
Under review as a conference paper at ICLR 2022

A GAME-THEORETIC APPROACH FOR IMPROVING
GENERALIZATION ABILITY OF TSP SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we shed new light on the study of how to improve the generaliza-
tion ability of deep learning-based solvers for the Traveling Salesman Problem
(TSP). We build a two-player zero-sum game between a trainable solver and a
task generator, where the solver aims to solve instances provided by the generator,
and the generator aims to generate increasingly difficult instances for the solver.
Grounded in the Policy Space Response Oracle (PSRO) framework, our two-player
framework allows us to obtain a behaviourally diverse population of powerful
solvers over which we utilise a model mixing method to combine these solvers and
achieve strong generalization ability on various tasks. Experimentally, we achieve
the state-of-the-art results on a general TSP instance generation method over which
the performance of other deep learning-based methods degenerates vastly. On
realistic instances from TSPLib we approximately attain a 12% improvement over
the base model. Furthermore, we empirically illustrate as the solvers’ performance
improves, the obtained strategy’s exploitability keeps decreasing showing gradual
convergence to the Nash equilibrium.

1 INTRODUCTION

Deep learning-based methods for solving combinatorial optimization problems have attracted a great
amount of attention recently due to its ability to capture the certain intrinsic structures by training
over millions of instances (Dai et al., 2017). Because of the efficiency of the forward computation of
neural networks, they are particularly useful in comparison to traditional methods when performing
inference, especially on large-scale problems. As a consequence, it is promising to train offline deep
learning-based solvers, and to implement them in an online scenario. There are two key factors in
realising this:

1. The model should have excellent performance in known scenarios;
2. The model can handle various unknown cases, i.e. must have the ability to generalise.

Various methods have been proposed to achieve point 1 by training and testing solely on instances
from the same distribution (Dai et al., 2017; Kool et al., 2018; Wu et al., 2021; Kool et al., 2021).
For point two, researchers have also added the testing of their models on real-world instances
(e.g.instances from TSPLIB (Reinelt, 1991)). However, the performance of most methods on these
unseen situations are not competitive as that in their favorable cases. In addition, these TSPLIB
instances are only an infinitesimal part during online usage, so the generalization ability has become
the desiderata for deep learning-based solvers.

The generalization ability of a solver concerns its performance on various data distributions. In
this work, we note that we can abstract the generalization problem into a two player game: player
1 aims to train the solver to perform well on the distribution chosen by player 2, and player 2
aims to generate distributions where player 1 performs poorly. It is obvious that player 2 has an
essentially infinitely-sized policy set as there are an enormous amount of candidate distributions. In
this view, previous works solely focus on the uniform distribution which is only one of the many
policies available in the policy set of player 2, helping to explain poor generalisation ability. It’s
intuitive that better generalization ability can be obtained by exploiting the policy set of player 2, and
PSRO (Lanctot et al., 2017) provides a methodology to achieve this goal.

In this paper, we aim to improve the generalization ability of deep learning-based solvers from a
game theoretic perspective. Specifically, we build a two player zero-sum game for a set of solvers

1



Under review as a conference paper at ICLR 2022

and data generators. The purpose of the solvers is to perform well on the given data distributions,
and the objective of the data generators is to explore the distributions where the solvers perform
unsatisfactorily. Under the framework of PSRO (Lanctot et al., 2017), we can generate a population
of data distribution where the deep learning-based solvers fail and train the solver to overcome its
own weaknesses by iteratively obtaining oracles for both players. In this way, the deep learning-based
solvers can automatically find the hard-to-solve distributions and train itself on these distributions
in the following PSRO iterations. Additionally, we analyse the game-theoretic properties of the
meta-game payoff tables generated by the population of solvers and data generators, which provides
us a higher level view on the generalization ability of our framework. We focus on the TSP, a typical
combinatorial problem which is widely used in the real-world, to demonstrate the ability of our
method. For our population of solvers we select a powerful deep learning-based solver (Wu et al.,
2021) as our base solver due to its excellent performance on these problems. For the data generators,
we propose an attacked model: we add learnable perturbations on top of uniformly generated data to
obtain a distribution where the current solver performs poorly, aiming to find weaknesses with the
solver1. Otherwise, under proper settings, any combinatorial optimization problems, any existing
deep learning-based solvers and any data generating methods can fit into this general framework.

Overall, the contributions of our work are as follows:

• We are the first to study the generalization ability of the given deep learning-based solvers
from the game perspective, and propose a general framework to obtain powerful combined
solvers which can incorporate with minimal changes any deep learning-based solvers;

• For TSP, we propose an ’attacking’ method by adding learnable perturbations on uniform
data to exploit the distributions where the solvers do not perform well, which will give us a
intuitive view on the weakness of given solvers;

• We introduce a mixing-model by combining a population of solvers so that we can make
full use of the obtained solvers. Under a fair comparison metric, our mixing-model attains
the state-of-the-art results ob both generated data and real world data.

• We study the exploitability in the game between the solver and data generator which gives
substantial insights about the game. The results show that the improvement of the population
of solvers is consistent with a decrease in exploitability, which suggests that the obtained
strategies are gradually approaching the Nash Equilibrium.

2 RELATED WORK

Deep Learning for Combinatorial Optimization. Pointer Networks (Vinyals et al., 2015) were the
first attempt to solve combinatorial optimization problems through deep learning. They solve the TSP
by training a pair of RNN-based encoders and decoders to output a permutation over its inputs. Then
(Bello et al., 2016) used a similar model but trained the model with reinforcement learning instead
of the Supervised learning used in Pointer Networks, which only needs the tour length of the given
instance as the reward signal. Based on Transformers (Vaswani et al., 2017), Attention Model (Kool
et al., 2018) uses the attention mechanism, which is similar to Graph Attention Networks (Veličković
et al., 2017), to encode the node representation and decode the strategy for solving various problems.
(Lu et al., 2019) propose the ”Learn to Improve”(L2I) model which iteratively refines the solution
with improvement operators and jumps out of local optima with perturbation operators. Similarly,
(Wu et al., 2021) propose a reinforcement learning framework to learn the improvement heuristics
for the TSP and Capacitated Vehicle Routing Problem (CVRP), and achieves excellent results both
on random generated instances and some real world instances. The latest research (Kool et al.,
2021; Fu et al., 2020) focuses on pre-training models and constructing heatmaps to guide the search
method. Although deep learning or reinforcement learning based methods have achieved notable
progress in various combinatorial optimization problems, some essential issues have emerged, such as:
unsatisfactory results on large-scale problems, computational effort during training or generalization
ability. (Bengio et al., 2020) provides a comprehensive view on various problems in this area.

Meta-Game. In meta-game analysis(Wellman, 2006; Tuyls et al., 2018), traditional solution concepts
(e.g., NE or α-Rank (Omidshafiei et al., 2019)) can be computed in a more scalable manner as the
number of ’higher-level’ strategies in the meta-game is usually far smaller than the number of atomic
actions of the underlying game. Various methods are proposed to solve meta-games, with the original

1We show these results in the Appendix A.5.

