
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE SYNTHETIC DATA VIA
APIS 3: USING SIMULATORS INSTEAD OF FOUNDA-
TION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private (DP) synthetic data, which closely resembles the original
private data while maintaining strong privacy guarantees, has become a key tool
for unlocking the value of private data without compromising privacy. Recently,
PRIVATE EVOLUTION (PE) has emerged as a promising method for generating
DP synthetic data. Unlike other training-based approaches, PE only requires ac-
cess to inference APIs from foundation models, enabling it to harness the power
of state-of-the-art models. However, a suitable foundation model for a specific
private data domain is not always available. In this paper, we discover that the
PE framework is sufficiently general to allow inference APIs beyond foundation
models. Specifically, we show that simulators—such as computer graphics-based
image synthesis tools—can also serve as effective APIs within the PE framework.
This insight greatly expands the applicability of PE, enabling the use of a wide va-
riety of domain-specific simulators for DP data synthesis. We explore the potential
of this approach, named SIM-PE, in the context of image synthesis. Across three
diverse simulators, SIM-PE performs well, improving the downstream classifica-
tion accuracy of PE by up to 3× and reducing the FID score by up to 80%. We
also show that simulators and foundation models can be easily leveraged together
within the PE framework to achieve further improvements.

1 INTRODUCTION

Leaking sensitive user information is a significant concern in data-driven applications. A common
solution is to generate differentially private (DP) (Dwork et al., 2006) synthetic data that closely
resembles the original while ensuring strict privacy guarantees. This DP synthetic data can replace
the original in tasks like model fine-tuning and statistical analysis while preserving user privacy.

PRIVATE EVOLUTION (PE) (Lin et al., 2023; Xie et al., 2024) has recently emerged as a promis-
ing method for generating DP synthetic data. PE starts by probing a foundation model to generate
random samples, then iteratively selects those most similar to the private data and uses the model
to generate more samples that resemble them. Unlike previous state-of-the-art approaches that re-
quire fine-tuning open-source models, PE relies solely on model inference. Therefore, PE can be
up to 66× faster than training-based methods (Xie et al., 2024). More importantly, this enables PE
to easily harness the cutting-edge foundation models like GPT-4 (OpenAI, 2023) and Stable Diffu-
sion (Rombach et al., 2022), achieving state-of-the-art performance across multiple image and text
benchmarks (Lin et al., 2023; Xie et al., 2024; Hou et al., 2024).

However, PE relies on foundation models suited to the private data domain, which may not always
be available. When the model’s distribution significantly differs from the private data, PE’s perfor-
mance lags far behind training-based methods (Gong et al., 2025).

To address this question, we note that in the traditional synthetic data field—where private data is
not involved—domain-specific, non-neural-network simulators remain widely used, especially in
domains where foundation models struggle. Examples include computer graphics-based simula-
tors for images, videos, and 3D data (e.g., Blender (Community, 2018) and Unreal (Epic Games)),
physics-based simulators for robotics data (e.g., Genesis (Authors, 2024)), and network simulators
for networking data (e.g., ns-2 (Issariyakul et al., 2009)). While these simulators have been suc-
cessful, their applications in DP data synthesis remain underexplored. This is understandable, as
adapting these simulators to fit private data in a DP fashion requires non-trivial, case-by-case mod-
ifications. Our key insight is that PE only requires two APIs: RANDOM API that generates random
samples and VARIATION API that generates samples similar to the given one. These APIs do not
have to come from foundation models! Thus, we ask: Can PE use simulators in place of foundation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

models? If viable, this approach could greatly expand PE’s capabilities and unlock the potential of
a wide range of domain-specific simulators for DP data synthesis.

In this paper, we explore this potential in the context of images. We consider two types of simulator
access: (1) The simulator is accessible. In this case, we define RANDOM API as using random
simulator parameters to render an image, and VARIATION API as slightly perturbing the simulator
parameter of the given image. (2) The simulator is not accessible—only its generated dataset
is released. This scenario is quite common (Wood et al., 2021; Bae et al., 2023), especially when
simulator assets are proprietary (Kar et al., 2019; Devaranjan et al., 2020). In this case, we define
RANDOM API as randomly selecting an image from the dataset, and VARIATION API as randomly
selecting a nearest neighbor of the given image. We demonstrate that the resulting algorithm, SIM-
PE, outperforms PE with foundation models. Our key contributions are:

• Insight: We identify that PE is not limited to foundation models, making it the first framework
capable of utilizing both state-of-the-art foundation models and simulators for DP data synthesis.

• Algorithm: We propose SIM-PE, an extension of PE using simulators, applicable in both sce-
narios where the simulator or the generated dataset is available. Additionally, we introduce the
use of both foundation models and simulators interchangeably during the data synthesis process,
allowing for the benefits of both to be leveraged through PE’s easy and standardized interface.

• Results: We demonstrate promising results with SIM-PE. For instance, on the MNIST dataset
with ϵ = 1, downstream classification accuracy increases to 89.1%, compared to 27.9% with
the original PE. Furthermore, combining foundation models with weak simulators results in
improved performance compared to using either one alone.

2 PRELIMINARIES AND MOTIVATION

Synthetic data refers to “fake” data generated by models or software for various applications, in-
cluding data augmentation, model training, and software testing (Lin, 2022). One approach involves
machine learning models, ranging from simple statistical models like Gaussian mixtures to more
advanced deep neural network-based generative models such as GANs (Goodfellow et al., 2020),
diffusion models (Sohl-Dickstein et al., 2015), and auto-regressive models (OpenAI, 2023; Liu et al.,
2024a). The other approach relies on simulators. In this paper, we broadly define simulators as
non-neural-network data synthesizers with hard-coded, interpretable logic. For example, given
network configurations, ns-2 (Issariyakul et al., 2009) can simulate a network and generate network
packets. Similarly, given 3D models and lighting configurations, Blender (Community, 2018) can
render images and videos of objects. These simulators are widely used and are especially useful
when data distributions are too complex for machine learning models to learn.

