-GLMTRON ALGORITHM

Before presenting our analysis on DP-GLMtron, we first
recall the proposed DP-PGD algorithm in [Shen et al., 2023].
The central principle of DP-PGD in ensuring privacy pro-
tection involves adding noise to the gradient and execut-
ing a projection operation post-model update. This pro-
cess ensures that the model parameter w remains bounded,
thereby keeping the gradient within manageable limits as
well. However, this method leaves several unresolved issues.
Primarily, their algorithm assumes that the data are bounded
with ∥x∥2 ≤ 1, which enables the control of the gradient
∇L(w) = (ReLU(x⊤w)−y)x·1[x⊤w > 0] via the model
w its subsequent projection. If the data exhibit O(1)-sub-
Gaussian properties, then we can see ∥∇L(w)∥ ≤ O(d)
(with high probability), which means the Gaussian noise
added in each iteration has a scale of Ω(d2), making a large
estimation error (see Remark 4 for a detailed comparison).
Additionally, it is noticed that at each iteration, DP-PGD
requires computing a full gradient. This process is highly
costly and inefficient, particularly in settings involving large
datasets or high-dimensional data.

To address the above-mentioned challenges, we consider
the DP-GLMtron method built upon the Generalized Linear
Model Perceptron (GLMtron) algorithm of [Kakade et al.,
2011] with a one-pass strategy. The fundamental distinction
between SGD and GLMtron lies in their respective update
rules. Specifically, it takes the following rules:

SGD: wt = wt−1 − η · lt
where lt = (ReLU(x⊤

t wt−1)− yt)xt · 1[x⊤
t wt−1 > 0]

GLMtron: wt = wt−1 − η · (ReLU(x⊤
t wt−1)− yt)xt.

The algorithm begins from an initial point w0 and iterates
from t = 0 to t = N − 1 with a step size η. In contrast
to the typical update rule of SGD, GLMtron diverges by
modifying the derivative of the ReLU function in its update
mechanism. The exclusion of this derivative in GLMtron’s
framework not only simplifies the computational process
but also enhances efficiency. Furthermore, [Kakade et al.,
2011] demonstrates that this specific omission significantly
contributes to GLMtron’s ability to efficiently identify a
predictor that closely approximates the optimal solution.
Building upon these foundations, we now present the de-
tailed implementation of the proposed DP-GLMtron. The
process starts with a random permutation of the dataset to
amplify privacy via shuffling [Feldman et al., 2022]. In con-
trast to Shen et al. [2023], our method adopts the one-pass
DP strategy without data replacement, ensuring that the time
complexity is linear in N and each iterate of model wt is
independent of data xt. See Algorithm 1 for details.

A critical step in our approach involves determining the
clipping threshold prior to the iterative updates for wt. An
excessively low clipping threshold can result in the loss of
important gradient information, leading to high bias McMa-

Algorithm 1 DP-GLMtron

1: Input: Samples: {(xi,yi)}N−1
i=0 , Clipping Norm: ξ, DP

Noise Multiplier: f , Learning Rate: η, Public Data
D′ = {x′

i, y
′
i)}mi=1, Parameters Υ,∆

2: Randomly permute {(xi,yi)}N−1
i=0

3: Initialize w0 ← 0
4: for t = 0, . . . , N − 1 do
5: st ← DP-Threshold({(x′

i, y
′
i)}mi=1,wt,Υ,∆)

6: Sample gt ∼ N (0, Id×d)
7: wt+1 ← wt − η(clipst(x

⊤
t (ReLU(x⊤

t wt)− yt)) +
2fstgt)

8: end for
9: return w← 1

N

∑N−1
t=0 wt

han et al. [2017], Amin et al. [2019]. Therefore, we employ
an adaptive clipping by estimating additional public data
points Andrew et al. [2021], Varshney et al. [2022]. Specifi-
cally, Algorithm 2 sets the initial threshold s0, which seems
to be a threshold that will be iteratively refined to find the
approximate maximum. The loop runs for ⌈log2(Υ/∆)⌉
iterations, covering a range of possible maximum values
scaled by the parameter Υ and the discretization width ∆.
In each iteration, the Algorithm 2 counts the number of
samples for which the value |ReLU(x⊤

t wt)− yt)| is less
than or equal to the current threshold st. If the private count
is less than the sample size of public data m, the thresh-
old is updated for the next iteration to double of its current
value. If the count meets m, the Algorithm 2 exits the loop.
When determining the clipping threshold, the model updates
via the classical Gaussian mechanism. Finally, Algorithm 1
returns to the average of the iterates.

Algorithm 2 DP-Threshold

1: Input: Estimating Samples: {(x′
i, y

′
i)}mi=1, Current

Model: w, DP Noise Multiplier: f , Domain Size: Υ,
Discretization Width: ∆

2: s0 ← ∆
3: for i ∈ {0, . . . , ⌈log2(Υ/∆)⌉} do
4: u← |{|ReLU(x⊤

j w)−yj | ≤ si : j ∈ {0, . . . ,m}}|

5: if Estimating samples are public then
6: upriv ← u
7: else
8: upriv ← u+N (0, ⌈log2(Υ/∆)⌉f2)
9: end if

10: if upriv < m then
11: si+1 ← 2 ∗ si
12: else
13: break
14: end if
15: end for
16: return spriv ← si



Theorem 1 (Privacy Guarantee). DP-GLMtron satisfies
(ε, δ)-DP with a noise multiplier set to f = Ω( log(N/δ)

ε
√
N

) if

ε = O(
√

log(N/δ)
N ) and 0 < δ < 1.

Remark 3. Note that the privacy budget is limited to

ε = O(
√

log(N/δ)
N ) because of privacy amplification via

shuffling in Feldman et al. [2022]. If there is no shuf-
fling, plainly using the Gaussian mechanism will make
f = Ω( log(N/δ)ε ). Thus, privacy amplification can improve
a factor of Õ(

√
N). However, this highlights a key limita-

tion in DP-GLMtron: as the dataset size N increases, the
algorithm is constrained by a smaller privacy budget ε.

Theorem 2 (Utility Guarantee). Let D = {(xi, yi)}N−1
i=0

be sampled i.i.d. with xi ∼ D satisfying (H, C2, a, bx)-
Tail, and the distribution of the inherent noise z satisfies
(σ2, C2, a, bx)-Tail with bx = 1

Poly(N) . Let κ be the con-
dition number of the covariance matrix H and denote
R2
x = α tr(H) · log2a(1/bx).

Initialize parameters in DP-GLMtron as follows: stepsize
η = min{ 1

2R2
x
, c1
log4aN

· 1
C2

2R
2
xκ

2 · 1
df2 }, where c1, c2 > 0 are

global constants, noise multiplier f = Ω( log(N/δ)
ε
√
N

), domain

size Υ = C2Rx(∥w∗∥H + σ) log2aN , granularity ∆ =
∥w∗∥H+σ

Poly(N) , public datasize m = Ω(
log(N/δ)

√
log(N logN)

ε
√
N

).

Then, the output w of DP-GLMtron achieves the following
excess risk w.p. ≥ 1− 1/Poly(N) over randomness in data
and algorithm:

L(w)− L(w∗) ≲
∥w∗∥2H
Poly(N)

+
σ2d

N

+
d2 logN log(1/δ)

N2ε2
· C2

2κ
2(σ2 + ∥w∗∥2H).

Remark 4. Theorem 2 provides a utility guarantee for the
DP-GLMtron algorithm, balancing privacy and performance.
The excess risk is composed of three key components: The
first component, dependent on ∥w∗∥2H, diminishes poly-
nomially in N . The second component corresponds to the
inherent model noise, achieving the optimal rate (up to a
constant factor) for non-private ReLU regression as estab-
lished by Wu et al. [2023]. The third component is of the
order Õ( d2

N2ε2 ). For N = Ω(d), the bound implies nearly
optimal sample complexity, further supported by the lower
bound derived in Section 6, disregarding constant factors.

Compared to Shen et al. [2023], our analysis here relax
the data assumption ∥x∥2 ≤ 1. If we assume that ∥x∥2 ≤
O(
√
d), via the same analysis as in Shen et al. [2023], we

can show the utility bound will be O(min{d
√
d

Nε , (
d
Nε )

2
3 }),

which is worse than the one in Theorem 2.

5 ADVANCED
DP-MINI-BATCH-GLMTRON

A key concern with the DP-GLMtron algorithm is its limited
practicality where the privacy budget ε is small, potentially
restricting its utility in real-world applications (see The-
orem 1 for more details). Furthermore, Algorithm 1 may
require additional public data to estimate the threshold. To
overcome these challenges, we introduce DP-Mini-batch-
GLMtron (Algorithm 3) in this section.

Specifically, the algorithm first operates by randomly par-
titioning the training samples {(xi, yi)}N−1

i=0 , and setting
the number of iterations T = N/(b +m), where b and m
are batch sizes and estimating sample size for determining
the threshold. It is worth noting that, in this approach, a
separate public dataset is not required to estimate the clip-
ping threshold. Instead, we divide each batch of data and
use a portion of it as the estimation data for the threshold.
Therefore, in each iteration, the algorithm processes a mini-
batch of data with size m and computes the DP-Threshold
γt using estimating samples {(x′

i, y
′
i)}mi=1, and updates the

clipping parameter st. In contrast to DP-GLMtron, we need
to protect the counting numbers during the estimation pro-
cess as we are using private data. Noise gt is sampled from
a Gaussian distribution and added to the gradient step for
privacy preservation. The model weights are updated using
step 9, where lt+1 is the averaged clipped gradient. After
iterating T times, the final weight estimate w is returned as
the average of all weight updates.

Theorem 3. Algorithm DP-mini-batch-GLMtron with noise

multiplier f ≥ 2
√

log(1/δ)+ε

ε satisfies (ε, δ)-DP. Further-

more, if ε ≤ log(1/δ), then f ≥
√

8 log(1/δ)

ε suffices to
ensure (ε, δ)-DP.

Theorem 3 addresses the limitations of the DP-GLMtron
algorithm, particularly requiring a small privacy budget ε,
which can severely limit its utility in practical scenarios. By
processing a subset of data in each iteration, the algorithm
effectively reduces the sensitivity of the overall computa-
tion. This reduction allows for less noise to be added while
maintaining the same level of privacy, thus improving the
utility of the model.

Theorem 4. Let D = {(xi, yi)}N−1
i=0 be sampled i.i.d. with

xi ∼ D satisfying (H, C2, a, bx)-Tail, and the distribution
of the inherent noise z satisfies (σ2, C2, a, b)-Tail with bx =

1
Poly(N) .

Initialize parameters in DP-MBGLMtron as follows: batch
size b = N

T − m, estimating sample size m = b
10 ,

appropriate stepsize η = O( 1
R2

x
), number of iterations

T = O(κ log(N)), domain size Υ = C2Rx(∥w∗∥H +

σ) log2aN , granularity ∆ = ∥w∗∥H+σ
Poly(N) and noise multi-

plier f =

√
8 log(1/δ)

ε . Then, the output w achieves the



Algorithm 3 DP-MBGLMtron

1: Input: Training Samples: {(xi, yi)}N−1
i=0 , Learning

Rate: η, DP Noise Multiplier: f , Expected x Norm:√
α tr(H), Parameters Υ,∆

2: Initialize w0 ← 0 and s0 ← ∆
3: Set T ← N/(b+m)
4: for t = 0 . . . T − 1 do
5: Set τ(t)← (b+m)t
6: γt ← DP-Threshold(Dt,wt, f,Υ,∆), where

Dt = {(xτ(t)+j , yτ(t)+j)}m−1
j=0

7: st =
√
2α tr(H)C2 log

2aN · γt and add st to the
list s

8: Sample gt ∼ N (0, Id×d)
9: wt+1 ← wt − ηlt+1 − 2fstη

b gt, where lt+1 :=
1
b

∑b−1
i=0 clipst(xτ(t)+m+i(ReLU(x⊤

τ(t)+m+iwt) −
yτ(t)+m+i))

10: end for
11: return w := 1

T

∑T−1
t=0 wt

following excess risk with probability ≥ 1 − 1/Poly(N)
over the randomness in data and algorithm:

L(w)− L(w∗) ≲
∥w∗∥2H
Poly(N)

+
σ2d

N

+
d2 logN log(1/δ)

N2ε2
· C2

2κ
2(σ2 + ∥w∗∥2H).

To prove the utility, we have the following utility for the
DP-Threshold algorithm.

