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ABSTRACT

In recent years, there has been a significant growth in research focusing on min-
imum ℓ2 norm (ridgeless) interpolation least squares estimators. However, the
majority of these analyses have been limited to a simple regression error struc-
ture, assuming independent and identically distributed errors with zero mean and
common variance. In this paper, we explore prediction risk as well as estimation
risk under more general regression error assumptions, highlighting the benefits
of overparameterization in a finite sample. We find that including a large num-
ber of unimportant parameters relative to the sample size can effectively reduce
both risks. Notably, we establish that the estimation difficulties associated with
the variance components of both risks can be summarized through the trace of the
variance-covariance matrix of the regression errors.

1 INTRODUCTION

Recent years have witnessed a fast growing body of work that analyzes minimum ℓ2 norm (ridgeless)
interpolation least squares estimators (see, e.g., Bartlett et al., 2020; Hastie et al., 2022; Tsigler &
Bartlett, 2023, and references theirin). Researchers in this field were inspired by the ability of deep
neural networks to accurately predict noisy training data with perfect fits, a phenomenon known as
“double descent” or “benign overfitting” (e.g., Belkin et al., 2018; 2019; 2020; Zou et al., 2021;
Mei & Montanari, 2022, among many others). They discovered that to achieve this phenomenon,
overparameterization is critical: the parameter space must have a much large number of unimportant
directions compared to the sample size.

In the setting of linear regression, we have the training data {(xi, yi) ∈ Rp × R : i = 1, · · · , n},
where the outcome variable yi is generated from

yi = x⊤
i β + εi, i = 1, . . . , n,

xi is a vector of features, β is a vector of unknown parameters, and εi is a regression error. Here, n
is the sample size of the training data and p is the dimension of the parameter vector β.

To the best of our knowledge, a vast majority of the theoretical analyses have been confined to a
simple data generating process, namely, the observations are independent and identically distributed
(i.i.d.), and the regression errors have mean zero, have the common variance, and are independent
of the feature vectors. That is,

(yi, x
⊤
i )

⊤ ∼ i.i.d. with E[εi] = 0, E[ε2i ] = σ2 < ∞ and εi is independent of xi. (1)

Furthermore, the main object for the theoretical analyses has been mainly on the out-of-sample
prediction risk. That is, for the ridge or interpolation estimator β̂, the literature has focused on

E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | x1, . . . , xn

]
,

where x0 is a test observation that is identically distributed as xi but independent of the training
data. For example, Dobriban & Wager (2018); Wu & Xu (2020); Richards et al. (2021); Hastie
et al. (2022) analyzed the predictive risk of ridge(less) regression and obtained exact asymptotic
expressions under the assumption that p/n converges to some constant as both p and n go to infinity.
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Overall, they found the double descent behavior of the ridgeless least squares estimator in terms of
the prediction risk. Bartlett et al. (2020); Kobak et al. (2020); Tsigler & Bartlett (2023) characterized
the phenomenon of benign overfitting in a different setting and the two latter papers demonstrated
that the optimal value of ridge penalty can be negative.

In this paper, we depart from the aforementioned papers and ask the following research questions:

• How to analyze the prediction and estimation risks of the ridgeless least squares estimator
under general assumptions on the regression errors?

• How to characterize the risks in a finite but overparameterized sample (that is, both p and
n are fixed but p > n)?

The mean squared error of the estimator defined by E[∥β̂ − β∥2], where ∥ · ∥ is the usual Euclidean
norm, is arguably one of the most standard criteria to evaluate the quality of the estimator in statistics.
For example, in the celebrated work by James & Stein (1961), the mean squared error criterion is
used to show that the sample mean vector is not necessarily optimal even for standard normal vectors
(so-called “Stein’s paradox”). Many follow-up papers used the same criterion; e.g., Hansen (2016)
compared the mean-squared error of ordinary least squares, James–Stein, and Lasso estimators in
an underparameterized regime.

The mean squared error is intimately related to the prediction risk. Suppose that Σ := E[x0x
⊤
0 ] is

finite and positive definite. Then,

E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | x1, . . . , xn

]
= E

[
(β̂ − β)⊤Σ(β̂ − β) | x1, . . . , xn

]
.

If Σ = I (i.e., the case of isotropic features), where I is the identity matrix, the mean squared error
of the estimator is the same as the expectation of the prediction risk defined above. However, if
Σ ̸= I , the link between the two quantities is less intimate. One may regard the prediction risk
as the Σ-weighted mean squared error of the estimator; whereas E[∥β̂ − β∥2] can be viewed as an
“unweighted” version, even if Σ ̸= I . In other words, regardless of the variance-covariance struc-
ture of the feature vector, E[∥β̂ − β∥2] treats each component of β “equally.” Both Σ-weighted
and unweighted versions of the mean squared error are interesting objects to study. For example,
Dobriban & Wager (2018) called the former “predictive risk” and the latter “estimation risk” in
high-dimensional linear models; Berthier et al. (2020) called the former “generalization error” and
the latter “reconstruction error” in the context of stochastic gradient descent for the least squares
problem using the noiseless linear model. In this paper, we analyze both weighted and unweighted
mean squared errors of the ridgeless estimator under general assumptions on the data-generating
processes, not to mention anisotropic features. Furthermore, our focus is on the finite-sample anal-
ysis, that is, both p and n are fixed but p > n.

