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Abstract001

Recent advancements in Large Vision-002
Language Models have showcased remarkable003
capabilities. However, they often falter when004
confronted with complex reasoning tasks that005
humans typically address through visual aids006
and deliberate, step-by-step thinking. While007
existing methods have explored text-based008
slow thinking or rudimentary visual assistance,009
they fall short of capturing the intricate,010
interleaved nature of human visual-verbal011
reasoning processes. To overcome these012
limitations and inspired by the mechanisms013
of slow thinking in human cognition, we014
introduce VisuoThink, a novel framework015
that seamlessly integrates visuospatial and016
linguistic domains. VisuoThink facilitates mul-017
timodal slow thinking by enabling progressive018
visual-textual reasoning and incorporates test-019
time scaling through look-ahead tree search.020
Extensive experiments demonstrate that021
VisuoThink significantly enhances reasoning022
capabilities via inference-time scaling, even023
without fine-tuning, achieving state-of-the-art024
performance in tasks involving geometry and025
spatial reasoning.026

1 Introduction027

Recent advances in Large Vision-Language Mod-028

els (LVLMs) (OpenAI, 2024a; Team, 2024) have029

shown remarkable progress across a variety of030

tasks. However, these models often struggle with031

complex reasoning challenges, such as geometric032

problem-solving (Qiao et al., 2024; Cherian et al.,033

2024) or spatial reasoning (Ramakrishnan et al.,034

2024; Wu et al., 2024), where human problem-035

solving approaches typically rely on visual aids.036

For example, when solving geometry problems,037

humans often iteratively sketch auxiliary lines or038

visualize intermediate steps, while exploring dif-039

ferent reasoning paths - a form of "slow thinking"040

(Kahneman, 2011) that combines visual and verbal041

cognitive processes.042
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Figure 1: Illustration of Input-Output Prompting, CoT,
Vision-aided Thought and our VisuoThink. Vision-
aided Thought often relies on reasoning with one-
step or unreliable multi-step visual cues (generated by
LVLMs). While VisuoThink addresses this gap through
tool-augmented visual hints, coupled with a predictive-
rollout search mechanism to systematically optimize
reasoning capability.

With the success of o1 series models (OpenAI, 043

2024b), researchers have explored language as 044

a medium for implementing slow thinking, cou- 045

pled with test-time scaling techniques (Zeng et al., 046

2024). Given the inherently multimodal nature of 047

reality, early efforts (Xu et al., 2024; Thawakar 048

et al., 2025; Yao et al., 2024; Du et al., 2025) have 049

attempted to extend such deliberative thinking to 050

multimodal reasoning. However, even augmented 051

with search strategy, these methods treat visual 052

information merely as static input, relying solely 053

on textual reasoning chains during the reasoning 054

process - creating a "visual blind spot", where the 055

potential for visual information throughout the rea- 056

soning process is largely ignored (Fig. 1a). On the 057

other hand, while approaches like VisualSketch- 058

pad (Hu et al., 2024) and VoT (Wu et al., 2024) 059
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have recognized the importance of visual informa-060