Theorem 5 (DP-Threshold). Suppose that DP-
Threshold is applied to m estimated data with
certain parameters {wt,Υ, f,∆}, Algorithm 2 sat-

isfies (ε/2, δ/2)-DP with f ≥ 2
√

log(1/δ)+ε

ε . Given
Λ = f

√
2 log(Υ/∆) log(log(Υ/∆)/bx), then with

probability at least 1 − bx, Algorithm 2 outputs a private
threshold spriv such that

• |{|ReLU(x⊤
i w) − yi| ≤ spriv : i ∈ {0, . . . ,m}}| ≥

m− Λ,

• |{|ReLU(x⊤
i w) − yi| ≤ max{ spriv

2 ,∆} : i ∈
{0, . . . ,m}}| < m− Λ.

Remark 5. We provide further details regarding the thresh-
old here. Suppose Λ = Ω(f logN). With probability at
least 1− 1/Poly(N), at least m− Λ data points satisfy the
condition|ReLU(x⊤

i w)− yi| ≤ spriv. According to Defini-
tion 3, and considering that wt is independent of xτ(t)+j ,
we have the following with probability ≥ 1− 1/Poly(N):

∥xτ(t)+j(ReLU((xτ(t)+j)⊤wt)− xτ(t)+j)∥ ≤ st,

by setting st = O(Rxγt log
aN) for all iterations. More-

over, recalling that ∆ is the granularity of the search for the

approximate maximum threshold and Algorithm 2 will ter-
minate once most of the samples fit under the current guess
for γt, meaning γt will not exceed the current value plus the
granularity ∆. That is, γt ≤ C2 log

aN(
√
κ∥wt −w∗∥H +

σ + ∆) and ∆ = ∥w∗∥H+σ
Poly(N) . The choice of ∆ reflects the

granularity needed as the current weight approaches the
optimal one. Therefore, with probability ≥ 1− 1/Poly(N),
both events hold: 1) the threshold is not required for any
data point in its batch, and 2) the above condition on γt is
satisfied in each iteration.

6 LOWER BOUND

In this section, we demonstrate that the minimax rate of
the excess population risk for (ε, δ)-DP algorithms is lower
bounded by Ω( d2

N2ε2 ), indicating that the bound mentioned
above is optimal up to logarithmic factors. To show this, we
consider the following class of distributions for (x, y):

P(σ, d,W) = {P (x, y)|w ∈ W,x ∼ Uni([−1, 1]d),

fw(y|x) = 1√
2πσ

exp(− (y − ReLU(w⊤x))2

2σ2
},

(4)

where W = {w ∈ Rd|∥w∥2 ≤ 1}, and fw(y|x) is the
density function of y given w and x. Thus, for any (x, y) ∼
P ∈ P(σ, d,W) we have y = ReLU(w⊤x) + z, where
z ∼ N (0, σ2), and the covariate x satisfies Assumption
2 with α, β = O(1) and Assumption 3. It also satisfies
(Id, C2, a, b)-Tail with some a, b = O(1).

Our lower bounds will be in the form of private minimax
risk. Let P be a class of distributions over a data universe
X . For each distribution p ∈ P , there is a deterministic
function w(p) ∈ W , whereW is the parameter space. Let
ρ : W × W :7→ R+ be a semi-metric function on the
spaceW and Φ : R+ 7→ R+ be a non-decreasing function
with Φ(0) = 0.1 We further assume that D = {Xi}ni=1 are
n i.i.d observations drawn according to some distribution
p ∈ P , and ŵ : XN 7→ W be some estimator. In the (ε, δ)-
DP model, the estimator ŵ is obtained via some (ε, δ)-DP
mechanism Q. The (ε, δ)-private minimax risk is defined
as:

Mn(θ(P),Φ◦ρ) := inf
Q∈Qε,δ

sup
p∈P

Ep,Q[Φ(ρ(Q(D),w(p))],

where Qε,δ is the set of all the (ε, δ)-DP mechanisms.

To prove the lower bound, we aim to use the tracing at-
tack argument in [Cai et al., 2021]. Specifically, a tracing
attacker attempts to construct an attack to detect the ab-
sence/presence of a sample x in a target dataset D by look-
ing at the (private) estimator M(D) for the dataset. If one

1In this paper, we assume that ρ(w,w′) = ∥w −w′∥Σx and
Φ(x) = x2 unless specified otherwise, where Σx = Id is the
covariance matrix of x. Here, we do not omit Σx to make our
results consistent with previous results.



can construct a tracing attack that is powerful, given an accu-
rate estimator, an argument by contradiction leads to a lower
bound: suppose a differentially private estimator computed
from the target data set is sufficiently accurate, the tracing
adversary will be able to determine whether a given sample
belongs to the dataset or not, thereby contradicting with
the differential privacy guarantee. The privacy guarantee
and the tracing adversary together ensure that a differen-
tially private estimator cannot be "too accurate". In detail,
for a dataset D and a target sample (x, y), we consider the
following tracing attack:

Tw((x, y),M(D)) = ⟨M(D)−w, (y − ReLU(w⊤

x))x · 1(w⊤x > 0)⟩.
(5)

We will first show that if (x, y) ∈ D, then the attack value
is small; otherwise, it will be large.

Lemma 6. Consider D = (Y,X) = {(xi, yi)}Ni=1 be i.i.d.
sampled from P ∈ P(σ, d,W) with the underlying w. For
every (ε, δ)-DP algorithm M satisfying EY,X|w∥M(D)−
w∥22 = o(1) for all w ∈ W , then we have the following:

1. For each i ∈ [n], denote D′
i as the dataset obtained by

replacing (xi, yi) in D with an independent copy, then
we haveETw((xi, yi),M(D′

i)) = 0,

E|Tw((xi, yi),M(D′
i))| ≤ σ

√
E∥M(D)−w∥2Σx

,

2. There exists a prior distribution of π for w supported
onW such that∑
i∈[n]

EπEY,X|w[Tw((xi, yi),M(D))] ≥ Ω(σ2d).

Remark 6. Lemma 6 establishes a connection between
the accuracy of a DP estimator and the potential for
privacy breaches via tracing attacks. Specifically, when
(xi, yi) is independent on D′

i, we can control the vari-
ance of Tw((xi, yi),M(D′

i)), which is upper bounded by

σ
√

E∥M(D)−w∥2Σx
. Moreover, if they are dependent,

then from part 2 we can see there exists w such that
Tw((xi, yi),M(D)) ≥ Ω(σ

2d
n ). These results show that

when ∥M(D) − w∥2Σx
is small enough, then the attacker

can distinguish D′
i and D, making DP failed. Specifically,

we have the following result:

Theorem 7. For 0 < ε < 1 and δ ≤ N−(1+u) for some
u > 0, we have

inf
M∈Qε,δ

sup
p∈P

ED∼pN ,M [L(M(D))− L(w)] ≥

1

4
inf

M∈Qε,δ

sup
p∈P

ED∼pN ,M [∥M(D)−w∥2Σx
] ≥ O(

σ2d2

N2ε2
).

Remark 7. Theorem 7 shows that under differential privacy,
if the estimator M is too accurate, it may inadvertently
leak information about the presence of specific data points.
Therefore, the mechanism must maintain the error rate of
O( d2

N2ε2 ), which aligns with our previous upper bound, thus
confirming the tightness of our results.

7 EXPERIMENTS

In this section, we present experimental results to validate
our theoretical findings. Due to space constraints, the de-
tailed experimental setup and implementation details are
provided in Appendix A.

Datasets and Models. We conducted experiments using
three regression datasets: California Housing [Pace and
Barry, 1997], Gas Turbine CO and NOx Emission DataSet
[gas, 2019], and Wine Quality [Cortez et al., 2009]. The
information of three datasets used in our experiments is
summarized in Section 7. For each dataset, the data was
randomly split into an 80% training set and a 20% test set.
All numeric attributes were standardized to have a mean of
zero and a standard deviation of one. The target variables
were normalized by dividing them by the maximum abso-
lute value of the target variable across the entire dataset. The
model used for the experiments was ReLU regression, and
evaluations were performed under three different privacy
budgets with δ = 1

N1.1 , ε = {0.05, 0.2, 0.5}. See Appendix
A for more details.

Table 1: Summary of Dataset Statistics.

Dataset Samples Attributes
California Housing 20640 8
Gas Turbine CO and NOx Emission 36733 9
Wine Quality 4898 11

Implementation Details. We implemented DP-SGD, DP-
GLMtron, and DP-MBGLMtron for regression tasks, tun-
ing hyperparameters to ensure fair comparisons. Specifi-
cally, we set the learning rate to 0.01 for DP-SGD and DP-
MBGLMtron, while DP-GLMtron used a higher learning
rate of 0.05 to account for its single-pass training strategy.
Each model was trained for 500 epochs to allow sufficient
training progress, with DP-MBGLMtron utilizing a mini-
batch size of 32. To ensure the robustness of our findings,
every experiment was repeated five times, and the average
performance was reported along with standard deviations
where applicable. The experiments were conducted on an
NVIDIA A6000 GPU. Throughout the training, we moni-
tored the training loss, validation loss, and gradient norms to
track convergence and model stability under varying privacy
constraints.

Experiment Results. We evaluated the implemented algo-
rithms using two criteria: training loss and test loss, both
measured against the number of training epochs. We report
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Figure 1: Training loss over epochs for DP-SGD, DP-GLMtron, and DP-MBGLMtron on three regression datasets: California
Housing, Gas Turbine, and Wine Quality, under varying privacy budgets (ε = 0.05, 0.2, 0.5)

the training loss here, with additional experimental results
provided in Appendix A. From Fig. 1, we can see across
all datasets and privacy budgets, DP-MBGLMtron and
DP-GLMtron consistently outperform DP-SGD, achieving
lower excess risk and faster convergence. These results indi-
cate that the minibatch approach in DP-MBGLMtron is par-
ticularly effective under strict privacy constraints, improving
both stability and performance in differential privacy set-
tings. The minibatch strategy in DP-MBGLMtron allows
for more frequent gradient updates, which helps mitigate
the negative effects of privacy-induced noise and stabilize
training. In contrast, DP-SGD struggles with convergence,
particularly at smaller privacy budgets (e.g., ε = 0.05).
In Figures 1a-1f, the excess risks remain high or do not
decrease as effectively as with DP-MBGLMtron and DP-
GLMtron, highlighting DP-SGD’s limitations in maintain-
ing performance in the ReLU regression model.

8 CONCLUSION

In this work, we revisited differentially private learning in
the ReLU regression model under standard assumptions of
i.i.d. data from O(1)-sub-Gaussian distributions, presenting
nearly optimal guarantees for excess population risk. We
introduced and analyzed two algorithms: DP-GLMtron and
DP-MBGLMtron. DP-GLMtron leverages adaptive gradient
clipping derived from additional public data, achieving an
excess risk upper bound of Õ( d2

N2ε2 ). To mitigate its limita-
tions regarding privacy budgets and public data dependence,
we proposed DP-MBGLMtron, which uses mini-batching
to eliminate the need for public data and supports larger
privacy budgets without compromising performance. Addi-
tionally, we established a matching lower bound through a
tracing attack, confirming the tightness of our theoretical
results. Empirical evaluations on regression tasks further
validated our theoretical insights.
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A ADDITIONAL EXPERIMENT

Datasets Information. The information of three datasets used in our experiments is summarized in Appendix A.

Table 2: Summary of Dataset Statistics.

Dataset Samples Attributes
California Housing 20640 8
Gas Turbine CO and NOx Emission 36733 9
Wine Quality 4898 11

Experimental Results. Across all datasets and privacy budgets, DP-GLMtron and DP-MBGLMtron consistently outperform
DP-SGD. The two methods converge faster and stabilize at test loss, suggesting that they are more effective at maintaining
performance while adhering to privacy constraints. The trend holds consistent across varying privacy budgets (ε =
0.05, 0.2, 0.5), further highlighting the robustness of our approaches.

Computing Infrastructures. The information of training configuration used in our experiments is summarized in Table 3.

Table 3: Hardware and Software Configuration.

Components Details
Operating System Ubuntu 16.04.6
CPU AMD EPYC 7552, 48-Core Processor
CPU Memory 1.0 TB
GPU NVIDIA RTX A6000
Programming Language Python 3.9.12
Deep Learning Framework Pytorch 1.12.1

To better illustrate our theoretical findings, we have added an additional experiment using synthetic data that satisfies our
assumptions. In this setting, we could observe that the excess risk is closely related to the privacy budget in the table 4.