2



Under review as a conference paper at ICLR 2022

work being Double Oracle (McMahan et al., 2003) which expands player’s policy sets by adding
corresponding best responses iteratively. PSRO (Lanctot et al., 2017) generalises Double Oracle
by introducing RL to obtain an approximate best response. PSROrN (Balduzzi et al., 2019) and
(Nieves et al., 2021) incorporate diversity seeking into PSRO and Pipeline-PSRO (McAleer et al.,
2020) aims to improve training efficiency by training multiple best responses in parallel. Due to the
PPAD-Hard (Daskalakis et al., 2009) complexity of computing Nash Equilibrium, α-PSRO (Muller
et al., 2019) and αα-Rank (Yang et al., 2019) replace NE with α-Rank (Omidshafiei et al., 2019)
which can solve general-sum games in polynomial-time, and (Feng et al., 2021) use neural networks
to compute the meta-distribution.

3 PRELIMINARY

Normal Form Game (NFG) can be described as a tuple (Π, UΠ, n) where n is the number of
players, Π = (Π1,Π2, ...,Πn) is the joint policy set and UΠ = (UΠ

1 , U
Π
2 , ...U

Π
n ) : Π → Rn is the

utility table for each joint policy. We call a game symmetric if all the players have the same policy
set (Πi = Πj , i 6= j) and payoff structures such that players are interchangeable.

Best Response is the strategy which attains the best excepted performance against a fixed opponent
strategy. σ∗i = br(Π−i, σ−i) is the best response to σ−i if:

UΠ
i (σ∗i , σ−i) ≥ UΠ

i (σi, σ−i),∀i, σi 6= σ∗i

Nash Equilibrium for an NFG is a strategy profile σ∗ = (σ∗1 , σ
∗
2 , ..., σ

∗
n) such that:

UΠ
i (σ∗i , σ

∗
−i) ≥ UΠ

i (σi, σ
∗
−i),∀i, σi 6= σ∗i

Intuitively, no player has an incentive to deviate from their current strategy if all players are playing
their respective Nash equilibrium strategy.

Exploitability measures how much expected utility a best-response opponent can achieve above
the game value (Davis et al., 2014). In a two-player zero-sum game, the average exploitability of a
strategy profile σ = (σ1, σ2) is defined as follows:

exploit(σ) =
1

2
(UΠ

1 (br(σ2), σ2) + UΠ
2 (σ1, br(σ1))) (1)

Instance represents an individual sample of a given type of combinatorial optimization problem. For
example, given the two-dimensional coordinates of n points, finding the shortest tour that traverses all
points can be seen as an instance of a TSP. In the following, we denote an instance by I. Generally,
we can consider the instances to be solved as coming from a certain distribution PI .

Optimal gap measures the quality of a given solver compared with an Oracle solver. Given an
instance I and a solver S : {I} → R, the optimal gap is defined as:

g(S, I,Oracle) =
S(I)− Oracle(I)

Oracle(I)
(2)

where Oracle(I) gives the (possible) true optimal value of the instance. Furthermore, the expected
optimal gap of the given instance distribution PI and an Oracle is defined as:

G(S,PI ,Oracle) = EI∼PIg(S, I,Oracle). (3)

4 METHOD

In this section, we will give our formulation for solving the Traveling Salesman Problem (TSP)
at the meta-level. Assume there are two players in the meta-game, one is the solver selector (SS)
and the other is the data generator (DG). ΠSS = {Si|i = 1, 2, ...} is the policy set for solver
selector which contains a set of candidate solvers for the given TSP, and ΠDG = ΠN × ΠC =
{PI,i = (PN,i,PC,i)|i = 1, 2, ...} is the policy set for the data generator, where ΠN is the policy
set of the problem scale (i.e. the number of nodes that need to be generated) and ΠC denotes the
policy set used to generate two-dimension coordinate points. Therefore, an instance distribution

3



Under review as a conference paper at ICLR 2022

Algorithm 1 PSRO for Combinatorial Optimization

Input: Initial joint policy sets for solver selector and data generator as Π. Compute utilities UΠ

for joint π ∈ Π. Initialize meta-strategies σi = UNIFORM(Πi)
while epoch e in {1, 2, ...} do

Construct mixing distribution πmix =
∑
i σ

i
DGπ

i
DG and train the oracle for solver selector S

′

with gradient in Eq. 6
for many episodes do

Sample S ∼ ΠSS according to σSS

Train Oracle P
′

I = br(S) with gradient in Eq. 11
end for
Update policy set:Π← Π ∪ {(S′

,P
′

I)}
Compute missing entries in UΠ from Π and the meta-strategy σ from UΠ

end while
Output meta-strategy σSS and policy set ΠSS to obtain mixing model by Eq. 12 or Eq. 13.

PI ∈ ΠDG comprises two parts: PI = (PN ,PC) which is the distribution for the number of nodes
N contained in each instance, and each coordinate is sampled from a two-dimensional distribution
PC independently.

Formally, we can formulate a two player zero-sum asymmetric NFG (Π,UΠ, 2) where Π =
(ΠSS,ΠDG), UΠ : Π → R|ΠSS|×|ΠDG|, UΠSS(π) = G(π,Oracle) is the expected optimal gap under
the joint policy π = (S,PI) ∈ Π as defined in Eq. 3 and UΠDG(π) = −UΠSS(π) = G(π,Oracle).
Given UΠ, we can determine a Nash Equilibrium σ∗ = (σ∗SS, σ

∗
DG) as the meta-strategy which

satisfies:
min

σSS∈∆(ΠSS)
max

σDG∈∆(ΠDG)
Eπ∼(σSS,σDG)G(π,Oracle). (4)

Following the PSRO framework, given the meta-strategy σ = (σSS, σDG) we train an Oracle S
′

for
the Solver to give the best response to the data generator’s meta strategy σDG, and an Oracle P

′

I
for the data generator which represents a data distribution where σSS performs poorly. Given these
oracles, we update the joint policy set Π

′
= Π ∪ (S

′
,P

′

I) and the meta-game UΠ
′

according to the
new joint policy set Π

′
. As a result, we enhance the abilities of both populations by adding a better

Solver, and a more difficult-to-solve instance distribution. This expansion of the policy set allows
for not only an improvement in the Solver’s ability to handle instances from different distributions,
but also explores the instance distributions that are difficult to solve. In line with our objective, this
process leads to a population of powerful solvers which have diverse abilities on various distributions,
and we can gather them together to improve performance through a combined Solver model. The
general algorithm framework can be seen in Alg. 1.

To this end, we must address four issues:

• How to obtain the meta-strategy σ;
• How to train Oracles for both players;
• How to evaluate the utilities UΠ;
• How to combine the ability of the obtained solvers.