tion by incorporating visual aids in reasoning (Fig.061

1b), they mainly focus on single-step assistance or062

simplified visual hints (e.g., emojis). These meth-063

ods lack the multi-step visual-textual interleaved064

reasoning process that characterizes human slow065

thinking, while failing to explore potential search066

strategies.067

To address these limitations, we propose Visuo-068

Think, a multimodal tree search framework that069

systematically explores multiple reasoning paths070

with vision-text interleaved thinking at each step.071

Unlike previous approaches, Visuothink (Fig. 1c)072

enables multimodal slow thinking through two key073

innovations: (1) a step-by-step vision-text inter-074

leaved reasoning framework that dynamically uti-075

lizes multi-step visual aids from tool uses, and (2) a076

look-ahead tree search algorithm that explores mul-077

tiple reasoning paths, enabling test-time scaling078

of the reasoning process. Specifically, our look-079

ahead tree search incorporates a predictive rollout080

mechanism that simulates the likely outcomes of081

different reasoning states. This allows the model to082

prioritize more promising paths and avoid less ones,083

guiding the reasoning process toward the optimal084

solution. Through this test-time scaling capabil-085

ity, the model can thoroughly explore and optimize086

reasoning paths dynamically during inference.087

Our empirical evaluation demonstrates that Vi-088

suothink significantly outperforms existing meth-089

ods across various reasoning tasks, particularly in090

geometry and spatial reasoning domains. On Ge-091

omeverse, Our methods achieves an accuracy@1092

as high as 48.5%, with an improvement of as high093

as 21.8% over the state-of-the-art baseline, which094

particularly shows strong performance of Visuo-095

Think on problems requiring multi-step visual rea-096

soning. Through extensive ablation studies, we097

show that each component of our framework con-098

tributes meaningfully to its overall performance.099

In summary, our contributions include:100

• We propose a novel reasoning paradigm, mul-101

timodal tree search, for multimodal slow102

thinking that enables dynamic integration of103

visual and verbal reasoning paths throughout104

the problem-solving search process.105

• We extend test-time scaling methods to the vi-106

sual domain by proposing a predictive rollout107

mechanism that explores and optimizes visual108

reasoning paths by predicting future states.109

• We demonstrate substantial empirical im- 110

provements across multiple reasoning tasks, 111

particularly in geometry and spatial reasoning, 112

with detailed analyses revealing key insights 113

about our approach. 114

2 Related Work 115

2.1 Text-centric Reasoning in LVLMs 116

With the emergence of o1 models (OpenAI, 2024b), 117

the importance of slow thinking has become in- 118

creasingly evident (Zeng et al., 2024). Several 119

works have attempted to extend this to LVLMs 120

through methods like stage-wise reasoning (Xu 121

et al., 2024), curriculum learning (Thawakar et al., 122

2025), tree search-based data generation (Yao et al., 123

2024), and LLM distillation (Du et al., 2025). How- 124

ever, these methods treat visual information as 125

static input, relying only on textual data during 126

reasoning, which limits their ability to fully lever- 127

age multimodal information for complex tasks. 128

2.2 Vision-aided Reasoning 129

Recent advancements in multimodal reasoning 130

have demonstrated that incorporating visual infor- 131

mation provides richer context and hints compared 132

to text-only approaches. Early studies adopted a 133

two-stage approach, where visual information is 134

first transformed and grounded into text (Zhang 135

et al., 2023), graph structures (e.g., scene graphs 136

(Mitra et al., 2023) or knowledge graphs (Mondal 137

et al., 2024)), or bounding boxes (Lei et al., 2024), 138

followed by reasoning. Other works leverage exist- 139

ing vision models (e.g., segmentation, detection) to 140

process input images into valuable cues for percep- 141

tion, enabling more precise image-understanding 142

with fine-grained visual information (Yang et al., 143

2023; Zhou et al., 2024; Gao et al., 2024). 144

Another sequence of research focuses on inter- 145

mediate visual representations to enhance reason- 146

ing. For instance, Visual Sketchpad (Hu et al., 147

2024) employs Python-based drawing tools to gen- 148

erate sketches as intermediate visual aids for ge- 149

ometric problems, while VoT (Wu et al., 2024) 150

formalizes visual thinking by generating emoji-like 151

textual representations. MVOT (Li et al., 2025) 152

fine-tunes multimodal models to generate images 153

during reasoning, allowing the model to create vi- 154

sual aids dynamically. Despite these advancements, 155

most existing methods rely on single-step or unreli- 156

able visual representations, lacking search mecha- 157

nisms to test-time scaling through exploring mul- 158
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Figure 2: The illustration of our VisuoThink framework with three stages: (1) vision-text interleaved expansion:
generates candidate paths through vision-text interleaved thinking; (2) rollout simulation: sample candidate
reasoning nodes and then perform look-ahead search to better evaluate the value of current states; (3) selection:
selects the most promising path via self-voting with results or states from rollout.