B ADDITIONAL DEFINITIONS

Definition 4 (zCDP Bun and Steinke [2016]). A randomized algorithm A is ρ-zCDP if for any pair of data sets D and D′

that differ in one record, we have Dp(A(D)∥A(D′)) ≤ ρp for all p > 1, where Dp is the Rényi divergence of order p.
*Correspondence to: Di Wang <di.wang@kaust.edu.sa>, Jinhui Xu <jhxu@ustc.edu.cn>
†Correspondence to: Di Wang <di.wang@kaust.edu.sa>, Jinhui Xu <jhxu@ustc.edu.cn>
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Figure 2: Test loss over epochs for DP-SGD, DP-GLMtron, and DP-MiniBatch GLMtron on three regression datasets:
California Housing, Gas Turbine, and Blog Feedback, under varying privacy budgets (ε = 0.05, 0.2, 0.5)

Definition 5 (Sub-Gaussian random variable). A zero-mean random variable X ∈ R is said to be sub-Gaussian with
variance σ2(X ∼ subG(σ2)) if its moment generating function satisfies E[exp(tX)] ≤ exp

(
σ2t2

2

)
for all t > 0. For a

sub-Gaussian random variable X , its sub-Gaussian norm ∥X∥ψ2
is defined as ∥X∥ψ2

= inf{c > 0 : E[exp
(
X2

c2 )
]
≤ 2}.

Specifically, if X ∼ subG(σ2) we have ∥X∥ψ2 ≤ O(σ).

Definition 6 (Sub-Gaussian random vector). A zero mean random vector X ∈ Rd is said to be sub-Gaussian with variance
σ2 (for simplicity, we call it σ2-sub-Gaussian), which is denoted as (X ∼ subGd(σ

2)), if ⟨X,u⟩ is sub-Gaussian with
variance σ2 for any unit vector u ∈ Rd.

C DP-GLMTRON

C.1 PRIVACY GUARANTEE

To guarantee the privacy of DP-GLMtron, we should first ensure that each step of DP-GLMtron is private.

Lemma 8. Each update step of DP-GLMtron (Algorithm 1) ensures (ε0, δ0)-differential privacy, provided that f = c
ε0

,
where c ≥

√
2 log(1.25/δ0), and st denotes the clipping norm.

Proof. We first consider {wt}N−1
t=0 .



ε DP-SGD DP-GLMtron DP-MBGLMtron DP-TAGLMtron

Train
0.05 9.14 8.26 5.19 7.77
0.2 6.40 5.47 4.40 4.90
0.5 5.77 4.83 4.38 4.55

Test
0.05 9.74 8.74 5.63 8.06
0.2 7.38 6.25 4.82 5.14
0.5 6.82 5.63 4.81 5.25

Table 4: Excess Risk (lower is better) under different privacy budgets.

Each update step (excluding the DP-noise addition) is of the form:

wt+1 ← wt − η clipst(xt(ReLU(x⊤
t wt)− yt)),

where clipst(v) = v ·max{1, st
∥v∥2
}. Consequently, the local L2 sensitivity of wt+1 is determined by analyzing the variation

in the tth iteration data sample, as follows:

∆2 = ∥w′
t+1 −wt+1∥

= ∥η clipst(x
′
t(ReLU(x′

t
⊤
wt)− y′t))− η clipst(xt(ReLU(x⊤

t wt)− yt))∥
≤ 2η∥ clipst(xt(ReLU(x⊤

t wt)− yt))∥
= 2ηst.

Moreover, denoting ε′ = ε0/
√
8N log(2/δ0) and δ′ = δ0/(2N), according to Lemma 2.3 in Karwa and Vadhan [2017], we

could know that {st}Nt=0 is (ε′, δ′)-DP.

Lemma 9 (Feldman et al. [2022]). For a domain D, letR(i) : f ×D → S(i) for i ∈ [n] (where S(i) is the range space of
R(i) ) be a sequence of algorithms such that R(i)(z1:i−1, ·) is a (ε0, δ0)-DP local randomizer for all values of auxiliary
inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let As : DN → S(1) × · · · × S(n) be the algorithm that given a dataset x1:N ∈ DN ,
samples a uniformly random permutation π, then sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n], and outputs
z1:N . Then for any δ ∈ [0, 1] such that ε0 ≤ log( n

16 log(2/δ) ),As is (ε, δ +O(eεδ0n))-DP where ε is:

ε = O((1− e−ε0)(

√
eε0 log(1/δ)√

n
+

eε0

n
)).

We are now prepared to prove the privacy of DP-GLMtron, utilizing the lemmas discussed above.

Firstly, we reformulate the update rule into a sequence of one-step algorithms as follows:

R(t+1)(u0:t, (x, y)) := wt+1 ← wt(u0:t)− η clipst(xπ(t)(ReLU(x⊤
π(t)wt(u0:t))− yπ(t)))− 2ηstfgt,

where u denotes auxiliary inputs, and π(t) represents the sample at the t-th iteration after randomly permuting the input
data.

From Lemma 8, eachR(t+1)(u0:t, ·) is a (ε0, δ0)-DP local randomizer algorithm, where ε0 ≤ log( N

16 log(2/δ̂)
). The output of

DP-GLMtron is derived through post-processing of the shuffled outputs ut+1 = R(t+1)(u0:t, (x, y)) for t ∈ 0, . . . , N − 1.
Therefore, by Lemma 9, Algorithm DP-GLMtron adheres to (ε̂, δ̂ +O(eε̂δ0N))-DP, where:

ε̂ = O((1− e−ε0)(

√
eε0 log(1/δ̂)
√
N

+
eε0

N
)).

Assuming ε0 ≤ 1
2 , we can infer the existence of some constant c1 > 0 such that:

ε̂ ≤ c1 · (1− e−ε0)(

√
eε0 log(1/δ̂)
√
N

+
eε0

N
)



≤ c1 · ((eε0/2 − e−ε0/2)

√
log(1/δ̂)

N
+ (eε0 − 1)

1

N
)

≤ c1 · (((1 + ε0)− (1− ε0/2))

√
log(1/δ̂)

N
+ ((1 + 2ε0)− 1)

1

N
) (6)

= c1 · ε0(
1

2

√
log(1/δ̂)

N
+

2

N
).

By setting f =

√
2 log(1.25/δ0)

ε0
in Lemma 8, we ensure that each update step of DP-GLMtron independently satisfies

(ε0, δ0)-DP, based on standard Gaussian mechanism. Replacing ε0 =

√
2 log(1.25/δ0)

f , we obtain:

ε̂ ≤ c1 ·

√
2 log(1.25/δ0) log(1/δ̂)

f
√
N

(7)

To satisfy overall (ε, δ)-DP, set δ̂ = δ
2 , and δ0 = c2 · δ

eε̂N
for some constant c2 > 0. From this, we have:

ε̂ ≤ c1 ·
√

2 log(c2 · 1.25 · eε̂N/δ) · log(2/δ)
f
√
N

(8)

For any ε ≤ 1, setting f = c3 · log(N/δ)

ε
√
N
≥ c3

√
log(N/δ) log(1/δ)

ε
√
N

for a sufficiently large c3 > 0 ensures that ε̂ ≤ ε.

Additionally, to fulfill Lemma 9’s assumption, ε0 < 1
2 must be satisfied, which is attainable by setting ε = O(

√
log(N/δ)

N ).

This implies that for f = Ω( log(N/δ)
ε
√
N

), DP-GLMtron achieves (ε, δ)-DP as long as ε = O(
√

log(N/δ)
N ), thereby completing

the proof.

C.2 UTILITY GUARANTEE

Here we first provide several auxiliary results that will be used in our DP-GLMtron utility bound.

Assumption 4 (Moment symmetricity conditions Wu et al. [2023]). Assume that

(A). For every u ∈ H, it holds that

E[xx⊤ · 1[x⊤u > 0]] = E[xx⊤ · 1[x⊤u < 0]].

(B). For every u ∈ H and v ∈ H, it holds that

E[xx⊤ · 1[x⊤u > 0,x⊤v > 0]] = E[xx⊤ · 1[x⊤u < 0,x⊤v < 0]].

(C). For every u ∈ H, it holds that
E[x⊗4 · 1[x⊤u > 0]] = E[x⊗4 · 1[x⊤u < 0]].

(D). For every u ∈ H and v ∈ H, it holds that

E[(x⊤v)2xx⊤ · 1[x⊤u > 0,x⊤v > 0]] = E[(x⊤v)2xx⊤ · 1[x⊤u < 0,x⊤v < 0]].

The following results are direct consequences of Assumption 4.

Lemma 10 (Wu et al. [2023]). The following results are direct consequences of Assumption 4.

1. Under Assumption 4 (A), it holds that: for every vector u ∈ H,

E[xx⊤ · 1[x⊤u > 0]] =
1

2
· E[xx⊤] =:

1

2
·H.



2. Under Assumption 4 (C), it holds that: for every vector u ∈ H,

E[x⊗4 · 1[x⊤u > 0]] =
1

2
· E[x⊗4] =:

1

2
· M

Lemma 11 (Rudelson and Vershynin [2013]). Hanson-Wright Inequality: For any X ∼ N (0,Σ), the following holds for
t ≥ 0

P(∥X∥2 ≥ Tr(Σ) + 2
√
t∥Σ∥F + 2t∥Σ∥op ) ≤ e−t.

Lemma 12. Let Pt := I− η1[x⊤
t wt−1 > 0]xtx

⊤
t , where each xt ∈ Rd, ∀t ∈ {j, . . . , T − 1} has been sampled i.i.d. from

D and wt−1 ∈ Rd is the weight parameter for iteration t− 1. Let z ∈ Rd be a vector independent of all Pt ’s. Then for
b > 0 and η < 1

R2
x

, we have with probability ≥ 1− b :

∥PT−1PT−2 . . .Pjz∥2 ≤
1

b
e−ηµ(T−j)∥z∥2.

Proof. Note that

E
(x,y)∼D

[∥PT−1PT−2 . . .Pjz∥2] = E
(x,y)∼D

[(PT−1PT−2 . . .Pjz)
⊤PT−1PT−2 . . .Pjz]

= E
(x,y)∼D

[z⊤P⊤
j . . .P⊤

T−2P
⊤
T−1PT−1PT−2 . . .Pjz]

= E
(x,y)∼D

[z⊤P⊤
j . . .P⊤

T−2 E
(xT−1,yT−1)∼D

[P⊤
T−1PT−1]PT−2 . . .Pjz].

We undertake a focused examination of the expectation E
(xT−1,yT−1)∼D

[P⊤
T−1PT−1], considered independently.

E
(x,y)∼D

[P⊤
T−1PT−1] = E

(x,y)∼D
[(I− η1[x⊤

T−1wT−2 > 0]xT−1x
⊤
T−1)(I− η1[x⊤

T−1wT−2 > 0]xT−1x
⊤
T−1)

⊤]

= I− η

2
H− η

2
H+ η2M

≤ I− ηH+ η2R2
xH,

where the first equality is a direct result of Lemma 10 and the last inequality drives from the ?? and Definition 3. As a result,
we have

E
(x,y)∼D

[∥PT−1PT−2 . . .Pjz∥2] ≤ E
(x,y)∼D

[λmax(I− 2ηH+ η2R2
xH)∥PT−2 . . .Pjz∥2]

= λmax(I− 2ηH+ η2R2
xH) E

(x,y)∼D
[∥PT−2 . . .Pjz∥2]

≤ (1− η(2− ηR2
x)µ) E

(x,y)∼D
[∥PT−2 . . .Pjz∥2]

≤ (1− ηµ) E
(x,y)∼D

[∥PT−2 . . .Pjz∥2]

≤ repeat the same procedure

≤ (1− ηµ)(T−j)∥z∥2

≤ e−ηµ(T−j)∥z∥2,

With Markov Inequality, for b > 0 indicating Pr{Z ≥ E[Z]
b } ≤ b, we have

Pr{∥PT−1 . . .Pjz∥2 ≤
E

(x,y)∼D
[∥PT−1 . . .Pjz∥2]

β
} ≥ 1− b.

Therefore with probability at least 1− b :

∥PT−1 . . .P0z∥2 ≤
1

b
e−ηµ(T−j)∥z∥2.



Lemma 13. Let η be stepsize such that η ≤ min{ λd

λ1R2
x log2aN

, 1
3f

√
d
}, where c1, c2 > 0 are global constants and

Γ = 4C2Rx · log2aN · (
√
∥H∥2∥w∗∥+

√
κσ). Furthermore, let f = fε,δ,N be a function of ε, δ,N . Then, with probability

≥ 1− 1
N100 , ∥xt(⟨xt,wt⟩ − yt)∥ ≤ Γ for all 0 ≤ t ≤ N − 1;wt is the tth iterate of Algorithm DP-GLMtron.

