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Abstract001

Cross-lingual open-ended generation — pro-002
ducing responses in a language different from003
that of the user’s query — is an important004
yet understudied problem. We introduce005
XL-AlpacaEval, a new benchmark for evalu-006
ating cross-lingual generation capabilities of007
Large Language Models (LLMs), and propose008
XL-Instruct, a high-quality synthetic data009
generation technique. Fine-tuning with just010
8K XL-Instruct-generated instructions signif-011
icantly improves model performance, increas-012
ing the win rate against GPT-4o-Mini from013
7.4% to 21.5%, and improving on several fine-014
grained quality metrics. Additionally, base015
LLMs fine-tuned on XL-Instruct yield strong016
zero-shot improvements in both English-only017
and multilingual generation tasks. Given these018
consistent gains, we strongly recommend in-019
corporating XL-Instruct in the post-training020
pipeline of future multilingual LLMs. To fa-021
cilitate further research, we will publicly re-022
lease the XL-Instruct and XL-AlpacaEval023
datasets, which constitute two of the scarce024
cross-lingual ones currently available.025

1 Introduction026

Cross-lingual generation is the task of understand-027

ing a query in a given source language and gen-028

erating a response in a different target language.029

This task has assumed greater relevance in the re-030

cent era of Large Language Models (LLMs) with031

multilingual capabilities. Marchisio et al. (2024)032

noted its usefulness for a) companies that serve033

such LLMs across dozens of languages but optimiz-034

ing a prompt for each input language is inefficient035

in practice, and b) when a user needs a genera-036

tion in a language they do not speak. The conven-037

tional two-step ‘Reason then Translate’ approach038

to cross-lingual generation (Huang et al., 2023;039

Qin et al., 2023; Li et al., 2024b) can be problem-040

atic due to the noisy nature of machine translation041

(MT), which may lead to information loss or an042

unnatural-sounding response. It is also wasteful 043

of inference time and cost, since the intermediary 044

English response is thrown away once the desired 045

cross-lingual output is obtained. 046

Despite its relevance, the adaptation of LLMs 047

for cross-lingual generation is understudied. In the 048

absence of high-quality instruction datasets and 049

evaluation benchmarks, the cross-lingual abilities 050

of LLMs are perhaps emergent, yet inadequately as- 051

sessed. In this work, we address the data deficiency 052

for the cross-lingual generation task. We intro- 053

duce XL-AlpacaEval, a cross-lingual evaluation 054

dataset sourced from AlpacaEval (Li et al., 2023b), 055

and observe poor off-the-shelf performance for 056

most open multilingual LLMs. As a solution, we 057

propose XL-Instruct, a synthetic data generation 058

technique to create high-quality cross-lingual data 059

at scale (illustrated in Figure 1) and show that fine- 060

tuning with XL-Instruct significantly and consis- 061

tently boosts cross-lingual performance across a 062

range of base and instruction-tuned LLMs. Beyond 063

cross-lingual capabilities, we demonstrate how 064

this technique also shows strong zero-shot transfer 065

performance in monolingual generation scenarios, 066

both in English and in other languages. We will 067

publicly release the XL-AlpacaEval benchmark 068

and the XL-Instruct dataset, hoping to facilitate 069

research in the cross-lingual LLM domain, which 070

currently lacks sufficient resources for both evalua- 071

tion and post-training. 072

We seek to answer the following Research Ques- 073

tions in this work: 074

• RQ1: How good are multilingual LLMs in 075

cross-lingual generation off-the-shelf? (§3) 076

• RQ2: How does XL-Instruct improve cross- 077

lingual capabilities of various LLMs? (§5) 078

• RQ3: How does cross-lingual fine-tuning im- 079

pact standard English-only and multilingual 080

generation performance? (§6) 081

1



Figure 1: The XL-Instruct pipeline: 1) instruction generation from seed English data; 2) data refinement; 3)
response translation into non-English; 4) data filtering, with more details in Section 4.

2 Related Work082

Cross-Lingual Explorations in LLMs Most of083

the current research on cross-lingual generation084

in LLMs focuses primarily on prompting strate-085

gies. The primary goal of generation here is to086

leverage the extensive knowledge and superior rea-087

soning capabilities of LLMs in high-resourced lan-088

guages (like English) to improve performance in089

lower-resourced ones (Qin et al., 2023; Huang et al.,090

2023; Singh et al., 2024; Wang et al., 2025). Sim-091

ilarly motivated, PLUG (Zhang et al., 2024) fine-092

tunes an LLM for this cross-lingual process: it first093

answers a non-English question by reasoning in094

English, then translates the response to the target095

language. Other extensions to this cross-lingual096

prompting paradigm have also emerged, such as097

X-InSTA (Tanwar et al., 2023) which uses a seman-098

tic encoder to select relevant cross-lingual exam-099

ples, while SITR (Li et al., 2024b) employs self-100

reflection and iterative refinement to improve cross-101

lingual summarization. However, no prior study102

has approached cross-lingual open-ended genera-103

tion as the primary training objective.104

Synthetic Data Explorations Previous studies105

on the creation of synthetic data for post-training106

LLMs have mostly been limited to English. Self-107

Instruct (Wang et al., 2023a) and Unnatural Instruc-108

tions (Honovich et al., 2023) were among the first109

to show how LLMs could be used to generate in-110

structions from seed data. Later efforts have fo-111

cused on generating diversified and skill-specific112

synthetic data. Tülu 3 (Lambert et al., 2024), for113

instance, used persona-driven prompting to yield114

diverse synthetic instructions (Ge et al., 2024),115

while Llama 3 (Dubey et al., 2024) leveraged skill- 116

specific experts as teacher models to generate data 117

for coding, math, multilinguality, etc. To enable 118

multilingual support, MT is often used to extend 119

English resources to other languages (Muennighoff 120

et al., 2023; Lai et al., 2023; Ranaldi and Pucci, 121

2023; Chen et al., 2024). Given English resources 122

are often model outputs themselves (eg. of Chat- 123

GPT), training on translations of these can limit 124

models’ exposure to diversity. 125

Reverse Instruction There is a subset of data 126

synthesis approaches called ‘reverse instruction’ 127

methods, which propose to generate instructions 128

from seed data and then use the original seed data 129

as responses to these instructions. Our work fol- 130

lows this trend of approaches. Initial works in this 131

space (Li et al., 2023a; Wang et al., 2023b) pre- 132

sented a two-step procedure which can be done 133

iteratively: 1) fine-tuning a model to perform in- 134

struction generation, followed by 2) heuristic-based 135

filtering to keep high-quality synthetic data. Later, 136

Chen et al. (2023) proposed “instruction wrap- 137

ping” to refine response quality before fine-tuning 138

the reverse instruction model. LongForm (Kök- 139

sal et al., 2023) bypassed the fine-tuning step and 140

leveraged a strong “teacher” LLM (InstructGPT) to 141

generate such instructions directly, yielding signifi- 142

cant improvements in English text generation tasks. 143

MURI (Köksal et al., 2024) and X-Instruction (Li 144

et al., 2024a) extend LongForm to multilingual 145

generation. The former back-translates to English, 146

generates reverse instructions, and then forward- 147

translates to low-resource languages. The latter 148

bypasses back-translation to English and queries 149
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the teacher LLM in the low-resource language di-150