DP synthetic data requires the synthetic data to be close to a given private dataset, while hav-
ing a strict privacy guarantee called Differential Privacy (DP) (Dwork et al., 2006). Formally, a
mechanism M is (ϵ, δ)-DP if for any two neighboring datasets D and D′ (i.e., D′ has one extra
entry compared to D or vice versa) and for any set S of outputs ofM, we have P (M (D) ∈ S) ≤
eϵP (M (D′) ∈ S) + δ. Smaller ϵ and δ imply stronger privacy guarantees. Current state-of-the-art
DP image and text synthesis methods rely on machine learning models and typically require model
training (Lin et al., 2020a; Beaulieu-Jones et al., 2019; Dockhorn et al., 2022; Yin et al., 2022; Yu
et al., 2021; He et al., 2022; Li et al., 2021; Ghalebikesabi et al., 2023a; Yue et al., 2022; Jordon
et al., 2019; Harder et al., 2023; 2021b; Vinaroz et al., 2022; Cao et al., 2021).

PRIVATE EVOLUTION (PE) (Lin et al., 2023; Xie et al., 2024) is a recent training-free framework
for DP data synthesis. PE only requires inference access to the foundation models. Therefore,
unlike prior training-based methods, PE can leverage the state-of-the-art models even if they are
behind APIs (e.g., GPT-4) and is more computationally efficient. PE is versatile across data modal-
ities, as long as suitable foundation models are available with two functions: (1) RANDOM API
that generates a random sample (e.g., a random bird image), and (2) VARIATION API that generates
slight modifications of the given sample (e.g., a similar bird image). PE works by first calling RAN-
DOM API to get an initial set of synthetic samples, and then iteratively refine this set by selecting the
closest ones to the private samples (in a DP manner) and calling VARIATION API to generate more of
such samples. The full PE algorithm from Lin et al. (2023) is attached in App. A for completeness.

Motivation. While PE achieves state-of-the-art performance on several image and text benchmarks
(Lin et al., 2023; Xie et al., 2024), its performance significantly drops when there is a large dis-
tribution shift between the private data and the foundation model’s pre-trained data (Gong et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2025). Since relevant foundation models may not always be available for every domain, this limita-
tion hinders PE’s applicability in real-world scenarios. Extending PE to leverage simulators could
significantly expand its potential applications.

More broadly, as discussed above, simulators cannot be substituted by foundation models in (non-
DP) data synthesis across many domains. Unfortunately, current state-of-the-art DP synthetic data
methods are deeply reliant on machine learning models (e.g., requiring model training) and cannot
be applied to simulators. By extending PE to work with simulators, we aim to unlock the potential
of simulators in DP data synthesis.

3 SIM-PE: PRIVATE EVOLUTION (PE) WITH SIMULATORS

In this paper, we focus on DP image generation. The beauty of the PRIVATE EVOLUTION framework
is that it isolates DP mechanism from data generation backend. In particular, any data generation
backend that supports RANDOM API and VARIATION API can be plugged into the framework and
transformed into a DP data synthesis algorithm. Therefore, our goal is to design RANDOM API
and VARIATION API for image simulators.

We notice that existing popular image simulators provide different levels of access. Some simula-
tors are open-sourced. Examples include KUBRIC (Greff et al., 2022), a Blender-based renderer
for multi-object images/videos; 3D TEAPOT (Lin et al., 2020b; Eastwood & Williams, 2018), an
OpenDR-based renderer for teapot images; and PYTHON-AVATAR (Escartı́n, 2021), a rule-based
generator for avatars. However, the assets (e.g., 3D models) used in these renderers are often propri-
etary. Therefore, many simulator works choose to release only the generated datasets without
the simulator code. Examples include the FACE SYNTHETICS (Wood et al., 2021) and DIGIFACE-
1M (Bae et al., 2023) datasets, both generated using Blender-based renderers for human faces. In
§ 3.1 and 3.2, we discuss the design for simulators with code access and data access, respectively.

Moreover, since simulators and foundation models provide the same RANDOM API and VARIA-
TION API interfaces to PE, PE can easily utilize both together. App. B discusses the methedology.

Privacy analysis. Since we only modify RANDOM API and VARIATION API, the privacy guarantee
is exactly the same as Lin et al. (2023).

3.1 SIM-PE WITH SIMULATOR ACCESS

While different simulators have very different programming interfaces, most of them can be ab-
stracted in the same way. Given a set of p categorical parameters ξ1, . . . , ξp and q numeri-
cal parameters ϕ1, . . . , ϕq where ξi ∈ Ξi and ϕi ∈ Φi, the simulator S generates an image
S (ξ1, . . . , ξp, ϕ1, . . . , ϕq). For example, for face image renders (Wood et al., 2021; Bae et al.,
2023), ξis could be the ID of the 3D human face model and the ID of the hair style, and ϕis could
be the angle of the face and the strength of lighting.

For RANDOM API, we simply draw each parameter randomly from its corresponding feasi-
ble set. Specifically, we define RANDOM API = S (ξ1, . . . , ξp, ϕ1, . . . , ϕq) , where ξi ∼
Uniform (Ξi) and ϕi ∼ Uniform (Φi) . Here, Uniform (S) denotes drawing a sample uniformly
at random from the set S.

For VARIATION API, we generate variations by perturbing the input image parameters. For nu-
merical parameters ϕi, we simply add small noise. However, for categorical parameters ξi, where
no natural ordering exists among feasible values in Ξi, adding noise is not applicable. Instead,
we re-draw the parameter from the entire feasible set Ξi with a certain probability. Formally,
it is defined as VARIATION API (S (ξ1, . . . , ξp, ϕ1, . . . , ϕq)) = S

(
ξ′1, . . . , ξ

′
p, ϕ

′
1, . . . , ϕ

′
q

)
, where

ϕ′
i ∼ Uniform ([ϕi − α, ϕi + α] ∩ Φi) and ξ′i =

{
Uniform (Ξi) , with probability β

ξi, with probability 1− β
. Here,

α and β control the degree of variation. At one extreme, when α =∞ and β = 1, VARIATION API
completely discards the information of the input sample and reduces to RANDOM API. Conversely,
when α = β = 0, VARIATION API outputs the input sample unchanged.