Although most of the existing papers consider the simple setting as in (1), our work is not the first
paper to consider more general regression errors in the overparameterized regime. Chinot et al.
(2022); Chinot & Lerasle (2023) analyzed minimum norm interpolation estimators as well as regu-
larized empirical risk minimizers in linear models without any conditions on the regression errors.
Specifically, Chinot & Lerasle (2023) showed that, with high probability, without assumption on the
regression errors, for the minimum norm interpolation estimator, (β̂ − β)⊤Σ(β̂ − β) is bounded
from above by

(
∥β∥2

∑
i≥c·n λi(Σ) ∨

∑n
i=1 ε

2
i

)
/n, where c is an absolute constant and λi(Σ) is

the eigenvalues of Σ in descending order. Chinot & Lerasle (2023) also obtained the bounds on the
estimation error (β̂ − β)⊤(β̂ − β). Our work is distinct and complements these papers in the sense
that we allow for a general variance-covariance matrix of the regression errors. The main motivation
of not making any assumptions on εi in Chinot et al. (2022); Chinot & Lerasle (2023) is to allow
for potentially adversarial errors. We aim to allow for a general variance-covariance matrix of the
regression errors to accommodate time series and clustered data, which are common in applications.
See, e.g., Hansen (2022) for a textbook treatment (see Chapter 14 for time series and Section 4.21
for clustered data).

The main contribution of this paper is that we provide exact finite-sample characterization of the
variance component of the prediction and estimation risks under the assumption that (i) X =
[x1, x2, · · · , xn]

⊤ is left-spherical (e.g., xi’s can be i.i.d. normal but more general); εi’s can be
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correlated and have non-identical variances; and εi’s are independent of xi’s. Specifically, the vari-
ance term can be factorized into a product between two terms: one term depends only on the the
trace of the variance-covariance matrix, say Ω, of εi’s; the other term is solely determined by the dis-
tribution of xi’s. Interestingly, we find that although Ω may contain non-zero off-diagonal elements,
only the trace of Ω matters and demonstrate our finding via numerical experiments. In addition, we
obtain exact finite-sample expression for the bias terms when the regression coefficients follow the
random-effects hypothesis (Dobriban & Wager, 2018). Our finite-sample findings offer a distinct
viewpoint on the prediction and estimation risks, contrasting with the asymptotic inverse relation-
ship (for optimally chosen ridge estimators) between the predictive and estimation risks uncovered
by Dobriban & Wager (2018). Finally, we connect our findings to the existing results on the predic-
tion risk (e.g., Hastie et al., 2022) by considering the asymptotic behavior of estimation risk.

2 THE FRAMEWORK UNDER GENERAL ASSUMPTIONS ON REGRESSION
ERRORS

We first describe the minimum ℓ2 norm (ridgeless) interpolation least squares estimator in the the
overparameterized case (p > n). Define

y := [y1, y2, · · · , yn]⊤ ∈ Rn, ε := [ε1, ε2, · · · , εn]⊤ ∈ Rn, X⊤ := [x1, x2, · · · , xn] ∈ Rp×n,

so that y = Xβ + ε. The estimator we consider is

β̂ := argmin
b∈Rp

{∥b∥ : Xb = y} = (X⊤X)†X⊤y = X†y,

where A† denotes the Moore–Penrose inverse of a matrix A.

The main object of interest in this paper is the prediction and estimation risks of β̂ under the data
scenario such that (i) the regression error ε is independent of X , but (ii) εi may not be i.i.d. Formally,
we make the following assumptions.
Assumption 2.1. (i) y = Xβ + ε, where ε is independent of X , and E[ε] = 0. (ii) Ω := E[εε⊤] is
finite and positive definite (but not necessarily spherical).

We emphasize that Assumption 2.1 is more general than the standard assumption in the literature
on benign overfitting that typically assumes that Ω ≡ σ2I for a scalar σ > 0. Assumption 2.1
allows for non-identical variances across the elements of ε because the diagonal elements of Ω can
be different among each other. Furthermore, it allows for non-zero off-diagonal elements in Ω. It
is difficult to assume that the regression errors are independent among each other with time series
or clustered data; thus, in these settings, it is important to allow for general Ω ̸= σ2I . Below we
present a couple of such examples.
Example 2.1 (AR(1) Errors). Suppose that the regressor error follows an autoregressive process:

εi = ρεi−1 + ηi, (2)

where ρ ∈ (−1, 1) is an autoregressive parameter, ηi is independent and identically distributed with
mean zero and variance σ2(0 < σ2 < ∞) and is independent of X . Then, the (i, j) element of Ω is

Ωij =
σ2

1− ρ2
ρ|i−j|.