rectly, potentially exposing the synthetic data to151

quality issues. The focus of these works is on im-152

proving ‘monolingual’ generation performance, i.e.153

where query and response are in the same (non-154

English) language. Finally, Iyer et al. (2024a) and155

Iyer et al. (2024b) use similar strategies to create156

low-resource cross-lingual data for boosting MT157

performance of LLMs.158

Unlike these previous works, our primary goal159

is to contribute data resources for cross-lingual160

open-ended generation, which includes a syn-161

thetic dataset where the instruction and response162

are in different languages, as well as a cross-lingual163

evaluation benchmark.1 Our experiments (see Ta-164

ble 9) show that it is of much higher quality than the165

closest prior work, X-Instruction (Li et al., 2024a).166

We intend to release the XL-Instruct dataset un-167

der permissive open source license.168

3 XL-AlpacaEval: A Cross-Lingual169

Evaluation Benchmark170

Dataset To evaluate cross-lingual open-ended171

generation, we create the XL-AlpacaEval bench-172

mark, which is adapted from AlpacaEval v1 (Li173

et al., 2023b). AlpacaEval contains 805 multi-174

domain prompts sampled from various test sets175

(Dubois et al., 2024), including OpenAssistant176

(Köpf et al., 2024), Koala (Geng et al., 2023), Vi-177

cuna (Chiang et al., 2023), Self-Instruct (Wang178

et al., 2023a) and Anthropic’s Helpfulness test set179

(Bai et al., 2022). Evaluation is carried out through180

the LLM-as-a-judge approach (Zheng et al., 2023),181

wherein an evaluator LLM is used to estimate how182

often a model output would be preferred by humans183

over a baseline reference.184

To create XL-AlpacaEval, we first manually ex-185

amine the AlpacaEval dataset and filter out prompts186

that are tailored towards eliciting responses in En-187

glish. For example, questions about correcting188

grammar in an English sentence cannot be an-189

swered cross-lingually (refer Section A.1.1 for a de-190

tailed justification and a list of excluded prompts).191

The filtered test set consists of 797 prompts. Next,192

we add cross-lingual generation instructions (such193

as “Answer in lang language") to each of these194

prompts, randomly sampling them from a list of195

templates (refer Section A.1.2) and create an eval-196

uation set for 8 languages: 2 High-Resource EU197

1To the best of our knowledge, we are the first to propose
a cross-lingual open-ended generation benchmark, and our
synthetic training dataset is among the few publicly available.

including German (deu) and Portuguese (por), 2 198

Medium-Resource EU including Hungarian (hun) 199

and Lithuanian (lit), 2 Low-Resource EU in- 200

cluding Irish (gle) and Maltese (mlt), and 2 non- 201

EU languages including Chinese (zho), and Hindi 202

(hin). We focus on the En-X direction in this work, 203

as generating in non-English is usually more chal- 204

lenging and it might also be the more common 205

use case, given the prevalence of English content 206

online. It should be straightforward to extend our 207

benchmark to other languages and pairs—one sim- 208

ply needs to run a script to append the cross-lingual 209

templated instructions to our filtered test set. 210

Evaluation While the original implementation 211

used GPT-4 Turbo as both reference and evaluator 212

models, we use GPT-4o Mini for reference and 213

GPT-4o as the judge, given the SOTA multilingual 214

capabilities of the GPT-4o models. Our choice 215

of using GPT-4o Mini as the reference model is 216

motivated by two reasons: i) we experiment with 217

~7B-9B LLMs in this work, making the Mini model 218

a suitable baseline; and ii) using different reference 219

and evaluator models, with the more capable one 220

assigned the role of the latter, should mitigate self- 221

preference bias of models (Wataoka et al., 2024). 222

Finally, GPT-4o has also been shown to obtain 223

SOTA pairwise correlations with human ratings in 224

multilingual chat scenarios (Gureja et al., 2024; 225

Son et al., 2024) — making it suitable for our task. 226

227

Models To evaluate off-the-shelf cross-lingual ca- 228

pabilities of current multilingual LLMs, we bench- 229

mark several strong open-weight models in the 7B- 230

9B parameters range: Aya Expanse 8B (Dang et al., 231

2024), Llama 3.1 8B Instruct (Dubey et al., 2024), 232

Gemma 2 9B Instruct (Team et al., 2024), Qwen 2.5 233

7B Instruct (Yang et al., 2024), EuroLLM 9B In- 234

struct (Martins et al., 2024), Aya 23 8B (Aryabumi 235

et al., 2024) and Salamandra 7B Instruct (Gonzalez- 236

Agirre et al., 2025). Inference of all models in this 237

work is performed using the AlpacaEval repository 238

(Li et al., 2023b), with the default decoding set- 239

tings, i.e. temperature is 0.7, maximum tokens are 240

set to 2048, and all models are loaded in bfloat16. 241

Results (Zero-Shot) We show our benchmark 242

scores in Table 1. Aya Expanse leads the table, 243

achieving a 60% win rate against GPT-4o Mini 244

for the four X-AlpacaEval languages it supports 245

(por, deu, zho, hin). While it was trained on sig- 246

nificant synthetic data using multilingual experts 247

3



Model Avg
High-Res EU Med-Res EU Low-Res EU Non-EU

por deu hun lit gle mlt zho hin

Salamandra 7B Instruct 6.44 8.64 8.27 5.08 9.51 5.63 4.95 5.24 4.23
Aya 23 8B 8.85 17.04 15.04 2.07 2.22 2.45 1.92 9.46 20.57
EuroLLM 9B Instruct 12.70 18.94 16.49 8.66 16.57 9.37 8.51 14.82 8.23
Qwen 2.5 7B Instruct 16.73 30.88 16.35 6.82 14.68 7.17 3.69 44.63 9.59
Gemma 2 9B IT 23.29 35.42 32.08 19.80 27.28 10.09 10.03 28.12 23.50
Llama 3.1 8B Instruct 24.36 40.28 35.72 23.07 20.74 13.20 8.47 31.21 22.22
Aya Expanse 8B 35.67 62.75 60.27 8.62 19.54 10.43 9.51 57.22 56.99

Table 1: Win rates against GPT-4o (Mini) on XL-AlpacaEval, as judged by GPT-4o. Languages are denoted by
their ISO 639-3 codes.

