Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE SYNTHETIC DATA VIA
APIS 3: USING SIMULATORS INSTEAD OF FOUNDA-
TION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private (DP) synthetic data, which closely resembles the original
private data while maintaining strong privacy guarantees, has become a key tool
for unlocking the value of private data without compromising privacy. Recently,
PRIVATE EVOLUTION (PE) has emerged as a promising method for generating
DP synthetic data. Unlike other training-based approaches, PE only requires ac-
cess to inference APIs from foundation models, enabling it to harness the power
of state-of-the-art models. However, a suitable foundation model for a specific
private data domain is not always available. In this paper, we discover that the
PE framework is sufficiently general to allow inference APIs beyond foundation
models. Specifically, we show that simulators—such as computer graphics-based
image synthesis tools—can also serve as effective APIs within the PE framework.
This insight greatly expands the applicability of PE, enabling the use of a wide va-
riety of domain-specific simulators for DP data synthesis. We explore the potential
of this approach, named SIM-PE, in the context of image synthesis. Across three
diverse simulators, SIM-PE performs well, improving the downstream classifica-
tion accuracy of PE by up to 3x and reducing the FID score by up to 80%. We
also show that simulators and foundation models can be easily leveraged together
within the PE framework to achieve further improvements.

1 INTRODUCTION

Leaking sensitive user information is a significant concern in data-driven applications. A common
solution is to generate differentially private (DP) (,) synthetic data that closely
resembles the original while ensuring strict privacy guarantees. This DP synthetic data can replace
the original in tasks like model fine-tuning and statistical analysis while preserving user privacy.

PRIVATE EVOLUTION (PE) (, ; ,) has recently emerged as a promis-
ing method for generating DP synthetic data. PE starts by probing a foundation model to generate
random samples, then iteratively selects those most similar to the private data and uses the model
to generate more samples that resemble them. Unlike previous state-of-the-art approaches that re-
quire fine-tuning open-source models, PE relies solely on model inference. Therefore, PE can be
up to 66 x faster than training-based methods (,). More importantly, this enables PE
to easily harness the cutting-edge foundation models like GPT-4 (,) and Stable Diffu-
sion (,), achieving state-of-the-art performance across multiple image and text
benchmarks (s ; , ; s).

However, PE relies on foundation models suited to the private data domain, which may not always
be available. When the model’s distribution significantly differs from the private data, PE’s perfor-
mance lags far behind training-based methods (,).

To address this question, we note that in the traditional synthetic data field—where private data is
not involved—domain-specific, non-neural-network simulators remain widely used, especially in
domains where foundation models struggle. Examples include computer graphics-based simula-

tors for images, videos, and 3D data (e.g., Blender (,) and Unreal (),
physics-based simulators for robotics data (e.g., Genesis (s)), and network simulators
for networking data (e.g., ns-2 (,)). While these simulators have been suc-

cessful, their applications in DP data synthesis remain underexplored. This is understandable, as
adapting these simulators to fit private data in a DP fashion requires non-trivial, case-by-case mod-
ifications. Our key insight is that PE only requires two APIs: RANDOM_API that generates random
samples and VARIATION_API that generates samples similar to the given one. These APIs do not
have to come from foundation models! Thus, we ask: Can PE use simulators in place of foundation

Under review as a conference paper at ICLR 2025

models? If viable, this approach could greatly expand PE’s capabilities and unlock the potential of
a wide range of domain-specific simulators for DP data synthesis.

In this paper, we explore this potential in the context of images. We consider two types of simulator
access: (1) The simulator is accessible. In this case, we define RANDOM_API as using random
simulator parameters to render an image, and VARIATION_API as slightly perturbing the simulator
parameter of the given 1mage (2) The simulator is not accessible—only its generated dataset
is released. This scenario is quite common (s ; s), especially when
simulator assets are proprietary (; ,). In this case, we define
RANDOM_API as randomly selectlng an 1mage from the dataset, and VARIATION_API as randomly
selecting a nearest neighbor of the given image. We demonstrate that the resulting algorithm, S1M-
PE, outperforms PE with foundation models. Our key contributions are:

o Insight: We identify that PE is not limited to foundation models, making it the first framework
capable of utilizing both state-of-the-art foundation models and simulators for DP data synthesis.

e Algorithm: We propose SIM-PE, an extension of PE using simulators, applicable in both sce-
narios where the simulator or the generated dataset is available. Additionally, we introduce the
use of both foundation models and simulators interchangeably during the data synthesis process,
allowing for the benefits of both to be leveraged through PE’s easy and standardized interface.

o Results: We demonstrate promising results with SIM-PE. For instance, on the MNIST dataset
with e = 1, downstream classification accuracy increases to 89.1%, compared to 27.9% with
the original PE. Furthermore, combining foundation models with weak simulators results in
improved performance compared to using either one alone.

2 PRELIMINARIES AND MOTIVATION

Synthetic data refers to “fake” data generated by models or software for various applications, in-
cluding data augmentation, model training, and software testing (Lin,). One approach involves
machine learning models, ranging from simple statistical models like Gaussian mixtures to more
advanced deep neural network-based generative models such as GANSs (,),
diffusion models (,), and auto-regressive models (R

). The other approach relies on simulators. In this paper, we broadly define 51mulat0rs as
non-neural-network data synthesizers with hard-coded, interpretable logic. For example, given
network configurations, ns-2 (s) can simulate a network and generate network
packets. Similarly, given 3D models and lighting configurations, Blender (,) can
render images and videos of objects. These simulators are widely used and are especially useful
when data distributions are too complex for machine learning models to learn.