3.2 SIM-PE WITH SIMULATOR-GENERATED DATA

Here, we assume that a dataset of m samples Ssim = {z1, . . . , zm} generated from the simulator is
already given. The goal is to pick Nsyn samples from them to construct the DP synthetic dataset
Ssyn. Before discussing our final solutions, we first discuss two straightforward approaches.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Baseline 1: Applying DP NN HISTOGRAM on Ssyn. One immediate solution is to apply
DP NN HISTOGRAM in PE (Alg. 2) by treating Ssim as the generated set S. In other words, each
private sample votes for its nearest neighbor in Ssim, and the final histogram, aggregating all votes,
is privatized with Gaussian noise. We then draw samples from Ssim according to the privatized
histogram (i.e., Line 8 in Alg. 1) to obtain Ssyn.

However, the size of the simulator-generated dataset (i.e., m) is typically very large (e.g., 1.2 million
in Bae et al. (2023)), and the total amount of added Gaussian noise grows with m. This means that
the resulting histogram suffers from a low signal-to-noise ratio, leading to poor fidelity in Ssyn.

Baseline 2: Applying DP NN HISTOGRAM on cluster centers of Ssyn. To improve the signal-to-
noise ratio of the histogram, one solution is to have private samples vote on the cluster centers of
Ssim instead of the raw samples. Specifically, we first cluster the samples in Ssim into Ncluster clusters
with centers {w1, . . . , wNcluster} and have private samples vote on these centers rather than individual
samples in Ssim.1 Since the number of bins in the histogram decreases from m to Ncluster, the signal-
to-noise ratio improves. Following the approach of the previous baseline, we then draw Nsyn cluster
centers (with replacement) based on the histogram and randomly select a sample from each chosen
cluster to construct the final Ssyn.

However, when the total number of samples m is large, each cluster may contain a diverse set of
samples, including those both close to and far from the private dataset. While DP voting on clusters
improves the accuracy of the DP histogram and helps select better clusters, there remains a risk of
drawing unsuitable samples from the chosen clusters.

Our approach. Our key insight is that the unavoidable trade-off between the accuracy of the DP
histogram and the precision of selection (clusters vs. individual samples) arises because private
samples are forced to consider all samples in Ssim—either directly in baseline 1 or indirectly through
cluster centers in baseline 2. However, this is not necessary. If we already know that a sample zi
is far from the private dataset, then its nearest neighbors in Ssim are also likely to be far from the
private dataset. Therefore, we can avoid wasting the privacy budget on evaluating such samples.

The iterative selection and refinement process in PE naturally aligns with this idea. For each sam-
ple zi, we define its nearest neighbors in Ssim as qi1, . . . , q

i
m, sorted by closeness, where qi1 = zi

is the closest. We define RANDOM API as drawing a random sample from Ssim: RANDOM API ∼
Uniform (Ssim) . Since we only draw Nsyn samples (instead of m) from RANDOM API, the DP
histogram on this subset has a higher signal-to-noise ratio. In the following steps (Lines 6 to 8),
samples far from the private dataset are removed, and we perform variations only on the remaining
samples according to: VARIATION API (zi) = Uniform

({
qi1, . . . , q

i
γ

})
, thus avoiding considera-

tion of nearest neighbors of removed samples (unless they are also nearest neighbors of retained
samples). Similar to α and β and in § 3.1, the parameter γ controls the degree of variation. At one
extreme, when γ = m, VARIATION API disregards the input sample and reduces to RANDOM API.
At the other extreme, when γ = 1, VARIATION API returns the input sample unchanged.

Broader applications. The proposed algorithm can be applied to any public dataset beyond
simulator-generated data. In our experiments (§ 4), we focus on simulator-generated data, and we
leave the exploration of broader applications for future work.

4 EXPERIMENTS

Datasets. Following prior work, we use two private datasets: (1) MNIST (LeCun, 1998), where the
image class labels are digits ‘0’-‘9’, and (2) CelebA (Liu et al., 2015), where the image class labels
are male and female. We aim at conditional generation for these datasets (i.e., each generated image
is associated with the class label).

Simulators. To demonstrate the general applicability of SIM-PE, we select three diverse simulators
with very different implementations, including a text rendering program for MNIST, a computer
graphics-based renderer for CelebA (data access only), and a rule-based avatar generator for CelebA.
See App. D.1 for the details. In the main experiments, we assume the challenging setting where the
class label information from the simulators is not available to SIM-PE; in App. B, we show that
SIM-PE’s performance could be even better with the class label information.

1Note that voting in (Lin et al., 2023) is conducted in the image embedding space. Here, wis represent
cluster centers in the embedding space, and each private sample uses its image embedding to find the nearest
cluster center.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (ϵ = 10)

Figure 1: The real and generated images on MNIST. Each row corresponds to one class. The simu-
lator generates images that are very different from the real ones and are from the incorrect classes.
Starting from these bad images, SIM-PE can effectively guide the generation of the simulator to-
wards high-quality images with correct classes.

Algorithm MNIST CelebA
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP-MERF 80.3 81.3 81.0 81.2
DP-NTK 50.0 91.3 61.2 64.2
DP-Kernel 94.0 93.6 83.0 83.7
GS-WGAN 72.4 75.3 61.4 61.5
DP-GAN 92.4 92.7 77.9 89.2
DPDM 89.2 97.7 74.5 91.8
PDP-Diffusion 94.5 97.4 89.4 94.0
DP-LDM (SD) 78.8 94.4 84.4 89.1
DP-LDM 44.2 95.5 85.8 92.4
DP-LoRA 82.2 97.1 87.0 92.0
PrivImage 94.0 97.8 90.8 92.0
Simulator 11.6 (ϵ = 0) 61.4 (ϵ = 0)
PE 27.9 32.7 70.5 74.2
SIM-PE (ours) 89.1 93.6 80.0 82.5

(a) Accuracy (%) of downstream classifiers.

Algorithm MNIST CelebA
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP-MERF 113.7 106.3 176.3 147.9
DP-NTK 382.1 69.2 350.4 227.8
DP-Kernel 33.7 38.9 140.3 128.8
GS-WGAN 57.0 47.7 611.8 290.0
DP-GAN 82.3 30.3 112.5 31.7
DPDM 36.1 4.4 153.99 28.8
PDP-Diffusion 8.9 3.8 17.1 8.1
DP-LDM (SD) 31.9 18.7 46.2 24.1
DP-LDM 155.2 99.1 124.1 40.4
DP-LoRA 112.8 95.4 53.3 32.2
PrivImage 7.6 2.3 11.4 11.3
Simulator 86.2 (ϵ = 0) 37.2 (ϵ = 0)
PE 48.8 45.3 23.4 22.0
SIM-PE (ours) 20.7 9.4 24.7 20.8

(b) FID of synthetic images.