Model Avg por deu hun lit gle mlt zho hin

Salamandra 7B Instruct 4.45 3.32 2.47 2.16 3.71 7.49 8.00 6.09 2.37
Aya 23 8B 1.28 1.12 -1.78 -8.62 4.58 4.52 11.86 3.11 -4.59
EuroLLM 9B Instruct 5.26 -1.57 -0.83 5.50 5.14 18.66 6.83 11.85 -3.54
Qwen 2.5 7B Instruct -1.25 -20.01 2.92 1.59 2.91 3.62 4.24 3.80 -9.08
Gemma 2 9B IT -4.73 -11.00 -12.66 -4.10 -2.58 2.67 -0.37 6.54 -16.37
Llama 3.1 8B Instruct -10.55 -23.84 -18.01 -7.96 -8.14 -1.75 -2.69 -0.08 -21.92
Aya Expanse 8B -20.53 -39.60 -39.25 -36.13 -0.51 -1.18 -2.50 -1.78 -43.29

Table 2: Performance changes on using Reason-then-Translate: scores represent differences against win rates from
Table 1. Strong positive improvements are shaded.

(Dang et al., 2024), it remains unclear whether248

its superiority stems from explicit cross-lingual249

tuning or implicit transfer. For other languages,250

Llama 3.1 and Gemma 2 yield comparable win251

rates ranging between 10% and 30%. We make252

two critical observations here. Firstly, except for253

Aya Expanse, most open LLMs trail significantly254

behind GPT-4o-Mini in cross-lingual generation,255

leaving much room for improvement. Secondly,256

the performance strongly correlates with the re-257

sourcefulness of the language. While Aya Expanse,258

Llama 3.1, and Gemma achieve win rates of 40%259

or higher for high-resource languages like por,260

deu and zho, performance drops to 20-30% for261

medium-resourced languages (hun, lit, hin) and262

10% or less for lower-resourced languages like gle263

and mlt. This underscores the need for scalable264

pipelines for creating high-quality synthetic data265

for lower-resourced languages, in order to achieve266

more consistent model performance (see Table 6).267

Baseline: Reason-then-Translate Previous268

works have proposed prompting LLMs to reason269

first in a high-resource language (e.g. English) and270

then translating into the target language (Qin et al.,271

2023; Huang et al., 2023; Wang et al., 2025). We272

call this approach ‘reason-then-translate’ and re-273

port results in Table 2. The outcomes are mixed:274

stronger multilingual models like Aya Expanse,275

Llama, and Gemma suffer significant performance276

drops. Manual inspection reveals these 7B mod- 277

els occasionally produce empty outputs, likely due 278

to difficulty consistently following complex multi- 279

step instructions — which aligns with prior studies 280

having reported successful results with only larger 281

(~70B) models. In contrast, weaker LLMs like 282

EuroLLM and Salamandra, fine-tuned on English 283

reasoning and MT data, can leverage this two-step 284

approach to yield some gains over their poor initial 285

scores. Overall, these results show that inducing 286

cross-lingual capabilities in standard multilingual 287

LLMs is challenging, and may not be resolved 288

through prompting strategies alone. 289

4 The XL-Instruct Pipeline 290

To address this gap, we introduce the XL-Instruct 291

pipeline (illustrated in Figure 1), designed to create 292

cross-lingual synthetic instructions from a given 293

seed corpus. At this point, we highlight two impor- 294

tant considerations. First, unlike related work (Li 295

et al., 2024a), we seed from English data instead of 296

using the target language corpora directly. Given 297

teacher LLMs are more proficient in English than 298

in a low-resource language, we hypothesize that 299

more high-quality, yet diverse, synthetic data could 300

be generated in English. MT is employed only in 301

the final stages, thereby minimizing noise propaga- 302

tion. Second, we exclusively utilize open-weight 303

models with permissible licenses to generate syn- 304

4



thetic data, aligning with our objective of releasing305

a fully public open-source dataset.306

We outline the four stages of the XL-Instruct307

pipeline in detail below:308

1. Stage 1: Reverse Instructions Given a pas-309

sage from our seed data, we ask a teacher310

LLM to generate an instruction for which this311

passage would be a valid response.312

2. Stage 2: Refinement: Then, we ask the313

teacher to reword the question and response314

pairs to follow four manually defined criteria.315

3. Stage 3: Response Translation Next, we316

translate the refined response to the target lan-317

guage, using one or more translation LLMs.318

4. Stage 4: Filtering Finally, to ensure we use319

the highest quality targets, we use MT Quality320

Estimation (QE) models to filter the dataset321

for the best translations.322

We conduct Supervised Fine-Tuning (SFT) on this323

synthetic dataset. We detail the minutiae of each324

stage below.325

4.1 Stage 1: Question Generation326

First, we sample an English passage from our seed327

corpus, CulturaX (Nguyen et al., 2024). Then, we328

ask a teacher LLM (Qwen 2.5 72B (Yang et al.,329

2024)) to produce an instruction for which the sam-330

pled sentence would be a valid response. Prompt-331

ing in English allows us to leverage the teacher332

model directly without requiring the additional fine-333

tuning employed previously (Li et al., 2024a). This334

stage thus yields a synthetic English instruction,335

paired with the English seed passage as a response.336

4.2 Stage 2: Refinement337

Next, inspired by Self-Refine (Madaan et al., 2023),338

we use the teacher LLM (again, Qwen 2.5 72B) to339

refine the question-response pair further. Based340

on the most commonly occurring errors observed341

from manual inspection, we define four goals for342

the refinement process:343

1. Question Self-Sufficiency: The question344

should be clear and unambiguous, and should345

not require any additional information or con-346

text to produce the given response.347

2. Response Naturalness: The response should348

be ‘natural-sounding’ as an LLM output — in349

terms of fluency, neutrality objectivity, and 350

