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ABSTRACT

Image forgery localization, which centers on identifying tampered pixels within
an image, has seen significant advancements. Traditional approaches often model
this challenge as a variant of image segmentation, treating the segmentation of
forged areas as the end product. However, while semantic segmentation provides
distinct regions with clear semantics that are readily interpretable by humans, the
interpretation regarding the detected forgery regions is less straightforward and
is an under explored problem. We argue that the simplistic binary forgery mask,
which merely delineates tampered pixels, fails to provide adequate information for
explaining the model’s predictions. First, the mask does not elucidate the ratio-
nale behind the model’s localization. Second, the forgery mask treats all forgery
pixels uniformly, which prevents it from emphasizing the most conspicuous un-
real regions and ultimately hinders human discernment of the most anomalous
areas. In this study, we mitigate the aforementioned limitations by generating
salient region-focused interpretation for the forgery images, articulating the ra-
tionale behind the predicted forgery mask and underscoring the pivotal forgery
regions with a interpretation description. To support this, we craft a Multi-Modal
Tramper Tracing (MMTT) dataset, comprising images manipulated using deep-
fake techniques and paired with manual, interpretable textual annotations. To har-
vest high-quality annotation, annotators are instructed to meticulously observe the
manipulated images and articulate the typical characteristics of the forgery re-
gions. Subsequently, we collect a dataset of 128,303 image-text pairs. Leveraging
the MMTT dataset, we develop ForgeryTalker, an architecture designed for con-
current forgery localization and interpretation. ForgeryTalker first trains a forgery
prompter network to identify the pivotal clues within the explanatory text. Subse-
quently, the region prompter is incorporated into multimodal large language model
for finetuning to achieve the dual goals of localization and interpretation. Exten-
sive experiments conducted on the MMTT dataset verify the superior performance
of our proposed model.

1 INTRODUCTION

The emergence of advanced generative models, particularly diffusion models (Ho et al., 2020; Song
et al., 2020), has significantly enhanced the sophistication and realism of image generation tech-
niques, making them increasingly difficult to detect. While these techniques have demonstrated
immense potential in creative fields such as digital art and film production (Dhariwal & Nichol,
2021), they have also raised profound concerns about their misuse in malicious contexts, including
misinformation campaigns and privacy violations (Liu et al., 2023; Rana et al., 2022). Given these
threats, DeepFake detection techniques have garnered significant attention and have rapidly evolved
in recent years. Recent studies are shifting from simple real-fake detection to fine-grained forgery
region localization to address the growing complexity of modern forgery techniques (Verdoliva,
2020; Rossler et al., 2019; Wu et al., 2023; Yu et al., 2021).

Unlike binary classification methods, which merely determine whether an image is fake or real,
forgery localization segments the exact areas that have been tampered with (Verdoliva, 2020), aiming
to explain the reason behind a forgery determination. Despite the recent significant strides in forgery
localization, current methods still lack the ability to provide clear, interpretable justifications for their
detections. Binary masks, which merely highlight tampered pixels, provide limited insights into the
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Unknown(N/A)

Question 1: Which regions are manipulated?

Question 2: Why should I trust the result?

Task 1:  
Forgery Localization

Task 2:  Forgery Interpretation

The edges of this man's face are blurred, the 

contours of his ears are not clearly visible, 

his right eye is blurry, and the size of both 

eyes is different. His nose tip is pale,  his 

teeth are uneven.

(a) Existing Methods (b) Ours

Figure 1: Current methods are limited to localizing forged regions, addressing the question ”which
regions are manipulated?” but failing to provide rationale for their findings, thereby lacking inter-
pretability (see subfigure (a)). In contrast, this study comprehensively answer both questions by
executing both forgery localization and generating interpretive explanations (subfigure (b)).

rationale behind the model’s predictions (Rossler et al., 2019). These masks fail to differentiate
between subtle and more significant alterations, treating all manipulated pixels equally, which often
obscures the most critical areas that warrant closer scrutiny. Meanwhile, modern forgeries are often
visually indistinguishable from real images. This makes it challenging for even human reviewers
to identify tampered regions. For example, slight modifications in facial features, such as subtle
distortions of the eyes or lips, are often overlooked in existing works, providing human observers
with insufficient information to recognize the most anomalous regions.

Based on the considerations outlined above, this work aims to develop an interpretable image forgery
localization framework, including two abilities of segmenting the forgery pixels and generating in-
terpretations for the tampered pixels. To enable the construction of such a framework, we first create
a large-scale Multi-Modal Tampering Tracing (MMTT) dataset, as shown in Figure 1, compris-
ing image-text pairs of forgery images and the corresponding textual annotations. In specific, The
MMTT dataset, focusing on face images and consisting of 128,303 forged facial samples, contains
manipulated images that pose more threats to public information and privacy. Each image under-
goes various manipulations, and the pixel-level forgery mask is automatically generated from the
manipulation processes. To annotate the textual descriptions, we adopt a human-in-the-loop ap-
proach. Annotators first observe each forged image alongside its original version and are asked to
pinpoint specific altered regions and describe the changes in detail. For each forged area, the type of
manipulation (e.g., blurring, unnatural texture, or geometry distortion) is documented to ensure pre-
cise interpretability. The descriptions are iteratively refined to align with the visual modifications,
ensuring that even subtle alterations are accurately captured. This structured annotation procedure
provides high-quality textual interpretations for the manipulations, offering a distinct advantage over
existing datasets that typically lack such detailed contextual information.