Table 1: Accuracy and FID. The best between PE methods is in bold, and the best between all
methods is underlined. “Simulator” refers to samples from the simulator’s RANDOM API. Results
other than SIM-PE and Simulator are taken from Gong et al. (2025).

Metrics. We follow the evaluation settings of DPImageBench (Gong et al., 2025), a recent bench-
mark for DP image synthesis. Specifically, we use two metrics: (1) FID (Heusel et al., 2017) and
(2) the accuracy of downstream classifiers. For (2), we employ a strict train-validation-test split
and account for the privacy cost of classifier hyperparameter selection. See App. D.2 for the details.

DP parameters. Following Gong et al. (2025), we set DP parameter δ = 1/(Npriv · logNpriv),
where Npriv is the number of samples in the private dataset, and ϵ = 1 or 10.

Baselines We compare SIM-PE with 12 state-of-the-art DP image synthesizers reported in Gong
et al. (2025), including DP-MERF (Harder et al., 2021a), DP-NTK (Yang et al., 2023), DP-Kernel
(Jiang et al., 2023), GS-WGAN (Chen et al., 2020), DP-GAN (Xie et al., 2018), DPDM (Dockhorn
et al., 2023), PDP-Diffusion (Ghalebikesabi et al., 2023b), DP-LDM (Liu et al., 2024b), DP-LoRA
(Tsai et al., 2024), PrivImage (Li et al., 2024), and PE with foundation models (Lin et al., 2023).
Except for PE, all baselines require model training. For SIM-PE with simulator-generated data, we
also compare it against the two baselines introduced in § 3.2; see App. C.2 for results.

It is important to note that this comparison is not intended to be entirely fair, as different meth-
ods leverage different prior knowledge (pre-trained models or simulators). SIM-PE should be
considered as a new simulator-based benchmark, and the baseline results serve as a reference.

4.1 SIM-PE WITH SIMULATOR ACCESS

In this section, we evaluate SIM-PE with a text rendering program on MNIST dataset. The results
are shown in Tables 1 and 3 and Figs. 1 and 4. The key takeaway messages are:

SIM-PE effectively guides the simulator to generate high-quality samples. As shown in Fig. 1b,
without any information from the private data or guidance from SIM-PE, the simulator initially
produces poor-quality images with incorrect digits, digit sizes, rotations, and stroke widths. These
low-quality samples serve as the starting point for SIM-PE (via RANDOM API). Through iterative

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Real (private) images (b) Simulator-generated (c) SIM-PE-generated (ϵ = 10)

Figure 2: The real and generated images on CelebA. The top rows correspond to the “female” class,
and the bottom rows correspond to the “male” class. The simulator generates images with incorrect
classes. However, starting from these misclassified images, SIM-PE effectively selects those that
better match the correct class.

refinement and private data voting, SIM-PE gradually optimizes the simulator parameters, ultimately
generating high-quality MNIST samples, as illustrated in Fig. 1c.

Quantitative results in Table 1 further support this. Without private data guidance, the simulator
naturally generates digits from incorrect classes, leading to a downstream classifier accuracy of only
11.6%, close to random guessing. In contrast, SIM-PE significantly improves accuracy to approxi-
mately 90%. Additionally, FID scores confirm that the images from SIM-PE are more realistic.

SIM-PE can significantly improve the performance of PE. The PE baseline (Lin et al., 2023)
uses a diffusion model pre-trained on ImageNet, which primarily contains natural object images
(e.g., plants, animals, cars). Since MNIST differs significantly from such data, PE, as a training-
free method, struggles to generate meaningful images. Most PE-generated images lack recognizable
digits (see Gong et al. (2025)), resulting in a classification accuracy of only ∼ 30% (Table 1a). By
leveraging a simulator better suited for this domain, SIM-PE achieves significantly better results,
tripling the classification accuracy and reducing the FID score by 80% at ϵ = 10.

SIM-PE achieves competitive results among state-of-the-art methods. When the foundation
model or public data differs significantly from the private data, training-based baselines can still
adapt the model to the private data distribution by updating its weights, whereas PE cannot. This
limitation accounts for the substantial performance gap between PE and other methods. Specifi-
cally, PE records the lowest classification accuracy among all 12 methods (Table 1a). By leveraging
domain-specific simulators, SIM-PE significantly narrows this gap, achieving classification accu-
racy within 5.4% and 4.2% of the best-performing method for ϵ = 1 and ϵ = 10, respectively.

4.2 SIM-PE WITH SIMULATOR-GENERATED DATA

In this section, we evaluate SIM-PE using a generated dataset from a computer graphics-based ren-
derer on the CelebA dataset. The results (Table 1 and Fig. 2) highlight the following key takeaways:

SIM-PE effectively selects samples that better match the correct classes. Without any infor-
mation from the private data, the simulator naturally generates images with incorrect class labels
(Fig. 2b). Consequently, a downstream classifier can at best achieve a trivial accuracy 61.4%—
equaling the fraction of the majority class (female) on the test set. On top of this noisy data, SIM-PE
iteratively refines the sample selection. Ultimately, SIM-PE selects samples that better align with
the target classes (Fig. 2c), leading to an accuracy improvement of up to 21.1% (Table 1a).

SIM-PE maintains the strong data quality of PE. As shown in Table 1b, SIM-PE and PE achieve
similar FID scores. Unlike in the MNIST experiments (§ 4.1), where SIM-PE significantly improved
over PE, the lack of substantial improvement on CelebA can be attributed to two factors. First, on
CelebA, PE with foundation models already ranks 3rd among all methods in terms of FID, leaving
little room for further gains. Second, in this experiment, SIM-PE is only provided with a fixed
dataset generated from the simulator. As seen in Fig. 2, the simulator-generated images exhibit
noticeable differences from real CelebA images, such as faces appearing larger. Since SIM-PE in
this setting can only select images without modifying them, it cannot correct such discrepancies.
Having access to simulator code, as in § 4.1, could potentially alleviate this issue, as SIM-PE could
learn to modify the parameters that control face sizes. Another potential improvement is a hybrid
approach that leverages both foundation models and simulators in PE, which we explore in App. B.