Note that Ωij ̸= 0 as long as ρ ̸= 0.
Example 2.2 (Clustered Errors). Suppose that regression errors are mutually independent across
clusters but they can be arbitrarily correlated within the same cluster. For instance, students in
the same school may affect each other and also have the same teachers; thus it would be difficult
to assume independence across student test scores within the same school. However, it might be
reasonable that student test scores are independent across different schools. For example, assume
that (i) if the regression error εi belongs to cluster g, where g = 1, . . . , G and G is the number of
clusters, E[ε2i ] = σ2

g for some constant σ2
g > 0 that can vary over g; (ii) if the regression errors

εi and εj (i ̸= j) belong to the same cluster g, E[εiεj ] = ρg for some constant ρg ̸= 0 that can
be different across g; and (iii) if the regression errors εi and εj (i ̸= j) do not belong to the same
cluster, E[εiεj ] = 0. Then, Ω is block diagonal with possibly non-identical blocks.
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For vector a and square matrix A, let ∥a∥2A := a⊤Aa. Conditional on X and given A, we define

BiasA(β̂ | X) := ∥E[β̂ | X]− β∥A and VarA(β̂ | X) := Tr(Cov(β̂ | X)A),

and we write Var = VarI and Bias = BiasI for the sake of brevity in notation.

The mean squared prediction error for an unseen test observation x0 with the positive definite co-
variance matrix Σ := E[x0x

⊤
0 ] (assuming that x0 is independent of the training data X) and the

mean squared estimation error of β̂ conditional on X can be written as:

RP (β̂ | X) := E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | X
]
= [BiasΣ(β̂ | X)]2 +VarΣ(β̂ | X),

RE(β̂ | X) := E
[
∥β̂ − β∥2 | X

]
= [Bias(β̂ | X)]2 +Var(β̂ | X).

In what follows, we obtain exact finite-sample expressions for prediction and estimation risks:

RP (β̂) := EX [RP (β̂ | X)] and RE(β̂) := EX [RE(β̂ | X)].

We first analyze the variance terms for both risks and then study the bias terms.

3 THE VARIANCE COMPONENTS OF PREDICTION AND ESTIMATION RISKS

3.1 THE VARIANCE COMPONENT OF PREDICTION RISK

We rewrite the variance component of prediction risk as follows:

VarΣ(β̂ | X) = Tr(Cov(β̂ | X)Σ) = Tr(X†ΩX†⊤Σ) = ∥SX†T∥2F , (3)

where positive definite symmetric matrices S := Σ1/2 and T := Ω1/2 are the square root matrices
of the positive definite matrices Σ and Ω, respectively. To compute the above Frobenius norm of the
matrix SX†T , we need to compute the alignment of the right-singular vectors of B := SX† ∈ Rp×n

with the left-eigenvectors of T ∈ Rn×n. Here, B is a random matrix while T is fixed. Therefore,
we need the distribution of the right-singular vectors of the random matrix B.

Perhaps surprisingly, to compute the expected variance EX [VarΣ(β̂ | X)], it turns out that we do
not need the distribution of the singular vectors if we make a minimal assumption (the left-spherical
symmetry of X) which is weaker than the assumption that {xi}ni=1 is i.i.d. normal with E[x1] = 0.
Definition 3.1 (Left-Spherical Symmetry (Dawid, 1977; 1978; 1981; Gupta & Nagar, 1999)). A ran-
dom matrix Z or its distribution is called to be left-spherical if OZ and Z have the same distribution
(OZ

d
= Z) for any fixed orthogonal matrix O ∈ O(n) := {A ∈ Rn×n : AA⊤ = A⊤A = I}.

Assumption 3.1. The design matrix X is left-spherical.

For the isotropic error case (Ω = I), we have EX [VarΣ(β̂ | X)] = EX [Tr((X⊤X)†Σ)] from (3)
since X†X†⊤ = (X⊤X)†. Moreover, for the arbitrary error, the left-spherical symmetry of X plays
a critical role to factor out the same EX [Tr((X⊤X)†Σ)] and the trace of the variance-covariance
matrix of the regression errors, Tr(Ω), from the variance after the expectation over X .
Lemma 3.1. For a subset S ⊂ Rm×m satisfying C−1 ∈ S for all C ∈ S , if matrix-valued random
variables Z and AZ have the same distribution measure µZ for any A ∈ S, then we have

EZ [f(Z)] = EZ [f(AZ)] = EZ [EA′∼ν [f(A
′Z)]]

for any function f ∈ L1(µZ) and any probability density function ν on S.