In the following parts, we will elaborate the details about these issues and the pipeline is shown in
Fig. 1

4.1 META-STRATEGY SOLVERS

A variety of meta-strategy solvers have been proposed for different game scenarios: for two-player
(population) zero-sum games, solving Nash Equilibrium is a desirable and the simplest way to get
meta-strategy; replicator-dynamics (Taylor & Jonker, 1978) can reveal the process and potential of
how a strategy profile evolves in the midst of others. Both NE and replicator-dynamics are suitable
for two-player games. And for the game which contains more than two players, α-Rank (Omidshafiei
et al., 2019) is a powerful evaluation method which can scale tractably in the number of players, in
the type of interactions and the type of empirical games. In this paper, we use the NE of the meta

4



Under review as a conference paper at ICLR 2022

Figure 1: Pipeline of solving combinatorial optimization problems in meta-level: At PSRO loop t,
we first use meta-solver to compute the meta-strategy σt given the meta-table UΠt and then training
best response (St+1,Pt+1

I ) based on current policy set and meta-strategy (Πt, σt). Finally we get a
new meta-table UΠt+1 according to the new obtained policy and algorithm process transfers to the
next loop.

game as the meta-strategy for simplicity, but various meta-solvers can be used w.r.t the corresponding
meta-game constructed by the specific combinatorial optimization problem.

4.2 ORACLE TRAINING

We now provide details on training an oracle in the TSP setting, with more detailed derivations in
Appendix A.1. Here we represent the Solvers in ΠSS as Sθ and the instance distributions in ΠDG as
PI,γ = (PN,γN ,PC,γC ) where θ and γ are the trainable parameters.

Training oracle for the Solver selector. Given σDG, the oracle training objective is:

min
θ
LSS(θ) = EPI∼σDGG(Sθ,PI ,Oracle). (5)

The gradient of this objective is:

∇θLSS(θ) = EPI∼σDGEN∼PNEx1,...,xN∼
∏N
i=1 PC

∇θSθ(x1, ..., xN )

Oracle(x1, ..., xN )
. (6)

Training oracle for the data generator. Given σSS, the oracle training objective is:

max
γ

LDG(γ) = ES∼σSSG(S,PI,γ ,Oracle). (7)

For the gradient of the data generator oracle, we require a better understanding of the parameteri-
zation. For ΠN , we fix the optional problem scales N = {N1, N2, ...}, and let PN,γN ∈ ΠN be a
parameterized discrete distribution over N , that is, γN,i = PN,γN (Ni).

We note that it is easy to attack the solver by adding noise to the given instances2, so we take potential
attacks into consideration to improve the robustness of the solver. We achieve this by utilising an
attacked distribution where instances sampled from a uniform distribution are perturbed by Gaussian
noise. Formally, we first sample I ∼ U(0, 1), then we use an attack generator fγC parameterized by
neural networks to generate the variation of Gaussian distributions:

Σ = fγC (I) (8)

where the shape of Σ is the same as I , that is, if I contains N two dimension coordinates, Σ ∈ RN×2

and we attack the instance I by Ĩi,j = Ii,j + ε where ε ∼ N(0,Σi,j), we denote the final attacked
distribution by PC,γC . Our objective is therefore to find the optimal parameter γ∗ = (γ∗C , γ

∗
N ).

The gradient w.r.t. γC is:

∇γCLDG(γ) = ES∼σSSEN∼PN,γNEx1,..,xN∼
∏N
i=1 PC,γC

·

∇γC (

N∑
i=1

logPC,γC (xi))g(S, (x1, ...xN ),Oracle).
(9)

2Demonstrations are shown in Appendix A.5

5



Under review as a conference paper at ICLR 2022

An extra computation is required for the log-probability in Eq. 9 which we leave to Appendix A.2.
The gradient w.r.t. γN is:

∇γNLDG(γ) = ES∼σSSEN∼PN,γN∇γN (logPN,γN (N))·
Ex1,..,xN∼

∏N
i=1 PC,γC

g(S, (x1, ...xN ),Oracle).
(10)

Overall, we get the gradient of the training oracle for the data generator:

∇γLDG(γ) =

(
∇γCLDG(γ)
∇γNLDG(γ)

)
(11)

4.3 EVALUATION

Given the joint policy set Π, we can compute the elements in matrix UΠ by approximating Eq. 3:

uS,PI = G(S,PI ,Oracle) ≈ 1

M

M∑
i=1

g(S, Ii,Oracle).

where S ∈ ΠSS ,PI ∈ ΠDG, which means the expected optimal gap of solver S given instance
distribution PI .

4.4 COMBINING THE SOLVER POPULATION

After the training of PSRO, we obtain a population of solvers which have diverse abilities for different
distributions. It’s promising to combine these solvers to obtain a best solver. There are several works
discussing how to mix policies (Smith et al., 2020; 2021). Different from Q-Mxing (Smith et al.,
2020), we choose to combine the solvers with solver selector’s meta-strategy in this work. Due to
the use of solver selector’s meta-strategy (nash strategy) to combine solvers, we can guarantee a
conservative choice to deal with any instances under the assumption that these instances’ distribution
can be generated by data generator’s policy set. In the view of game theory, the nash strategy is
always a not too bad choice whatever the opponent’s strategy is and even though the opponent is not
rational. To some extent, the conservativeness of nash weights has the accordance to the meaning of
generalization ability. What’s more, different from Q-mixing (Smith et al., 2020) which supports
value-based methods only, our mixing-method has no prior assumptions on certain RL algorithm so it
can be used for both value-based and policy-based solvers.

Formally, for the value-based RL solvers, we can weight the corresponding Q values to get the mixing
Q value as the combined model:

Qmix(s, a) =
∑
π∈ΠSS

σ∗SS(π)Qπ(s, a) (12)

and then using Qmix(s, a) to make decisions. For the policy-based RL solvers, we directly obtain the
mix policy probability by:

πmix(a|s) =
∑
π∈ΠSS

σ∗SS(π)π(a|s) (13)

5 EXPERIMENTS

In this section, we show results on As the general setting used in previous works, we investigate
the performance on problem instances of n = 20, 50, 100. Specific training settings are listed in
Appendix A.3.