tiple reasoning paths. In contrast, we develop a159

multimodal tree search framework that both lever-160

ages multi-step visual cues during reasoning and161

systematically explores reasoning paths through162

tree search.163

2.3 Test-time Scaling with Tree Search164

Scaling compute at test time has emerged as a pow-165

erful strategy to enhance LLMs’ reasoning capa-166

bilities without increasing model parameters (Snell167

et al., 2024). Various approaches including BoN168

(Gui et al., 2024; Sun et al., 2024; Amini et al.,169

2024), guided beam search (Xie et al., 2023; Yu170

et al., 2023), and Monte Carlo Tree Search (MCTS)171

(Feng et al., 2023; Liu et al., 2023; Chen et al.,172

2024) have been explored for text models, demon-173

strating improved performance through different174

search strategies. However, the exploration of test-175

time scaling in LVLMs remains limited. Prior176

work like AtomThink (Xiang et al., 2024) has only177

investigated basic methods such as beam search,178

with text-only reasoning chains. In contrast, our179

method introduces vision-text interleaved thinking180

with look-ahead search, extending test-time scaling181

to multimodal reasoning.182

3 VisuoThink183

We propose VisuoThink, a novel framework for184

multimodal reasoning that dynamically integrates185

visual and textual information during the inference186

process. At its core, our framework implements187

multimodal slow thinking through a key mecha-188

nism: predictive rollout search that allows models189

to think ahead.190

3.1 Vision-Text Interleaved Thinking 191

Our framework facilitates vision-text interleaved 192

reasoning through an iterative cycle of Thought, 193

Action, and Observation like existing work (Yao 194

et al., 2023), which enables natural and dynamic 195

interactions with external tools. (1) Thought phase: 196

the model leverages visual information for textual 197

reasoning (such as analyzing patterns based on pre- 198

viously added auxiliary lines) and determines the 199

next step by planning what visual hints should be 200

added to enhance understanding. (2) Action phase: 201

the model executes the planned operations by call- 202

ing external tools (like using Python code to draw 203

auxiliary lines or highlight key features) to gener- 204

ate or modify visual information. (3) Observation 205

phase: the model processes the visual feedback 206

from the Action phase, incorporating these new 207

visual hints into the next reasoning step. 208

The importance of visual information for LVLM 209

reasoning is highlighted in VisuoThink, which uti- 210

lize tool invocations to construct reliable visual 211

hints step by step in a visual construction process. 212

This tool-based design allows VisuoThink to flexi- 213

bly adapt to various visual reasoning tasks. More- 214

over, unlike approaches (e.g. VisualSketchpad) that 215

generate all visual aids at once, our step-by-step 216

visual guidance naturally integrates with search 217

techniques, enabling effective test-time scaling. 218

3.2 Predictive Rollout Search 219

Based on tree search methods and inspired by 220

MCTS, we propose a predictive rollout search 221

mechanism that interleaves visual-text thinking. By 222

anticipating the outcomes of intermediate states, 223
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the model can make timely corrections, enabling224

more accurate and powerful reasoning. As shown225

in Figure 2, at each reasoning step, our framework226

first generates multiple candidate paths through227

vision-text interleaved thinking, then simulates228

these paths to predict their outcomes, and finally se-229

lects the most promising path through a self-voting230

mechanism.231

Vision-Text Interleaved Expansion In the232

whole reasoning chain A = {a1, a2, . . . , at}, given233

the current node at−1, the model samples k can-234

didate nodes St = {s1t , s2t , ..., skt }. Each candidate235

follows the vision-text interleaved thinking process236

described above, generating a sequence of Thought,237

Action, and Observation steps. This expansion cre-238

ates a tree of possible reasoning paths, each repre-239

senting a different problem-solving strategy.240

Rollout Simulation Visual reasoning often re-241

quires multiple steps to reach a conclusion, making242

it crucial to evaluate the full potential of each path.243

For each candidate node sit, the model simulates244

the complete reasoning process to predict final out-245

comes rit, rather than relying solely on immediate246

state evaluation. Different from expansion, the sim-247

ulation extends each candidate node with a single248

path of vision-text interleaved thinking until reach-249

ing a final result.250

Selection The selection of the optimal path is251

performed through a self-voting mechanism. The252

model considers the task description, historical253

nodes, and the simulated path with predicted results254

for each candidate node. The selection process can255

be formalized as:256

Select(St) = argmax
sit∈St

Vote(At−1, sit, rit) (1)257

where At−1 represents the historical context, sit258

for the candidate node, and rit is the predicted result259

or final state. The Select is a heuristic function260

served by the LVLM model to guide the process.261

This selection ensures the model pursues the most262

promising reasoning strategy.263

4 Solving Geometry with VisuoThink264

The core of our methodology is rooted in multi-step265

visual information processing and search-based rea-266

soning, enabling LVLMs to address strongly con-267

strained mathematical problems (e.g., geometry268

challenges) and open-domain scenarios (such as269

visual navigation and visual tiling in section 5).270

We formalize geometry problem-solving as a 271

two-phase process integrating visual construction 272

and algebraic computation. In Phase I, the model 273

generates auxiliary lines defined by geometric con- 274

straints, such as connecting points (xi, yi) and 275

(xj , yj), construct a perpendicular or parallel line 276

to form line segments L = {li}. This phase ter- 277

minates with a AUX-END token, triggering Phase 278

II, where geometric relationships are translated 279

into solvable equations (e.g., ax+ b = 0) through 280

Python code execution. 281

Task Formulation LVLM should produce the 282

reasoning trajectory consisting of reasoning steps 283

A = {at} that leads to the final result r, given 284

the original problem Q while taking into account 285

the auxiliary lines L. The framework operates un- 286

der a constraint
∑|A|

t=1 ∥at∥ ≤ τ , where at denotes 287

visual-textual reasoning steps and τ is the maxi- 288

mum step limit: 289

A ∼ P
(
{a1, . . . ,a|A|, r} | Q,L

)
s.t.