Proof. We begin by examining the base case when t = 0 and the norm of the "gradient" can be expressed as:

∥x0(ReLU(x⊤
0 w0)− y0)∥ = ∥x0(ReLU(x⊤

0 · 0)− y0)∥
= ∥x0y0∥
≤ ∥x0∥

∣∣x⊤
0 w∗ + z0

∣∣ .
By the distribution of x and Definition 3, w.p. at least 1− bx, we have:

∥x0∥ ≤ Rx log
a(1/bx),

and by the triangle inequality
∣∣x⊤

0 w∗ + z0
∣∣ ≤ ∥x⊤

0 w∗∥+ ∥z0∥, w.p. at least 1− bw∗ − bσ , we have:∣∣x⊤
0 w∗

∣∣+ |z0| ≤ C2

√
∥H∥2∥w∗∥ loga(1/bw∗) + σC2 log

a(1/bσ).

Since each b is 1/ poly(N), the lemma holds.

Now let us assume that the Lemma is valid for the (t−1)-th iteration. Proceeding with this assumption, we turn our attention
to the t-th iteration:

∥xt(ReLU(x⊤
t wt)− yt)∥ = ∥xt(max(0,x⊤

t wt)− yt)∥.

It is obvious that when x⊤
t wt ≤ 0, the norm of gradient simplifies to ∥xtyt∥, which aligns closely with base case.

If x⊤
t wt,x

⊤
t w∗ ≥ 0, then we will have

∥xt(max(0,x⊤
t wt)− yt)∥ = ∥xtx⊤

t (wt −w∗) + xtzt∥
≤ ∥x∥(∥x⊤

t (wt −w∗)∥+ ∥zt∥)

≤ Rx log
a(1/bx)(C2

√
∥H∥2∥wt −w∗∥ loga(1/bwt) + σC2 log

a(1/bσ))

= C2Rx log
2aN(

√
∥H∥2∥wt −w∗∥+ σ),

where bx, bwt
, bσ is 1/ poly(N).

If x⊤
t wt ≥ 0 and x⊤

t w∗ ≤ 0, then we will have:

∥xt(max(0,x⊤
t wt)− yt)∥ = ∥xtx⊤

t wt + xtzt∥
≤ ∥x∥(∥x⊤

t (wt −w∗)∥+ ∥w∗∥+ ∥zt∥)

≤ Rx log
a(1/bx)(C2

√
∥H∥2∥wt −w∗∥ loga(1/bwt) + ∥w∗∥+ σC2 log

a(1/bσ))

= C2Rx log
2aN(

√
∥H∥2∥wt −w∗∥+ ∥w∗∥+ σ),

(9)

Given that the threshold st−1 has not been exceeded in iterations, we can observe the following decomposition at iteration
t− 1:

wt −w∗ = wt−1 −w∗ − η(clipst−1
(xt−1(ReLU(x⊤

t−1wt−1)− yt−1)) + 2st−1fgt−1)

= wt−1 −w∗ − η(xt−1(ReLU(x⊤
t−1wt−1)− yt−1) + 2st−1fgt−1)

= wt−1 −w∗ − η1[x⊤
t wt−1 > 0] · xtx⊤

t wt−1 + η1[x⊤
t w∗ > 0] · xtx⊤

t w∗

+ ηztxt + 2ηst−1fgt−1

= wt−1 −w∗ − η1[x⊤
t wt−1 > 0] · xtx⊤

t (wt−1 −w∗)

+ η(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0]) · xtx⊤
t w∗ + ηztxt − 2ηst−1fgt−1

= (I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )(wt−1 −w∗)

+ η(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])xtx
⊤
t w∗ + ηztxt − 2ηst−1fgt−1.

(10)



We introduce the following notations for clarity

Pt := I− η1[x⊤
t wt−1 > 0]xtx

⊤
t , ut = (1[x⊤

t w∗ > 0]− 1[x⊤
t wt−1 > 0])xtx

⊤
t w∗, vt = ztxt − 2Γfgt−1.

Then the expected inner product w.r.t H can be reformulated as follows.

E
(x,y)∼D

[∥wt −w∗∥2H] = E
(x,y)∼D

[∥Pt(wt−1 −w∗) + ηut−1 + ηvt−1∥2H] = E
(x,y)∼D

[∥Pt(wt−1 −w∗) + ηut−1 + ηvt−1∥2H]

= E
(x,y)∼D

[∥Pt(wt−1 −w∗)∥2H]︸ ︷︷ ︸
(quadratic term 1)

+ E
(x,y)∼D

[∥ηut−1∥2H]︸ ︷︷ ︸
(quadratic term 1)

+ E
(x,y)∼D

[∥ηvt−1∥2H]︸ ︷︷ ︸
(quadratic term 1)

+ 2 E
(x,y)∼D

[ut−1H(Pt(wt−1 −w∗))] + 2 E
(x,y)∼D

[vt−1H(Pt(wt−1 −w∗))] + 2 E
(x,y)∼D

[ut−1Hvt−1]︸ ︷︷ ︸
(crossing term )

.

(11)
where the cross terms involving z and gt have zero expectation, attributable to the fact that E[z | xt] = 0 and E[gt | xt] = 0.

For the second quadratic term in Equation (11), we observe the following

(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])2 = 1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] + 1[x⊤
t wt−1 < 0,x⊤

t w∗ > 0]

Then, we have

E
(x,y)∼D

[ (quadratic term 2) ]

= E
(x,y)∼D

((1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])2(xtx
⊤
t w∗)

⊤(xtx
⊤
t w∗))

= E
(x,y)∼D

((1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] + 1[x⊤
t wt−1 < 0,x⊤

t w∗ > 0]) · (w⊤
∗ xt)

2 · x⊤
t xt)

= 2 E
(x,y)∼D

(1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · (w⊤
∗ xt)

2 · x⊤
t xt),

where the last equation follows from Assumption 3. Similarly, for the crossing terms in Equation (11), we have

E
(x,y)∼D

[ (crossing term) ]

= E
(x,y)∼D

[(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])2 · (xtx⊤
t w∗)

⊤(I− η1[x⊤
t wt−1 > 0] · xtx⊤

t )(wt−1 −w∗)]

= 2 E
(x,y)∼D

[1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · (xtx⊤
t w∗)

⊤(I− η1[x⊤
t wt−1 > 0] · xtx⊤

t )(wt−1 −w∗)]

= 2 E
(x,y)∼D

[1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · (xtx⊤
t w∗)

⊤(wt−1 −w∗ − η1[x⊤
t wt−1 > 0] · xtx⊤

t (wt−1 −w∗))]

= 2 E
(x,y)∼D

[1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · (w⊤
∗ xtx

⊤
t (wt−1 −w∗)− η1[x⊤

t wt−1 > 0] ·w⊤
∗ xtx

⊤
t xtx

⊤
t (wt−1 −w∗))]

= 2 E
(x,y)∼D

[1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · (1− ηx⊤
t xt) ·w⊤

∗ xt · x⊤
t (wt−1 −w∗)].

By applying the indicator function and considering η ≤ 1/R2
x, we deduce that

(1− ηx⊤
t xt),x

⊤
t (wt−1 −w∗) ≥ 0 and w⊤

∗ xt ≤ 0⇒ E (crossing term) ≤ 0

By invoking Assumption 3, it indicates that

E(1[x⊤
t wt−1 > 0] · xtx⊤

t ) =
1

2
H.

Moreover, if η ≤ 1
2R2

x
, it holds that

E
(x,y)∼D

[P⊤
T−1PT−1] = E

(x,y)∼D
[(I− η1[x⊤

T−1wT−2 > 0]xT−1x
⊤
T−1)(I− η1[x⊤

T−1wT−2 > 0]xT−1x
⊤
T−1)

⊤]

= I− η

2
H− η

2
H+ η2M



≤ I− ηH+ η2R2
xH ≤ I− η

2
H.

Combining the above results, the update of E
(x,y)∼D

[∥wt −w∗∥2H] holds that

E
(x,y)∼D

[∥wt −w∗∥2H] ≤ (1− ηµ

2
) E
(x,y)∼D

[∥wt−1 −w∗∥2H] + σ2η2 Tr(H) + E
(x,y)∼D

[4η2s2t−1f
2] Tr(H).

Considering that the Equation (9) and the adaptive clipping algorithm, we have

st ≤ RxC2 log
2aN(

√
∥H∥∥wt −w∗∥+ ∥w∗∥+ σ +∆).

As a results, the update of E
(x,y)∼D

[∥wt −w∗∥2H] can be reformulated as

E
(x,y)∼D

[∥wt −w∗∥2H] ≤ (1− ηµ

2
) E
(x,y)∼D

[∥wt−1 −w∗∥2H]

+ σ2η2 Tr(H) + 16R2
xC

2
2 log

4aNη2f2 Tr(H)(κ∥wt −w∗∥2H + ∥w∗∥2 + σ2 +∆2)

= (1− (
ηµ

2
− 16η2f2C2

2R
2
xκ log

4aN Tr(H))) E
(x,y)∼D

[∥wt−1 −w∗∥2H]

+ η2σ2 Tr(H) + 16η2f2C2
2R

2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H),

where ∆ = ∥w∗∥H+σ
N100 and we use the fact Iµ ⪯ H =⇒ ∥H∥∥wt−1 −w∗∥2 ≤ κ∥wt−1 −w∗∥2H.

If ηµ
4 ≥ 16η2f2C2

2R
2
xκ log

4aN Tr(H), it means the step size η satisfies that η ≤ µ
64f2C2

2R
2
xκ log4aN Tr(H)

, therefore it
holds that

E
(x,y)∼D

[∥wt −w∗∥2H]

≤ (1− ηµ

4
) E
(x,y)∼D

[∥wt−1 −w∗∥2H] + η2σ2 Tr(H) + 16η2f2C2
2R

2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H)

≤ (1− ηµ/4)t∥w0 −w∗∥2H +
2

ηµ
(η2σ2 Tr(H) + 16η2f2C2

2R
2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H))

≤ e−ηµt/4∥w∗∥2H +
2

ηµ
(η2σ2 Tr(H) + 16η2f2C2

2R
2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H)).

Since st ≤ RxC2 log
2aN(

√
∥H∥∥wt −w∗∥+ ∥w∗∥+ σ +∆), the bound on E

(x,y)∼D
[s2t ] will be

E
(x,y)∼D

[s2t ] ≤ 4C2
2R

2
x log

4aN(κ E
(x,y)∼D

[∥wt −w∗∥2H] + σ2 + ∥w∗∥2 +∆2)

≤ 4C2
2R

2
x log

4aN(κ(e−ηµ/4t∥w∗∥2H +
2ησ2

µ
Tr(H)

+
32ηα2

µ
C2

2R
2
x log

4aN(σ2 + ∥w∗∥2 +∆2) Tr(H)) + σ2 + ∥w∗∥2 +∆2),

which is decreasing with t (w.p. ≥ 1− 1
Poly(N) ).

Thus, if we define Γ s.t.

Γ2 = max{Upper-Bound( E
(x,y)∼D

[s20]), . . . ,Upper-Bound( E
(x,y)∼D

[s2T ])}

= Upper-Bound( E
(x,y)∼D

[s20])

= 4C2
2R

2
x log

4aN(κ E
(x,y)∼D

[∥w0 −w∗∥2H] + σ2 + ∥w∗∥2 +∆2).



Lemma 14 (Generic bounds on the DP-GLMtron iterates Wu et al. [2023]). Suppose that Assumption 3 holds. Considering
the DP-GLMtron algorithm, we have the following recursion:

• At ⪯ At−1 − η
2 (HAt−1 +At−1H) + η2M◦At−1 + η2σ2H+ 4η2Γ2f2I

• At ⪰ At−1 − η
2 (HAt−1 +At−1H) + η2

4M◦At−1 + η2σ2H+ 4η2Γ2f2I

where At := E(wt −w∗)(wt −w∗)
⊤, t ≥ 0

Now consider the recursion of At given in Lemma 14. Note that At is related to At−1 through a linear operator, therefore
At can be understood as the sum of two iterates, i.e., At := Bt +Ct, where{

Bt ⪯ (I − η
2 · T (2η)) ◦Bt−1;

B0 = (w0 −w∗)
⊗2

{
Ct ⪯ (I − η

2 · T (2η)) ◦Ct−1 + η2σ2H+ 4η2Γ2f2I;
C0 = 0

(12)

and {
Bt ⪰ (I − η

2 · T (
η
2 )) ◦Bt−1;

B0 = (w0 −w∗)
⊗2

{
Ct ⪰ (I − η

2 · T (
η
2 )) ◦Ct−1 + η2σ2H+ 4η2Γ2f2I;

C0 = 0
(13)

where {
(I − η

2 · T (2η)) ◦At−1 := At−1 − η
2 (HAt−1 +At−1H) + η2M◦At−1;

(I − η
2 · T (

η
2 )) ◦At−1 := At−1 − η

2 (HAt−1 +At−1H) + η2

4M◦At−1

Besides, since our DP-GLM-tron is run with constant stepsize η and outputs the average of the iterates:

wN :=
1

N

N−1∑
t=0

wt. (14)

Then, the following lemma holds:

Lemma 15. Suppose that Assumption 3 hold. For wN defined in Equation (14), we have that

E⟨H, (wN −w∗)
⊗2⟩ ≤

N−1∑
t=0

N−1∑
k=t

1

ηN2
⟨(I− η

2
H)k−tH,At⟩,

E⟨H, (wN −w∗)
⊗2⟩ ≥

N−1∑
t=0

N−1∑
k=t

1

2ηN2
⟨(I− η

2
H)k−tH,At⟩.

Proof.