5.1 SETTINGS

Data normalization. We only consider the TSP instances within [0, 1]× [0, 1] and we normalize the
given instance by min-max normalization:

Inorm = Norm(I) =
I −min{I}

max{I} −min{I}
(14)

6



Under review as a conference paper at ICLR 2022

Table 1: Our model vs baselines. The gap % is w.r.t. the best value across all methods.

n = 20 n = 50 n = 100
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

T
SP

Concorde 3.43 0.00% (6s) 4.99 0.00% (1m) 6.20 0.00% (3m)
LKH3 3.43 0.00% (2s) 4.99 0.00% (27s) 6.20 0.00% (3m)
Gurobi 3.43 0.00% (1s) 4.99 0.00% (19s) 6.20 0.00% (4m)

Farthest Insertion 3.52 2.62% (1s) 5.26 5.41% (1s) 6.66 7.41% (2s)
Random Insertion 3.59 4.66% (0s) 5.38 7.82% (1s) 6.81 9.84% (1s)
Nearest Insertion 3.82 11.37% (1s) 5.87 17.64% (2s) 7.45 20.16% (2s)

-
AM(gr.) 3.45 0.58% (2s) 5.12 2.61% (4s) 6.71 8.23% (8s)
LIH(T=1000) 3.69 7.72% (16s) 5.07 1.72% (33s) 6.72 8.48% (63s)
LIH(FS)(T=1000) 3.43 0.12% (18s) 5.06 1.68% (34s) 6.47 4.43% (67s)
LIH(FT)(T=1000) 3.43 0.04% (50s) 5.07 1.70% (64s) 6.45 4.00% (2m)

AM(sampling) 3.43 0.11% (6s) 5.03 0.95% (29s) 7.22 16.45% (2m)
LIH(T=3000) 3.62 5.54% (46s) 5.03 0.92% (95s) 6.58 6.24% (3m)
DPDP(bs=10K) 3.43 0.00% (5s) 5.03 1.00% (3m) 6.86 10.66% (12m)
LIH(FS)(T=3000) 3.43 0.04% (54s) 5.03 0.88% (100s) 6.37 2.77% (3m)
LIH(FT)(T=3000) 3.43 0.00% (2m) 5.03 0.89% (3m) 6.36 2.50% (6m)

where min{I} means the minimum scalar value in the TSP instance coordinates and max{I} is
similar. For TSP, it’s easy to verify that the instance after normalization has the same optimal solution
(not optimal value) as the un-normalized one.

Data generation. Unlike previous works which train and test models in the same distribution (usually
uniform), we make validations on the distribution where the model never met during training. We
generate data by randomly sampling x ∈ R2 from the unit square and sampling y ∈ R2 from N(0,Σ)
where Σ ∈ R2×2 is a diagonal matrix whose elements are sampled from [0, λ] and λ ∼ U(0, 1).
Then a two-dimension coordinate is generated by z = x + y and we can get any scale of TSP by
performing these steps repeatedly. We then get the generated instance followed by the normalization
step in Eq. 14. We sample 1000 instances which comprises 10 groups data generated by different λ
and then report the relevant results on the generated dataset.

Baselines. In this paper, we use a typical RL solvers: (Wu et al., 2021) which we call LIH as our
base model and we use two kinds of training paradigm: training from scratch LIH(FS) and fine-tune
LIH(FT), specific settings can be seen in Appendix A.3. We compare our model with Concorde,
LKH3 (Helsgaun, 2017) and some heuristic methods, as well as typical deep learning-based methods:
AM (Kool et al., 2018), (Wu et al., 2021) and the new state-of-the-art method DPDP (Kool et al., 2021).
All experiments are trained and executed with one single GPU (RTX3090) and CPU (i9-10900KF).

5.2 RESULTS

Results on generated data. We first compare LIH(FS) on the generated data which never met
during training. In Table 1, we can see that the performance of deep learning based methods trained
on uniform distribution are all degraded a lot when dealing with instances from unseen distribution.
However, the model obtained from the PSRO framework performs well and get the state-of-the-art
results among the deep learning methods and classic heuristic methods. Notice that we do not tune
any hyperparameters in the original solver and all these improvements are just based on the changing
of training paradigm under PSRO. However, due to the use of mixing-strategy, the time consuming
grows linearly compared with the base solver because of the extra feed-forward computation, which
can be seen as a trade off between solution quality and running time.

Results on real world problems. We also test LIH(FS) and LIH(FT) on the real TSP problems
from TSPLib (Reinelt, 1991) in Table 2. We keep the same settings as (Wu et al., 2021) with T= 3000.
And the testing results about OR-Tools, LIH are directly taken from the Table 5 in (Wu et al., 2021).

From the results in Table 2, LIH(FS) and LIH(FT) has a prominent performance compared with the
base model LIH by a 12% improvement in average. What’s more, our model has the best performance
among deep learning based methods in the most cases and for a part of instances: eil51, pr124, rd100,
pr76, kroB150, u159, eil101, kroC100, eil76, kroB100, kroE100, bier127, our method achieves better
performances than OR-Tools.

7



Under review as a conference paper at ICLR 2022

Table 2: Results on TSPlib Instances. The underlined and bold figures mean achieving the best results
among all methods (including OR-Tools) and all deep learning-based methods respectively.

Instance Opt. OR-Tools AM AM LIH LIH(FS) LIH(FT)
(N=1,280) (N=5,000) (T=3,000) (T=3,000) (T=3,000)

pr226 80,369 82,968 91,765 89,895 97,348 84,088 84,088
ts225 126,643 128,564 139,180 139,871 158,748 136,699 136,699
kroD100 21,294 21,636 23,582 23,336 24,771 21,828 22,300
eil51 426 436 435 434 438 429 429
kroA100 21,282 21,448 25,163 24,450 25,196 21,703 22,289
pr264 49,135 51,954 66,222 66,213 65,946 55,312 55,312
pr152 73,682 75,834 82,186 84,104 85,616 76,389 76,389
gil262 2,378 2,519 2,708 2,679 2,963 2,615 2,615
rat99 1,211 1,232 1,459 1,345 1,419 1,239 1,248
kroA150 26,524 27,592 29,990 29,826 31,244 28,628 28,628
lin105 14,379 14,824 24,239 22,683 18,194 15,372 15,372
pr124 59,030 62,519 62,750 61,996 66,010 61,645 61,645
st70 675 683 691 690 706 696 693
a280 2,579 2,713 3,247 3,236 2,989 2,819 2,819
rd100 7,910 8,189 8,180 8,048 7,915 8,036 8,160
pr136 96,772 102,213 103,035 102,496 105,618 104,429 104,429
pr76 108,159 111,104 111,598 111,924 109,668 109,418 108,495
kroA200 29,368 29,714 34,866 34,556 35,958 31,450 31,450
kroB200 29,437 30,516 35,003 35,387 36,412 31,656 31,656
pr107 44,303 45,072 83,926 62,392 53,056 45,288 45,288
kroB150 26,130 27,572 28,894 28,864 31,407 27,418 27,418
u159 42,080 45,778 45,394 44,581 51,327 43,376 43,376
berlin52 7,542 7,945 9,759 9,831 8,020 7,653 7,544
rat195 2,323 2,389 2,783 2,697 2,913 2,600 2,600
d198 15,780 15,963 77,722 70,692 17,962 16,501 16,501
eil101 629 664 656 656 658 642 656
pr144 58,537 59,286 65,493 66,338 71,006 62,522 62,522
pr299 48,191 48,447 340,135 299,597 59,786 51,726 51,726
kroC100 20,749 21,583 22,586 22,896 25,343 21,079 21,255
tsp225 3,916 4,046 5,004 4,790 4,701 4,262 4,262
eil76 538 561 558 557 575 548 548
kroB100 22,141 23,006 24,340 23,987 26,563 22,855 23,677
kroE100 22,068 22,598 22,895 22,716 26,903 22,532 22,898
ch150 6,528 6,729 6,827 6,787 7,916 6,866 6,866
bier127 118,282 122,733 130,513 128,150 142,707 127,520 127,520
ch130 6,110 6,284 6,311 6,302 7,120 6,495 6,495

Avg. Gap (%) 0 3.46 42.96 36.86 17.12 5.13 5.49

6 DISCUSSION

In this section, we will provide analysis about property of meta-game in TSP, usage of population
solvers and effects of different initial solutions provided for the model.