The proof of Lemma 3.1 is in the supplementary appendix.
Theorem 3.2. Let Assumptions 2.1, and 3.1 hold. Then, we have

EX [VarΣ(β̂ | X)] =
1

n
Tr(Ω)EX [Tr((X⊤X)†Σ)].

Proof. Since β̂ = X†y, we have Cov(β̂ | X) = X†Cov(y | X)X†⊤ = X†ΩX†⊤, which leads to
the following expression for the variance component of prediction risk:

VarΣ(β̂ | X) = Tr(Cov(β̂ | X)Σ) = Tr(X†ΩX†⊤Σ) = ∥SX†T∥2F = ∥BT∥2F ,
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where S = Σ1/2, T = Ω1/2, and B = SX†. Using the singular value decomposition (SVD) of B
and T , respectively, we can rewrite this as follows:

∥BT∥2F = ∥UDV ⊤UTDTV
⊤
T ∥2F= ∥DV ⊤UTDT ∥2F ,

where B = UDV ⊤ and T = UTDTV
⊤
T with orthogonal matrices U, V, UT , VT , and diagonal

matrices D,DT . Now we need to compute the alignment V ⊤UT of the right-singular vectors of B
with the left-eigenvectors of T .

∥DV ⊤UTDT ∥2F =

n∑
i,j=1

(
Dii

∑n

k=1
V ⊤
ik (UT )kj(DT )jj

)2

=
∑n

i,j=1
λi(B)2λj(T )

2γij (γij := ⟨V:i, (UT ):j⟩2 ≥ 0)

=
∑n

i,j=1
λi

(
(X⊤X)†Σ

)
λj(Ω)γij (λi(SX

†X†⊤S) = λi(X
†X†⊤S2))

= λ
(
(X⊤X)†Σ

)⊤
1×n

Γ(X)

n×n

λ(Ω)

n×1

, (Γ(X) := (γij)i,j ∈ Rn×n)

where and λ(A) ∈ Rn is a vector with its element λi(A) as the i-th largest eigenvalue of A.

Therefore, we can rewrite the variance as VarΣ(β̂ | X) = a(X)⊤Γ(X)b with
a(X) := λ

(
(X⊤X)†Σ

)
∈ Rn,

b := λ(Ω) ∈ Rn,

Γ(X)ij = γij = ⟨v(i), u(j)⟩2,
where v(i) := V:i and u(j) := (UT ):j . Note that the alignment matrix Γ(X) is a doubly stochastic
matrix since

∑
j γij =

∑
i γij = 1 and 0 ≤ γij ≤ 1.

Now, we want to compute the expected variance. To do so, from Lemma 3.1 with S = O(n), we
can obtain

EX [a(X)⊤Γ(X)b] = EX

[
EO∼ν [a(OX)⊤Γ(OX)b]

]
= EX

[
a(X)⊤EO∼ν [Γ(OX)]b

]
,

where ν is the unique uniform distribution (the Haar measure) over the orthogonal matrices O(n).
For an orthogonal matrix O ∈ O(n), we have

Γ(OX)ij = ⟨Ov(i), u(j)⟩2 = (v(i)⊤O⊤u(j))2,

since S(OX)† = SX†O⊤ = BO⊤ = UD(OV )⊤. Here, (OX)† = X†O⊤ follows from the
orthogonality of O ∈ O(n). Since the Haar measure is invariant under the matrix multiplication in
O(n), if we take the expectation over the Haar measure, then we have

Γ̄(X)ij := EO∼ν [Γ(OX)ij ] = EO∼ν [(v
(i)⊤O⊤u(j))2] = EO∼ν [(v

(i)⊤O⊤O(j)⊤u(j))2]. (4)

Here, for a given j, we can choose a matrix O(j) ∈ O(n) such that its first column is u(j) and
O(j)⊤u(j) = e1, then Γ̄(X)ij is independent of j (say Γ̄(X)ij = αi). Since Γ(X) is doubly
stochastic, so is Γ̄(X) and we have

∑n
j=1 Γ̄(X)ij = nαi = 1 which yields Γ̄(X)ij = αi = 1/n,

regardless of the distribution of V ; thus, Γ̄(X) = 1
nJ , where Jij = 1(i, j = 1, 2, · · · , n).

Therefore, we have the expected variance as follows:

EX [VarΣ(β̂ | X)] = EX [a(X)⊤
1

n
Jb] =

1

n

n∑
i,j=1

EX [ai(X)]bj =
1

n
EX [Tr((X⊤X)†Σ)]Tr(Ω).