DP synthetic data requires the synthetic data to be close to a given private dataset, while hav-
ing a strict privacy guarantee called Differential Privacy (DP) (,). Formally, a
mechanism M is (e, §)-DP if for any two neighboring datasets D and D’ (i.e., D’ has one extra
entry compared to D or vice versa) and for any set .S of outputs of M, we have P (M (D) € S) <

e P(M(D') € S)+ 6. Smaller € and ¢ imply stronger privacy guarantees. Current state-of-the-art
DP image and text synthesis methods rely on machine learning models and typically require model
training (, ; , ; , ; , ;

; ; , ; ;) ; ,)-

PRIVATE EVOLUTION (PE) (, ; R) is a recent training-free framework
for DP data synthesis. PE only requires inference access to the foundation models. Therefore,
unlike prior training-based methods, PE can leverage the state-of-the-art models even if they are
behind APIs (e.g., GPT-4) and is more computationally efficient. PE is versatile across data modal-
ities, as long as suitable foundation models are available with two functions: (1) RANDOM_API
that generates a random sample (e.g., a random bird image), and (2) VARIATION_API that generates
slight modifications of the given sample (e.g., a similar bird image). PE works by first calling RAN-
DOM_API to get an initial set of synthetic samples, and then iteratively refine this set by selecting the
closest ones to the private samples (in a DP manner) and calling VARIATION_API to generate more of
such samples. The full PE algorithm from () is attached in App. A for completeness.

Motivation. While PE achieves state-of-the-art performance on several image and text benchmarks
(; ,), its performance significantly drops when there is a large dis-
tribution Shlft between the private data and the foundation model’s pre-trained data (,

Under review as a conference paper at ICLR 2025

). Since relevant foundation models may not always be available for every domain, this limita-
tion hinders PE’s applicability in real-world scenarios. Extending PE to leverage simulators could
significantly expand its potential applications.

More broadly, as discussed above, simulators cannot be substituted by foundation models in (non-
DP) data synthesis across many domains. Unfortunately, current state-of-the-art DP synthetic data
methods are deeply reliant on machine learning models (e.g., requiring model training) and cannot
be applied to simulators. By extending PE to work with simulators, we aim to unlock the potential
of simulators in DP data synthesis.

3 SIM-PE: PRIVATE EVOLUTION (PE) WITH SIMULATORS

In this paper, we focus on DP image generation. The beauty of the PRIVATE EVOLUTION framework
is that it isolates DP mechanism from data generation backend. In particular, any data generation
backend that supports RANDOM_API and VARIATION_API can be plugged into the framework and
transformed into a DP data synthesis algorithm. Therefore, our goal is to design RANDOM_API
and VARIATION_API for image simulators.

We notice that existing popular image simulators provide different levels of access. Some simula-

tors are open-sourced. Examples include KUBRIC (s), a Blender-based renderer
for multi-object images/videos; 3D TEAPOT (s ; s), an
OpenDR-based renderer for teapot images; and PYTHON-AVATAR (,), a rule-based

generator for avatars. However, the assets (e.g., 3D models) used in these renderers are often propri-
etary. Therefore, many simulator works choose to release only the generated datasets without
the simulator code. Examples include the FACE SYNTHETICS (,) and DIGIFACE-
1M (s) datasets, both generated using Blender-based renderers for human faces. In
§ 3.1 and 3.2, we discuss the design for simulators with code access and data access, respectively.

Moreover, since simulators and foundation models provide the same RANDOM_API and VARIA-
TION_API interfaces to PE, PE can easily utilize both together. App. B discusses the methedology.

Privacy analysis. Since we only modify RANDOM_API and VARIATION_API, the privacy guarantee
is exactly the same as ().

3.1 SiM-PE WITH SIMULATOR ACCESS
While different simulators have very different programming interfaces, most of them can be ab-

stracted in the same way. Given a set of p categorical parameters 1,...,&, and q numeri-
cal parameters ¢q,...,¢, where {; € Z; and ¢; € @,;, the simulator § generates an image
S(&,.. &, H1,...,¢q). For example, for face image renders (

), ;s could be the ID of the 3D human face model and the ID of the hair style and d;s could
be the angle of the face and the strength of lighting.

For RANDOM_API, we simply draw each parameter randomly from its corresponding feasi-
ble set. Specifically, we define RANDOM.API = S(&1,...,6p, 01,...,04), Where & ~
Uniform (2;) and ¢; ~ Uniform (®;). Here, Uniform (5) denotes drawing a sample uniformly
at random from the set S

For VARIATION_API, we generate variations by perturbing the input image parameters. For nu-
merical parameters ¢;, we simply add small noise. However, for categorical parameters &;, where
no natural ordering exists among feasible values in =;, adding noise is not applicable. Instead,
we re-draw the parameter from the entire feasible set =; with a certain probability. Formally,
it is defined as VARIATIONAPI (S (&1, ..., &p 01, -, 0q)) = S (1., &), Dl -, ¢),) , where

. Uniform (E;), with probability
%~ Unif P — o, P N®,) and & = ’ . e .
% niform ([¢: — ¢ + of) and & {&-, with probability 1 — 3

« and [control the degree of variation. At one extreme, when o = oo and 5 = 1, VARIATION_API
completely discards the information of the input sample and reduces to RANDOM_API. Conversely,
when o = 8 = 0, VARIATION_API outputs the input sample unchanged.

Here,

3.2 SIM-PE WITH SIMULATOR-GENERATED DATA

Here, we assume that a dataset of m samples Sgm = {21, ..., 2, } generated from the simulator is
already given. The goal is to pick Ny, samples from them to construct the DP synthetic dataset
Ssyn. Before discussing our final solutions, we first discuss two straightforward approaches.

Under review as a conference paper at ICLR 2025

Baseline 1: Applying DP_.NN_HISTOGRAM on S,,. One immediate solution is to apply
DP_NN_HISTOGRAM in PE (Alg. 2) by treating S, as the generated set .S. In other words, each
private sample votes for its nearest neighbor in Sgn, and the final histogram, aggregating all votes,
is privatized with Gaussian noise. We then draw samples from Sgm according to the privatized
histogram (i.e., Line 8 in Alg. 1) to obtain Sgyr,.

However, the size of the simulator-generated dataset (i.e., m) is typically very large (e.g., 1.2 million
in ()), and the total amount of added Gaussian noise grows with m. This means that
the resulting histogram suffers from a low signal-to-noise ratio, leading to poor fidelity in Seyy.