consistency with the tone and style of LLM- 351

generated responses. 352

3. Response Precision: The response should 353

be topically relevant, factually accurate, and 354

should directly answer the question. This can 355

be thought of as analogous to precision since 356

it tries to assess how much of the information 357

contained in the response is relevant, neces- 358

sary, and true. 359

4. Response Informativeness: The response 360

should be informative and helpful, and must 361

contain enough justification and explanation 362

to make it useful to an end user. This is similar 363

to recall, as it evaluates how much of the rele- 364

vant and useful information for the response 365

is actually provided. 366

We provide all four criteria and their definitions 367

in a prompt and ask the teacher to refine the (ques- 368

tion, response) pair. We also instruct the model to 369

ensure the reworded response is grounded in the 370

original one, and request it to not add any of its own 371

knowledge — in order to avoid excessive teacher 372

distillation and to ensure our targets are grounded 373

in the seed data we use. 374

4.3 Stage 3: Response Translation 375

Now, we direct our focus towards converting the 376

English question-response pair to a cross-lingual 377

En-X one. Creating the cross-lingual instruction it- 378

self is easy — we simply add a prompt to “Respond 379

in {lang}” where {lang} is the target language of 380

interest. To create the target, the English response 381

must be machine-translated into the target language. 382

Since document-level MT by open LLMs is cur- 383

rently unreliable due to limited exploration, scarce 384

datasets, and hallucination risks, we use sentence- 385

level translation instead. We sentence-split using 386

Segment Any Text (Frohmann et al., 2024) and 387

generate translations in one of two ways: 388

1. Naive: In the vanilla case, we simply prompt 389

an LLM for the translation. 390

2. Best-of-k: We obtain k translations from k 391

different LLMs for each sentence, and choose 392

the one with the best QE score. 393

For QE, we use the WMT’23 CometKiwi-XL 394

model (Rei et al., 2023), which obtained state-of- 395

the-art (SOTA) scores in the WMT 2023 QE Shared 396
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(a) Base LLMs (b) Instruction-Tuned LLMs

Figure 2: Performance on XL-AlpacaEval after SFT with XL-Instruct data of varying sizes. Y-axis scores reflect
win rates against GPT-4o-Mini, averaged across 8 languages, with GPT-4o as the judge. X-axis instruction counts
are shown on a log scale.

Task (Blain et al., 2023). For MT, we use EuroLLM397

9B Instruct (Martins et al., 2024) in the ‘naive’398

case due to its strong MT capabilities, while in the399

‘Best-of-k’ setting, we set k = 3 and sample among400

EuroLLM 9B Instruct, Mistral Small 24B Instruct401

(Mistral AI Team, 2025), and Gemma2 27B In-402

struct (Team et al., 2024). Finally, to create the403

translated response, we substitute each sentence in404

the original response with its sentence-level trans-405

lation. This helps us retain formatting (like para-406

graph separators, bullet points, etc.) that is critical407

to response quality.408

4.4 Stage 4: Filtering409

Finally, to ensure that we select high-quality targets410

during fine-tuning, we compute sentence-level QE411

scores using the WMT’23 CometKiwi-XL model,412

by comparing each source sentence in a given re-413

sponse and its translation. We average these QE414

scores across the entire passage to obtain the final415

passage-level score. Then, we sort all responses416

in descending order and filter the last 20% of the417

dataset – creating a final dataset of about 32K in-418

structions. We provide the prompts used in each419

stage at https://tinyurl.com/xli-prompts (to420

be uploaded to GitHub on acceptance)421

5 Experiments on XL-AlpacaEval:422

Boosting Cross-Lingual Generation423

Models We conduct SFT of two base (EuroLLM424

9B, Qwen2.5 7B) and three instruction-tuned (Eu-425

roLLM 9B Instruct, Qwen2.5 7B Instruct and Aya426

Expanse 8B) models. We choose EuroLLM and427

Qwen since they relatively underperform on the 428

XL-AlpacaEval benchmark (Table 1), leaving sig- 429

nificant scope for improvement. We also experi- 430

ment with Aya Expanse since it leads the bench- 431

mark, and we are interested in seeing how much 432

further it could be improved. Unfortunately, Aya 433

Expanse does not have a base model released, so 434

we are unable to experiment with it. 435

Experimental Setting We fine-tune all models 436

for 1 epoch using low-rank adaptation (LoRA, Hu 437

et al., 2022) with rank 8 matrices applied to query 438

and value projections. We also tune the input and 439

output embeddings. Training used a cosine learn- 440

ing rate scheduler with a peak learning rate of 1e-4 441

and 3% warmup steps. We employed bf16 mixed- 442

precision training with batch size 8, and fix the 443

random seed as 1 for reproducibility. All experi- 444

ments were run on 4 Nvidia GeForce RTX 3090 445

GPUs, each with 24 GB VRAM. 446

Main Results In Figure 2, we report win rates 447

on XL-AlpacaEval on fine-tuning with various 448

amounts of XL-Instruct data. We observe that for 449

base LLMs, performance steadily improves with 450

data scale. Qwen advances from a win rate of 5.8% 451

to 13.89% against GPT-4o Mini, while EuroLLM 452

achieves an even larger boost, going from 7.36% 453

to as high as 21.89% on SFT with 8K instructions. 454

We report language-specific scores in Table 6 and 455

observe that while there are consistent gains for 456

all languages, the largest gains are noted for the 457

ones an LLM is pre-trained on. Since EuroLLM 458

includes all 8 XL-AlpacaEval languages in its pre- 459
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training, it observes large gains per language, lead-460