6.1 META GAME ANALYSIS

To prove the rationality of our method in the aspect of game theory, we provide the meta analysis about
the meta-payoff according to the exploitability in Eq. 1. Specifically, we calculate the the exploitability
of the meta-game obtained from the training under the PSRO framework. For demonstration, we
train 15 PSRO loops for TSP20, TSP50, TSP100 respectively in total and compute the exploitability
of the new obtained strategy at each PSRO loop. Results can be seen in Fig. 2. Owing to the use of
Nash Equilibrium as meta-solver, these results demonstrate the validity of our method. Specifically,
as the training goes on, we can get a strategy which gets monotonically close to the Nash Equilibrium
as shown in Fig. 2(a) to 2(c). What’s more, seeing the pair of Fig. 2(a) and Fig. 2(d), Fig. 2(b) and
Fig. 2(e), Fig. 2(c) and Fig. 2(f), we can see there exixts the accordance between the decrease of the
exploitability and the improvement of mixing-solver’s performance.

6.2 USAGE OF A POPULATION OF SOLVERS

In this part, we discuss the effects of different amounts of solvers used and different mixing weights
for combining solvers. And all demonstrated results are obtained by LIH(FS) (T=1000). We use the
instances generated by the method in Section 5 to make sure the generated data are never experienced
during training periods. Here we consider three scenarios:

• Original: the whole population of solvers combined with solver selector’s meta-strategy
• Uniform: the whole population of solvers combined uniformly
• Original-Partial: the two most powerful solvers judged by the solver selector’s meta strategy

and combined with the normalized probability in the meta-strategy

8



Under review as a conference paper at ICLR 2022

5 10 15
PSRO Loop

0.0

0.2

0.4

0.6

0.8

Ex
pl

oi
ta

bi
lit

y

(a) Exploitability on TSP20

5 10 15
PSRO Loop

0

5

10

15

Ex
pl

oi
ta

bi
lit

y

(b) Exploitability on TSP50

5 10 15
PSRO Loop

0

5

10

15

20

25

Ex
pl

oi
ta

bi
lit

y

(c) Exploitability on TSP100

1 2 3 4 5 6 7 8 9 101112131415
PSRO Loop

0.0

0.5

1.0

1.5

Op
t. 

Ga
p(

%
)

(d) Opt. gap of combining solvers
trained on TSP20

1 2 3 4 5 6 7 8 9 101112131415
PSRO Loop

0

10

20

Op
t. 

Ga
p(

%
)

(e) Opt. gap of combining solvers
trained on TSP50

1 2 3 4 5 6 7 8 9 101112131415
PSRO Loop

0

20

40

60

Op
t. 

Ga
p(

%
)

(f) Opt. gap of combining solvers
trained on TSP100

Figure 2: Exploitability and performance of our model as the PSRO training goes on

Original Uniform Original-Partial0.000

0.005

0.010

0.015

0.020

Op
tim

al
ity

 G
ap

 (%
)

(a) Opt. gap on n=20
Original Uniform Original-Partial0.0

0.2

0.4

0.6

0.8

Op
tim

al
ity

 G
ap

 (%
)

(b) Opt. gap on n=50
Original Uniform Original-Partial0

2

4

6

8

10

Op
tim

al
ity

 G
ap

 (%
)

(c) Opt. gap on n=100

Figure 3: Optimality gap of mixing-solver with different com-
bined numbers and weights

LIH(FS) LIH(FT)0

1

2

3

4

5

Lo
g-

Op
t. 

Ga
p 

(%
)

Random
Random Insert
Nearest Insert
Farthest Insert

Figure 4: Ablations on different
Initialization method

Fig. 3 shows the comparison between different cases. We can see ’Original’ setting achieves the best
results among different scales of TSP which shows the theoretic stability of nash weights described
in Section. 4.4. But for ’Uniform’ setting, its performance degenerates on different scales because
it assigns equal importance on all solvers even though some of them are quite weak. As for the
’Original-Partial’ setting, it only use 2 solvers which violates the original game structure, leading to
the poor ability to deal with unseen problems. However, considering the resource consumption, we
have to use partial solvers and lose a bit performance at the moment. And pursuing more efficient
combining implementation and more reasonable mixing weights are left for future works.

6.3 ABLATIONS ON THE INITIAL SOLUTION

The base model LIH (Wu et al., 2021) makes improvements based on the given feasible solution
so we speculate that the initial solution may have potential effects on the final solution. We here
consider five initialization scenarios: random, farthest Insertion, random insertion, nearest insertion.
For clear demonstration in Fig. 4, we illustrate the logarithmic mean optimal gap on TSP instances
reported in Table 2. Results show that better initialization methods will lead to superior final results,
which motivates us to explore better solution based on known results. Detailed information about this
ablation can be seen in Apppendix. A.8.

7 CONCLUSIONS AND FUTURE WORK

We propose a game-theoretic view on improving generalization ability of given solvers under the
framework of PSRO and we are first to investigate it in this brand new perspective as far as we know.
Specifically, we show the solver trained on this framework has a brilliant performance both on random
generated and real world instances for TSP. We also empirically show that the consistency between
the exploitability of solver’s performance which can express the validity of the employment of PSRO.
Various ablation studies show that there is a huge potential on the study of efficient implementation
and optimal mixing weights during combining the solvers and we believe the game-theoretic training
framework will have an enormous effect on solving large-scale combinatorial optimization problems.

9



Under review as a conference paper at ICLR 2022

REFERENCES

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 2020.

Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. arXiv preprint arXiv:1704.01665, 2017.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

Trevor Davis, Neil Burch, and Michael Bowling. Using response functions to measure strategy
strength. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

Xidong Feng, Oliver Slumbers, Yaodong Yang, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen, and
Jun Wang. Discovering multi-agent auto-curricula in two-player zero-sum games. arXiv preprint
arXiv:2106.02745, 2021.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. arXiv preprint arXiv:2012.10658, 2020.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic program-
ming for vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. arXiv preprint arXiv:1711.00832, 2017.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International Conference on Learning Representations, 2019.