Baseline 2: Applying DP_NN_HISTOGRAM on cluster centers of Sy,,. To improve the signal-to-
noise ratio of the histogram, one solution is to have private samples vote on the cluster centers of
Sqim instead of the raw samples. Specifically, we first cluster the samples in Sy, into Nejyger clusters
with centers {w1, ..., wn,,, | and have private samples vote on these centers rather than individual
samples in Sgm.' Since the number of bins in the histogram decreases from m to Nejugier, the signal-
to-noise ratio improves. Following the approach of the previous baseline, we then draw Ny, cluster
centers (with replacement) based on the histogram and randomly select a sample from each chosen

cluster to construct the final Sgy,.

However, when the total number of samples m is large, each cluster may contain a diverse set of
samples, including those both close to and far from the private dataset. While DP voting on clusters
improves the accuracy of the DP histogram and helps select better clusters, there remains a risk of
drawing unsuitable samples from the chosen clusters.

Our approach. Our key insight is that the unavoidable trade-off between the accuracy of the DP
histogram and the precision of selection (clusters vs. individual samples) arises because private
samples are forced to consider all samples in Sgm—either directly in baseline 1 or indirectly through
cluster centers in baseline 2. However, this is not necessary. If we already know that a sample z;
is far from the private dataset, then its nearest neighbors in Sy, are also likely to be far from the
private dataset. Therefore, we can avoid wasting the privacy budget on evaluating such samples.

The iterative selection and refinement process in PE naturally aligns with this idea. For each sam-
ple z;, we define its nearest neighbors in Sy as ¢}, ..., ¢’,, sorted by closeness, where ¢i = 2;
is the closest. We define RANDOM_API as drawing a random sample from Sg,,: RANDOM_API ~
Uniform (Sim) . Since we only draw Ny, samples (instead of m) from RANDOM_API, the DP
histogram on this subset has a higher signal-to-noise ratio. In the following steps (Lines 6 to 8),
samples far from the private dataset are removed, and we perform variations only on the remaining
samples according to: VARIATION_API (z;) = Uniform ({q},...,¢}), thus avoiding considera-
tion of nearest neighbors of removed samples (unless they are also nearest neighbors of retained
samples). Similar to « and 5 and in § 3.1, the parameter -y controls the degree of variation. At one
extreme, when v = m, VARIATION_API disregards the input sample and reduces to RANDOM_API.
At the other extreme, when v = 1, VARIATION_API returns the input sample unchanged.

Broader applications. The proposed algorithm can be applied to any public dataset beyond
simulator-generated data. In our experiments (§ 4), we focus on simulator-generated data, and we
leave the exploration of broader applications for future work.

4 EXPERIMENTS

Datasets. Following prior work, we use two private datasets: (1) MNIST (s), where the
image class labels are digits ‘0’-‘9’, and (2) CelebA (,), where the image class labels
are male and female. We aim at conditional generation for these datasets (i.e., each generated image
is associated with the class label).

Simulators. To demonstrate the general applicability of SIM-PE, we select three diverse simulators
with very different implementations, including a text rendering program for MNIST, a computer
graphics-based renderer for CelebA (data access only), and a rule-based avatar generator for CelebA.
See App. D.1 for the details. In the main experiments, we assume the challenging setting where the
class label information from the simulators is not available to SIM-PE; in App. B, we show that
SM-PE’s performance could be even better with the class label information.

"Note that voting in (,) is conducted in the image embedding space. Here, w;s represent
cluster centers in the embedding space, and each private sample uses its image embedding to find the nearest
cluster center.

Under review as a conference paper at ICLR 2025

00 80c0DJ00 2 oo 000000
{ / [A A] VAN B AV AN R O
o2 2L 122282 o 2223229222
33 333323 3 3533333333
a4 YN Y14 s dad 24544 4g
55 TESS 5 5 $555586505
e 606 bL L 8 L6 bs6bbisl
71 797177 s r 77272271177
& & RPFEE Y) Fo09385s8F8 4
3 9 ;329779 L 99909%999129
(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (e = 10)

Figure 1: The real and generated images on MNIST. Each row corresponds to one class. The simu-
lator generates images that are very different from the real ones and are from the incorrect classes.
Starting from these bad images, SIM-PE can effectively guide the generation of the simulator to-
wards high-quality images with correct classes.

. MNIST CelebA
Algorithm c=1 ¢=10 | c=1 e=10 Algorithm - zl\fNIFSTZ R zcleleb(Az 10
DP-MERF 80.3 813 | 810 81.2 DP-MERF 1137 1063 | 1763 1479
DP-NTK 500 913 | 612 642 DP-NTK 382.1 692 | 3504 2278
DP-Kernel 94.0 93.6 83.0 83.7 DP-Kernel 33.7 38.9 140.3 128.8
GS-WGAN 724 753 | 614 615 GS-WGAN 570 477 | 611.8 290.0
DP-GAN 92.4 92.7 77.9 89.2 DP-GAN 823 30.3 112.5 31.7
DPDM 892 977 | 745 918 DPDM 36.1 44 | 15399 28.8
PDP-Diffusion | 94.5 974 | 894 94.0 PDP-Diffusion | 8.9 3.8 17.1 8.1
DP-LDM (SD) | 78.8 94.4 84.4 89.1 DP-LDM (SD) | 31.9 18.7 46.2 24.1
DP-LDM 442 95.5 85.8 92.4 DP-LDM 1552 99.1 124.1 40.4
DP-LoRA 822 971 | 87.0 920 DP-LoRA 1128 954 53.3 322
Privimage 94.0 97.8 90.8 92.0 PrivImage 7.6 23 114 11.3
Simulator 11.6 (e = 0) 614 (e=0) Simulator 862 (c = 0) 372 (c=0)
PE 279 327 | 705 742 PE 488 453 234 22.0
SIM-PE (ours) | 89.1 93.6 | 80.0 825 SIM-PE (ours) | 20.7 9.4 247 20.8
(a) Accuracy (%) of downstream classifiers. (b) FID of synthetic images.