ing to a much better overall average score. Qwen,461

which chiefly supports high-resource languages462

like Chinese, Portuguese and German, gains the463

most for these pairs but shows relatively smaller464

improvements for others. This suggests that while465

post-training with XL-Instruct can yield stable466

improvements across multiple languages, multilin-467

gual pre-training is crucial for best performance.468

We also observe consistent improvements when469

fine-tuning instruction-tuned LLMs (Figure 2b).470

Unlike base LLMs, the saturation occurs sooner471

here—at around 2K instructions for EuroLLM-9B-472

Instruct and, only 32 instructions for the Qwen and473

Aya Expanse models! This is likely because the474

latter two models have also undergone Preference475

Optimization, and task-specific SFT at scale might476

lead to overfitting and deteriorated performance.477

EuroLLM, on the other hand, has only undergone478

SFT, and can therefore be trained for longer. Here479

too, one observes consistent and major gains across480

all languages (Table 6). These results are particu-481

larly noteworthy given the low training costs – low-482

rank fine-tuning with a few thousand instructions.483

Moreover, with only 32 examples, Aya Expanse484

achieves a win rate boost from ~57% to ∼ 65%485

for its supported languages of Portuguese, German,486

Hindi, and Chinese (Table 6). Lastly, we also show487

in the Appendix (Table 7) how XL-Instruct can488

also boost zero-shot cross-lingual performance, i.e.489

even for languages not included in SFT.490

Fine-Grained Evaluation Beyond win rates that491

focus solely on pairwise comparisons, we are also492

interested in evaluating how well the produced493

cross-lingual generations improve on an absolute494

scale, on human-desired criteria. To achieve this,495

we take inspiration from recent works that define496

customised, task-specific metrics and use LLM-as-497

a-Judge for producing scores on a Likert scale –498

achieving significant correlations with human rat-499

ings on evaluation of tasks like summarization (Liu500

et al., 2023), retrieval (Upadhyay et al., 2024), story501

generation (Chiang and Lee, 2023), Machine Trans-502

lation (Kocmi and Federmann, 2023b,a) and open-503

ended generation (Kim et al., 2023). In particular,504

Kim et al. (2023) showed that using clearly defined505

rubrics can result in Spearman correlations up to506

0.87 with human preferences for open-ended gener-507

ation. Inspired by this, we propose four criteria per-508

tinent to the task of cross-lingual generation: Ob-509

jectivity, Naturalness, Informativeness, and Preci-510

Figure 3: GPT-4o scores on fine-grained quality metrics
(1–5 scale) are shown. For EuroLLM 9B XL-Instruct,
we select the best model from Figure 2a. Despite being
LoRA fine-tuned on only 8K pairs, it slightly outper-
forms EuroLLM 9B Instruct, which was fully fine-tuned
on 2M examples. Scores are also tabulated in Table 8.

sion. We define detailed rubrics for each metric and 511

provide well-defined criteria for mapping output 512

quality to scores on a scale of 1-5. We include these 513

rubrics in the context of a prompt, and ask GPT- 514

4o to score cross-lingual generations of EuroLLM 515

9B, EuroLLM 9B Instruct and EuroLLM 9B XL- 516

Instruct (the best model from Figure 2a, which 517

is fine-tuned with LoRA on 8K examples). We 518

provide detailed evaluation prompts and rubrics at 519

https://tinyurl.com/xl-gen-eval (to be up- 520

loaded to GitHub on acceptance). 521

We show our results in Figure 3, which provides 522

the macro-averaged scores per criterion and model. 523

As expected, the raw EuroLLM 9B base model 524

achieves the worst scores on all metrics, with the 525

EuroLLM-9B-Instruct model performing substan- 526

tially better. We note that the XL-Instruct model 527

performs comparably to or marginally better than 528

EuroLLM-9B-Instruct. This result is particularly 529

impressive given the XL-Instruct baseline was 530

trained using LoRA fine-tuning on only 8K syn- 531

thetic samples, whereas the EuroLLM-9B-Instruct 532

was fully fine-tuned on a mix of 2M human and 533

synthetic examples. These results clearly demon- 534

strate the effectiveness and high quality of the 535

XL-Instruct dataset. 536

6 Experiments on m-AlpacaEval: 537

Exploring Zero-Shot Transfer 538

Having seen task-specific improvements, we now 539

seek to evaluate the zero-shot performance of mod- 540
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Model Avg zho deu hin hun gle lit mlt por eng

EuroLLM 9B 0.73 1.19 1.47 0.70 0.14 0.14 0.65 0.31 1.25 35.59
+XL-Instruct (best, 8K) 6.10 10.77 11.40 4.47 2.53 3.60 3.77 2.49 9.76 51.35

EuroLLM 9B Instruct 8.94 13.38 11.99 8.13 4.81 5.65 6.68 6.78 14.12 55.58
+XL-Instruct (best, 8K) 15.55 19.57 18.30 13.03 10.38 14.12 16.76 14.13 18.11 59.44

Qwen 2.5 7B 2.04 10.40 1.52 0.98 0.24 0.03 0.45 0.29 2.39 46.93
+XL-Instruct (best, 8K) 5.66 20.43 9.53 2.23 0.65 0.18 1.60 0.29 10.33 55.92

Qwen 2.5 7B Instruct 11.47 45.29 10.53 5.71 0.97 0.99 3.22 1.63 23.39 75.16
+XL-Instruct (best, 32) 18.19 52.12 31.64 8.34 5.79 1.59 5.79 1.83 38.44 76.72

Aya Expanse 8B 29.90 58.21 56.91 56.68 1.11 1.02 3.04 2.94 59.29 76.26
+XL-Instruct (best, 32) 32.31 63.24 59.53 63.22 2.21 0.78 5.85 3.66 60.01 77.70

Table 3: Win Rates of LLMs and their XL-Instruct fine-tuned counterparts on m-AlpacaEval against GPT-4o-Mini,
with GPT-4o as the judge. For each model, we choose the best cross-lingual performing baseline from Figure 2 and
evaluate transfer on m-AlpacaEval. Consistent improvement across all models and pairs shows strong zero-shot
transfer from cross-lingual tuning, for both multilingual and English-only generation. Best scores are bolded and
cells are highlighted proportionate to performance gain.