5 LIMITATIONS AND FUTURE WORK

In this paper, we demonstrate the potential of the PE framework for utilizing powerful simulators in
DP image synthesis. Further extensions include:

• The approach in § 3.2 can be extended beyond simulator-generated datasets, such as public web
data. This could further enhance the performance of PE and enable its application in other areas,
such as pre-training data selection for private fine-tuning (Yu et al., 2023; Li et al., 2024).

• This paper focuses on image generation. SIM-PE could offer greater potential in domains like
networking and systems where foundation models are rarer and simulators are more prevalent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

REFERENCES

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.

Gwangbin Bae, Martin de La Gorce, Tadas Baltrušaitis, Charlie Hewitt, Dong Chen, Julien Valentin,
Roberto Cipolla, and Jingjing Shen. Digiface-1m: 1 million digital face images for face recog-
nition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 3526–3535, 2023.

Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P Bhavnani,
James Brian Byrd, and Casey S Greene. Privacy-preserving generative deep neural networks sup-
port clinical data sharing. Circulation: Cardiovascular Quality and Outcomes, 12(7):e005122,
2019.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Tianshi Cao, Alex Bie, Arash Vahdat, Sanja Fidler, and Karsten Kreis. Don’t generate me: Training
differentially private generative models with sinkhorn divergence. Advances in Neural Informa-
tion Processing Systems, 34:12480–12492, 2021.

Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. GS-WGAN: A gradient-sanitized ap-
proach for learning differentially private generators. In Advances in Neural Information Process-
ing Systems, 2020.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised learning of scene struc-
ture for synthetic data generation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pp. 715–733. Springer, 2020.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion
models. arXiv preprint arXiv:2210.09929, 2022.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, et al. Differentially private diffusion models. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.
net/forum?id=ZPpQk7FJXF.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disen-
tangled representations. In 6th International Conference on Learning Representations, 2018.

Epic Games. Unreal engine. URL https://www.unrealengine.com.

Ibon Escartı́n. python avatars. https://github.com/ibonn/python_avatars, 2021.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023a.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, et al. Differentially private diffusion models
generate useful synthetic images. CoRR, abs/2302.13861, 2023b.

Chen Gong, Kecen Li, Zinan Lin, and Tianhao Wang. Dpimagebench: A unified benchmark for
differentially private image synthesis. 2025.

7

https://github.com/Genesis-Embodied-AI/Genesis
http://www.blender.org
https://openreview.net/forum?id=ZPpQk7FJXF
https://openreview.net/forum?id=ZPpQk7FJXF
https://www.unrealengine.com
https://github.com/ibonn/python_avatars

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Google. Google fonts. https://github.com/google/fonts, 2022.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi
S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scalable
dataset generator. 2022.

Frederik Harder, Kamil Adamczewski, and Mijung Park. DP-MERF: differentially private mean
embeddings with random features for practical privacy-preserving data generation. In AISTATS,
pp. 1819–1827, 2021a.

Frederik Harder, Kamil Adamczewski, and Mijung Park. Dp-merf: Differentially private mean em-
beddings with randomfeatures for practical privacy-preserving data generation. In International
conference on artificial intelligence and statistics, pp. 1819–1827. PMLR, 2021b.

Frederik Harder, Milad Jalali, Danica J Sutherland, and Mijung Park. Pre-trained perceptual features
improve differentially private image generation. Transactions on Machine Learning Research,
2023.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. arXiv preprint arXiv:2212.01539, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia
Fanti, and Daniel Lazar. Pre-text: Training language models on private federated data in the age
of llms. arXiv preprint arXiv:2406.02958, 2024.

Teerawat Issariyakul, Ekram Hossain, Teerawat Issariyakul, and Ekram Hossain. Introduction to
network simulator 2 (NS2). Springer, 2009.

Dihong Jiang, Sun Sun, and Yaoliang Yu. Functional renyi differential privacy for generative mod-
eling. In Advances in Neural Information Processing Systems, 2023.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. PATE-GAN: Generating synthetic data
with differential privacy guarantees. In International conference on learning representations,
2019.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David
Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4551–4560,
2019.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Kecen Li, Chen Gong, Zhixiang Li, et al. PrivImage: Differentially private synthetic image genera-
tion using diffusion models with Semantic-Aware pretraining. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pp. 4837–4854, 2024. ISBN 978-1-939133-44-1.

8

https://github.com/google/fonts

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Zinan Lin. Data Sharing with Generative Adversarial Networks: From Theory to Practice. PhD
thesis, Carnegie Mellon University, 2022.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing net-
worked time series data: Challenges, initial promise, and open questions. In Proceedings of the
ACM Internet Measurement Conference, pp. 464–483, 2020a.

Zinan Lin, Kiran Thekumparampil, Giulia Fanti, and Sewoong Oh. Infogan-cr and modelcentrality:
Self-supervised model training and selection for disentangling gans. In international conference
on machine learning, pp. 6127–6139. PMLR, 2020b.

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
private synthetic data via foundation model APIs 1: Images. In NeurIPS 2023 Workshop on
Synthetic Data Generation with Generative AI, 2023. URL https://openreview.net/
forum?id=7GbfIEvoS8.

Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
image auto-regressive models with flow matching. arXiv preprint arXiv:2412.17153, 2024a.

Michael F. Liu, Saiyue Lyu, Margarita Vinaroz, and Mijung Park. Differentially private latent diffu-
sion models. 2024b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

OpenAI. Gpt-4 technical report, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Yu-Lin Tsai, Yizhe Li, Zekai Chen, Po-Yu Chen, Chia-Mu Yu, Xuebin Ren, and Fran-
cois Buet-Golfouse. Differentially private fine-tuning of diffusion models. arXiv preprint
arXiv:2406.01355, 2024.

Margarita Vinaroz, Mohammad-Amin Charusaie, Frederik Harder, Kamil Adamczewski, and
Mi Jung Park. Hermite polynomial features for private data generation. In International Con-
ference on Machine Learning, pp. 22300–22324. PMLR, 2022.

Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman, and Jamie
Shotton. Fake it till you make it: face analysis in the wild using synthetic data alone. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 3681–3691, 2021.

Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Hao-
tian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via foundation
model apis 2: Text. arXiv preprint arXiv:2403.01749, 2024.

Liyang Xie, Kaixiang Lin, and et al. Differentially private generative adversarial network. CoRR,
abs/1802.06739, 2018. URL http://arxiv.org/abs/1802.06739.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Yilin Yang, Kamil Adamczewski, and et al. Differentially private neural tangent kernels for privacy-
preserving data generation. CoRR, abs/2303.01687, 2023.

9

https://openreview.net/forum?id=7GbfIEvoS8
https://openreview.net/forum?id=7GbfIEvoS8
http://arxiv.org/abs/1802.06739

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based synthetic ip
header trace generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference,
pp. 458–472, 2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa,
Jian Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. arXiv preprint
arXiv:2305.13865, 2023.

Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Huan Sun, David Levitan,
and Robert Sim. Synthetic text generation with differential privacy: A simple and practical recipe.
arXiv preprint arXiv:2210.14348, 2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A PRIVATE EVOLUTION

Alg. 1 presents the PRIVATE EVOLUTION (PE) algorithm, reproduced from Lin et al. (2023). This
algorithm represents the conditional version of PE, where each generated image is associated with
a class label. It can be interpreted as running the unconditional version of PE separately for each
class.

Algorithm 1: PRIVATE EVOLUTION (PE)

Input: The set of private classes: C (C = {0} if for unconditional generation)
Private samples: Spriv = {(xi, yi)}

Npriv

i=1 , where xi is a sample and yi ∈ C is its label
Number of iterations: T
Number of generated samples: Nsyn (assuming Nsyn mod |C| = 0)
Noise multiplier for DP Nearest Neighbors Histogram: σ
Threshold for DP Nearest Neighbors Histogram: H

1 Ssyn ← ∅
2 for c ∈ C do
3 private samples← {xi|(xi, yi) ∈ Spriv and yi = c}
4 S1 ← RANDOM API (Nsyn/ |C|)
5 for t← 1, . . . , T do
6 histogramt ← DP NN HISTOGRAM (private samples, St, σ,H) // See

Alg. 2
7 Pt ← histogramt/sum(histogramt) // Pt is a distribution on St

8 S′
t ← draw Nsyn/|C| samples with replacement from Pt // S′

t is a multiset
9 St+1 ← VARIATION API (S′

t)

10 Ssyn ← Ssyn ∪ {(x, c)|x ∈ ST }
11 return Ssyn

Algorithm 2: DP Nearest Neighbors Histogram (DP NN HISTOGRAM)

Input : Private samples: Spriv

Generated samples: S = {zi}ni=1
Noise multiplier: σ
Threshold: H
Distance function: d (·, ·)

Output: DP nearest neighbors histogram on S

1 histogram← [0, . . . , 0]
2 for xpriv ∈ Spriv do
3 i = argminj∈[n] d (xpriv, zj)
4 histogram[i]← histogram[i] + 1

5 histogram← histogram+N (0, σIn) // Add noise to ensure DP
6 histogram← max (histogram−H, 0) // ‘max’, ‘-’ are element-wise
7 return histogram

B SIM-PE WITH BOTH SIMULATORS AND FOUNDATION MODELS

B.1 APPROACH

As discussed in § 2, simulators and foundation models complement each other across different data
domains. Moreover, even within a single domain, they excel in different aspects. For example, com-
puter graphics-based face image generation frameworks (Bae et al., 2023; Wood et al., 2021) allow
controlled diversity in race, lighting, and makeup while mitigating potential biases in foundation
models. However, the generated faces may appear less realistic than those produced by state-of-

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

(a) Real (private) images (b) Simulator-generated images (c) SIM-PE-generated images (ϵ =
10)

Figure 3: The real and generated images on CelebA. The simulator is a weak rule-based avatar
generator (Escartı́n, 2021) significantly different from the real dataset. The top rows correspond to
the “female” class, and the bottom rows correspond to the “male” class. The simulator generates
images with incorrect classes. SIM-PE tends to generate faces with long hair for the female class
and short hair for the male class (correctly), but the generated images have mode collapse issues.

the-art foundation models. Thus, combining the strengths of both methods for DP data synthesis is
highly appealing.

Fortunately, PE naturally supports this integration, as it only requires RANDOM API and VARIA-
TION API, which work the same for both foundation models and simulators. While there are many
ways to combine them, we explore a simple strategy: using simulators in the early PE iterations
to generate diverse seed samples, then switching to foundation models in later iterations to refine
details and enhance realism. As shown in § 4, this approach outperforms using either simulators or
foundation models alone.

B.2 RESULTS

In this section, we examine how SIM-PE performs with weak simulators. We again use the CelebA
dataset as the private data, but this time, we switch to a rule-based cartoon avatar generator (Escartı́n,
2021) as the simulator. As shown in Fig. 3, the avatars generated by the simulator differ significantly
from the real CelebA images.

SIM-PE with weak simulators still learns useful features. From Table 2, we observe that down-
stream classifiers trained on SIM-PE with weak simulators achieve poor classification accuracy.
However, two interesting results emerge: (1) Despite the significant difference between avatars and
real face images, SIM-PE still captures certain characteristics of the two classes correctly. Specifi-
cally, SIM-PE tends to generate faces with long hair for the female class and short hair for the male
class (Fig. 3). (2) Although the FID scores of SIM-PE are quite poor (Table 2), they still outperform
many baselines (Table 1b). This can be explained by the fact that, as shown in Gong et al. (2025),
when DP noise is high, the training of many baseline methods becomes unstable, leading to collapse.
This results in face images with noisy patterns, non-face images, or significant mode collapse, par-
ticularly for DP-NTK, DP-Kernel, and GS-WGAN. In contrast, SIM-PE is training-free, and thus it
avoids these issues.

Next, we explore the feasibility of using PE with both foundation models and the weak avatar
simulator (App. B). The results are shown in Table 2.