Table 1: Accuracy and FID. The best between PE methods is in bold, and the best between all
methods is underlined. “Simulator” refers to samples from the simulator’s RANDOM_API. Results

other than SIM-PE and Simulator are taken from ().
Metrics. We follow the evaluation settings of DPImageBench (,), a recent bench-
mark for DP image synthesis. Specifically, we use two metrics: (1) FID (,) and

(2) the accuracy of downstream classifiers. For (2), we employ a strict train-validation-test split
and account for the privacy cost of classifier hyperparameter selection. See App. D.2 for the details.

DP parameters. Following (), we set DP parameter § = 1/(Npyiv - log Npyiv),
where V.4, is the number of samples in the private dataset, and € = 1 or 10.

Baselines We compare SIM-PE with 12 state-of-the-art DP image synthesizers reported in

(), including DP-MERF (,), DP-NTK (,), DP-Kernel
(,), GS-WGAN (,), DP-GAN (,), DPDM (

,), PDP-Diffusion (,), DP-LDM (,), DP-LoRA
(R), Privimage (,), and PE with foundation models (R).

Except for PE, all baselines require model training. For SIM-PE with simulator-generated data, we
also compare it against the two baselines introduced in § 3.2; see App. C.2 for results.

It is important to note that this comparison is not intended to be entirely fair, as different meth-
ods leverage different prior knowledge (pre-trained models or simulators). SIM-PE should be
considered as a new simulator-based benchmark, and the baseline results serve as a reference.

4.1 SiM-PE wiITH SIMULATOR ACCESS

In this section, we evaluate SIM-PE with a text rendering program on MNIST dataset. The results
are shown in Tables 1 and 3 and Figs. 1 and 4. The key takeaway messages are:

SiM-PE effectively guides the simulator to generate high-quality samples. As shown in Fig. 1b,
without any information from the private data or guidance from SIM-PE, the simulator initially
produces poor-quality images with incorrect digits, digit sizes, rotations, and stroke widths. These
low-quality samples serve as the starting point for SIM-PE (via RANDOM_API). Through iterative

Under review as a conference paper at ICLR 2025

W\ Al 2+« JE R

21 s Laltle 8 K

(a) Real (private) images (b) Simulator-generated (©) SIM—PE—generated (e = 10)

Figure 2: The real and generated images on CelebA. The top rows correspond to the “female” class,
and the bottom rows correspond to the “male” class. The simulator generates images with incorrect
classes. However, starting from these misclassified images, SIM-PE effectively selects those that
better match the correct class.

refinement and private data voting, SIM-PE gradually optimizes the simulator parameters, ultimately
generating high-quality MNIST samples, as illustrated in Fig. lc.

Quantitative results in Table 1 further support this. Without private data guidance, the simulator
naturally generates digits from incorrect classes, leading to a downstream classifier accuracy of only
11.6%, close to random guessing. In contrast, SIM-PE significantly improves accuracy to approxi-
mately 90%. Additionally, FID scores confirm that the images from SIM-PE are more realistic.

SIM-PE can significantly improve the performance of PE. The PE baseline (,)
uses a diffusion model pre-trained on ImageNet, which primarily contains natural object images
(e.g., plants, animals, cars). Since MNIST differs significantly from such data, PE, as a training-
free method, struggles to generate meaningful images. Most PE-generated images lack recognizable
digits (see (), resulting in a classification accuracy of only ~ 30% (Table 1a). By
leveraging a simulator better suited for this domain, SIM-PE achieves significantly better results,
tripling the classification accuracy and reducing the FID score by 80% at € = 10.

SIM-PE achieves competitive results among state-of-the-art methods. When the foundation
model or public data differs significantly from the private data, training-based baselines can still
adapt the model to the private data distribution by updating its weights, whereas PE cannot. This
limitation accounts for the substantial performance gap between PE and other methods. Specifi-
cally, PE records the lowest classification accuracy among all 12 methods (Table 1a). By leveraging
domain-specific simulators, SIM-PE significantly narrows this gap, achieving classification accu-
racy within 5.4% and 4.2% of the best-performing method for ¢ = 1 and ¢ = 10, respectively.

4.2 SIM-PE WITH SIMULATOR-GENERATED DATA
In this section, we evaluate SIM-PE using a generated dataset from a computer graphics-based ren-
derer on the CelebA dataset. The results (Table 1 and Fig. 2) highlight the following key takeaways:

SIM-PE effectively selects samples that better match the correct classes. Without any infor-
mation from the private data, the simulator naturally generates images with incorrect class labels
(Fig. 2b). Consequently, a downstream classifier can at best achieve a trivial accuracy 61.4%—
equaling the fraction of the majority class (female) on the test set. On top of this noisy data, SIM-PE
iteratively refines the sample selection. Ultimately, SIM-PE selects samples that better align with
the target classes (Fig. 2c), leading to an accuracy improvement of up to 21.1% (Table 1a).

S1M-PE maintains the strong data quality of PE. As shown in Table 1b, SIM-PE and PE achieve
similar FID scores. Unlike in the MNIST experiments (§ 4.1), where SIM-PE significantly improved
over PE, the lack of substantial improvement on CelebA can be attributed to two factors. First, on
CelebA, PE with foundation models already ranks 3rd among all methods in terms of FID, leaving
little room for further gains. Second, in this experiment, SIM-PE is only provided with a fixed
dataset generated from the simulator. As seen in Fig. 2, the simulator-generated images exhibit
noticeable differences from real CelebA images, such as faces appearing larger. Since SIM-PE in
this setting can only select images without modifying them, it cannot correct such discrepancies.
Having access to simulator code, as in § 4.1, could potentially alleviate this issue, as SIM-PE could
learn to modify the parameters that control face sizes. Another potential improvement is a hybrid
approach that leverages both foundation models and simulators in PE, which we explore in App. B.

5 LIMITATIONS AND FUTURE WORK

In this paper, we demonstrate the potential of the PE framework for utilizing powerful simulators in
DP image synthesis. Further extensions include:

e The approach in § 3.2 can be extended beyond simulator-generated datasets, such as public web
data. This could further enhance the performance of PE and enable its application in other areas,
such as pre-training data selection for private fine-tuning (, ; ,).

e This paper focuses on image generation. SIM-PE could offer greater potential in domains like
networking and systems where foundation models are rarer and simulators are more prevalent.