Stephen McAleer, John Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: A scalable approach for
finding approximate nash equilibria in large games. arXiv preprint arXiv:2006.08555, 2020.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel
Hennes, Luke Marris, Marc Lanctot, Edward Hughes, et al. A generalized training approach for
multiagent learning. arXiv preprint arXiv:1909.12823, 2019.

Nicolas Perez Nieves, Yaodong Yang, Oliver Slumbers, David Henry Mguni, and Jun Wang. Mod-
elling behavioural diversity for learning in open-ended games. arXiv preprint arXiv:2103.07927,
2021.

Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland,
Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc Lanctot, Julien Perolat, and Remi Munos.
α-rank: Multi-agent evaluation by evolution. Scientific reports, 9(1):1–29, 2019.

10



Under review as a conference paper at ICLR 2022

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Max Olan Smith, Thomas Anthony, Yongzhao Wang, and Michael P Wellman. Learning to play
against any mixture of opponents. arXiv preprint arXiv:2009.14180, 2020.

Max Olan Smith, Thomas Anthony, and Michael P Wellman. Iterative empirical game solving via
single policy best response. arXiv preprint arXiv:2106.01901, 2021.

Peter D Taylor and Leo B Jonker. Evolutionary stable strategies and game dynamics. Mathematical
biosciences, 40(1-2):145–156, 1978.

Karl Tuyls, Julien Perolat, Marc Lanctot, Joel Z Leibo, and Thore Graepel. A generalised method for
empirical game theoretic analysis. arXiv preprint arXiv:1803.06376, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. arXiv preprint
arXiv:1506.03134, 2015.

Michael P Wellman. Methods for empirical game-theoretic analysis. In AAAI, pp. 1552–1556, 2006.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems.. IEEE Transactions on Neural Networks and Learning Systems,
2021.

Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, and Haitham Bou Ammar. αα-rank: Practically
scaling α-rank through stochastic optimisation. arXiv preprint arXiv:1909.11628, 2019.

11



Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 ORACLE TRAINING

In the Algorithm 1, we need train two oracles: S
′

and P
′

I as a new policy to be added to the
corresponding policy set. Here we will provide a specific derivation for training the oracle in our
combinatorial optimization problems setting.

Taken the formula from Eq. 6, the gradient is apparent to get:
∇θLSS(θ) = ∇θEPI∼σDGEI∼PIg(Sθ, I,Oracle)

= EPI∼σDGEI∼PI∇θg(Sθ, I,Oracle)

= EPI∼σDGEI∼PI

∇θSθ(I)

Oracle(I)

= EPI∼σDGEN∼PNEx1,...,xN∼
∏N
i=1 PC

∇θSθ(x1, ..., xN )

Oracle(x1, ..., xN )
.

(15)

Also for Eq. 11, the computation of this gradient is:
∇γLDG(γ) = ES∼σSS∇γEI∼PI,γg(S, I,Oracle)

= ES∼σSS

∫
I
∇γPI,γ(I)g(S, I,Oracle)dI

= ES∼σSS

∫
I
PI,γ(I)

∇γPI,γ(I)

PI,γ(I)
g(S, I,Oracle)dI

= ES∼σSSEI∼PI,γ∇γ logPI,γ(I)g(S, I,Oracle).

(16)

Furthermore, we can take a expansion on EI∼PI,γ∇γ logPI,γ(I) in the last line w.r.t. γ =
(γC , γN ):

EI∼PI,γ∇γ logPI,γ(I) =

 EN∼PN,γNEx1,..,xN∼
∏N
i=1 PC,γC

∇γC (
∑N
i=1 logPC,γC (xi))

EN∼PN,γN∇γNEx1,..,xN∼
∏N
i=1 PC,γC

logPN,γN (N)


After taking the above formula into Eq. 16, we complete the derivation of gradients about the data
generator.

A.2 COMPUTATION OF LOG-PROBABILITY

An extra computation is needed for the log-probability in Eq. 9 and we do this in the following way:
Assuming it’s independent between each dimension in a two-dimension coordinate, we only show
the one-dimension case without loss of generality.

Formally, there are two random variables X ∼ U(0, 1) and Y ∼ N(0, σ2), and we are to compute
the probability density function of random variable Z = X + Y . We get:

P(Z ≤ z) = P(X + Y ≤ z) =

∫ 1

0

dx

∫ z−x

−∞

1√
2πσ

exp(− y2

2σ2
)dy

and we have:

p(z) =
dP(Z ≤ z)

dz
=

∫ 1

0

1√
2πσ

exp(− (z − x)2

2σ2
)dx.

All we need to do is to approximate this integration. Various methods can be used do so. In this work,
we handle this simple integration by Monte Carlo sampling by sampling 10000 samples within [0, 1]
to make a rough approximation. After obtaining the approximated probability, we can easily get the
log-probability due to the independent assumption.

A.3 DETAILED EXPERIMENTAL SETTINGS

Hyperparameters. We don’t propose any specific RL solver in this work since our method is a
unified framework to suit any previous models. So in this paper, we use LIH as our base model. All
settings about the RL solver is same as the original paper.

12



Under review as a conference paper at ICLR 2022

Table 3: Configuration of Attack Neural Networks

Module DESCRIPTION

First Layer dim=2 with ReLU activation
Second Layer dim=128 with ReLU activation
Output Layer dim=2 with Sigmoid activation
Optimizer Adam with lr=0.05, lr decay=0.95
l2 norm weight decay=0.01
Epochs 50 for TSP20, 50 for TSP50 and TSP100

For the settings of data generator, we initialize the γN randomly and use a simple three-layer neural
networks to represent the attack generator fγC in Eq. 8. We also use a Sigmoid function as the
last layer to scale the variation within [0, 1] and an additional scalar λ ∈ [0, 1] to make a further
limit within [0, λ]. Here we set λ = 1

3 because of the ’68-95-99.7 rule’ which is a famous principle
in statistics. It not only guarantees each point within [0,1] can reach any other point after adding
a gaussian perturbation, but also makes few changes to the structure of original instances after
normalization in Eq. 14.

All parameters in our framework except for those in the RL solver are updated by Adam (Kingma &
Ba, 2014) optimizer with specific learning rate settings and the overall configuration of this neural
networks is shown in Table 3.

During the training at each PSRO loop, we choose the attack generator where the current solver
selector performs worst for the next PSRO loop. Similarly, we choose the solver with best performance
on the mixing distribution constructed by the current data generator. Specifically, we generate a
validation set by sampling 1000 instances from the distribution constructed by the data generator’s
policy set and its meta-strategy. We then test each epoch’s model on this dataset and select the best
one as the model to be trained in the next PSRO loop.

Fine-tune version. We also provide a fine-tune version under our training framework. Specifically,
we pick the model as a warm start which has pretrained on the uniform distribution and continue to
train them under the framework of PSRO, which can be seen as the fine-tune process to overcome the
weakness of the current model. We call this version of model LIH(FT) in the following. Respectively,
we denote the version of model that trains from scratch as LIH(FS). For practical use, we often
use the fine-tune model rather than the model train from scratch because of the limit of time and
computational resource, and in this work, we test the fine-tune model trained on TSP100 to solve the
instances from TSPLIB (Reinelt, 1991)).