els fine-tuned with XL-Instruct on multilingual541

and English open-ended generation, since these are542

arguably the more common use cases of LLMs. For543

this purpose, we first construct the m-AlpacaEval544

benchmark by machine translating the AlpacaEval545

test set into our 8 languages of interest, follow-546

ing related efforts to create m-ArenaHard (Dang547

et al., 2024). We use GPT-4o for translation of548

the prompts. The evaluation setup is similar to549

XL-AlpacaEval, wherein GPT-4o-Mini is the ref-550

erence model and GPT-4o is the judge.551

We show our results in Table 3, for the base552

and instruct LLMs from Figure 2, along with their553

best-performing XL-Instruct-tuned counterparts.554

We observe significant and consistent zero-shot555

transfer across all models and languages. For mul-556

tilingual generation, the gains are strongest for the557

languages a model is pretrained on, similar to our558

observations for cross-lingual generation. This is559

particularly evident in the Qwen and Aya models.560

EuroLLM Instruct, on the other hand, achieves561

stable performances across all languages and rela-562

tively strongest win rates for the lower-resourced563

languages. Interestingly, we also note consistent564

gains in English-only generation, despite there be-565

ing no English responses on the target side! This566

suggests that all of these models, trained heavily567

on English, can learn preferred response structure568

and formatting from cross-lingual tuning. These569

results are quite encouraging, since they suggest570

cross-lingual fine-tuning need not come at the cost571

of standard ‘monolingual’ generation performance572

– on the contrary, it can result in further boosts.573

7 Conclusion 574

In this work, we propose data resources for advanc- 575

ing cross-lingual open-ended generation—loosely 576

defined as a task in which the query and the desired 577

(open-ended) response are in different languages. 578

This can be viewed as a distinct yet crucial subtask 579

of multilingual generation. While cross-lingual 580

generation may also include more complex sce- 581

narios, such as providing context in one language 582

while the query and response are in another (or 583

even multiple) languages, we focus here on the 584

simpler scenario: queries posed in English with 585

responses required in one of eight target languages 586

– which includes high, medium, and low-resource 587

EU and non-EU languages. 588

With this goal in mind, we make three key con- 589

tributions. First, we introduce the XL-AlpacaEval 590

benchmark to evaluate the current state of open 591

LLMs, and report poor performances and signifi- 592

cant gaps against GPT-4o-Mini. Second, we pro- 593

pose the XL-Instruct technique, and show that 594

this synthetic data can substantially boost cross- 595

lingual performance, both in terms of win rates 596

and fine-grained quality metrics. Third, we show 597

that it exhibits strong zero-shot transfer to mono- 598

lingual generation, both in English and beyond. 599

Based on these results, we strongly encourage re- 600

searchers to post-train their multilingual LLMs 601

with XL-Instruct data, and shall publicly release 602

our versions of XL-Instruct and XL-AlpacaEval 603

datasets to support this. 604
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8 Limitations605

There has been some concern in the literature that606

iterative training on synthetic data could even-607

tually lead to model collapse (Shumailov et al.,608

2024). Like any other synthetic data technique,609

XL-Instruct could also share similar risks, es-610

pecially since its seed data is sourced from the611

Web. We conduct fine-grained evaluation along612

various quality metrics, including Objectivity and613

Naturalness, to ensure that our fine-tuned models614

continue producing neutral, unbiased, and natural-615

sounding outputs and observe performance compa-616

rable to a fully instruction-tuned model fine-tuned617

on human-curated data – which helps alleviate such618

concerns. We also note that later works have shown619

that mixing synthetic with human-generated data620

could avoid model collapse (Seddik et al., 2024;621

Gerstgrasser et al., 2024). While we have been622

unable to explore the interaction of XL-Instruct623

with data from other tasks and sources in the scope624

of this work, we feel this would be an interesting625

direction of future research to both guard against626

collapse and to study inter-task transfer.627
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A Data996