Under review as a conference paper at ICLR 2025

REFERENCES

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AT/Genesis.

Gwangbin Bae, Martin de La Gorce, Tadas Baltrusaitis, Charlie Hewitt, Dong Chen, Julien Valentin,
Roberto Cipolla, and Jingjing Shen. Digiface-1m: 1 million digital face images for face recog-
nition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 3526-3535, 2023.

Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P Bhavnani,
James Brian Byrd, and Casey S Greene. Privacy-preserving generative deep neural networks sup-
port clinical data sharing. Circulation: Cardiovascular Quality and Outcomes, 12(7):e005122,
2019.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Tianshi Cao, Alex Bie, Arash Vahdat, Sanja Fidler, and Karsten Kreis. Don’t generate me: Training
differentially private generative models with sinkhorn divergence. Advances in Neural Informa-
tion Processing Systems, 34:12480-12492, 2021.

Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. GS-WGAN: A gradient-sanitized ap-
proach for learning differentially private generators. In Advances in Neural Information Process-
ing Systems, 2020.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised learning of scene struc-
ture for synthetic data generation. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XVII 16, pp. 715-733. Springer, 2020.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion
models. arXiv preprint arXiv:2210.09929, 2022.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, et al. Differentially private diffusion models. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.
net/forum?id=ZPpQk7FJXF.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265-284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3—4):211-407, 2014.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disen-
tangled representations. In 6th International Conference on Learning Representations, 2018.

Epic Games. Unreal engine. URL https://www.unrealengine.com.
Ibon Escartin. python avatars. https://github.com/ibonn/python_avatars, 2021.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023a.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, et al. Differentially private diffusion models
generate useful synthetic images. CoRR, abs/2302.13861, 2023b.

Chen Gong, Kecen Li, Zinan Lin, and Tianhao Wang. Dpimagebench: A unified benchmark for
differentially private image synthesis. 2025.

https://github.com/Genesis-Embodied-AI/Genesis
http://www.blender.org
https://openreview.net/forum?id=ZPpQk7FJXF
https://openreview.net/forum?id=ZPpQk7FJXF
https://www.unrealengine.com
https://github.com/ibonn/python_avatars

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Google. Google fonts. https://github.com/google/fonts, 2022.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi
S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scalable
dataset generator. 2022.

Frederik Harder, Kamil Adamczewski, and Mijung Park. DP-MEREF: differentially private mean
embeddings with random features for practical privacy-preserving data generation. In AISTATS,
pp. 1819-1827, 2021a.

Frederik Harder, Kamil Adamczewski, and Mijung Park. Dp-merf: Differentially private mean em-
beddings with randomfeatures for practical privacy-preserving data generation. In International
conference on artificial intelligence and statistics, pp. 1819-1827. PMLR, 2021b.

Frederik Harder, Milad Jalali, Danica J Sutherland, and Mijung Park. Pre-trained perceptual features
improve differentially private image generation. Transactions on Machine Learning Research,
2023.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. arXiv preprint arXiv:2212.01539, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia
Fanti, and Daniel Lazar. Pre-text: Training language models on private federated data in the age
of llms. arXiv preprint arXiv:2406.02958, 2024.

Teerawat Issariyakul, Ekram Hossain, Teerawat Issariyakul, and Ekram Hossain. Introduction to
network simulator 2 (NS2). Springer, 2009.

Dihong Jiang, Sun Sun, and Yaoliang Yu. Functional renyi differential privacy for generative mod-
eling. In Advances in Neural Information Processing Systems, 2023.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International conference on learning representations,
2019.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David
Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4551-4560,
2019.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Kecen Li, Chen Gong, Zhixiang Li, et al. Privimage: Differentially private synthetic image genera-
tion using diffusion models with Semantic-Aware pretraining. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pp. 4837-4854, 2024. ISBN 978-1-939133-44-1.

https://github.com/google/fonts

Under review as a conference paper at ICLR 2025

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Zinan Lin. Data Sharing with Generative Adversarial Networks: From Theory to Practice. PhD
thesis, Carnegie Mellon University, 2022.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing net-
worked time series data: Challenges, initial promise, and open questions. In Proceedings of the
ACM Internet Measurement Conference, pp. 464—483, 2020a.

Zinan Lin, Kiran Thekumparampil, Giulia Fanti, and Sewoong Oh. Infogan-cr and modelcentrality:
Self-supervised model training and selection for disentangling gans. In international conference
on machine learning, pp. 6127-6139. PMLR, 2020b.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
private synthetic data via foundation model APIs 1: Images. In NeurlPS 2023 Workshop on
Synthetic Data Generation with Generative Al, 2023. URL https://openreview.net/
forum?id=7GbfIEvoSS.

Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
image auto-regressive models with flow matching. arXiv preprint arXiv:2412.17153, 2024a.

Michael F. Liu, Saiyue Lyu, Margarita Vinaroz, and Mijung Park. Differentially private latent diffu-
sion models. 2024b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

OpenAl. Gpt-4 technical report, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684—10695, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256-2265. PMLR, 2015.

Yu-Lin Tsai, Yizhe Li, Zekai Chen, Po-Yu Chen, Chia-Mu Yu, Xuebin Ren, and Fran-
cois Buet-Golfouse. Differentially private fine-tuning of diffusion models. arXiv preprint
arXiv:2406.01355, 2024.

Margarita Vinaroz, Mohammad-Amin Charusaie, Frederik Harder, Kamil Adamczewski, and
Mi Jung Park. Hermite polynomial features for private data generation. In International Con-
ference on Machine Learning, pp. 22300-22324. PMLR, 2022.

Erroll Wood, Tadas Baltrusaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman, and Jamie
Shotton. Fake it till you make it: face analysis in the wild using synthetic data alone. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 3681-3691, 2021.

Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Hao-
tian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via foundation
model apis 2: Text. arXiv preprint arXiv:2403.01749, 2024.