E[wt −w∗ | wt−1] =E[(I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )(wt−1 −w∗) | wt−1] + 2ηΓfE[gt−1 | wt−1]

+ η · E[(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])xtx
⊤
t w∗ | wt−1] + ηE[ztxt | wt−1]

=E[(I− η1[x⊤
t wt−1 > 0]xtx

⊤
t )(wt−1 −w∗) | wt−1]

=(I− η

2
H)(wt−1 −w∗)

The remaining proof simply follows Zou et al. [2021].

From the decomposition presented in Equation (12) and Equation (13), we know that
∑N
t=0 At =

∑N
t=0 Bt +

∑N
t=0 Ct.

With this foundation, we can now bound the bias and variance terms separately.

Variance error

For t = 0 we have C0 = 0 ⪯ ησ2

1−ηR2
x
I+ 4ηΓ2f2

1−ηR2
x
H−1.

We then assume that Ct−1 ⪯ ησ2

1−ηR2
x
I+ 4ηΓ2f2

1−ηR2
x
H−1, and exam Ct based on Equation (12):

Ct ⪯ (I − η · T (η)) ◦Ct−1 + η2σ2H+ 4η2Γ2f2I

= Ct−1 −
η

2
(HCt−1 +Ct−1H) + η2M◦Ct−1 + η2σ2H+ 4η2Γ2f2I



⪯ ησ2

1− ηR2
x

I+
4ηΓ2f2

1− ηR2
x

H−1 − η(
ησ2

1− ηR2
x

H+
4ηΓ2f2

1− ηR2
x

I)

+ η2R2
x(

ησ2

1− ηR2
x

H+
4ηΓ2f2

1− ηR2
x

I) + η2σ2H+ 4η2Γ2f2I

⪯ ησ2

1− ηR2
x

I+
4ηΓ2f2

1− ηR2
x

H−1.

For the simplicity, we define Σ := σ2H+ 4Γ2f2I. By the definitions of T and T̃ , we have:

Ct = (I − η

2
· T (2η)) ◦Ct−1 + η2Σ

= (I − η

2
· T̃ (2η)) ◦Ct−1 + η2(M− 1

4
M̃) ◦Ct−1 + η2Σ

⪯ (I − η

2
· T̃ (2η)) ◦Ct−1 + η2M◦Ct−1 + η2Σ,

where the last inequality is due to the fact that M̃ is a PSD mapping. Then by the iteration of variance, we have for all t ≥ 0,

M◦Ct ⪯M◦ (
ησ2

1− ηR2
x

I+
4ηΓ2f2

1− ηR2
x

H−1) ⪯ ησ2R2
x

1− ηR2
x

H+
4ηΓ2f2R2

x

1− ηR2
x

I.

Substituting the above into the previous result, we obtain

Ct ⪯ (I − η

2
· T̃ (2η)) ◦Ct−1 +

η3R2
x

1− ηR2
x

· (σ2H+ 4Γ2f2I) + η2Σ

= (I − η

2
· T̃ (2η)) ◦Ct−1 +

η3R2
x

1− ηR2
x

· (σ2H+ 4Γ2f2I) + η2(σ2H+ 4Γ2f2I)

= (I − η

2
· T̃ (2η)) ◦Ct−1 +

η2

1− ηR2
x

· (σ2H+ 4Γ2f2I).

It follows

Ct ⪯
η2

1− ηR2
x

·
t−1∑
k=0

(I − η

2
· T̃ (2η))k ◦ (σ2H+ 4Γ2f2I)

=
η2

1− ηR2
x

·
t−1∑
k=0

(I− η

2
H)k(σ2H+ 4Γ2f2I)(I− η

2
H)k

⪯ η2

1− ηR2
x

·
t−1∑
k=0

(I− η

2
H)k(σ2H+ 4Γ2f2I)

=
ησ2

1− ηR2
x

· (I− (I− η

2
H)t) +

4ηΓ2f2

1− ηR2
x

· (I− (I− η

2
H)t) ·H−1.

Consequently, the variance error can be represented as follows, in accordance with Lemma 15

variance error ≤ 1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

Ct⟩

≤ 1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

ησ2

1− ηR2
x

· (I− (I− η

2
H)t)⟩

+
1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

4ηΓ2f2

1− ηR2
x

· (I− (I− η

2
H)t) ·H−1⟩

≤ σ2

(1− ηR2
x)N
⟨I− (I− η

2
H)N , (I− (I− η

2
H)N )⟩



+
4Γ2f2

(1− ηR2
x)N
⟨I− (I− η

2
H)N , (I− (I− η

2
H)N ) ·H−1⟩.

Therefore, by integrating the Γ and f , the variance error follows that

variance error ≲
dσ2

N
+

Γ2f2

N
· tr(H−1) ≲

dσ2

N
+

d2 log2(N/δ)

N2ε2
· C2

2κ
2(σ2 + ∥w∗∥2H +∆2).

Bias error

Now we consider the bias error, which depends on the initial error regardless of noise. According to Lemma 15, the bias
error of average iterate follows that

bias error ≤
N−1∑
t=0

N−1∑
k=t

1

ηN2
⟨(I− η

2
H)k−tH,Bt⟩ ≤

1

ηN2
⟨I− (I− η

2
H)N ,

N∑
t=0

Bt⟩ ≤
N∑
t=0

1

ηN2
tr(Bt).

Considering the recursion of Bt, we have Bt ⪯ Bt−1− η
2 (HBt−1+Bt−1H)+η2M◦Bt−1, which indicates the recursion

of Bt follows that

Bt ⪯ Bt−1 − ηHBt−1 + η2R2
xHBt−1

⪯ (I− η

2
H)Bt−1

The last inequality derives from the choice of step size. Consequently, the bias error will be

bias error ≤
N∑
t=0

1

ηN2
tr(Bt) ≤

N∑
t=0

1

ηN2
(1− ηµ

2
)t tr(B0) ≤

1

ηN
∥w∗∥2 ≲

d log2(N/δ)

N2ε2
· C2

2κ
2∥w∗∥2.

Combining the previous variance error, we complete the proof.

D DP-MBGLMTRON

For DP-MBGLMtron algorithm, we perform the following update

wt+1 ← wt − η(
1

b

b−1∑
i=0

clipst(xτ+m+i(ReLU(x⊤
τ+m+iwt)− yτ+m+i)) + f · 2st

b
· gt).

D.1 PRIVACY GUARANTEE

Lemma 16. Algorithm DP - mini-batch-GLMtron with noise multiplier f satisfies 1
f2 -zCDP, and correspondingly satisfies

(ε, δ)-differential privacy when we set the noise multiplier f ≥ 2
√

log(1/δ)+ε

ε . Furthermore, if ε ≤ log(1/δ), then f ≥√
8 log(1/δ)

ε suffices to ensure (ε, δ)-differential privacy.

We first show the step of gradient estimation is 1
2f2 -zCDP.

Notice the update of c has sensitivity one and the variance of DP noise is ⌈log2(B/∆)⌉f2, hence, each step is 1
2⌈log2(B/∆)⌉f2 -

zCDP.

If we take at most ⌈log2(B/∆)⌉f2 operations, we will have the aggregated privacy accumulation 1
2f2 , which completes the

privacy guarantee of gradient estimation.

Now we turn our attention to the update of w and consider the step without the Gaussian noise.

wt+1 ← wt −
η

b

b−1∑
i=0

clipst(xt,i(ReLU(x⊤
t,iwt)− yt,i)).



where clipΓ(ν) = ν · max{1, Γ
∥ν∥2
}. Therefore, the local L2 sensitivity of the wt+1 due to a sample difference in the

t-th batch is ∆2 = 2ηst
b . Meanwhile, we know the variance of DP noise is 2ηstf

b , the above step is 1
2f2 -zCDP since

∆2
2

2· 4η
2s2t f2

b2

= 1
2f2 .

According to the previous results and composition theorem, we know each iteration step is 1
f2 -zCDP. In our algorithm, every

individual data point, denoted as (xi, yi), where i is an index belonging to the set of all indices N , is included in precisely
one mini-batch, which indicates the algorithm traverses the complete dataset exactly once, thereby ensuring that each data
point is processed in a single iteration. Hence, according to the parallel composition of zCDP, DP-mini-batch-FLMtron is
1
f2 -zCDP.

Recall that ρ-zCDP is implies a (µ, µρ)-RDP. We aim to optimize for any µ ≥ 1 and verify that the noise scaler f prescribed
in the theorem satisfies (ε, δ)-Differential Privacy.

It is noted that (µ, µρ)-RDP implies (ε, δ)-Approximate Privacy where ε = µρ + log(1/δ)
µ−1 for all µ > 1. The minimum

value of ε, denoted as εmin, which equals ρ+ 2
√
ρ log(1/δ), is obtained when the derivative of ε with respect to µ is zero,

yielding µ = 1 +
√
log(1/δ)/ρ.

For a given ε, we seek to minimize f (which scales as 1/
√
ρ), such that the computed maximum allowable ρ ensures that

εmin(ρ) ≤ ε. Since εmin(ρ) is a monotonically increasing function of f and forms a second-order polynomial in
√
ρ with its

vertex corresponding to the maximum at εmin(ρ) = ε, we obtain the following relation:

1

f2
= (

√
log(1/δ) + ε−

√
log(1/δ))2 =

ε2

(
√
log(1/δ) + ε+

√
log(1/δ))2

As the derived f satisfied (ε, δ)-DP, it is deduced that f ≥ 2
√

log(1/δ)+ε

ε , which ensures the algorithm’s compliance with
(ε, δ)-Differential Privacy.

D.2 UTILITY GUARANTEE

Similar to DP-GLMtron, we also provide several auxiliary results that will be used in our utility analysis.

Lemma 17. If η ≤ b
R2

x+(b−1)∥H∥ , τ(t) = t · (b+s) and Pt := (I− η
b

∑b−1
i=0 1[x

⊤
τ(t)+m+iwt−1 ≥ 0]xτ(t)+m+ix

⊤
τ(t)+m+i),

then ∀t, E
(x,y)∼D

[P⊤
t Pt] ⪯ I− ηH.

Proof. Note that

E
(x,y)∼D

[P⊤
t Pt]

= E
(x,y)∼D

[(I− η

b

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 ≥ 0]xτ(t)+m+ix

⊤
τ(t)+m+i)

⊤(I− η

b

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 ≥ 0]xτ(t)+m+ix

⊤
τ(t)+m+i)]

=I− 2η

b
E

(x,y)∼D
[

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 ≥ 0]xτ(t)+m+ix

⊤
τ(t)+m+i]

+
η2

b2
E

(x,y)∼D
[

b−1∑
i=0

b−1∑
j=0

1[x⊤
τ(t)+m+iwt−1 ≥ 0]xτ(t)+m+ix

⊤
τ(t)+m+i · 1[x

⊤
τ(t)+m+jwt−1 ≥ 0]xτ(t)+m+jx

⊤
τ(t)+m+j ]

where we know E(1[x⊤
t wt−1 > 0] · xtx⊤

t ⊗ xtx
⊤
t ) ⪯ E(xtx⊤

t ⊗ xtx
⊤
t ) =M, it indicates that

E
(x,y)∼D

[P⊤
t Pt] ⪯ I− ηH+

η2

b2
(bM+ b(b− 1)HH) (∗)

⪯ I− ηH+
η2

b2
(bR2

xH+ b(b− 1)∥H∥H)

= I− ηH(1− η

b
(R2

x + (b− 1)∥H∥)).



With the assumption of stepsize η ≤ 1
(R2

x+(b−1)∥H∥) , we complete the proof.

Lemma 18. If vt = 1
b

∑b−1
i=0 zτ(t)+m+ixτ(t)+m+i − 2sf

b gt, and τ(t) = t · (b+ s), then ∀t

E
(x,y)∼D

[vtv
⊤
t ] =

1

b
Σ+

4f2

b2
E

(x,y)∼D
[s2t ]I,

where Σ :=
∑b−1
i=0

∑b−1
j=0(zτ(t)+m+ixτ(t)+m+i)(zτ(t)+m+jxτ(t)+m+j)

⊤.