A.1 The XL-AlpacaEval Benchmark997

Here we provide some additional details on the998

creation of the XL-AlpacaEval benchmark, which999

has 797 cross-lingual prompts in total, and cur-1000

rently supports 11 languages - the 8 languages used1001

for the primary experiments in this work (Chinese,1002

German, Hindi, Hungarian, Irish, Lithuanian, Mal-1003

tese and Portuguese) and 3 additional languages1004

(French, Finnish and Turkish) which we use for1005

zero-shot evaluation in future sections. It is trivial1006

to extend it to other languages – one simply has1007

to run a script to append cross-lingual generation1008

instructions (Section A.1.2) to our filtered AlpacaE-1009

val test set (Section A.1.1) and such extensions are1010

being planned as a part of future work.1011

A.1.1 Manual Verification1012

Before creating our cross-lingual benchmark, we1013

conduct a rigorous stage of manual verification to1014

ensure that the prompts are suitable for answering1015

cross-lingually. In Table 4, we show the prompts1016

we removed from AlpacaEval that were too cultur-1017

ally specific (for instance, prompt 183) or tailored1018

towards eliciting an English response (prompts 3501019

and 714). In the latter, we felt mandating a non-1020

English response might make evaluating a “cor-1021

rect" response challenging. In other cases where1022

the prompt simply requested a response in En-1023

glish, we replaced with a generic templated vari-1024

able {language} for downstream substitution with1025

the name of the desired target language. This leaves1026

us with a total of 797 prompts. It is important to1027

note that as far as possible, we tried to keep com-1028

plex multi-step, multilingual prompts in our evalu-1029

ation set, and only removed cases that were clearly1030

invalid – in keeping with the goal of this work to1031

build robust cross-lingual models.1032

A.1.2 Generation prompts1033

Next, we randomly sample prompts from a list of1034

cross-lingual generation instructions (given in Ta-1035

ble 5), and append it to each prompt in the filtered1036

test set from the previous stage. To add further di-1037

versity to the instructions in the benchmark, we re-1038

move the word “language" from the prompts given1039

in Table 5 – thus converting “Answer in German1040

language" to “Answer in German". This leads to the1041

creation of the final XL-AlpacaEval benchmark.1042

A.2 License 1043

The XL-AlpacaEval dataset, which is derived from 1044

the AlpacaEval dataset, is released under a CC-by- 1045

NC 4.0 license following its predecessor. This 1046

dataset is thus primarily intended for use in re- 1047

search contexts. In contrast, the XL-Instruct 1048

dataset, which is provided as a training dataset, 1049

is derived from the CulturaX corpus – which in 1050

turn sources from the mC4 (Xue et al., 2021) and 1051

OSCAR (Ortiz Suárez et al., 2020). mC4 is re- 1052

leased under an ODC-BY license, and OSCAR 1053

is released under CC0 no rights reserved. Hence, 1054

XL-Instruct can be used in both commercial and 1055

research contexts, as long as the corresponding li- 1056

censes are respected. 1057

B Experiments 1058

B.1 XL-AlpacaEval Results 1059

Full Results In Table 6, we show the complete 1060

language-wise results for each base and instruct 1061

model we tuned on varying sizes of XL-Instruct 1062

data. Models like EuroLLM and Qwen continue 1063

improving until 8K-32K instructions, with gains 1064

diminishing in the last 24K instructions. This is 1065

likely because we sort the instructions in order 1066

of translation quality, and sample them accord- 1067

ingly, reducing the gains. It is possible that im- 1068

proving the translation quality further could result 1069

in larger gains. For preference-optimized (PO’ed) 1070

instruction-tuned models, performance saturates 1071

at 32 instructions, and 2K instructions with non- 1072

PO’ed models like EuroLLM 9B Instruct. The 1073

largest gains across all models are consistently for 1074

the languages included during pretraining – for in- 1075

stance, Qwen 7B improves on Chinese win rates 1076

from 12.62 to 34.29 and in Portuguese from 9.82 1077

to 27.13, suggesting the criticality of this stage in 1078

building multilingual LLMs. 1079

Zero-Shot Results We show in Table 7 evalua- 1080

tions on zero-shot performance after fine-tuning 1081

with XL-Instruct. We choose French, Finnish, 1082

and Turkish, 3 languages the EuroLLM model is 1083

pre-trained on, and observe huge gains in win rates, 1084

largely outperforming even the EuroLLM 9B In- 1085

struct model. This shows that even if done only 1086

for a few languages, XL-Instruct can still result 1087

in significant transfer that improves performance 1088

in others. We hypothesize that this is likely be- 1089

cause the model is able to learn formatting, re- 1090

sponse structure, etc. from this process, which 1091
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Prompt ID Prompt Text

183 Write a story about Anakin Skywalker encountering a Jedi who speaks and acts like a 1920s British
aristocrat.

200 Write "Test"
350 I’m an English speaker trying to learn Japanese Kanji using mnemonics. Mnemonics for Kanji are

created from the primitives that make them up. The Kanji for Tax has the primitives wheat and devil,
so an example would be, "Taxes are like the devil taking away your hard earned wheat". Can you
create a mnemonic for the Kanji meaning Wish that has the primitives clock and heart?

458 Give me a list of 5 words where the letters of the words are in alphabetical order. One example:
"doors". "d" comes before "o", "o" comes before "r", and "r" comes before "s".

476 Rewrite the given text and correct grammar, spelling, and punctuation errors. If you’d told me year
ago that today I would finish a marathon, I would of laughed. Your support had a huge affect on me!

495 During writing, we added an asterisk for the word that did not come to mind. You will need to
provide several examples to demonstrate all the words that can be used in the sentence instead of the
asterisk.

635 Correct the transcription of an excerpt containing errors. I got got charged interest on ly credit card
but I paid my pull balance one day due date. I not missed a pavement year yet. Man you reverse the
interest charge?

662 You should capitalize the sentence according to the guide. Guide: Every other letter alternates
between lower case and upper case. Sentence: A giant spider blocks your path.

663 Create alliterations by finding synonyms for words in the given sentence. David wears a hat everyday.
714 Rewrite the text and correct the spelling errors. It solves problems comon and uniqe to every team.

Table 4: Culturally specific prompts removed from the AlpacaEval dataset.

Prompts

Answer in {} language Output an answer in {} language
Generate your answer in {} language Respond in {} language
Produce an answer in {} language Please write in {} language

Table 5: Cross-Lingual Generation Instructions

also supports the boosts in English generation one1092

observes in Table 3.1093

Fine-grained Evaluation Finally, we also tabu-1094

late the macro-averaged GPT-4o scorings on Preci-1095

sion, Informativeness, Naturalness, and Objectivity1096

metrics (evaluation prompts and rubrics available at1097

https://tinyurl.com/xl-gen-eval). As noted1098

previously, the EuroLLM 9B model performs the1099

worst, but the XL-Instruct model performs com-1100

parably or slightly better than EuroLLM 9B In-1101

struct, indicating the efficacy of our data generation1102

method.1103

B.2 Comparison with X-Instruction1104

We also compare the efficacy of our method1105

with the most similar work to ours and the only1106

cross-lingual open-ended generation dataset we1107

are aware of: X-Instruction (Li et al., 2024a). In1108

this work, the authors prompt a teacher LLM for1109

reverse instructions directly in the low-resource1110

language. Given this initially results in in- 1111

structions of much poorer quality due to poor 1112

teacher capabilites, they also conduct iterative scor- 1113

ing and refinement to improve quality, achiev- 1114

ing impressive results. They also release their 1115

dataset publicly at https://huggingface.co/ 1116

datasets/James-WYang/X-Instruction. 1117

We use the Hindi, Finnish, and Turkish splits of 1118

this dataset since these are supported by EuroLLM 1119

and are also available in X-Instruction. We also 1120

generate XL-Instruct data in these languages, by 1121

redoing the XL-Instruct pipeline (Section 4) from 1122

Stage 3 (Response Translation) for these languages. 1123

We LoRA fine-tune EuroLLM 9B on various X- 1124

Instruction and XL-Instruct datasets. For the for- 1125

mer, we use both the entire 1M sized dataset avail- 1126

able for these languages (in total), and a 40K in- 1127

structions subset which is more comparable to our 1128

XL-Instruct baselines. For XL-Instruct, we train 1129

two baselines – one trained on ‘naive’ translations 1130
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Model Avg zho deu hin hun gle lit mlt por

EuroLLM 9B 7.36 8.97 9.96 4.49 4.13 6.09 9.94 4.66 10.61
+2K instructions 18.63 18.77 23.65 13.22 13.70 16.03 25.48 14.75 23.47
+8K instructions 21.54 20.98 26.76 16.26 17.27 20.99 28.52 15.72 25.81
+32K instructions 20.54 21.24 24.07 15.26 17.11 21.08 28.09 15.64 21.79

EuroLLM 9B Instruct 12.70 14.82 16.49 8.23 8.66 9.37 16.57 8.51 18.94
+32 instructions 20.84 23.52 22.96 13.10 17.37 17.10 25.61 21.30 25.79
+256 instructions 17.83 21.13 21.73 12.90 14.05 13.25 21.13 15.32 23.11
+2K instructions 21.18 23.62 24.39 14.49 16.63 20.17 27.87 18.02 24.22
+8K instructions 19.75 23.10 22.65 14.50 14.97 20.55 26.92 15.34 19.96

Qwen 2.5 7B 5.80 12.62 6.36 3.40 2.73 4.50 4.33 2.62 9.82
+2K instructions 13.85 33.64 18.37 6.67 6.50 5.00 10.73 3.63 26.22
+8K instructions 13.91 34.22 19.80 6.61 6.28 3.92 10.22 3.07 27.13
+32K instructions 13.94 34.29 18.88 6.88 5.72 5.44 10.77 3.36 26.18