Liyang Xie, Kaixiang Lin, and et al. Differentially private generative adversarial network. CoRR,
abs/1802.06739, 2018. URL http://arxiv.org/abs/1802.06739.

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492-1500, 2017.

Yilin Yang, Kamil Adamczewski, and et al. Differentially private neural tangent kernels for privacy-
preserving data generation. CoRR, abs/2303.01687, 2023.

https://openreview.net/forum?id=7GbfIEvoS8
https://openreview.net/forum?id=7GbfIEvoS8
http://arxiv.org/abs/1802.06739

Under review as a conference paper at ICLR 2025

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based synthetic ip
header trace generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference,
pp. 458472, 2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa,
Jian Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. arXiv preprint
arXiv:2305.13865, 2023.

Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Huan Sun, David Levitan,
and Robert Sim. Synthetic text generation with differential privacy: A simple and practical recipe.
arXiv preprint arXiv:2210.14348, 2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

10

a MR W N =

Under review as a conference paper at ICLR 2025

A PRIVATE EVOLUTION

Alg. 1 presents the PRIVATE EVOLUTION (PE) algorithm, reproduced from (). This
algorithm represents the conditional version of PE, where each generated image is associated with
a class label. It can be interpreted as running the unconditional version of PE separately for each
class.

Algorithm 1: PRIVATE EVOLUTION (PE)

Input: The set of private classes: C' (C' = {0} if for unconditional generation)
Private samples: Spiv = {(2;, yi)}ﬁv;’{”, where x; is a sample and y; € C is its label
Number of iterations: 1T’
Number of generated samples: Ngyn, (assuming Ngyn mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: o

Threshold for DP Nearest Neighbors Histogram: H

Ssyn — (Z)
force Cdo
private_samples < {x;|(x;,y;) € Spriv and y; = ¢}
S} +— RANDOM_API (Nayw/ [C])
fort < 1,...,Tdo
histogram; <— DP_NN_HISTOGRAM (private_samples, S, o, H) // See
Alg. 2
Py + histogramy /sum(histograms) // Py is a distribution on S

S} <= draw Ny, /|C| samples with replacement from P, // S; is a multiset
Si+1 < VARIATION_API (S))

| Sagn < Sagn U{ (@,)|z € Sr}
return Sy,

Algorithm 2: DP Nearest Neighbors Histogram (DP_NN_HISTOGRAM)

Input : Private samples: Spriv
Generated samples: S = {z;}}_,
Noise multiplier: o
Threshold: H
Distance function: d (-, -)
Output: DP nearest neighbors histogram on S

1 histogram <+ [0,...,0]

2 for z,i € Spriv do

3 i = argminjcp,) d (Tpriv, 2;)

a | histograml[i| < histogramli] + 1

s histogram < histogram + N (0,01,) // Add noise to ensure DP
6 histogram < max (histogram — H,0) // ‘max’, ‘-’ are element-wise

return histogram

B SiM-PE WITH BOTH SIMULATORS AND FOUNDATION MODELS

B.1 APPROACH

As discussed in § 2, simulators and foundation models complement each other across different data
domains. Moreover, even within a single domain, they excel in different aspects For example, com-
puter graphics-based face image generation frameworks (, ; ,) allow
controlled diversity in race, lighting, and makeup while mitigating potential biases in foundation
models. However, the generated faces may appear less realistic than those produced by state-of-

11

Under review as a conference paper at ICLR 2025

i

SZ[E57 s atle QPa MQEzE@QVQ :
(a) Real (private) images (b) Simulator-generated images (ﬁ)))SIM-PE-generated images (€ =
Figure 3: The real and generated images on CelebA. The simulator is a weak rule-based avatar
generator (,) significantly different from the real dataset. The top rows correspond to
the “female” class, and the bottom rows correspond to the “male” class. The simulator generates
images with incorrect classes. SIM-PE tends to generate faces with long hair for the female class
and short hair for the male class (correctly), but the generated images have mode collapse issues.

the-art foundation models. Thus, combining the strengths of both methods for DP data synthesis is
highly appealing.

Fortunately, PE naturally supports this integration, as it only requires RANDOM_API and VARIA-
TION_API, which work the same for both foundation models and simulators. While there are many
ways to combine them, we explore a simple strategy: using simulators in the early PE iterations
to generate diverse seed samples, then switching to foundation models in later iterations to refine
details and enhance realism. As shown in § 4, this approach outperforms using either simulators or
foundation models alone.

B.2 RESULTS

In this section, we examine how SIM-PE performs with weak simulators. We again use the CelebA
dataset as the private data, but this time, we switch to a rule-based cartoon avatar generator (

) as the simulator. As shown in Fig. 3, the avatars generated by the simulator differ 51gn1ﬁcantly
from the real CelebA images.

S1M-PE with weak simulators still learns useful features. From Table 2, we observe that down-
stream classifiers trained on SIM-PE with weak simulators achieve poor classification accuracy.
However, two interesting results emerge: (1) Despite the significant difference between avatars and
real face images, SIM-PE still captures certain characteristics of the two classes correctly. Specifi-
cally, SIM-PE tends to generate faces with long hair for the female class and short hair for the male
class (Fig. 3). (2) Although the FID scores of SIM-PE are quite poor (Table 2), they still outperform
many baselines (Table 1b). This can be explained by the fact that, as shown in (),
when DP noise is high, the training of many baseline methods becomes unstable, leading to collapse.
This results in face images with noisy patterns, non-face images, or significant mode collapse, par-
ticularly for DP-NTK, DP-Kernel, and GS-WGAN. In contrast, SIM-PE is training-free, and thus it
avoids these issues.

Next, we explore the feasibility of using PE with both foundation models and the weak avatar
simulator (App. B). The results are shown in Table 2.

PE benefits from utilizing simulators and foundation models together. We observe that using
both simulators and foundation models yields the best results in terms of both FID and classification
accuracy. This result is intuitive: the foundation model, pre-trained on the diverse ImageNet dataset,
has a low probability of generating a face image through RANDOM_API. While avatars are quite
different from CelebA, they retain the correct image layout, such as facial boundaries, eyes, nose,
etc. Using these avatars as seed samples for variation allows the foundation model to focus on
images closer to real faces, rather than random, unrelated patterns.