Proof. Note that

E
(x,y)∼D

[vtv
⊤
t ] = E

(x,y)∼D
[(
1

b

b−1∑
i=0

zτ(t)+m+ixτ(t)+m+i −
2sf

b
gt)(

1

b

b−1∑
i=0

zτ(t)+m+ixτ(t)+m+i −
2sf

b
gt)

⊤]

= E
(x,y)∼D

[(
1

b

b−1∑
i=0

zτ(t)+m+ixτ(t)+m+i)(
1

b

b−1∑
i=0

zτ(t)+m+ixτ(t)+m+i)
⊤] + E

(x,y)∼D
[
4s2tf

2

b2
gtg

⊤
t ]

= E
(x,y)∼D

[
1

b2

b−1∑
i=0

b−1∑
j=0

(zτ(t)+m+ixτ(t)+m+i)(zτ(t)+m+jxτ(t)+m+j)
⊤] +

4f2

b2
E

(x,y)∼D
[s2t ]I,

where we have utilized the fact that E
(x,y)∼D

[(zτ(t)+m+ixτ(t)+m+i)(zτ(t)+m+jxτ(t)+m+j)
⊤] = 0 for i ̸= j that stems from

the independence of samples and the fact that E
(x,y)∼D

[gj ] = 0 has been sampled independently at each step.

Considering no clipping, the t-th update is given by:

wt+1 = wt −
η

b

b−1∑
i=0

xτ(t)+m+i(ReLU(x⊤
τ(t)+m+iwt)− yτ(t)+m+i)−

2ηstf

b
gt,

where τ(t) = t · (b+ s). Hence, we could derive the following

wt+1 −w∗ = (I− η

b

b−1∑
i=0

1[x⊤
τ(t)+m+iwt > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt −w∗)

+
η

b

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗ +

η

b

b−1∑
i=0

zτ(t)+m+ixτ(t)+m+i −
2ηΓα

b
gt

:= Pt(wt−1 −w∗) + ηut + ηvt,

where we denote

Pt = (I− η

b

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)

ut =
1

b

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗

vt =
1

b

b−1∑
i=0

zτ(t)+m+ixτ(t)+m+i −
2ηΓα

b
gt

Let us consider the expected inner product w.r.t H:

E
(x,y)∼D

[∥wt −w∗∥2H] = E
(x,y)∼D

[∥Pt(wt−1 −w∗) + ηut−1 + ηvt−1∥2H]

= E
(x,y)∼D

[∥Pt(wt−1 −w∗)∥2H] + E
(x,y)∼D

[∥ηut−1∥2H] + E
(x,y)∼D

[∥ηvt−1∥2H]



+ 2 E
(x,y)∼D

[ut−1H(Pt(wt−1 −w∗))] + 2 E
(x,y)∼D

[vt−1H(Pt(wt−1 −w∗))] + 2 E
(x,y)∼D

[ut−1Hvt−1].

Notice that E
(x,y)∼D

[ut] = 0 and is independent, thus it holds that

E
(x,y)∼D

[∥wt −w∗∥2H] = E
(x,y)∼D

[∥Pt(wt−1 −w∗)∥2H] + E
(x,y)∼D

[∥ηut−1∥2H] + E
(x,y)∼D

[∥ηvt−1∥2H]

+ E
(x,y)∼D

[ηu⊤
t−1H(Pt(wt−1 −w∗))] + E

(x,y)∼D
[η(Pt(wt−1 −w∗))

⊤Hut−1].
(15)

Recall that ut = 1
b

∑b−1
i=0 (1[x

⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗, it follows

E
(x,y)∼D

[∥ηut−1∥2H] =
η2

b2
E

(x,y)∼D
[(

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗)

⊤H

· (
b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗)].

According to Lemma 10 (where each x is independent and symmetric), the following conditions hold when i ̸= j:

E
(x,y)∼D

[(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+i

· (1[x⊤
τ(t)+m+jw∗ > 0]− 1[x⊤

τ(t)+m+jwt−1 > 0])xτ(t)+m+jx
⊤
τ(t)+m+j ] = 0.

It implies that

E
(x,y)∼D

[∥ηut−1∥2H] =
η2

b2
E

(x,y)∼D
[

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])2

· (w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iHxτ(t)+m+ix

⊤
τ(t)+m+iw∗)]

=
η2

b2
E

(x,y)∼D
[

b−1∑
i=0

(1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0] + 1[x⊤
τ(t)+m+iwt−1 < 0,x⊤

τ(t)+m+iw∗ > 0])

· (w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iHxτ(t)+m+ix

⊤
τ(t)+m+iw∗)]

=
2η2

b2
E

(x,y)∼D
[

b−1∑
i=0

(1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0])

· (w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iHxτ(t)+m+ix

⊤
τ(t)+m+iw∗)],

where we use the following fact in the second equality

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])2

= (1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0] + 1[x⊤
τ(t)+m+iwt−1 < 0,x⊤

τ(t)+m+iw∗ > 0]).

Now we move on to the crossing term in Equation (15).

E
(x,y)∼D

[ηu⊤
t−1H(Pt(wt−1 −w∗))] + E

(x,y)∼D
[η(Pt(wt−1 −w∗))

⊤Hut−1]

= η E
(x,y)∼D

[(
1

b

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗)

⊤H

· ((I− η

b

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt−1 −w∗))

+ ((I− η

b

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt−1 −w∗))

⊤H



· (1
b

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗)].

Similarly, for any i ̸= j, Lemma 10 holds that

E
(x,y)∼D

[(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+i

· 1[x⊤
τ(t)+m+jwt−1 > 0]xτ(t)+m+jx

⊤
τ(t)+m+j ] = 0.

Therefore, the crossing term can be represented as

= η E
(x,y)∼D

[(
1

b

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0]))

· (w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iH(wt−1 −w∗) + (wt−1 −w∗)

⊤Hxτ(t)+m+ix
⊤
τ(t)+m+iw∗)

− η

b2
((

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0]) · (1[x⊤
τ(t)+m+iwt−1 > 0]))

· 2(w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iHxτ(t)+m+ix

⊤
τ(t)+m+i(wt−1 −w∗))]

Notice that

− (

b−1∑
i=0

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0]) · (1[x⊤
τ(t)+m+iwt−1 > 0]))

=

b−1∑
i=0

(1[x⊤
τ(t)+m+iwt−1 > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0] · 1[x⊤
τ(t)+m+iw∗ > 0])

=

b−1∑
i=0

1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ > 0].

Combining the Lemma 10, the crossing term holds that

crossing term = E
(x,y)∼D

[
2η2

b2

b−1∑
i=0

(1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ > 0])

· (w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iHxτ(t)+m+ix

⊤
τ(t)+m+i(wt−1 −w∗))].

Let us add E
(x,y)∼D

[∥ηut−1∥2H] and the crossing term together

E
(x,y)∼D

[∥ηut−1∥2H] + crossing term

=
2η2

b2
E

(x,y)∼D
[

b−1∑
i=0

(1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0]) · (w⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+iHxτ(t)+m+ix

⊤
τ(t)+m+iwt−1)].

It is clear that E
(x,y)∼D

[∥ηut−1∥2H] + crossing term ≤ 0. Moreover, according to Lemma 17 and Lemma 18, we have that

E
(x,y)∼D

[∥Pt(wt−1 −w∗)∥2H] + E
(x,y)∼D

[∥ηvt−1∥2H]

≤ (1− ηµ) E
(x,y)∼D

[∥wt−1 −w∗∥2H] +
η2

b
Tr(HΣ)− 0 + E

(x,y)∼D
[η2

4s2t−1f
2

b2
] Tr(H).

Therefore, the update of E
(x,y)∼D

[∥wt −w∗∥2H] in Equation (15) holds that

E
(x,y)∼D

[∥wt −w∗∥2H] ≤ (1− ηµ) E
(x,y)∼D

[∥wt−1 −w∗∥2H] +
η2

b
Tr(HΣ)− 0 + E

(x,y)∼D
[η2

4s2t−1f
2

b2
] Tr(H).



Considering the adaptive clipping algorithm, we have

st ≤ RxC2 log
2aN(

√
∥H∥∥wt −w∗∥+ ∥w∗∥+ σ +∆).

Similar to one sample case, the recursion of E
(x,y)∼D

[∥wt −w∗∥2H] will be

E
(x,y)∼D

[∥wt −w∗∥2H] ≤ (1− ηµ) E
(x,y)∼D

[∥wt−1 −w∗∥2H]

+
η2σ2

b
Tr(H) + 16R2

xC
2
2 log

4aNη2
f2

b2
Tr(H)(κ∥wt −w∗∥2H + ∥w∗∥2 + σ2 +∆2)

= (1− (ηµ− 16η2
f2

b2
C2

2R
2
xκ log

4aN Tr(H))) E
(x,y)∼D

[∥wt−1 −w∗∥2H]

+
η2σ2

b
Tr(H) + 16η2

f2

b2
C2

2R
2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H).

Notice that T · (b+m) = N , thus if we have ηµ
2 ≥ 16η2 f

2

b2 C
2
2R

2
xκ log

4aN Tr(H), it equals to

(
N

T
−m)2 ≥ 32ηf2C2

2R
2
xκ log

4aN Tr(H)

µ
,

which implies that

E
(x,y)∼D

[∥wt −w∗∥2H]

≤ (1− ηµ

2
) E
(x,y)∼D

[∥wt−1 −w∗∥2H]
η2σ2

b
Tr(H) + 16η2

f2

b2
C2

2R
2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H)

≤ (1− ηµ/2)t∥w0 −w∗∥2H +
2

ηµ
(
η2σ2

b
Tr(H) + 16η2

f2

b2
C2

2R
2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H))

≤ e−ηµt/2∥w∗∥2H +
2

ηµ
(
η2σ2

b
Tr(H) + 16η2

f2

b2
C2

2R
2
x log

4aN(σ2 +∆2 + ∥w∗∥2) Tr(H)).

Substituting the above to the E
(x,y)∼D

[s2t ], similarly, we will have the following results

Γ2 = max{Upper-Bound( E
(x,y)∼D

[s20]), . . . ,Upper-Bound( E
(x,y)∼D

[s2T ])}

= Upper-Bound( E
(x,y)∼D

[s20])

= 4C2
2R

2
x log

4aN(κ E
(x,y)∼D

[∥w0 −w∗∥2H] + σ2 + ∥w∗∥2 +∆2).

Before presenting the utility guarantee, we first need to redefine certain notations and properties.

We denote the recursion:

(I − T (η, b,H)) ◦At−1 = At−1 −
η

2
(HAt−1 +At−1H) +

η2

b
(
1

2
M+ (b− 1)

1

4
H2) ◦At−1

(I − T̃ (η, b,H)) ◦At−1 = At−1 −
η

2
(HAt−1 +At−1H) +

η2

4
H2 ◦At = (I− η

2
H)At(I−

η

2
H),

(16)

where I ◦A = A,M◦A = E[(x⊤Ax)xx⊤] and M̃ ◦A = HAH for a symmetric matrix A. For simplicity, we will use
(I − T ) and (I − T̃ ) in place of the complete notation.

It can be readily understood that the following properties are satisfied:

Lemma 19 (Zou et al. [2021]). An operator O, when defined on symmetric matrices, is termed a Positive Semi-Definite
(PSD) mapping, if A ⪰ 0 implies O ◦A ⪰ 0. Consequently, we have:

1. M and M̃ are both PSD mappings.



2. M−M̃ and T̃ − T are both PSD mappings.

3. I − ηT and I − ηT̃ are both PSD mappings.

4. If 0 < η < 1/λ1, then T̃ −1 exists, and is a PSD mapping.

5. If 0 < η < 1/(α tr(H)), then T −1 ◦A exists for PSD matrix A, and T −1 is a PSD mapping.

Proof. The subsequent proofs are summarized from Jain et al. [2018], Zou et al. [2021], and are included herein for the
sake of completeness.

1. For any PSD matrix A ⪰ 0, by definition, we have

M◦A = E[xx⊤Axx⊤] ⪰ 0,

M̃ ◦A = HAH ⪰ 0.

2. For any PSD matrix A ⪰ 0,

(M−M̃) ◦A = E[xx⊤Axx⊤]−HAH = E[(xx⊤ −H)A(xx⊤ −H)] ⪰ 0.

Also, we have T̃ − T = η2

2bM−
η2

4bM̃ ⪰ 0, which indicatesM−M̃ and T̃ − T are both PSD mappings.