|A|∑
t=1

∥ai∥ ≤ τ (2) 290

This formulation mirrors human problem- 291

solving by decomposing proofs into executable 292

visual-textual steps, validated via coordinate-based 293

tools like matplotlib and equation solver. 294

Visual Construction We emphasize the critical- 295

ity of incremental visual information for accurate 296

solutions, where multi-step graphical representa- 297

tions originate from the progressive construction 298

of auxiliary lines. This multi-stage approach fa- 299

cilitates search algorithm-enhanced refinement of 300

auxiliary line generation, significantly improving 301

LVLM capabilities in geometric reasoning. Consis- 302

tent with Sketchpad methodology, we exclusively 303

utilize common Python libraries (e.g., matplotlib) 304

for diagram rendering. 305

Algebraic Computation Unlike general tasks, 306

solving geometry problems cannot rely solely on 307

visual construction or the model’s inherent capa- 308

bilities; instead, it necessitates the use of computa- 309

tional tools to achieve precise and accurate results. 310

This requirement stems from the need for exact 311

numerical solutions and the mitigation of potential 312

errors in geometric reasoning. Through systematic 313

integration, like VPD (Zhao et al., 2023), and Vi- 314

sualStechpad (Hu et al., 2024), phase II employs 315

Python code execution for precise computation to 316

mitigate LVLM hallucination risks. Furthermore, 317

4



Model GPT-4o Qwen2-VL-72B-Instruct Claude-3.5-sonnet

Geomverse-109

CoT 11.1 5.6 14.4
VisualSketchpad 8.9 6.7 16.7
VisualSketchpad + Equation Solver 13.3 11.1 17.8
VisuoThink w/o rollout search (ours) 24.4 19.0 26.7
VisuoThink (ours) 28.9 25.6 27.8

Geometry3K
(Lu et al., 2021)

CoT 20.8 18.8 37.5
VisualSketchPad 22.9 17.0 39.6
VisualSketchpad + Equation Solver 25.0 14.9 41.7
VisuoThink w/o rollout search (ours) 27.1 20.8 37.5
VisuoThink (ours) 33.3 25.0 43.8

Table 1: The 1-shot benchmark results (Accuracy@1) on Geometry including Geomverse-109 and Geometry3k
of SOTA large visual language models. For GPT-4o and Claude-3.5-sonnet, we employ newest cutoffs (gpt-4o-
2024-11-20 and claude-3-5-sonnet-20241022) separately. The gray part indicates results from VisuoThink and bold
results represent the best performance.

Model
Dataset Visual Navigation Visual Tiling
Subset (Num. Samples) level-3 (16) level-4 (31) level-5 (62) level-2 (119)

GPT-4o

CoT 18.8 3.2 0.0 0.8
VoT 25.0 0.0 0.0 1.7
VoT + Executer 62.5 9.7 4.8 12.6
VisuoThink w/o rollout search (ours) 81.2 32.3 11.3 19.3
VisuoThink (ours) 93.8 61.3 19.4 51.2

Qwen2-VL-72B-Instruct

CoT 6.7 3.2 - 0.0
VoT 0.0 0.0 - 0.8
VoT + Executer 25.0 3.2 - 6.7
VisuoThink w/o rollout search (ours) 50.0 6.5 - 9.2
VisuoThink (ours) 81.3 12.9 - 20.2

Claude-3.5-sonnet

CoT 37.5 3.2 0.0 0.8
VoT 56.3 0.0 0.0 2.5
VoT + Executer 68.8 22.6 16.1 10.1
VisuoThink w/o rollout search (ours) 81.2 38.7 41.9 80.7
VisuoThink (ours) 93.8 61.3 53.2 84.0

Table 2: The Pass@1 performance comparison on spatial reasoning benchmarks including Visual Navigation and
Visual Tiling across SOTA LVLMs. The gray part indicates results from VisuoThink and bold results represent
the best performance. The results of Qwen2-VL-72B-Instruct on Visual Navigation (k = 5) are masked out due to
its restrained performance on the subset. The results from VoT with Executor are also reported, where the models
utilize the unreliable visual hints generated by themself rather than executor, consistent with the VoT framework.