3.2 THE VARIANCE COMPONENT OF ESTIMATION RISK

For the expected variance EX [Var(β̂ | X)] of the estimation risk, a similar argument still holds if
plugging-in B = X† instead of B = SX†.
Theorem 3.3. Let Assumptions 2.1, and 3.1 hold. Then, we have

EX [Var(β̂ | X)] =
1

np
Tr(Ω)EX [Tr(Λ†)],

where XX⊤/p = UΛU⊤ for some orthogonal matrix U ∈ O(n).
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Figure 1: Expected variances (Left) and theoretical expressions (Right) of the prediction (Top) and
estimation risks (Bottom) in Example 2.1 (AR(1) Errors). Each level set (with the same Tr(Ω)) is
expected to be a line {(σ2, ρ2) : σ2/κ2 + ρ2 = 1} for some κ2 > 0. We set n = 50, p = 100, and
evaluate on 100 samples of X and 100 samples of ε (for each realization of X) to approximate the
expectations.

3.3 NUMERICAL EXPERIMENTS

In this section, we validate our theory with some numerical experiments of Examples 2.1 and 2.2,
especially how the expected variance is related to the general covariance Ω of the regressor error
ε. In the both examples, we sample {xi}ni=1 from N (0,Σ) with a general feature covariance Σ =
UΣDΣU

⊤
Σ for an orthogonal matrix UΣ ∈ O(p) and a diagonal matrix DΣ ≻ 0. In this setting, we

have rank(XX⊤) = n and Λ† = Λ−1 almost everywhere.

AR(1) Errors As shown in Example 2.1, when the regressor error follows an autoregressive pro-
cess in (2), we have Ωij = σ2ρ|i−j|/(1− ρ2) and Tr(Ω)/n = σ2/(1− ρ2). Therefore, for pairs of
(σ2, ρ2) with the same Tr(Ω)/n, they are expected to yield the same variances of the prediction and
estimation risk from Theorem 3.2 and 3.3 even though they have different off-diagonal elements in
Ω. To be specific, the pairs (σ2, ρ2) on a line {(σ2, ρ2) : σ2/κ2 + ρ2 = 1} have the same Tr(Ω)/n
and the same expected variance which gets larger for the line with respect to a larger κ2.

The top-right and top-left panels of Figure 1, respectively, show the contour plots of EX [VarΣ(β̂ |
X)] and 1

n Tr(Ω)EX [Tr((X⊤X)†Σ)] for different pairs of (σ2, ρ2) in Example 2.1. They have
different slopes −κ−2 according to the value of κ2 = Tr(Ω)/n. The bottom panels show equivalent
contour plots for estimation risk.

Clustered Errors Now consider the block diagonal covariance matrix Ω =
diag(Ω1,Ω2, · · · ,ΩG) in Example 2.2, where Ωg is an ng × ng matrix with (Ωg)ii = σ2

g

and (Ωg)ij = ρg (i ̸= j) for each i, j = 1, 2, · · · , ng and g = 1, 2, · · · , G. Let n =
∑G

g=1 ng . We

then have Tr(Ω)/n =
∑G

g=1 Tr(Ωg)/n =
∑G

g=1(ng/n)σ
2
g . Therefore, given a partition {ng}Gg=1

of the n observations, the covariance matrices Ω with different {σ2
g}Gg=1 have the same Tr(Ω)/n if

(σ2
1 , σ

2
2 , · · · , σ2

G) ∈ RG are on the same hyperplane n1

n σ2
1 + n2

n σ2
2 + · · · + nG

n σ2
G = κ2 for some

κ2 > 0.
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Figure 2: Expected variance (Left) and theoretical expression (Right) of the prediction (Top) and
estimation risks (Bottom) in Example 2.2 (Clustered Errors). Each level set (with the same Tr(Ω))
is expected to be a line {(σ2

1 , σ
2
2) :

n1

n σ2
1 + n2

n σ2
2 = κ2} for some κ2 > 0. We set G = 2, (n1 =

5, n2 = 15), n = 20, p = 40, ρ1 = ρ2 = 0.05, and evaluate on 100 samples of X and 100 samples
of ε (for each realization of X) to approximate the expectations.

The top-right and top-left panels of Figure 2, respectively, show the contour plots of EX [VarΣ(β̂ |
X)] and 1

n Tr(Ω)EX [Tr((X⊤X)†Σ)] for different pairs of (σ2
1 , σ

2
2) for a simple two-clusters exam-

ple (G = 2) of Example 2.2 with (n1, n2) = (5, 15). Here, we use a fixed value of ρ1 = ρ2 = 0.05,
but the results are the same regardless of their values, as shown in the appendix. Unlike Example
2.1, the hyperplanes are orthogonal to v = [n1, n2] regardless of the value of κ2 = Tr(Ω)/n. Again,
the bottom panels show equivalent contour plots for estimation risk.