Unlike other state-of-the-art methods that are tied to a specific data synthesizer, this result suggests
that PE is a promising framework that can easily combine the strengths of multiple types of data
synthesizers.

12

Under review as a conference paper at ICLR 2025

Table 2: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. Using a combination of both (weak) simulators
and foundation models outperforms using either one alone.

. FID | Classification Acc.
Algorithm c=1 e=10e=1 e=10
PE with foundation models 234 22.0 70.5 74.2
PE with weak simulators (i.e., SIM-PE) | 101.4 99.5 62.6 63.2
PE with both 15.0 11.9 72.7 78.1
0000600000 1000000000
A SV S A
PARRRARRR 322222920908
2232122222 22222
33333333033 J3333355353
LAYy g yudyugy
A4 4Y 47Ny vy i - -
- 555555755535
§HhIGTTISS s .
WEeLECELOL DL
127272727777
717777273177 8s §88858¢
82858725649 5909899934
9999599977 RERE
(a) Real (private) images (b) Simulator-generated images (lcg)SIM-PE-generated images (¢ =

Figure 4: The real and generated images on MNIST under the “ClassAvail” setting. Each row cor-
responds to one class. The simulator generates images that are very different from the real ones.
Starting from these bad images, SIM-PE can effectively guide the generation of the simulator to-
wards high-quality images that are more similar to real data.

Table 3: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
MNIST under the “ClassAvail” setting. See Tables 1a and 1b for results under the “ClassUnavail”
setting for reference.

. FID | Classification Acc. 1
Algorithm =1 =10 =1 =10
Simulator 86.0 (¢ = 0) 922 (e =0)
SmM-PE 20.7 8.6 93.9 95.5

Table 4: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. SIM-PE outperforms the baselines in most metrics.

. FID | Classification Acc. T
Algorithm =T =10 =1 =10
DP_NN_HISTOGRAM on Sy 36.2 293 61.5 71.9
DP_NN_HISTOGRAM on cluster centers of Ssyn | 26.4 183 74.7 71.7
SIM-PE 24.7 20.8 80.0 82.5

C MORE RESULTS

C.1 WHEN CLASS LABEL INFORMATION FROM THE SIMULATORS IS AVAILABLE

Class label information from the simulators can be helpful. All the above experiments are based
on the ClassUnavail setting, where the class label information from the simulator is assumed to be
unknown. However, one key advantage of using simulators over foundation models for generating
synthetic data is that simulators can provide various labels for free (

). In our case, for MNIST, the simulators provide information on which d1g1t the generated
image represents. Following the approach in § 4, we utilize this label information, and the results
are presented in Table 3 and Fig. 4. We observe that with digit information, the simulator-generated
data achieve significantly higher classification accuracy (92.2%), although the FID remains low
due to the generated digits exhibiting incorrect characteristics (Fig. 4b). The fact that SIM-PE
outperforms the simulator in both FID and classification accuracy across all settings suggests that
SIM-PE effectively incorporates private data information to enhance both data fidelity and utility,
even when compared to such a strong baseline. As expected, SIM-PE under ClassAvail matches
or surpasses the results obtained in ClassUnavail across all settings, suggesting the usefulness of
leveraging class label information.

13

Under review as a conference paper at ICLR 2025

§75 §30 SO 75! "\ —— e=1 350 \ —— e=1
e e N £=10 =10
3 3 oso ~ a30] \
g0/ £ ~ =
— = —— = ~
2 e=1 2 e=1 25 - 25
@251, e=10 | & £=10 -
0 3 3 6 2 4 6 0 3 T 53 a6
PE Iteration PE Iteration PE Iteration PE Iteration

(a) Acc. on MNIST (b) Acc. on CelebA (c) FID on MNIST (d) FID on CelebA

Figure 5: SIM-PE’s FID and accuracy generally improve over the course of the PE iterations.

C.2 VALIDATING THE DESIGN OF SIM-PE

In this section, we provide more experiments to understand and validate the design of SIM-PE.

How does SIM-PE with simulator-generated data compare to other data selection algorithms?
In § 3.2, we discussed two simple alternative solutions for simulator data selection. The comparison
is shown in Table 4. As we can see, SIM-PE with iterative data selection outperforms the baselines
on most metrics, validating the intuition outlined in App. B. However, the clustering approach used
in the second baseline still has merit, as it results in a better FID for ¢ = 10. This idea is orthogonal
to the design of SIM-PE and could potentially be combined for further improvement. We leave this
exploration to future work.

How does SIM-PE’s performance evolve across PE iterations? Fig. 5 shows that both the FID
and the downstream classifier’s accuracy generally improve as PE progresses. This confirms that
PE’s iterative data refinement process is effective when combined with simulators.

D EXPERIMENTAL DETAILS
In this section, we provide more experimental details.

D.1 SIMULATORS

To demonstrate the general applicability of SIM-PE, we select three diverse simulators with very
different implementations.

(1) Text rendering program. Generating images with readable text using foundation models is
a known challenge (,). Simulators can address this gap, as generating images
with text through computer programs is straightforward. To illustrate this, we implement our own
text rendering program, treating MNIST as the private dataset. Specifically, we use the Python PIL
library to render digits as images. The categorical parameters include: (1) Font. We use Google
Fonts (R), which offers 3589 fonts in total. (2) Text. The text consists of digits ‘0’ -
‘9’. Although we restrict the text to digits, the digit label is not provided to SIM-PE, which must
learn and select the correct digits for each MNIST class itself. The numerical parameters include:
(1) Font size, ranging from 10 to 29. (2) Stroke width, ranging from O to 2. (3) Digit rotation degree,
ranging from —30° to 30°. We set the feasible sets of these parameters to be large enough so that
the random samples differ significantly from MNIST (see Fig. 1b).