Setup in meta-level. Under the framework of PSRO, we train oracles for solver selector and data
generator at each PSRO loop. During training LIH(FS), we set the same training epochs for RL
solver: 40 epochs (per PSRO loop) for TSP20, TSP50 and TSP100 and we train 7 PSRO loop in each
case.. When we train the fine-tune version, LIH(FT), we use the model in the last epoch of training
period in original paper as our pretrained model (for (Wu et al., 2021), we use the model trained
after 200 epochs.) Then we train 10 epochs for TSP100 in each PSRO loop and train 8 PSRO loop.
During the training, the solver inherit the parameters of last PSRO loop and continue to train in the
new PSRO loop. Noticing that we obtain a population of solvers by 280 epochs of training, we train
280 epochs for LIH rather than 200 epochs in its original paper to guarantee the fair comparison.

Mixing-model. After getting a population of solvers, we use the mixing policy obtained by Eq. 12 or
13 to combine these solver. Considering we need to get each solver’s policy during each decision step,
we need to execute forward propagation for each solver so the running time will grow linearly if there
are no implementation-level tricks. As a consequence, we only use the solvers whose probabilities
are accumulated no less than 0.99 because of solver selector’s sparse meta-strategy.

13



Under review as a conference paper at ICLR 2022

A.4 META STRATEGY IN DIFFERENT PSRO LOOPS

We visualize the meta strategy in every PSRO loops in Fig. 5. Results show that at each loop, there
exists the strongest solver with a dominate meta strategy probability, leading to a quite sparse meta
strategy distribution.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PSRO Loop
16

(a) Meta-strategy of the population of solvers trained
on TSP20.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PSRO Loop
16

(b) Meta-strategy of the population of solvers trained
on TSP50.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PSRO Loop
16

(c) Meta-strategy of the population of solvers trained
on TSP100.

Figure 5: Meta strategy of the model population.

A.5 WEAKNESS OF SOLVERS

Under our framework, it’s interesting to find some distributions where the solvers (or methods) can
not perform well, in some sense, which can reveal the ’weakness’ of them. It can also provide a rough
judgement on the stability of a method. We are amazed to find that only using simple multi-layer
neural networks, the same as that during training oracles for data generator, the methods show diverse
performance, as shows in Appendix. 6 and 7. Therefore, it’s reasonable to take this criterion into

14



Under review as a conference paper at ICLR 2022

consideration when comparing different methods. However, there are few researches about the
exploration about the weakness but we think it’s quite important especially in realistic applications.

We demonstrate performance can be influenced a lot even by adding small gaussian perturbations
generated according to A.4 in Fig. 6 and 7. We use the model trained in corresponding paper: training
200 epochs for LIH (Wu et al., 2021) and 100 epochs for AM (Kool et al., 2018) on TSP20, TSP50
and TSP100. Results show that our attack generator can learn a distribution where the well-trained
model performs bad, which motivates us to employ such method to train oracles under the framework
of PSRO.

0 10 20 30 40 50

Steps

0.06

0.08

0.10

0.12

O
pt

im
al

ity
 G

ap

TSP20

0 10 20 30 40 50

Steps

2.0

2.5

3.0

3.5

4.0

TSP50

0 10 20 30 40 50

Steps

4

6

8

10

12

14

TSP100

Figure 6: Training figure of attack generator for LIH (Wu et al., 2021).

0 10 20 30 40 50

Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
pt

im
al

ity
 G

ap

TSP20

0 10 20 30 40 50

Steps

2.0

2.5

3.0

3.5

4.0

4.5

TSP50

0 10 20 30 40 50

Steps

5

6

7

8

9

10

11

12

TSP100

Figure 7: Training figure of attack generator for AM (Kool et al., 2018)

A.6 DEMONSTRATION OF ATTACK DISTRIBUTION

We visualize the attack distribution obtained by each PSRO loop in Fig. 8. Specifically, Fig. 8(a), 8(c)
and 8(e) are points which comprises 1000 instances. Fig. 8(b), 8(d) and 8(f) are corresponding kernel
density estimations.

A.7 GENERALIZATION ON DIFFERENT SCALES

We test the generalization ability of our trained model compared with some other baselines and results
are showed in Fig. 9. As noticed in (Kool et al., 2018), the truth of No Free Lunch theorem (Wolpert
& Macready, 1997) can be explained the degradation of performance on different scales. And the
model can have excellent performance only when the scales of training data and testing data are same.
As shown in Fig. 9(a), AM (Kool et al., 2018) represents the same generalization performance as that
in its original paper. However, in Fig. 9(b) - 9(d), the generalization ability of LIH (Wu et al., 2021)
seems unsatisfactory compared to AM (Kool et al., 2018).

For a fair comparison between LIH in original paper and that trained under PSRO, we use the LIH
trained after 280 epochs (same epoch number as ours). An interesting finding is that the generalization
ability on problem scales all has an improvement by a big margin according to Fig. 9(b), 9(c), 9(d),
even though we only consider the effects on distribution.

15



Under review as a conference paper at ICLR 2022

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(a) Attack distribution generated by PSRO trained
on TSP20.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(b) Kernel density estimations of attack distribu-
tion generated by PSRO trained on TSP20.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(c) Attack distribution generated by PSRO trained
on TSP50.

0.0

0.5

1.0

y
PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(d) Kernel density estimations of attack distribu-
tion generated by PSRO trained on TSP50.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(e) Attack distribution generated by PSRO trained
on TSP100.

0.0

0.5

1.0

y

PSRO Loop = 0 PSRO Loop = 1 PSRO Loop = 2 PSRO Loop = 3

0.0

0.5

1.0

y

PSRO Loop = 4 PSRO Loop = 5 PSRO Loop = 6 PSRO Loop = 7

0.0

0.5

1.0

y

PSRO Loop = 8 PSRO Loop = 9 PSRO Loop = 10 PSRO Loop = 11

0.0 0.5 1.0
x

0.0

0.5

1.0

y

PSRO Loop = 12

0.0 0.5 1.0
x

PSRO Loop = 13

0.0 0.5 1.0
x

PSRO Loop = 14

0.0 0.5 1.0
x

PSRO Loop = 15

(f) Kernel density estimations of attack distribu-
tion generated by PSRO trained on TSP100.

Figure 8: Attack distribution generated by PSRO

16



Under review as a conference paper at ICLR 2022

0

10

20

0 25 50 75 100 125

Problem Scale

O
pt

im
al

ity
 G

ap
(%

)

Method

Farthest Insertion

Random Insertion

Nearest Insertion

AM(n=20,gr)

AM(n=50,gr)

AM(n=100,gr)

AM(n=20,sample)

AM(n=50,sample)

AM(n=100,sample)

(a) Generalization results on some classical heuristic methods and AM (Kool
et al., 2018).