4 THE BIAS COMPONENTS OF PREDICTION AND ESTIMATION RISKS

Our main contribution is to allow for general assumptions on the regression errors, and thus the bias
parts remain the same as they do not change with respect to the regression errors. For completeness,
in this section, we briefly summarize the results on the bias components. First, we make the fol-
lowing assumption for a constant rank deficiency of X⊤X which holds, for example, each xi has a
positive definite covariance matrix and is independent of each other.
Assumption 4.1. rank(X) = n almost everywhere.

4.1 THE BIAS COMPONENT OF PREDICTION RISK

The bias term of prediction risk can be expressed as follows:

[BiasΣ(β̂ | X)]2 = ∥E[β̂ | X]− β∥2Σ = (Sβ)⊤ lim
λ↘0

λ2(S−1Σ̂S + λI)−2Sβ, (5)

where Σ̂ := X⊤X/n. Now, in order to obtain an exact closed form solution, we make the following
assumption:
Assumption 4.2. Eβ [Sβ(Sβ)

⊤] = r2ΣI/p, where r2Σ := Eβ [∥β∥2Σ] < ∞ and β is independent of
X .

A similar assumption (see Assumption 4.3) has been shown to be useful to obtain closed-form
expressions in the literature (e.g., Dobriban & Wager, 2018).
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Under this assumption, since [BiasΣ(β̂ | X)]2 = Tr[Sβ(Sβ)⊤ limλ↘0 λ
2(S−1Σ̂S + λI)−2] from

(5), we have the expected bias (conditional on X) as follows:

Eβ [BiasΣ(β̂ | X)2 | X] =
r2Σ
p

lim
λ↘0

p∑
i=1

λ2

(s̃i + λ)2
=

r2Σ
p

|{i ∈ [p] : s̃i = 0}| = r2Σ
p− n

p
,

where s̃i are the eigenvalues of S−1Σ̂S ∈ Rp×p and rank(S−1Σ̂S) = rank(X) = n almost
everywhere under Assumption 4.1. Note that this bias is independent of the distribution of X or the
spectral density of S−1Σ̂S, but only depending on the rank deficiency of the realization of X .

Finally, the prediction risk RP (β̂) can be summarized as follows:
Corollary 4.1. Let Assumptions 2.1, 3.1, 4.1, and 4.2 hold. Then, we have

RP (β̂) = r2Σ

(
1− n

p

)
+

Tr(Ω)

n
EX

[
Tr((X⊤X)†Σ)

]
.

4.2 THE BIAS COMPONENT OF ESTIMATION RISK

For the bias component of prediction risk, we can obtain a similar result with 4.1 as follows:

[Bias(β̂ | X)]2 = β⊤(I − Σ̂†Σ̂)β = lim
λ↘0

β⊤λ(Σ̂ + λI)−1β.

Assumption 4.3. Eβ [ββ
⊤] = r2I/p, where r2 := Eβ [∥β∥2] < ∞ and β is independent of X .

Under Assumption 4.3, we have the expected bias (conditional on X) as follows:

Eβ [Bias(β̂ | X)2 | X] =
r2

p
lim
λ↘0

p∑
i=1

λ

si + λ
=

r2

p
|{i ∈ [p] : si = 0}| = r2

p− n

p
, (6)

where si are the eigenvalues of Σ̂ ∈ Rp×p and rank(Σ̂) = rank(X) = n under Assumption 4.1.

Thanks to Theorem 3.3 and (6), we obtain the following corollary for estimation risk.
Corollary 4.2. Let Assumptions 2.1, 3.1, 4.1, and 4.3 hold. Then, we have

RE(β̂) = E
[
∥β̂ − β∥2

]
= r2

(
1− n

p

)
+

Tr(Ω)

n
EX

[∫
1

s
dFXX⊤/n(s)

]
,

where FA(s) := 1
n

∑n
i=1 1{λi(A) ≤ s} is the empirical spectral distribution of a matrix A and

λ1(A), λ2(A), · · · , λn(A) are the eigenvalues of A.

The proof of Corollary 4.2 is in the appendix.

4.2.1 ASYMPTOTIC ANALYSIS OF ESTIMATION RISK

To study the asymptotic behavior of estimation risk, we follow the previous approaches (Dobriban
& Wager, 2018; Hastie et al., 2022). First, we define the Stieltjes transform as follows:
Definition 4.1. The Stieltjes transform sF (z) of a df F is defined as:

sF (z) :=

∫
1

x− z
dF (x), for z ∈ C \ supp(F ).

We are now ready to investigate the asymptotic behavior of the mean squared estimation error with
the following theorem:
Theorem 4.3. (Silverstein & Bai, 1995, Theorem 1.1) Suppose that the rows {xi}ni=1 in X are i.i.d.
centered random vectors with E[x1x

⊤
1 ] = Σ and that the empirical spectral distribution FΣ(s) =

1
p

∑p
i=1 1{τi ≤ s} of Σ converges almost surely to a probability distribution function H as p → ∞.