Qwen 2.5 7B Instruct 16.73 44.63 16.35 9.59 6.82 7.17 14.68 3.69 30.88
+32 instructions 22.85 50.16 31.66 12.36 12.52 8.66 19.40 4.91 43.10
+256 instructions 17.00 38.04 22.45 9.46 7.85 5.39 15.86 4.02 32.92
+2K instructions 14.97 36.17 18.95 8.44 7.14 5.06 12.02 3.02 28.92
+8K instructions 15.57 42.74 18.85 8.32 6.54 4.41 11.99 3.49 28.19

Aya Expanse 8B 35.67 57.22 60.27 56.99 8.62 10.43 19.54 9.51 62.75
+32 instructions 38.61 64.08 65.07 59.76 10.71 11.72 21.57 10.70 65.28
+256 instructions 30.39 55.65 52.93 44.50 6.51 6.45 17.90 6.07 53.10
+2K instructions 25.30 41.84 46.43 37.03 6.77 4.55 15.94 3.75 46.12
+8K instructions 23.32 43.16 42.23 28.19 5.44 6.00 15.94 4.91 40.72

Table 6: Full language-wise Win Rates against GPT-4o-Mini on XL-AlpacaEval, after LoRA fine-tuning on varying
sizes of XL-Instruct data on different LLMs. GPT-4o is the judge. The best scores per model are highlighted in bold.

(ie. using only EuroLLM 9B Instruct) and another1131

using the ‘best-of-3’ method (refer to Section 4.31132

for a detailed explanation).1133

We see that both XL-Instruct baselines signif-1134

icantly outperform X-Instruction, with our best1135

model achieving a 70.68% improvement over the1136

latter – showcasing the relative superiority of our1137

pipeline. This also suggests it might be more ef-1138

fective to prompt a teacher model in English due1139

to inherently superior capabilities, and we hypothe-1140

size it might allow for greater quality and diversity1141

in responses, as well as allow for more complex1142

operations – like refinement following specifically1143

defined, custom criteria.1144

B.3 Ablations1145

Lastly, we conduct an ablation to verify the impor-1146

tance of the translation selection strategy. Given1147

the cross-lingual part of the dataset mainly comes1148

from Machine Translations, and translations can be1149

quite noisy, we experiment with 2 MT techniques,1150

‘naive’ and ‘best-of-3’ responses. We also include 1151

a ‘random’ sampling strategy, where random re- 1152

sponses are chosen for subsampling, regardless of 1153

MT quality. We fine-tune the EuroLLM 9B and 1154

EuroLLM 9B Instruct models using 8K and 32 in- 1155

structions respectively, which are respectively the 1156

optimal SFT data sizes for each model (check Fig- 1157

ure 2). 1158

For the instruct model, ‘best of 3’ introduces 1159

significant improvements over naive or random 1160

sampling strategies, taking the average win rate 1161

from 18.55 to 20.84. This is likely because at the 1162

tiny scale of 32 instructions, target response qual- 1163

ity matters hugely and significantly impacts per- 1164

formance. For EuroLLM 9B, which is fine-tuned 1165

on 8K instructions, performance still improves for 1166

most languages with the best-of-3 technique. The 1167

only cases where it drops are for the least-resourced 1168

languages like Irish and Maltese, which makes 1169

the average score much lower. It is possible the 1170
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Model Avg French Finnish Turkish

EuroLLM 9B 7.80 9.69 9.78 3.94
EuroLLM 9B Instruct 14.08 19.39 14.05 8.81
EuroLLM 9B XL-Instruct (best) 20.62 25.8 22.72 13.33

Table 7: Fine-tuning with XL-Instruct yields zero-shot boosts in cross-lingual performance. Scores represent
zero-shot win rates of various LLMs against GPT-4o-Mini, with GPT-4o as a judge. For the XL-Instruct baseline,
we use the best-performing model from Figure 2.

Model Average Precision Informativeness Naturalness Objectivity

EuroLLM 9B 2.43 2.52 2.69 2.25 2.27
EuroLLM 9B Instruct 3.56 3.68 3.80 3.54 3.23
EuroLLM 9B XL-Instruct (best) 3.60 3.63 3.88 3.64 3.24

Table 8: Performance of EuroLLM 9B models evaluated on Precision, Informativeness, Naturalness, and Objectivity,
with the average of these metrics.

CometKiwi model we use for Quality Estimation1171

is not very well-suited for such low-resource lan-1172

guages. As a result, we hypothesize that best-of-31173

might sometimes end up choosing a worse transla-1174

tion than the naive method – which uses EuroLLM,1175

a model known to have strong MT capabilities for1176

all these languages.1177

B.4 On AI assistant usage1178

AI assistants were used to aid the programming1179

and writing process in this work. The authors have1180

taken care to ensure its use was merely superficial1181

and not pivotal. For coding, it was used to cre-1182

ate helper functions for preprocessing, and resolve1183

bugs. During writing, it was used to aid in con-1184

structing LaTeX tables, plot graphs, fix grammar,1185

etc.1186
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Model Avg Finnish Hindi Turkish

EuroLLM 9B + X-Instruction (full 1M) 9.73 14.35 7.22 7.63
EuroLLM 9B + X-Instruction (40K) 10.44 13.69 8.76 8.86
EuroLLM 9B + XL-Instruct (naive, 40K) 12.06 15.3 10.9 9.98
EuroLLM 9B + XL-Instruct (best of 3, 40K) 17.82 23.15 15.8 14.52

Table 9: Performances of EuroLLM 9B models fine-tuned on X-Instruction and XL-Instruct data

Model Avg zho deu hin hun gle lit mlt por

EuroLLM 9B 7.36 8.97 9.96 4.49 4.13 6.09 9.94 4.66 10.61
+8K instructions (random) 22.69 22.66 25.71 15.59 18.45 22.40 29.52 20.50 26.72
+8K instructions (naive) 21.17 20.26 24.63 15.53 16.68 21.96 28.33 18.24 23.75
+8K instructions (best of 3) 21.54 20.98 26.76 16.26 17.27 20.99 28.52 15.72 25.81

EuroLLM 9B Instruct 12.70 14.82 16.49 8.23 8.66 9.37 16.57 8.51 18.94
+32 instructions (random) 18.49 22.21 22.69 12.70 15.18 15.35 21.87 14.12 23.79
+32 instructions (naive) 18.55 22.20 20.16 12.18 13.70 15.14 23.64 17.55 23.84
+32 instructions (best of 3) 20.84 23.52 22.96 13.10 17.37 17.10 25.61 21.30 25.79

Table 10: Ablations of the strategy for selecting response translations for the EuroLLM 9B and EuroLLM 9B
Instruct models.
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