PE benefits from utilizing simulators and foundation models together. We observe that using
both simulators and foundation models yields the best results in terms of both FID and classification
accuracy. This result is intuitive: the foundation model, pre-trained on the diverse ImageNet dataset,
has a low probability of generating a face image through RANDOM API. While avatars are quite
different from CelebA, they retain the correct image layout, such as facial boundaries, eyes, nose,
etc. Using these avatars as seed samples for variation allows the foundation model to focus on
images closer to real faces, rather than random, unrelated patterns.

Unlike other state-of-the-art methods that are tied to a specific data synthesizer, this result suggests
that PE is a promising framework that can easily combine the strengths of multiple types of data
synthesizers.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 2: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. Using a combination of both (weak) simulators
and foundation models outperforms using either one alone.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

PE with foundation models 23.4 22.0 70.5 74.2
PE with weak simulators (i.e., SIM-PE) 101.4 99.5 62.6 63.2
PE with both 15.0 11.9 72.7 78.1

(a) Real (private) images (b) Simulator-generated images (c) SIM-PE-generated images (ϵ =
10)

Figure 4: The real and generated images on MNIST under the “ClassAvail” setting. Each row cor-
responds to one class. The simulator generates images that are very different from the real ones.
Starting from these bad images, SIM-PE can effectively guide the generation of the simulator to-
wards high-quality images that are more similar to real data.

Table 3: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
MNIST under the “ClassAvail” setting. See Tables 1a and 1b for results under the “ClassUnavail”
setting for reference.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

Simulator 86.0 (ϵ = 0) 92.2 (ϵ = 0)
SIM-PE 20.7 8.6 93.9 95.5

Table 4: Accuracy (%) of classifiers trained on synthetic images and FID of synthetic images on
CelebA. The best results are highlighted in bold. SIM-PE outperforms the baselines in most metrics.

Algorithm FID ↓ Classification Acc. ↑
ϵ = 1 ϵ = 10 ϵ = 1 ϵ = 10

DP NN HISTOGRAM on Ssyn 36.2 29.3 61.5 71.9
DP NN HISTOGRAM on cluster centers of Ssyn 26.4 18.3 74.7 77.7
SIM-PE 24.7 20.8 80.0 82.5

C MORE RESULTS

C.1 WHEN CLASS LABEL INFORMATION FROM THE SIMULATORS IS AVAILABLE

Class label information from the simulators can be helpful. All the above experiments are based
on the ClassUnavail setting, where the class label information from the simulator is assumed to be
unknown. However, one key advantage of using simulators over foundation models for generating
synthetic data is that simulators can provide various labels for free (Wood et al., 2021; Bae et al.,
2023). In our case, for MNIST, the simulators provide information on which digit the generated
image represents. Following the approach in § 4, we utilize this label information, and the results
are presented in Table 3 and Fig. 4. We observe that with digit information, the simulator-generated
data achieve significantly higher classification accuracy (92.2%), although the FID remains low
due to the generated digits exhibiting incorrect characteristics (Fig. 4b). The fact that SIM-PE
outperforms the simulator in both FID and classification accuracy across all settings suggests that
SIM-PE effectively incorporates private data information to enhance both data fidelity and utility,
even when compared to such a strong baseline. As expected, SIM-PE under ClassAvail matches
or surpasses the results obtained in ClassUnavail across all settings, suggesting the usefulness of
leveraging class label information.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 2 4
PE Iteration

25

50

75

Te
st

 A
cc

ur
ac

y

ε= 1
ε= 10

(a) Acc. on MNIST

0 2 4 6
PE Iteration

70

80

Te
st

 A
cc

ur
ac

y

ε= 1
ε= 10

(b) Acc. on CelebA

0 2 4
PE Iteration

25

50

75

FI
D

ε= 1
ε= 10

(c) FID on MNIST

0 2 4 6
PE Iteration

20

25

30

35

FI
D

ε= 1
ε= 10

(d) FID on CelebA

Figure 5: SIM-PE’s FID and accuracy generally improve over the course of the PE iterations.

C.2 VALIDATING THE DESIGN OF SIM-PE

In this section, we provide more experiments to understand and validate the design of SIM-PE.

How does SIM-PE with simulator-generated data compare to other data selection algorithms?
In § 3.2, we discussed two simple alternative solutions for simulator data selection. The comparison
is shown in Table 4. As we can see, SIM-PE with iterative data selection outperforms the baselines
on most metrics, validating the intuition outlined in App. B. However, the clustering approach used
in the second baseline still has merit, as it results in a better FID for ϵ = 10. This idea is orthogonal
to the design of SIM-PE and could potentially be combined for further improvement. We leave this
exploration to future work.

How does SIM-PE’s performance evolve across PE iterations? Fig. 5 shows that both the FID
and the downstream classifier’s accuracy generally improve as PE progresses. This confirms that
PE’s iterative data refinement process is effective when combined with simulators.

D EXPERIMENTAL DETAILS

In this section, we provide more experimental details.

D.1 SIMULATORS

To demonstrate the general applicability of SIM-PE, we select three diverse simulators with very
different implementations.

(1) Text rendering program. Generating images with readable text using foundation models is
a known challenge (Betker et al., 2023). Simulators can address this gap, as generating images
with text through computer programs is straightforward. To illustrate this, we implement our own
text rendering program, treating MNIST as the private dataset. Specifically, we use the Python PIL
library to render digits as images. The categorical parameters include: (1) Font. We use Google
Fonts (Google, 2022), which offers 3589 fonts in total. (2) Text. The text consists of digits ‘0’ -
‘9’. Although we restrict the text to digits, the digit label is not provided to SIM-PE, which must
learn and select the correct digits for each MNIST class itself. The numerical parameters include:
(1) Font size, ranging from 10 to 29. (2) Stroke width, ranging from 0 to 2. (3) Digit rotation degree,
ranging from −30◦ to 30◦. We set the feasible sets of these parameters to be large enough so that
the random samples differ significantly from MNIST (see Fig. 1b).