When p/n → γ > 0 as n, p → ∞, then a.s., FXX⊤/n converges vaguely to a df F and the limit
s∗ := limz↘0 sF (z) of its Stieltjes transform sF is the unique solution to the equation:

1− 1

γ
=

∫
1

1 + τs∗
dH(τ). (7)

8
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This theorem is a direct consequence of Theorem 1.1 in Silverstein & Bai (1995). Then, from
Corollary 4.2, we can write the limit of estimation risk as follows:
Corollary 4.4. Let Assumptions 2.1, 3.1, 4.1, and 4.3 hold. Then, under the same assumption as
Theorem 4.3, as n, p → ∞ and p/n → γ, where 1 < γ < ∞ is a constant, we have

RE(β̂) = E
[
∥β̂ − β∥2

]
→ r2

(
1− 1

γ

)
+ s∗ lim

n→∞

Tr(Ω)

n
.

Here, the limit s∗ of the Stieltjes transform sF is highly connected with the shape of the spectral
distribution of Σ. For example, in the case of isotropic features (Σ = I), i.e., dH(τ) = δ1(τ)dτ ,
we have s∗iso = (γ − 1)−1 from 1− 1

γ = 1
1+s∗iso

. In addition, if Ω = σ2I , then the limit of the mean
squared error is exactly the same as the expression for γ > 1 in equation (10) of Hastie et al. (2022,
Theorem 1). This is because prediction risk is the same as estimation risk when Σ = I .
Remark 4.1. Generally, if the support of H is bounded within [cH , CH ] ⊂ R for some positive
constants 0 < cH ≤ CH < ∞, then we can observe the double descent phenomenon in the over-
parameterization regime with limγ↘1 s

∗ = ∞ and limγ→∞ s∗ = 0 with s∗ = Θ
(

1
γ−1

)
from the

following inequalities:

C−1
H

1

γ − 1
≤ s∗ ≤ c−1

H

1

γ − 1
. (8)

In fact, a tighter lower bound is available:
s∗ ≥ µ−1

H (γ − 1)−1, (9)
where µH := Eτ∼H [τ ], i.e., the mean of distribution H . The proofs of (8) and (9) are given in the
supplementary appendix.

We conclude this paper by plotting the “descent curve” in the overparameterization regime in Figure
3. On one hand, the expected variance perfectly matches its theoretical counterpart and goes to zero
as γ gets large. On the other hand, the bias term is bounded even if γ → ∞. The appendix contains
the experimental details for all the figures.

100 101 102

= p/n

10 2

10 1

100

101

102

bias
siso

2

EX[Var ( |X)]
1
nTr( )EX[Tr((X X) ]
EX[Bias ( |X)2]

100 101 102

= p/n

10 2

10 1

100

101

102

bias
siso

2

EX[Var( |X)]
1
npTr( )EX[Tr( 1)]

EX[Bias( |X)2]

Figure 3: The “descent curve” in the overparameterization regime. We test Ω’s with Tr(Ω)/n =
1, 2, 4 in black, blue, red, respectively. For the anisotropic case, the expected variance and theoretical
expression are larger than that in the high-dimensional asymptotics for the isotropic Ω = ω2I ,
especially in the small-γ regime. For the isotropic Ω, the variance terms (dotted) and the bias term
(dashed) in the high-dimensional asymptotics are ω2(γ − 1)−1 and r2(1− γ−1), respectively.
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APPENDIX

A DETAILS FOR DRAWING FIGURES 1, 2, AND 3

To draw Figure 1, 2, and 3, we sample {xi}ni=1 from N (0,Σ) with Σ = UΣDΣU
⊤
Σ where UΣ is an

orthogonal matrix random variable, drawn from the uniform (Haar) distribution on O(p), and DΣ is
a diagonal matrix with its elements di = |zi|/

∑p
i=1 |zi| being sampled with zi ∼ N (0, 1) for each

i = 1, 2, · · · , p. With this general anisotropic Σ, the term EX [Tr(Λ−1)]/p is somewhat larger than
µ−1
H s∗iso = (γ − 1)−1 which is 1 in Figure 1 and 2 since µH = 1 and γ = 2. For example, in Figure

1, when σ2 = 1, ρ2 = 0, we have Tr(Ω)/n = 1 but Tr(Ω)EX [Tr(Λ−1)]/(np) > 1.

In Figure 3, we fix n = 50 and use p = nγ for γ ∈ [1, 100].