the model constructs single-variable algebraic equa-318

tions based on identified geometric relationships,319

subsequently invoking equation solvers for numeri-320

cal resolution.321

4.1 Empirical Results322

Setup We conduct comprehensive evaluations323

on the challenging Geometry3K and Geomverse-324

109 datasets to demonstrate the methodological325

superiority. Especially we detail the trajectory326

of Geomverse-109 dataset synthesis in appendix327

E. SOTA closed-source models including gpt-4o-328

2024-11-20 and claude-3-5-sonnet-20241022 are329

leveraged for inference. To ensure architectural di-330

versity, open-source model (e.g., Qwen2-VL-72B)331

were incorporated; however, smaller-parameter332

open-source variants were excluded due to their333

capability constraints. And we detail the model334

and algorithm hyperparameters in appendix D. 335

Analysis Our empirical results reveal that, even 336

without rollout search augmentation, our strategy 337

substantially enhances LVLM reasoning capabil- 338

ities compared to Chain-of-Thought (CoT) (Mi- 339

tra et al., 2023) and Visual Sketchpad (Hu et al., 340

2024) baselines. Notably, on the Geomverse-109 341

(Kazemi et al., 2023) benchmark, VisuoThink out- 342

performs CoT and Visual Sketchpad by an av- 343

erage of 17.1% and 16.7% across all evaluated 344

models, and predictive rollout search further 345

enhances models’ performance by an average of 346

4.1%. Also, the employment of equation solver on 347

Visual Sketchpad also increases an average perfor- 348

mance of 3.3%. This performance gap likely stems 349

from Geomverse’s emphasis on geometric rela- 350

tionship construction, where our equation-solving 351

framework help to accurately get intermediate an- 352
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Figure 3: The illustration of spatial reasoning tasks derived from VoT (Wu et al., 2024), including Visual Navigation
and Visual Tiling. LVLM is required to execute a sequence of actions to complete certain goals. Our experimental
setting makes them much more challenging and closer to real-environment deployment.

swers and enables efficient resolution of struc-353

turally complex problems. The systematic integra-354

tion of geometric analysis tools further mitigates355

error propagation inherent in conventional LVLM356

reasoning baselines.357

5 Spatial Reasoning with VisuoThink358

Spatial reasoning, defined as the cognitive ca-359

pability to interpret spatial object relationships,360

motion dynamics, and environmental interac-361

tions, constitutes a foundational requirement for362

mission-critical applications such as robotic sys-363

tems, autonomous navigation, and augmented re-364

ality. These domains demand robust integration365

of visual perception and precise manipulation of366

spatial-temporal constraints for optimal action plan-367

ning.368

Task Formulation Building upon the Visualiza-369

tion of Thought (VoT) (Wu et al., 2024) bench-370

marks, we design two challenging spatial reasoning371

benchmarks with enhanced complexity as shown372

in figure 3: Visual Navigation and Visual Tiling.373

We provide detailed materials of the differences374

between the original VoT benchmark setup and375

our experimental configuration in Appendix B and376

additionally provide the mathematical task formu-377

lation in appendix C.378

Visual Construction via Executor During task379

execution, robots deployed in true environments380

typically receive environmental feedback following381

each action, which facilitates perception and subse-382

quent decision-making processes. In our methodol-383

ogy, we leverage environmental interaction tools to384

enhance the model’s spatial reasoning capabilities. 385

In each action, we employ an executor to imple- 386

ment the corresponding action, and return textual 387

execution feedback and visuospatial hint (optional) 388

representing the map state. In the context of (1) Vi- 389

sual Navigation, the visual feedback corresponds to 390

the map including agent’s current position; while in 391

(2) Visual Tiling scenarios, it represents the current 392

state of rectangle occupation patterns. 393

5.1 Empirical Results 394

Setup We evaluate our framework on two spatial 395

reasoning benchmarks: Visual Navigation and Vi- 396

sual Tiling. For Visual Navigation, we create three 397

difficulty levels with increasing map complexity, 398

where the level indicates the k for Visual Naviga- 399

tion as shown in table 2. For Visual Tiling, we 400

focus on level-2 (i.e. k = 2) problems with 119 401

samples. We compare our method against Chain- 402

of-Thought (CoT), Visualization of Thought (VoT) 403

(Wu et al., 2024). As table 2 indicates, the results 404

from VoT with tool interactions (i.e. Executor) 405

are also reported, where textual feedbacks are em- 406

ployed but the visual hints are still generated by 407

the model rather from executor, consistent with the 408

VoT framework. The source of visual hints distin- 409

guishes it from our method. We employ the same 410

temperature and VisuoThink hyperparameters as 411

section 4.1. 412

Analysis In spatial reasoning experiments, Vi- 413

suoThink demonstrates significant performance im- 414

provements over baseline methods, particularly 415

when augmented with predictive rollout search. As 416

shown in Table 2, VisuoThink achieves the high- 417
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Figure 4: (LEFT) The trend of Pass@1 rate on Visual Navigation as the number of reasoning steps increases.
(RIGHT) The relationship between the Accuracy@1 on geometry problems (Geomverse) and tree width for rollout
search. We observe that LVLMs significantly benefit from longer reasoning chains, although the effect
plateaus rapidly beyond a certain threshold of reasoning steps. The relationship between performance and
tree width exhibits a more complex pattern, demonstrating an inverted U-shaped trend with both GPT-4o
and Claude-3.5-Sonnet.