0

100

200

300

400

0 25 50 75 100 125

Problem Scale

O
pt

im
al

ity
 G

ap

Methods

LIH(T=1000,n=20)

LIH(T=3000,n=20)

LIH(FS)(T=1000,n=20)

LIH(FS)(T=3000,n=20)

LIH(FT)(T=1000,n=20)

LIH(FT)(T=3000,n=20)

LIH(FT)(T=3000,n=50)

(b) Generalization results on LIH (Wu et al., 2021) and the corresponding
model trained under PSRO with n=20.

0

100

200

300

400

0 25 50 75 100 125

Problem Scale

O
pt

im
al

ity
 G

ap

Methods

LIH(T=1000,n=50)

LIH(T=3000,n=50)

LIH(FS)(T=1000,n=50)

LIH(FS)(T=3000,n=50)

LIH(FT)(T=1000,n=50)

LIH(FT)(T=3000,n=50)

(c) Generalization results on LIH (Wu et al., 2021) and the corresponding
model trained under PSRO with n=50.

0

30

60

90

0 25 50 75 100 125

Problem Scale

O
pt

im
al

ity
 G

ap

Methods

LIH(T=1000,n=100)

LIH(T=3000,n=100)

LIH(FS)(T=1000,n=100)

LIH(FS)(T=3000,n=100)

LIH(FT)(T=1000,n=100)

LIH(FT)(T=3000,n=100)

(d) Generalization results on LIH (Wu et al., 2021) and the corresponding
model trained under PSRO with n=100.

Figure 9: Generalization results of some models (or methods) on different problem scales.

17



Under review as a conference paper at ICLR 2022

Table 4: Ablation Results under Different Initial Solutions

Instance Opt. LIH(FS) LIH(FT)
Random Random Insert Nearest Insert Farthest Insert Random Random Insert Nearest Insert Farthest Insert

pr226 80,369 697,738 103,441 97,357 84,088 853,580 103,441 97,357 84,088
ts225 126,643 781,083 157,731 155,603 136,699 981,680 157,731 155,603 136,699
kroD100 21,294 22,717 23,288 23,377 22,346 23,624 23,139 23,377 22,346
eil51 426 451 459 437 444 462 441 437 444
kroA100 21,282 23,033 21,458 22,269 22,891 22,596 22,289 22,269 22,891
pr264 49,135 442,632 58,343 65,878 55,312 523,232 58,343 65,878 55,312
pr152 73,682 300,897 91,335 86,914 76,389 302,977 91,335 86,914 76,389
gil262 2,378 14,033 2,615 2,914 2,638 17,270 2,615 2,914 2,638
rat99 1,211 1,298 1,299 1,305 1,250 1,325 1,341 1,305 1,250
kroA150 26,524 97,431 28,628 31,344 28,789 86,237 28,628 31,344 28,789
lin105 14,379 21,526 18,102 18,170 15,372 19,102 17,758 18,170 15,372
pr124 59,030 151,075 67,163 68,178 61,645 160,136 67,163 68,178 61,645
st70 675 742 702 782 741 735 699 782 741
a280 2,579 16,878 3,084 2,987 3,018 19,777 3,084 2,987 3,018
rd100 7,910 8,852 8,580 8,620 8,180 8,608 8,456 8,620 8,180
pr136 96,772 265,334 131,880 106,059 104,429 239,330 131,880 106,059 104,429
pr76 108,159 111,646 111,712 119,838 109,174 116,986 120,441 119,838 109,174
kroA200 29,368 150,172 31,824 36,029 31,450 163,725 31,824 36,029 31,450
kroB200 29,437 142,464 32,923 36,532 31,656 151,026 32,923 36,532 31,656
pr107 44,303 73,698 51,793 53,127 45,288 70,374 51,793 53,127 45,288
kroB150 26,130 84,105 27,418 31,619 28,156 83,013 27,418 31,619 28,156
u159 42,080 173,829 52,854 52,005 46,771 158,815 52,854 52,005 46,771
berlin52 7,542 9,200 7,845 8,379 7,758 8,185 7,775 8,379 7,758
rat195 2,323 8,716 3,079 2,953 2,600 11,645 3,079 2,953 2,600
d198 15,780 56,201 17,759 17,839 16,501 71,529 17,759 17,839 16,501
eil101 629 659 659 657 641 686 664 657 641
pr144 58,537 275,619 84,936 73,306 62,522 245,762 84,936 73,306 62,522
pr299 48,191 368,945 61,035 59,699 51,726 380,381 61,035 59,699 51,726
kroC100 20,749 21,957 21,413 23,144 21,147 22,766 21,589 23,144 21,147
tsp225 3,916 19,333 4,514 4,774 4,262 19,814 4,514 4,774 4,262
eil76 538 566 568 590 569 559 565 590 569
kroB100 22,141 23,413 23,459 23,414 23,927 25,763 23,895 23,414 23,927
kroE100 22,068 23,563 23,750 24,135 23,172 24,257 23,589 24,135 23,172
ch150 6,528 20,633 7,145 7,917 6,866 25,626 7,145 7,917 6,866
bier127 118,282 180,026 132,501 144,569 127,520 189,875 132,501 144,569 127,520
ch130 6,110 15,097 6,495 7,436 6,655 15,884 6,495 7,436 6,655

Avg. Gap (%) 0 221.18 14.13, 16.77 6.70 250.24 14.35 16.00 7.19

A.8 RESULTS ON DIFFERENT INITIALIZATION METHOD

Based on the mechanism of LIH (Wu et al., 2021), we can make improvements based on given
feasible solution. In this part, we investigate the performance of our model under different initial
solutions on TSPLib instances. Specifically, we consider four scenarios:

• Random: Generating random solution for the given instance
• Random Insert: Generating initial solution using random insertion heuristic
• Nearest Insert: Generating initial solution using Nearest insertion heuristic
• Farthest Insert: Generating initial solution using Farthest insertion heuristic

Table. 4 shows that with Farthest Insertion heuristic, our model can attain excellent performances on
these real world instances compared with other initial method, especially with random generation.
Recall the results in Table. 1, Farthest Insertion heuristic has better performance than Random and
Nearest Insertion heuristic, which motivates us to treat the deep-learning based methods as heuristics
to improve known best results which may be not optimal.

18


	Introduction
	Related Work
	Preliminary
	Method
	Meta-Strategy Solvers
	Oracle Training
	Evaluation
	Combining the Solver population

	Experiments
	Settings
	Results

	Discussion
	Meta game analysis
	Usage of a population of solvers
	Ablations on the initial solution

	Conclusions and future work
	Appendix
	Oracle Training
	Computation of Log-Probability
	Detailed Experimental Settings
	Meta Strategy in Different PSRO Loops
	Weakness of solvers
	Demonstration of Attack Distribution
	Generalization on different scales
	Results on Different Initialization Method