To compute the expectations of EX [Var(β̂|X)] and EX [Tr(Λ−1)] over X , we sample NX sam-
ples of X’s, X1, X2, · · · , XNX

. Moreover, to compute the expectation over ε in Var(β̂|Xi) ≡
Tr

(
Eε[β̂β̂

⊤]− Eε[β̂]Eε[β̂]
⊤
)

, we sample Nε samples of ε’s, ε1, ε2, · · · , εNε
for each realization

Xi. To be specific,

EX [Var(β̂|X)] ≈ 1

NX

NX∑
i=1

Var(β̂|Xi) ≈
1

NX

NX∑
i=1

Tr

 1

Nε

Nε∑
j=1

β̂i,j β̂
⊤
i,j −

1

Nε

Nε∑
j=1

β̂i,j
1

Nε

Nε∑
j=1

β̂⊤
i,j


1

p
EX [Tr(Λ−1)] ≈ 1

NX

NX∑
i=1

Tr((XiX
⊤
i )−1) =

1

NX

NX∑
i=1

n∑
k=1

1

λk(XiX⊤
i )

,

where β̂i,j = argminβ{∥b∥ : Xib − yi,j = 0}, yi,j = Xiβ + εj , and λk(XiX
⊤
i ) is the k-th

eigenvalue of XiX
⊤
i . We can do similarly for the variance part of the prediction risk.

Figure 4 shows an additional experimental result.

B PROOFS OMITTED IN THE MAIN TEXT

Proof of Lemma 3.1. For a given A ∈ S, since A−1 ∈ S, we have Z
d
= A−1Z := Z̃ and

EZ [f(Z)] = EA−1Z [f(Z)] = EZ̃ [f(AZ̃)] = EZ [f(AZ)].

This naturally leads to

EZ [EA′∼ν [f(A
′Z)]] = EA′∼ν [EZ [f(A

′Z)]] = EA′∼ν [EZ [f(Z)]] = EZ [f(Z)]

where the first equality comes from Fubini’s theorem and the integrability of f .

Proof of Corollary 4.2. Note that

EX [Var(β̂|X)] =
Tr(Ω)

p
EX

[
1

n

∑
i

1

λi

]

=
Tr(Ω)

p
EX

[∫
1

s
dFXX⊤/p(s)

]
=

Tr(Ω)

n
EX

[∫
1

s
dFXX⊤/n(s)

]
.

Then, the desired result follows directly from (6).
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Figure 4: We use the same setting as Figure 2, except uniformly sample each ρi from [0, 0.05]
for each experiment with the pairs (σ2

1 , σ
2
1). As expected, the off-diagonal elements ρi of Ω do not

affect the expected variances.

Proof of (5). The bias term of the prediction risk can be expressed as follows:

[BiasΣ(β̂ | X)]2 = ∥E[β̂ | X]− β∥2Σ
= ∥(Σ̂†Σ̂− I)β∥2Σ
= β⊤(I − Σ̂†Σ̂)Σ(I − Σ̂†Σ̂)β

= β⊤ lim
λ↘0

λ(Σ̂ + λI)−1Σ lim
λ↘0

λ(Σ̂ + λI)−1β

= (Sβ)⊤ lim
λ↘0

λ2(S−1Σ̂S + λI)−2Sβ,

where Σ̂ = X⊤X/n. Here, the fourth equality comes from the equation

I − Σ̂†Σ̂ = lim
λ↘0

I − (Σ̂ + λI)−1Σ̂

= lim
λ↘0

I − (Σ̂ + λI)−1(Σ̂ + λI − λI)

= lim
λ↘0

λ(Σ̂ + λI)−1.

Proof of (8). The RHS of (7) is bounded above by
∫

1
1+cHs∗ dH(τ) = 1

1+cHs∗ , and thus 1 − 1
γ ≤

1
1+cHs∗ , which yields s∗ ≤ c−1

H
1

γ−1 . We can similarly prove the other inequality in (8) with a lower
bound 1

1+CHs∗ on the RHS of (7).
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Proof of (9). To further explore the inequalities (8), we rewrite (7) from Theorem 4.3 as follows:

1− 1

γ
= Eτ∼H [g(τ ; s∗)] , where g(t; s) :=

1

1 + ts
for t, s > 0.

Here, since g(t; s) is convex with respect to t > 0 for a given s > 0, by Jensen’s inequality, we then
have

Eτ∼H [g(τ ;µ−1
H s∗iso)] ≥ g

(
µH ;µ−1

H s∗iso

)
= g(1; s∗iso) = 1− γ−1

where µH = Eτ∼H [τ ]. Therefore, the limit Stieltjes transform s∗ in the anisotropic case should
be larger than µ−1

H s∗iso of the isotropic case to satisfy Eτ∼H [g(τ ; s∗)] = 1 − γ−1 since g(t; s) is
a decreasing function with respect to s ≥ 0 when t > 0. This leads to a tighter lower bound
s∗ ≥ µ−1

H s∗iso = µ−1
H (γ − 1)−1 than (8) because µH ≤ CH .
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