(2) Computer graphics-based renderer for face images. Computer graphics-based rendering is
widely used in real-world applications such as game development, cartoons, and movie production.
This experiment aims to assess whether these advanced techniques can be adapted for DP synthetic
image generation via SIM-PE. We use CelebA as the private dataset and a Blender-based face image
renderer from () as the API. Since the source code for their renderer is not publicly
available, we apply our data-based algorithm from § 3.2 on their released dataset of 1.2 million
face images. It is important to note that this renderer may not necessarily represent the state-of-the-
art. As visualized in Fig. 2b, the generated faces exhibit various unnatural artifacts and appear less
realistic than images produced by state-of-the-art generative models (e.g., ().
Therefore, this experiment serves as a preliminary study, and the results could potentially improve
with more advanced rendering techniques.

(3) Rule-based avatar generator. We further investigate whether SIM-PE remains effective when
the simulator’s data significantly differs from the private dataset. We use CelebA as the private

14

Under review as a conference paper at ICLR 2025

dataset and a rule-based avatar generator (,) as the APL. This simulator has 16 categor-
ical parameters that control attributes of the avatar including eyes, noses, background colors, skin
colors, etc. As visualized in Fig. 3b, the generated avatars have a cartoon-like appearance and lack
fine-grained details. This contrasts sharply with CelebA images, which consist of real human face
photographs.

Class label information from the simulators. For simulator 1, the target class label (i.e., the digit)
is fully controlled by one parameter. For simulators 2 and 3, the target class label (i.e., the gender)
is not directly controlled by any parameter, but could potentially be obtained by an external image
gender classifier. One benefit of using domain-specific simulators is that we can potentially use
the class label information to enhance data quality. To get a more comprehensive understanding of
SiM-PE, we consider two settings: (1) Class label information is unavailable (abbreviated as
“ClassUnavail”). We artificially make the problem more challenging by assuming that the class
label information is not available. Therefore, SIM-PE has to learn to synthesize images with the
correct class by itself. (2) Class label information is available (abbreviated as “ClassAvail”’). On
MNIST, we further test how SIM-PE can be improved if the class label information is available. In
this case, the RANDOM_API and VARIATION_API (§ 3.1) are restricted to draw parameters from the
corresponding class (i.e., the digit is set to the target class).

D.2 METRICS AND EVALUATION PIPELINES

We follow the evaluation settings of DPImageBench (,), a recent benchmark for
DP image synthesis. Specifically, we use two metrics: (1) FID (,) as a quality
metric and (2) the accuracy of downstream classifiers as a utility metric. Specifically, we use
the conditional version of PE (App. A), so that each generated images are associated with the class
labels (i.e., ‘0’-‘9’ digits in MNIST, male vs. female in CelebA). These class labels are the targets
for training the classifiers. We employ a strict train-validation-test split and account for the privacy
cost of classifier hyperparameter selection. Specifically, we divide the private dataset into disjoint
training and validation sets. We then run SIM-PE on the training set to generate synthetic data. Next,
we train three classifiers—ResNet (s), WideResNet (s),
and ResNeXt (,)—on the synthetic data and evaluate their accuracy on the validation
set. Since the validation set is part of the private data, we use the Report Noisy Max algorithm
(,) to select the best classifier checkpoint across all epochs of all three classifiers.
Finally, we report the accuracy of this classifier on the test set. This procedure ensures that the re-
ported accuracy is not inflated due to train-test overlap or DP violations in classifier hyperparameter
tuning.

D.3 MNIST wiTH TEXT RENDERING PROGRAM

Tables 5 and 6 show the list of the parameters and their associated feasible sets and variation degrees
in the MNIST with Text Rendering Program experiments. The total number of PE iterations is 4.

Categorical Parameter (§) \ Feasible Set (2) \ Variation Degrees (/3) Across PE Iterations

Font 1-3589 0.8,0.4,0.2,0.0
Text ‘0 - 0,0,0,0

Table 5: The configurations of the categorical parameters in MNIST with Text Rendering Program
experiments.

Numerical Parameter (¢) \ Feasible Set (P) \ Variation Degrees (o) Across PE Iterations

Font size [10, 30] 5,4,3,2
Font rotation [-30, 30] 9,7,5,3
Stroke width [0, 2] 1,1,0,0

Table 6: The configurations of the numerical parameters in MNIST with Text Rendering Program
experiments.

15

Under review as a conference paper at ICLR 2025

D.4 CELEBA WITH GENERATED IMAGES FROM COMPUTER GRAPHICS-BASED RENDER

The variation degrees v across PE iterations are [1000, 500, 200, 100, 50, 20]. The total number of
PE iterations is 6.

D.5 CELEBA WITH RULE-BASED AVATAR GENERATOR

The full list of the categorical parameters are

Style
Background color
Top

Hat color
Eyebrows

Eyes

Nose

Mouth

Facial hair

Skin color

Hair color
Facial hair color
Accessory
Clothing
Clothing color
Shirt graphic

These are taken from the input parameters to the library (,). The variation degrees 3
across PE iterations are [0.8, 0.6, 0.4, 0.2, 0.1, 0.08, 0.06]. There is no numerical parameter. The
total number of PE iterations is 7.

For the experiments with both foundation models and the simulator, we use a total of 5 PE iterations

S0 as to be consistent with the setting in (). For the RANDOM_API and the first PE
iteration, we use the simulator (3 = 0.8). For the next 4 PE iterations, we use the same foundation
model as in () with variation degrees [96, 94, 92, 90].

16

	Introduction
	Preliminaries and Motivation
	Sim-PE: Private Evolution (PE) with Simulators
	Sim-PE with Simulator Access
	Sim-PE with Simulator-generated Data

	Experiments
	Sim-PE with Simulator Access
	Sim-PE with Simulator-generated Data

	Limitations and Future Work
	Private Evolution
	Sim-PE with both Simulators and Foundation Models
	Approach
	Results

	More Results
	When Class Label Information from the Simulators is Available
	Validating the Design of Sim-PE

	Experimental Details
	Simulators
	Metrics and Evaluation Pipelines
	MNIST with Text Rendering Program
	CelebA with Generated Images from Computer Graphics-based Render
	CelebA with Rule-based Avatar Generator