est accuracy across all tasks, outperforming both418

CoT and VoT baselines. For instance, on the Visual419

Navigation task, VisuoThink on GPT-4o achieves420

a 93.8% accuracy at level-3, compared to 62.5%421

for VoT with an executor and 18.8% for CoT. This422

trend is consistent across different model architec-423

tures, including GPT-4o, Qwen2-VL-72B-Instruct,424

and Claude-3.5-sonnet, highlighting the robustness425

of our approach.426

Similar to the geometry experiments in Section427

4, the integration of tool interactions and multi-step428

visual reasoning plays a critical role in enhancing429

performance. The executor’s feedback mechanism,430

which provides visual updates after each action,431

mirrors the incremental visual refinement seen in432

geometry tasks, where auxiliary lines are progres-433

sively constructed.434

For instance, VisuoThink without rollout search435

demonstrates an average improvement of 34.7% on436

Visual Tiling across diverse models. We observe437

that while VoT augmented with textual feedback438

achieves an average increase of 8.1%, its perfor-439

mance gain is notably less pronounced compared440

to VisuoThink without rollout search. This under-441

scores the critical role of reliable visual cues in442

enhancing reasoning capabilities. The dynamic in-443

teraction allows the model to iteratively refine its444

reasoning path, leading to more accurate solutions.445

6 Discussion446

In this section, we analyze key aspects of Visuo-447

Think’s performance. We examine how the length448

of reasoning chain affects spatial reasoning, the 449

impact of child node expansion in rollout search, 450

and the influence of supervision levels in predic- 451

tive rollouts across tasks. These insights highlight 452

VisuoThink’s effectiveness and suggest future direc- 453

tions for multimodal reasoning frameworks. 454

6.1 Could Longer Reasoning Chains Assist 455

LVLMs in Reasoning? 456

In practical applications of LVLMs for spatial rea- 457

soning tasks, each tool invocation can be seen as an 458

agent attempting an action in the environment and 459

receiving feedback. Although many attempts may 460

be inaccurate, allowing the model more trial-and- 461

error opportunities before achieving the final goal 462

could potentially enhance its reasoning capabilities. 463

By setting different upper limits on the number of 464

reasoning steps in visual navigation tasks, we ob- 465

serve a positive correlation between the number 466

of reasoning steps and the model’s task comple- 467

tion rate. This suggests that the model indeed 468

benefits from more tool invocations and longer 469

reasoning. 470

However, as the number of reasoning steps in- 471

creases, the completion rate gradually converges, 472

making further significant improvements challeng- 473

ing. As shown in figure 4 (left), for instance, with 474

GPT-4o, increasing reasoning steps from 10 to 20 475

resulted in substantial performance gains (+53.9% 476

and +48.4%) across different LVLM architectures 477

(GPT-4o and Claude-3.5-sonnet). However, when 478

reasoning steps were increased from 20 to 40, the 479

performance growth slowed dramatically, drop- 480

7



ping to +3.4% and +2.1%, respectively. This phe-481

nomenon aligns with expectations, as merely in-482

creasing the number of tool invocations does not483

enable the model to better solve the most challeng-484

ing samples. This underscores the necessity of485

techniques like rollout search within the broader486

context of test scaling.487

6.2 Could Larger Tree Span Enhances488

VisuoThink’s Performance?489

Predictive rollouts enhance the model’s reasoning490

capabilities, which can be viewed as a tangible491

outcome of successfully expanding the model’s492

reasoning search space. A natural question arises:493

Can we further improve the model’s reasoning per-494

formance on benchmarks simply by increasing the495

number of candidate child nodes at each selection496

step, i.e., expanding the tree width, thereby enhanc-497

ing model’s reasoning capability? To investigate498

this, we conducted comparative experiments on ge-499

ometry tasks using GPT-4o and Claude-3.5-sonnet,500

keeping the depth of the reasoning tree constant501

while varying the number of candidate child nodes.502

As presented in figure 4 (right), we observed an503

inverted U-shaped trend in overall performance as504

the number of candidate tree nodes increased across505

different model architectures. Notably, when the506

number of candidate child nodes equals 1, the507

model follows a single reasoning path, effectively508

bypassing predictive rollout search. Contrary to ex-509

pectations, the performance trend initially rises and510

then declines. This counterintuitive result can be511

attributed to the inherent errors in the model’s eval-512

uation of child nodes. Simply and aggressively513

increasing the tree width leads to confusion in514

selecting child nodes, which in turn reduces over-515

all reasoning efficiency. Thus, an interesting con-516

clusion emerges: we cannot expect to continuously517

improve model performance by merely increasing518

the number of child nodes in rollout search.519

6.3 Strong v.s. Weak Supervision in Predictive520

Rollout Search521

An intriguing observation is that the strength of522

guidance provided by predictive rollout results523

varies between geometry and spatial reasoning524

tasks. In geometry tasks, the model only receives525

the final numerical results of the problem, whereas526

in spatial reasoning tasks, the model has access527

to visual states of stronger supervision (e.g., the528

agent’s final position, the position of the destina-529

tion, etc.). In other word, predictive rollouts in530
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Figure 5: The performance gain (+%) on tasks through
predictive rollout search. The performance gain is cal-
culated via the performance gap between VisuoThink
(w/o rollout search) and VisuoThink.