3. For any PSD matrix A ⪰ 0, we have

(I − ηT ) ◦A = (I− η

2
H)A(I− η

2
H) +

η2

2b
M− η2

4b
M̃ ⪰ 0

(I − ηT̃ ) ◦A = (I− η

2
H)A(I− η

2
H) ⪰ 0.

4. The proof adheres to Lemma B.1 in Zou et al. [2021].

5. For any finite PSD matrix A, we have:

T −1 ◦A = η

∞∑
t=0

(I − ηT )t ◦A.

It is evident that if the right-hand side exists, it must be PSD, owing to the fact that I − ηT is a PSD mapping.
Demonstrating that the trace of

∑∞
t=0(I − ηT )t ◦A is finite would suffice to establish the conclusion.

tr(

∞∑
t=0

(I − ηT )t ◦A) =

∞∑
t=0

tr((I − ηT )t ◦A) =

∞∑
t=0

tr(At)

By Equation (16), we have:

tr(At) = tr(At−1)− η tr(HAt−1) +
η2

2b
tr(E[xx⊤At−1xx

⊤] +
b− 1

2
HAt−1H)

≤ tr(At−1)− η tr(HAt−1) +
η2

2b
tr(At−1α tr(H)H+

b− 1

2
tr(H)At−1H)

≤ tr(At−1)− η(1− ηα tr(H)

2b
− η(b− 1) tr(H)

4b
) tr(HAt−1)

≤ tr(At−1)−
η

2
tr(HAt−1)

≤ (1− η

2
λd) tr(At−1),

where we use η ≤ 2b
2α tr(H)+(b−1) tr(H) in the penultimate inequality.

Hence, we have
∑∞
t=0 tr(At) ≤ 2 tr(A)

ηλd
<∞, which complete the proofs.



Now we are ready to provide the evolution of At.

Consider the gradient norm not exceeding the clipping norm:

wt −w∗ =wt−1 −
η

b

b∑
i=1

(xτ(t)+m+i(ReLU(x⊤
τ(t)+m+iwt)− yt,i))−

2ηΓf

b
gt −w∗

=wt−1 −
η

b

b∑
i=1

(1[x⊤
τ(t)+m+iwt−1 > 0] · xτ(t)+m+ix

⊤
τ(t)+m+iwt−1

−1[x⊤
τ(t)+m+iw∗ > 0] · xτ(t)+m+ix

⊤
τ(t)+m+iw∗) +

η

b

b∑
i=1

ztxτ(t)+m+i −
2ηΓf

b
gt

=(I− η

b

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt−1 −w∗)

+
η

b

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗ +

η

b

b∑
i=1

ztxτ(t)+m+i −
2ηΓf

b
gt.

Let’s consider the expected outer product:

E
(x,y)∼D

(wt −w∗)
⊗2 = [(quadratic term 1) + (quadratic term 2) + (quadratic term 3)

+ (crossing term 1) + (crossing term 2)],
(17)

where

(quadratic term 1) = E
(x,y)∼D

(I− η

b

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)

⊗2 ◦ (wt−1 −w∗)
⊗2

(quadratic term 2) = (
η

b
)2 E

(x,y)∼D

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗

·
b∑
j=1

(1[x⊤
τ(t)+m+jw∗ > 0]− 1[x⊤

τ(t)+m+jwt−1 > 0])w⊤
∗ xτ(t)+m+jx

⊤
τ(t)+m+j

(quadratic term 3) =
η2

b2
E

(x,y)∼D
{(

b∑
i=1

ztxτ(t)+m+i − 2Γfgt)(

b∑
j=1

ztxτ(t)+m+i − 2Γfgt)
⊤

(crossing term 1) =
η

b
E

(x,y)∼D

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])

· xτ(t)+m+ix
⊤
τ(t)+m+iw∗(wt−1 −w∗)

⊤(I− η

b

b∑
j=1

1[x⊤
τ(t)+m+jwt−1 > 0]xτ(t)+m+jx

⊤
τ(t)+m+j)

(crossing term 2) =
η

b
E

(x,y)∼D
(I− η

b

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt−1 −w∗)

⊤

· η
b

b∑
j=1

(1[x⊤
τ(t)+m+jw∗ > 0]− 1[x⊤

τ(t)+m+jwt−1 > 0])xτ(t)+m+jx
⊤
τ(t)+m+jw∗.

(18)

We will consider the above separately.



According to Assumption 3 (where each x is independent and symmetric), the following conditions hold when i ̸= j:

E
(x,y)∼D

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+i

· (1[x⊤
τ(t)+m+jw∗ > 0]− 1[x⊤

τ(t)+m+jwt−1 > 0])xτ(t)+m+jx
⊤
τ(t)+m+j = 0

E
(x,y)∼D

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+i

· 1[x⊤
τ(t)+m+jwt−1 > 0]xτ(t)+m+jx

⊤
τ(t)+m+j = 0.

(19)

Substituting the above into the quadratic term 2 and the crossing terms, we will obtain

E
(x,y)∼D

(quadratic term 2)

= (
η

b
)2 E

(x,y)∼D
(

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])2 · (x⊤
τ(t)+m+iw∗)

2 · xτ(t)+m+ix
⊤
τ(t)+m+i)

= (
η

b
)2 E

(x,y)∼D
(

b∑
i=1

(1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0] + 1[x⊤
τ(t)+m+iwt−1 < 0,x⊤

τ(t)+m+iw∗ > 0])

· (x⊤
τ(t)+m+iw∗)

2 · xτ(t)+m+ix
⊤
τ(t)+m+i)

= 2(
η

b
)2 · E(

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0] · (x⊤
τ(t)+m+iw∗)

2 · xτ(t)+m+ix
⊤
τ(t)+m+i),

(20)

where the first equality comes from

(1[x⊤
t w∗ > 0]− 1[x⊤

t wt−1 > 0])2 = 1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] + 1[x⊤
t wt−1 < 0,x⊤

t w∗ > 0].

For the crossing terms, we know

( crossing term 1) + ( crossing term 2)

=
2η

b
E

(x,y)∼D
[

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0]) · (xτ(t)+m+ix
⊤
τ(t)+m+iw∗(wt−1 −w∗)

⊤

+ (wt−1 −w∗)w
⊤
∗ xτ(t)+m+ix

⊤
τ(t)+m+i)]

− 2η2

b2
E

(x,y)∼D
[

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0]) · 1[x⊤
τ(t)+m+iwt−1 > 0]

· x⊤
τ(t)+m+iw∗ · x⊤

τ(t)+m+i(wt−1 −w∗) · xτ(t)+m+ix
⊤
τ(t)+m+i]

=
2η2

b2
E

(x,y)∼D
[

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0] · x⊤
τ(t)+m+iw∗ · x⊤

τ(t)+m+i(wt−1 −w∗) · xτ(t)+m+ix
⊤
τ(t)+m+i].

(21)

Now, we turn our attention to the first quadratic term

(quadratic term 1) = E
(x,y)∼D

(wt−1 −w∗)
⊗2 − η

b
(

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i) ◦ (wt−1 −w∗)

⊗2

− η

b
(wt−1 −w∗)

⊗2 ◦ (
b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)

+
η2

b2
(

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)

· (
b∑
j=1

1[x⊤
τ(t)+m+jwt−1 > 0]xτ(t)+m+jx

⊤
τ(t)+m+j) ◦ (wt−1 −w∗)

⊗2



= E
(x,y)∼D

(wt−1 −w∗)
⊗2 − η

2
H ◦ (wt−1 −w∗)

⊗2 − η

2
(wt−1 −w∗)

⊗2 ◦H

+
η2

b
(
1

2
M+ (b− 1)

1

4
H2)(wt−1 −w∗)

⊗2.

Applying Equation (21)) and Equation (20) to the expected outer product, we have the following recursion

At = At−1 −
η

2
(HAt−1 +At−1H) +

η2

b
(
1

2
M+ (b− 1)

1

4
H2) ◦At−1 +

η2

b
σ2H+

4η2Γ2f2

b2
I

+
2η2

b2
E

(x,y)∼D
[

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0,x⊤

τ(t)+m+iw∗ < 0] · x⊤
τ(t)+m+iw∗ · x⊤

τ(t)+m+iwt−1 · xτ(t)+m+ix
⊤
τ(t)+m+i]

⪯ At−1 −
η

2
(HAt−1 +At−1H) +

η2

b
(
1

2
M+ (b− 1)

1

4
H2) ◦At−1 +

η2

b
σ2H+

4η2Γ2f2

b2
I.

The indicator function shows 1[x⊤
t wt−1 > 0,x⊤

t w∗ < 0] · x⊤
t w∗ · x⊤

t wt−1 ≤ 0 in the last inequation.

Consequently, analogous to the one-sample case, we can decompose At as follows:

{
Bt ⪯ (I− ηT (η, b,H)) ◦Bt−1;
B0 = (w0 −w∗)

⊗2

{
Ct ⪯ (I− ηT (η, b,H)) ◦Ct−1 +

η2

b σ
2H+ 4η2Γ2f2

b2 I;
C0 = 0

(22)

Lemma 20. Suppose that Assumption 2 and Assumption 3 hold. For wN defined by previously, we have that

E
(x,y)∼D

⟨H, (ws+1,T −w∗)
⊗2⟩ ≤ 1

N2
·
s+T∑
t=s+1

s+T∑
k=t

⟨(I− η

2
H)k−tH,At⟩.

Proof. We first focus on the expectation of wt −w∗

E
(x,y)∼D

[wt −w∗ | wt−1] = E
(x,y)∼D

[(I− η

b

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt−1 −w∗) | wt−1]

+ E
(x,y)∼D

[
η

b

b∑
i=1

(1[x⊤
τ(t)+m+iw∗ > 0]− 1[x⊤

τ(t)+m+iwt−1 > 0])xτ(t)+m+ix
⊤
τ(t)+m+iw∗ | wt−1]

+ E
(x,y)∼D

[
η

b

b∑
i=1

εtxτ(t)+m+i −
2ηstf

b
gt | wt−1]

= E
(x,y)∼D

[(I− η

b

b∑
i=1

1[x⊤
τ(t)+m+iwt−1 > 0]xτ(t)+m+ix

⊤
τ(t)+m+i)(wt−1 −w∗) | wt−1]

= (I− η

2
H)(wt−1 −w∗).

Applying the aforementioned recursively, we deduce that, for t ≥ s, E
(x,y)∼D

[wt −w∗ | ws] = (I− η
2H)t−s(ws −w∗),

which also implies that

E
(x,y)∼D

[(wt −w∗)⊗ (ws −w∗)] = (I− η

2
H)t−s · E(ws −w∗)

⊗2 = (I− η

2
H)t−s ·As.



Then, we consider the tail-averaged mini-batch SGD algorithm and we denote ws+1,T −w∗ = 1
T

∑s+T
t=s+1 wt −w∗:

E
(x,y)∼D

[(ws+1,T −w∗)
⊗2] =

1

T 2

s+T∑
t=s+1

s+T∑
k=s+1

E
(x,y)∼D

[(wt −w∗)⊗ (wk −w∗)]

=
1

T 2
· (
∑
t≥k

E
(x,y)∼D

[(wt −w∗)⊗ (wk −w∗)] +
∑
t≤k

E[(wt −w∗)⊗ (wk −w∗)])

⪯ 1

T 2
· (
∑
t≥k

E
(x,y)∼D

[(wt −w∗)⊗ (wk −w∗)] +
∑
t≤k

E[(wt −w∗)⊗ (wk −w∗)])

=
1

T 2
· (
∑
t≥k

(I− η

2
H)t−kAk +

∑
t≤k

At(I−
η

2
H)k−t)

=
1

T 2
·
∑
t≤k

(At(I−
η

2
H)k−t + (I− η

2
H)k−tAt)

=
1

T 2
·
s+T∑
t=s+1

s+T∑
k=t

(At(I−
η

2
H)k−t + (I− η

2
H)k−tAt).

(23)

Then we consider the excess risk of tail-averaged mini-batch:

E
(x,y)∼D

⟨H, (ws+1,T −w∗)
⊗2⟩ ≤ ⟨H,

1

T 2
·
s+T∑
t=s+1

s+T∑
k=t

(At(I−
η

2
H)k−t + (I− η

2
H)k−tAt)⟩

=
1

T 2
·
s+T∑
t=s+1

s+T∑
k=t

⟨H,At(I−
η

2
H)k−t⟩+ 1

T 2
·
s+T∑
t=s+1

s+T∑
k=t

⟨H, (I− η

2
H)k−tAt⟩

≤ 1

ηT 2
·
s+T∑
t=s+1

⟨I− (I− η

2
H)T ,At⟩.

Variance Error

Lemma 21. Suppose Assumptions hold. Suppose η < min{ 1
R2

x
, 4b
2R2

x+(b−1)∥H∥2
}. Then for every t we have

Ct ⪯
4ησ2

4b− 2ηR2
x − η(b− 1)∥H∥2

I+
16ηΓ2f2

b(4b− 2ηR2
x − η(b− 1)∥H∥2)

H−1.