(2) Computer graphics-based renderer for face images. Computer graphics-based rendering is
widely used in real-world applications such as game development, cartoons, and movie production.
This experiment aims to assess whether these advanced techniques can be adapted for DP synthetic
image generation via SIM-PE. We use CelebA as the private dataset and a Blender-based face image
renderer from Bae et al. (2023) as the API. Since the source code for their renderer is not publicly
available, we apply our data-based algorithm from § 3.2 on their released dataset of 1.2 million
face images. It is important to note that this renderer may not necessarily represent the state-of-the-
art. As visualized in Fig. 2b, the generated faces exhibit various unnatural artifacts and appear less
realistic than images produced by state-of-the-art generative models (e.g., Rombach et al. (2022)).
Therefore, this experiment serves as a preliminary study, and the results could potentially improve
with more advanced rendering techniques.

(3) Rule-based avatar generator. We further investigate whether SIM-PE remains effective when
the simulator’s data significantly differs from the private dataset. We use CelebA as the private

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

dataset and a rule-based avatar generator (Escartı́n, 2021) as the API. This simulator has 16 categor-
ical parameters that control attributes of the avatar including eyes, noses, background colors, skin
colors, etc. As visualized in Fig. 3b, the generated avatars have a cartoon-like appearance and lack
fine-grained details. This contrasts sharply with CelebA images, which consist of real human face
photographs.

Class label information from the simulators. For simulator 1, the target class label (i.e., the digit)
is fully controlled by one parameter. For simulators 2 and 3, the target class label (i.e., the gender)
is not directly controlled by any parameter, but could potentially be obtained by an external image
gender classifier. One benefit of using domain-specific simulators is that we can potentially use
the class label information to enhance data quality. To get a more comprehensive understanding of
SIM-PE, we consider two settings: (1) Class label information is unavailable (abbreviated as
“ClassUnavail”). We artificially make the problem more challenging by assuming that the class
label information is not available. Therefore, SIM-PE has to learn to synthesize images with the
correct class by itself. (2) Class label information is available (abbreviated as “ClassAvail”). On
MNIST, we further test how SIM-PE can be improved if the class label information is available. In
this case, the RANDOM API and VARIATION API (§ 3.1) are restricted to draw parameters from the
corresponding class (i.e., the digit is set to the target class).

D.2 METRICS AND EVALUATION PIPELINES

We follow the evaluation settings of DPImageBench (Gong et al., 2025), a recent benchmark for
DP image synthesis. Specifically, we use two metrics: (1) FID (Heusel et al., 2017) as a quality
metric and (2) the accuracy of downstream classifiers as a utility metric. Specifically, we use
the conditional version of PE (App. A), so that each generated images are associated with the class
labels (i.e., ‘0’-‘9’ digits in MNIST, male vs. female in CelebA). These class labels are the targets
for training the classifiers. We employ a strict train-validation-test split and account for the privacy
cost of classifier hyperparameter selection. Specifically, we divide the private dataset into disjoint
training and validation sets. We then run SIM-PE on the training set to generate synthetic data. Next,
we train three classifiers—ResNet (He et al., 2016), WideResNet (Zagoruyko & Komodakis, 2016),
and ResNeXt (Xie et al., 2017)—on the synthetic data and evaluate their accuracy on the validation
set. Since the validation set is part of the private data, we use the Report Noisy Max algorithm
(Dwork et al., 2014) to select the best classifier checkpoint across all epochs of all three classifiers.
Finally, we report the accuracy of this classifier on the test set. This procedure ensures that the re-
ported accuracy is not inflated due to train-test overlap or DP violations in classifier hyperparameter
tuning.

D.3 MNIST WITH TEXT RENDERING PROGRAM

Tables 5 and 6 show the list of the parameters and their associated feasible sets and variation degrees
in the MNIST with Text Rendering Program experiments. The total number of PE iterations is 4.

Categorical Parameter (ξ) Feasible Set (Ξ) Variation Degrees (β) Across PE Iterations

Font 1 - 3589 0.8, 0.4, 0.2, 0.0
Text ‘0’ - ‘9’ 0, 0, 0, 0

Table 5: The configurations of the categorical parameters in MNIST with Text Rendering Program
experiments.

Numerical Parameter (ϕ) Feasible Set (Φ) Variation Degrees (α) Across PE Iterations

Font size [10, 30] 5, 4, 3, 2
Font rotation [-30, 30] 9, 7, 5, 3
Stroke width [0, 2] 1, 1, 0, 0

Table 6: The configurations of the numerical parameters in MNIST with Text Rendering Program
experiments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D.4 CELEBA WITH GENERATED IMAGES FROM COMPUTER GRAPHICS-BASED RENDER

The variation degrees γ across PE iterations are [1000, 500, 200, 100, 50, 20]. The total number of
PE iterations is 6.

D.5 CELEBA WITH RULE-BASED AVATAR GENERATOR

The full list of the categorical parameters are

• Style
• Background color
• Top
• Hat color
• Eyebrows
• Eyes
• Nose
• Mouth
• Facial hair
• Skin color
• Hair color
• Facial hair color
• Accessory
• Clothing
• Clothing color
• Shirt graphic

These are taken from the input parameters to the library (Escartı́n, 2021). The variation degrees β
across PE iterations are [0.8, 0.6, 0.4, 0.2, 0.1, 0.08, 0.06]. There is no numerical parameter. The
total number of PE iterations is 7.

For the experiments with both foundation models and the simulator, we use a total of 5 PE iterations
so as to be consistent with the setting in Gong et al. (2025). For the RANDOM API and the first PE
iteration, we use the simulator (β = 0.8). For the next 4 PE iterations, we use the same foundation
model as in Lin et al. (2023) with variation degrees [96, 94, 92, 90].

16

	Introduction
	Preliminaries and Motivation
	Sim-PE: Private Evolution (PE) with Simulators
	Sim-PE with Simulator Access
	Sim-PE with Simulator-generated Data

	Experiments
	Sim-PE with Simulator Access
	Sim-PE with Simulator-generated Data

	Limitations and Future Work
	Private Evolution
	Sim-PE with both Simulators and Foundation Models
	Approach
	Results

	More Results
	When Class Label Information from the Simulators is Available
	Validating the Design of Sim-PE

	Experimental Details
	Simulators
	Metrics and Evaluation Pipelines
	MNIST with Text Rendering Program
	CelebA with Generated Images from Computer Graphics-based Render
	CelebA with Rule-based Avatar Generator