geometry tasks offer weaker supervision, while 531

those in spatial reasoning tasks provide stronger 532

supervision. 533

This observation aligns with the findings of 534

the Deepseek R1 report, which highlights that 535

outcome-based supervision in RL can significantly 536

enhance Deepseek-R1-Zero’s reasoning capabil- 537

ities (DeepSeek-AI, 2025). The effectiveness 538

of such supervision stems from its strong su- 539

pervisory signal, and predictive rollouts with 540

strong supervision are more effective in improv- 541

ing model reasoning performance. This is further 542

supported by our experimental results, as illustrated 543

in figure 5, where predictive rollouts demonstrated 544

more substantial performance gains in spatial rea- 545

soning tasks compared to geometry tasks, across 546

both open-source and closed-source models. The 547

detailed performance gain results are presented in 548

appendix A. 549

7 Conclusion 550

We present VisuoThink, a multimodal tree search 551

framework enhancing LVLM reasoning through 552

dynamic visual-textual interleaving and predictive 553

rollout search. Our approach demonstrates signifi- 554

cant improvements across geometry and spatial rea- 555

soning tasks without requiring model fine-tuning. 556

Empirical results show substantial performance 557

gains on geometry and spatial reasoning bench- 558

marks. Our analysis reveals key insights about 559

tool interaction benefits, search space optimization, 560

and supervision strength in multimodal reasoning. 561

These findings open new possibilities for advancing 562

LVLM capabilities in complex reasoning tasks. 563
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Limitations564

Despite its strong performance, VisuoThink has sev-565

eral limitations. First, the predictive rollout search566

process introduces significant computational over-567

head, making it potentially impractical for real-568

time applications. Second, our approach particu-569

larly relies on tool interactions for stronger capa-570

bility, which may require more effort in some spe-571

cific deployment environments. Third, the frame-572

work’s effectiveness is constrained by the quality573

of the base VLM’s reasoning capabilities - while it574

enhances performance, it cannot overcome funda-575

mental model limitations. Finally, our evaluation576

focuses primarily on geometric and spatial reason-577

ing tasks.578

Ethics and Reproducibility Statements579

Ethics We take ethical considerations very seri-580

ously and strictly adhere to the ACL Ethics Pol-581

icy. This paper proposes a test-time slow-thinking582

framework to improve the multimodal reasoning583

ability of current LVLMs. All evaluation datasets584

used in this paper will be publicly available or have585

been widely adopted by researchers. Thus, we be-586

lieve that this research will not pose ethical issues.587

Reproducibility In this paper, we discuss the588

detailed experimental setup, such as hyper-589

parameters, implementation of algorithm, and590

statistic descriptions. More importantly, we will591

open source our code and data in the future to592

help reproduce the experimental results of this pa-593

per.594
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A Performance Gain of VisuoThink755