Proof. We proceed with induction.

For t = 0 we have C0 = 0 ⪯ 4ησ2

4b−2ηR2
x−η(b−1)∥H∥2

I+ 16ηΓ2f2

b(4b−2ηR2
x−η(b−1)∥H∥2)

H−1.

We then assume that Ct−1 holds for Lemma 21, and exam Ct based on Equation (22)

Ct ⪯ (I− ηT (η, b,H)) ◦Ct−1 +
η2

b
σ2H+

4η2Γ2f2

b2
I

= Ct−1 −
η

2
(HCt−1 +Ct−1H) +

η2

b
(
1

2
M+ (b− 1)

1

4
H2) ◦Ct−1 +

η2σ2

b
H+

4η2Γ2f2

b2
I

⪯ 4ησ2

4b− 2ηR2
x − η(b− 1)∥H∥2

I+
16ηΓ2f2

b(4b− 2ηR2
x − η(b− 1)∥H∥2)

H−1

− η(
4ησ2

4b− 2ηR2
x − η(b− 1)∥H∥2

H+
16ηΓ2f2

b(4b− 2ηR2
x − η(b− 1)∥H∥2)

I)

+ (
η2R2

x

2b
+

η2(b− 1)∥H∥2
4b

)(
4ησ2

4b− 2ηR2
x − η(b− 1)∥H∥2

H+
16ηΓ2f2

b(4b− 2ηR2
x − η(b− 1)∥H∥2)

I)



+
η2σ2

b
H+

4η2Γ2f2

b2
I

⪯ 4ησ2

4b− 2ηR2
x − η(b− 1)∥H∥2

I+
16ηΓ2f2

b(4b− 2ηR2
x − η(b− 1)∥H∥2)

H−1.

For the simplicity, we define Σ := σ2

b H+ 4Γ2f2

b2 I and µb := (4b− 2ηR2
x − η(b− 1)∥H∥2). By the definitions of T and T̃ ,

we have

Ct = (I− ηT (η, b,H)) ◦Ct−1 + η2Σ

= (I− η

2
H)Ct−1(I−

η

2
H) + (

η2

2b
M− η2

4b
HH) ◦Ct−1 + η2Σ (24)

⪯ (I− η

2
H)Ct−1(I−

η

2
H) +

η2R2
x

2b
H ◦Ct−1 + η2Σ.

Then by Lemma 21, we have for all t ≥ 0,

H ◦Ct ⪯ H ◦ (4ησ
2

µb
I+

16ηΓ2f2

bµb
H−1) ⪯ 4ησ2

µb
H+

16ηΓ2f2

bµb
I.

Substituting the above into Equation (24), it holds that

Ct ⪯ (I− η

2
H)Ct−1(I−

η

2
H) +

η2R2
x

2b
(
4ησ2

µb
H+

16ηΓ2f2

bµb
I) + η2(

σ2

b
H+

4Γ2f2

b2
I)

⪯ (I− η

2
H)Ct−1(I−

η

2
H) +

η2σ2(µb − 2ηR2
x)

bµb
H+

4η2Γ2f2(µb − 2ηR2
x)

b2µb
I,

which implies that

Ct ⪯
η2(µb − 2ηR2

x)

bµb
·
t−1∑
k=0

(I− η

2
H)k(σ2H+

4Γ2f2

b
I)(I− η

2
H)k

⪯ η2(µb − 2ηR2
x)

bµb
·
t−1∑
k=0

(I− η

2
H)k(σ2H+

4Γ2f2

b
I)

=
ησ2(µb − 2ηR2

x)

bµb
· (I− (I− η

2
H)t) +

4ηΓ2f2(µb − 2ηR2
x)

b2µb
· (I− (I− η

2
H)t) ·H−1.

Consequently, the variance error can be represented as follows, in accordance with Lemma 20:

variance error =
1

ηT 2
·
s+T∑
t=s+1

⟨I− (I− η

2
H)T ,Ct⟩

≤ 1

ηT 2
· ησ

2(µb − 2ηR2
x)

bµb
·
s+T∑
t=s+1

⟨I− (I− η

2
H)T , (I− (I− η

2
H)t)⟩

+
1

ηT 2
· 4ηΓ

2f2(µb − 2ηR2
x)

b2µb
·
s+T∑
t=s+1

⟨I− (I− η

2
H)T , (I− (I− η

2
H)t)H−1⟩ (25)

≲
σ2d

Tb
+

Γ2f2 tr(H)

Tb2
≲

σ2d

N
+

d2 logN log(1/δ)

N2ε2
· C2

2κ
2(σ2 + ∥w∗∥2H +∆2).

Bias Error According to Lemma 20, the bias error of tail average iterate follows that

bias error ≤ 1

ηT 2
·
s+T∑
t=s+1

⟨I− (I− η

2
H)T ,Bt⟩ ≤

s+T∑
t=s+1

1

ηT 2
tr(Bt).



Considering the recursion of Bt, we have

Bt ⪯ Bt−1 −
η

2
(HBt−1 +Bt−1H) +

η2

b
(
1

2
M+ (b− 1)

1

4
H2) ◦Bt−1

⪯ Bt−1 − ηHBt−1 +
η2

b
(R2

x + (b− 1)∥H∥2)Bt−1

⪯ (I− η

2
H)Bt−1.

The last inequality derives from the choice of step size. Consequently, the bias error will be

bias error ≤
N∑
t=0

1

ηN2
tr(Bt) ≤

N∑
t=0

1

ηN2
(1− ηµ

2
)t tr(B0) ≲

1

ηN
∥w∗∥2H ≲

d log2(N/δ)

N2ε2
· C2

2κ
2∥w∗∥2H.

Combining the previous variance error, we complete the proof.

E LOWER BOUND

Proof of Lemma 6. We will denote Ti = Tw((xi, yi),M(D)) and T ′
i = Tw((xi, yi),M(D′

i)). Since we have
y − ReLU(w⊤x) = z and x · 1(w⊤x > 0), and M(D′

i)−w are independent, we have

E[T ′
i ] = E(y − ReLU(w⊤x))E⟨M(D′

i)−w,x · 1(w⊤x > 0)⟩ = 0. (26)

Moreover, we have

E[T ′
i ] ≤

√
E[T ′

i
2] ≤ σ

√
E∥M(D′

i)−w∥2Σx
= σ

√
E∥M(D)−w∥2Σx

. (27)

For the second part, we have

∑
i∈[n]

E[Ti] =
d∑
j=1

EM(D)j

N∑
i=1

(yi − ReLU(w⊤xi))1(w
⊤x > 0)xi,j

For each j we have

EM(D)j

N∑
i=1

(yi − ReLU(w⊤xi))1(w
⊤x > 0)xi,j = σ2EM(D)j

∂ log fw(Y |X)

∂wj
= σ2 ∂

∂wj
EY,X|wM(D)j .

Thus we have ∑
i∈[n]

E[Ti] =
d∑
j=1

σ2 ∂

∂wj
EY,X|wM(D)j .

Recall the following Stein’s lemma:

Lemma 22. Let Z be distributed according to some density p(z) that is continuously differentiable w.r.t. z and let h be a
differentiable function such that E|h′(Z)| <∞. We have

E[h′(Z)] = E[−h(Z)p′(Z)

p(Z)
].

Consider the following prior distribution π for w: let v1, · · · , vd be i.i.d. sampled from the truncatedN (0, 1) with truncation
at −1 and 1, and let wj =

vj√
d

thus w ∈ W . Denote gj(w) = EY,X|wM(D)j . For each j ∈ [d] by using the above lemma
we have

Eπ
∂

∂wj
gj(w) = Eπ

∂

∂wj
E(gj(w)|wj) ≥ Eπ(

−wjπ
′
j(wj)

πj(wj)
− E(|gj(w)−wj ||

π′
j(wj)

πj(wj)
|).



Since πj is a truncated normal distribution, we can easily get
π′
j(wj)

πj(wj)
= −dwj . Therefore, it holds that

Eπ
d∑
j=1

(
−wjπ

′
j(wj)

πj(wj)
− E(|gj(w)−wj ||

π′
j(wj)

πj(wj)
|) = Eπ[d

d∑
j=1

w2
j ]−

d∑
j=1

Eπ(|gj(w)−wj |d|wj |)

≥ d{Eπ[
d∑
j=1

β2
j ]−

√
EπEY,X|w∥M(D)−w∥22

√√√√Eπ
d∑
j=1

w2
j}.

As Eπ[
∑d
j=1 w

2
j ] =W(1), in total we have∑

i∈[n]

E[Ti] ≥ O(σ2d{1−
√
EπEY,X|w∥M(D)−w∥22}

We have the proof under the assumption that EπEY,X|w∥M(D)−w∥22 = o(1).

Proof. We first prove the following lemma, whose proof is the same as the proof of Lemma B.2 in Cai et al. [2021].

Lemma 23. For all i ∈ [n], if M is (ε, δ)-DP then for every T > 0

E[Ti] ≤ E[T ′
i ] + 2εE[|T ′

i |] + 2δT +

∫ ∞

T

P(|Ai| ≥ t). (28)

By the above lemma, we have

EY,X|w

N∑
i=1

Ti ≤ 2nεσ
√
EY,X|w∥M(D)−w∥2Σx

+ 2nδT + n

∫ ∞

T

P(|Ti| ≥ t). (29)

For the last term, we have

P(|Ti| ≥ t) = P(|(yi − ReLU(w⊤xi))||⟨M(D)−w, xi1(w
⊤xi > 0)⟩| > t)

≤ P(|(yi − ReLU(w⊤xi))||⟨M(D)−w,xi⟩| > t)

≤ P(|(yi − ReLU(w⊤xi))|
√
d⟩| > t)

≤ 2 exp(− −t
2

2dσ2
).

Choosing T =
√
2σ

√
d log(1/δ) we have

O(σ2d) ≤ EY,X|w

N∑
i=1

Ti

≤ 2nεσ
√

EY,X|w∥M(D)−w∥2Σx
+O(σnδ

√
d log(1/δ)).

Thus we have the result when δ ≤ N−(1+u) for large enough u.

Next we will show that L(M(D))−L(w∗) ≥ 1
4∥M(D)−w∗∥2Σx

. Specifically, we will show for any w, L(w)−L(w∗) ≥
1
4∥w −w∗∥2Σx

. Under the well-specified condition, we can easily see that

L(w)− L(w∗) = E[ReLU(x⊤w)− ReLU(x⊤w∗)]
2

= E(x⊤w · 1[x⊤w > 0]− x⊤w∗ · 1[x⊤w∗ > 0])2

= E[w⊤xx⊤w · 1[x⊤w > 0]] + E[w⊤
∗ xx

⊤w∗ · 1[x⊤w∗ > 0]]

− 2E[w⊤xx⊤w∗ · 1[x⊤w > 0,x⊤w∗ > 0]].

According to Assumption 4, it further implied that

E(ReLU(x⊤w)− ReLU(x⊤w∗))
2



= E[w⊤xx⊤w · 1[x⊤w < 0]] + E[w⊤
∗ xx

⊤w∗ · 1[x⊤w∗ < 0]]

− 2E[w⊤xx⊤w∗ · 1[x⊤w < 0,x⊤w∗ < 0]]

= E(ReLU(−x⊤w)− ReLU(−x⊤w∗))
2.

Moreover, we have:

(x⊤w − x⊤w∗)
2 = (x⊤w1[x⊤w > 0]− x⊤w∗1[x

⊤w∗ > 0] + x⊤w1[x⊤w < 0]− x⊤w∗1[x
⊤w∗ < 0])2

≤ 2(x⊤w1[x⊤w > 0]− x⊤w∗1[x
⊤w∗ > 0])2 + 2(x⊤w1[x⊤w < 0]− x⊤w∗1[x

⊤w∗ < 0])2

= 2(ReLU(x⊤w)− ReLU(x⊤w∗))
2 + 2(ReLU(−x⊤w)− ReLU(−x⊤w∗))

2.

Then taking an expectation on both sides we obtain that

E(x⊤w − x⊤w∗)
2 ≤ 2E(ReLU(x⊤w)− ReLU(x⊤w∗))

2 + 2E(ReLU(−x⊤w)− ReLU(−x⊤w∗))
2

= 4E(ReLU(x⊤w)− ReLU(x⊤w∗))
2.

The proof is completed.
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