Through Predictive Rollout Search756

This appendix quantifies the performance improve-757

ments achieved by integrating predictive rollout758

search into the VisuoThink framework across geom-759

etry and spatial reasoning tasks. The performance760

gain through predictive rollout search is derived761

by subtracting the performance of VisuoThink (w/o762

rollout search) from those of the VisuoThink on763

models.764

As shown in Table 3, tasks with strong su-765

pervision (e.g., Visual Navigation and Visual766

Tiling) exhibit significantly higher gains compared767

to weak supervision tasks (e.g., Geometry3K and768

Geomverse-109). For instance, under strong su-769

pervision, Claude-3.5-Sonnet achieves a +25.1%770

improvement in Visual Navigation, while GPT-4o771

attains +16.6% in Visual Tiling. In contrast, weak772

supervision tasks like Geomverse-109 only show773

modest gains (e.g., +5.4% for GPT-4o).774

B Spatial Reasoning Task Setting775

Our formulation extends beyond VoT’s basic re-776

quirements by mandating LVLMs to generate com-777

prehensive operational specifications - for instance,778

requiring explicit output of both movement di-779

rections and precise step counts at each decision780

node. This advancement creates more realistic and781

functionally grounded spatial reasoning evaluations782

(e.g., robotic navigation emulation in real world).783

This appendix details the task formulation differ-784

ences between VisuoThink and baseline methods785

(Table 4 and Table 5). For Visual Navigation, Vi-786

suoThink requires fine-grained, executable and ex-787

plicit specification of both direction and step count788

in action sequences, whereas VoT focuses solely on789

direction navigation. This formulation mirrors real-790

world robotic navigation, where precise movement791

planning is critical. Similarly, in Visual Tiling,792

VisuoThink mandates detailed actions, including793

polyomino variant types, block positions, and ac-794

tion types (e.g., "fit" or "remove"), while VoT sim-795

plifies the task by omitting variant specifications.796

C Task Formulation of Spatial Reasoning 797

Tasks 798

Building upon VoT (Wu et al., 2024) framework, 799

our challenging benchmarks comprise: 800

• Visual Navigation evaluates LVLMs in 801

a simulated 2D grid environment, where 802

agents must navigate from initial position 803

s0 to destination sk through obstacle-laden 804

paths. The formal problem is defined by grid 805

map M containing k interconnected edges 806

E = {e(s0, s1), e(s1, s2), . . . , e(sk−1, sk)}. 807

The LVLM should generate a sequence of 808

executable actions in json format A = 809

{(d0, l0), (d1, l1), . . . , (d|A|−1, l|A|−1)}, 810

where each tuple specifies movement direc- 811

tion di and exact step count li, governed by 812

the policy: 813

at ∼ P (dt, lt | At−1,M) (3) 814

• Visual Tiling is a classic geometric reason- 815

ing challenge, this task assesses polyomino 816

composition capabilities within confined rect- 817

angular regions R masked by k distinct poly- 818

ominoes MP = {mp1, . . . ,mpk}. The 819

LVLM must output action sequences at = 820

(pt, {b1, . . . ,b|B|}, att), where pt and B = 821

{b1, . . . ,b|B|} respectively indicate the se- 822

lected polyomino type and the coordinates of 823

the placement blocks. att ∈ {fit, remove} in- 824

dicates the action type modifying rectangular 825

state Rt, thus formalized as: 826

at ∼ P (pt,B, att | Rt−1,MP,At−1})
(4) 827

Though the required actions are polyomino 828

variant-aware as shown in table 5. As the 829

polyomino variant type is implicitly expressed 830

in the block positions, LVLM does not need 831

to explicitly output it in actions anymore. 832
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Supervision Type Performance Gain GPT-4o Qwen2-VL-72B Claude-3.5-Sonnet

Strong Supervision
∆ Visual Navigation (%) +16.6 +18.9 +15.5
∆ Visual Tiling (%) +31.9 +11.0 +3.3
∆ Average (%) +24.3 +15.0 +9.4

Weak Supervision
∆ Geometry3K (%) +4.5 +6.6 +1.1
∆ Geomverse-109 (%) +6.2 +4.2 +6.3
∆ Average (%) +5.4 +5.4 +3.7

Table 3: Detailed performance gain of VisuoThink through predictive rollout search on benchmarks from Geometry
and Spatial Reasoning over variable LVLM models.

Method Target Direction Steps

Visual Navigation VoT ! % Navigate from the starting position
VisuoThink ! ! to the destination.

Table 4: Visual Navigation task setting differences between VoT and VisuoThink.

Method Action Target
Polyomino Type Variant Type Block Positions Action Type

Visual Tiling VoT ! ! % %
To identify the correct variant
for a polyomino in one action.

VisuoThink ! ! ! !
To fill the rectangle with feasible

polyomino variants.

Table 5: Visual Tiling task setting differences between VoT and VisuoThink.

D Model and VisuoThink833

Hyperparameters834

We detail the model and VisuoThink Hyperparame-835

ters:836

Model Hyperparameters To ensure experimen-837

tal fairness, we uniformly constrained the number838

of reasoning steps (i.e., τ , the depth of the rea-839

soning tree) to 10 across all experiments. During840

predictive rollout search, we set the number of sam-841

pled child nodes to 3, and we discuss its impact in842

section 6.2.843

VisuoThink Hyperparameters While Visuo-844

Think employed a temperature of 0.8 when sam-845

pling child nodes, all other model invocations, in-846

cluding the baselines (e.g. CoT, VoT, VisualSketch-847

pad, VisuoThink w/o rollout search), were con-848

ducted with temperature set to 0 for frontier per-849

formance. During the voting phase, we similarly850

maintained a temperature of 0 and implemented851

single-vote sampling, which not only reduced com-852

putational overhead in terms of model calls but also853

achieved comparable performance.854

E Geomverse-109 Problem Generation855

Trajectory856

We establish a pipeline translating textual problems857

into problems with matplotlib-executable code. Be-858

yond the Geometry3K (Lu et al., 2021) dataset (48 859

problems) utilized in Sketchpad, we incorporate 860

the D2 subset of Geomverse (Kazemi et al., 2023) 861

to construct an slightly bigger dataset Geomverse- 862

109 (90 problems). The original Geomverse dataset 863

crucially includes annotated point coordinates es- 864

sential for systematic problem synthesis. During 865

the data synthesis phase, we first randomly choose 866

109 problems, then LVLMs generate correspond- 867

ing high-quality Python code through LLM self- 868

reflection (Shinn et al., 2023), then we filter out 869

problems with poor diagram quality. 870
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