With the MMTT dataset established, our framework is designed to simultaneously perform forgery
localization and generate detailed interpretations for the manipulated regions. The overall archi-
tecture includes three primary components: the Forgery Prompter Network, a Mask Decoder, and
a Multimodal Large Language Model (MLLM) as the backbone. The Forgery Prompter Network
analyzes the manipulated features within the image and produces a concise yet informative prompt,
capturing the core artificial characteristics of the forgeries. This prompt, serving as a structured
representation of the tampering, provides crucial priors for subsequent reasoning and makes the
generation of a coherent explanation significantly easier. The Mask Decoder refines the pixel-level
predictions, ensuring that only the most prominent manipulated regions are emphasized. Finally,
the Language-based Explanation Module utilizes the generated prompt to articulate a coherent ex-
planation that accurately captures the rationale behind the predicted forgery mask, addressing the
inherent limitations of traditional binary segmentation approaches. Through the integration of these
three components, our model not only achieves precise forgery localization but also provides con-
textually rich, human-understandable interpretation reports of the detected manipulations.

In summary, we highlight the contributions of this paper as follows:

• We make an early study for an unexplored problem, i.e., interpretable forgery localization.
A Multi-Modal Trampering Tracing (MMTT) dataset is collected to support the exploration
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of this problem, consisting of 128,303 forged facial image-text pairs. Each image is anno-
tated with interpretable textual reasons, and paired with a corresponding forgery mask.

• This study establishes a baseline for addressing this new problem, named ForgeryTalker.
ForgerTalker first trains a forgery prompter to offer initial salient region clues and then fine-
tune a multimodal large-language model to generate localization mask and interpretable
sentences.

2 RELATED WORK

Facial Manipulation Localization. Detecting manipulated facial regions, particularly deepfakes,
has gained significant attention. CNN-based approaches like Sabir et al. (2019) exploit temporal
inconsistencies for video-based detection, while GAN-based methods, such as GANprintR Neves
et al. (2020) and MaskGAN Liu et al. (2022), address synthetic artifacts for improved localization.
Hybrid models combining CNNs and ViTs (e.g., HCiT Kaddar et al. (2021)) enhance generalization.
Multi-modal methods Sun et al. (2023); Khedkar et al. (2022) leverage spatial-temporal inconsis-
tencies to capture subtle manipulations. While these methods excel at binary classification, they
lack interpretability and the capacity to generate fine-grained forgery masks, which are critical for
explaining model decisions. This paper addresses these gaps by producing both localization masks
and textual rationales.

Multi-label Classification for Facial Localization. Multi-label classification captures independent
facial region alterations but struggles with complex dependencies across facial features. Standard
CNNs Lalitha & Sooda (2022) are limited in fine-grained tasks, while hybrid models Kaddar et al.
(2021) combine local and global features for improved detection. Addressing class imbalance, Ra-
machandran et al. (2021) employs weighted loss functions, and parallel branches Richards et al.
(2023) refine fine-grained alterations. However, these approaches rarely explore the potential of
combining multi-label classification with localization, leaving a gap in effectively identifying ma-
nipulations across multiple facial regions. Our work bridges this gap with a ViT-based classifier
using parallel branches and weighted loss functions to capture complex dependencies.

Segmentation Techniques. Segmentation is essential for identifying localized manipulations. Tra-
ditional models like U-Net and DeepLab Ross & Dollár (2017) focus on spatial features, while
Transformer-based models Alexey (2020) capture global context for precise segmentation. Recent
approaches like SAM Kirillov et al. (2023) leverage a Two-Way Transformer for generating high-
quality masks but lack contextual awareness of manipulated content. We address this limitation
by integrating SAM with InstructBLIP, enabling context-aware forgery masks for fine-grained lo-
calization. However, the integration of segmentation and manipulation detection remains limited,
as existing works often treat them as separate tasks rather than a unified framework for enhanced
localization.

3 MULTI-MODAL TRAMPER TRACING DATASET

Although many existing datasets provide annotations for forgery localization, they lack detailed,
descriptive explanations for the detected manipulations (Table 1). To bridge this gap, we introduce
the Multi-Modal Tramper Tracing (MMTT) dataset, which uniquely combines pixel-level forgery
masks with comprehensive textual descriptions. Unlike conventional datasets that focus solely on
binary classification (Li et al., 2020; Dolhansky et al., 2020) or mask-based localization (Rossler
et al., 2019; Jiang et al., 2020), MMTT emphasizes interpretability by integrating annotations that
explain how and why the manipulated regions appear forged. This emphasis on human-generated
interpretations allows for a richer understanding of the manipulations.

3.1 SOURCE IMAGE COLLECTION

We develope our MMTT dataset based on the CelebAMask-HQ (CelebA-HQ) (Zhu et al., 2022)
and Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) datasets. Both datasets offer high-quality, high-
resolution facial images, CelebAMask-HQ containing 30, 000 images and FFHQ providing 70, 000
images, totaling 100, 000 samples. All images are resized to 512 × 512 pixels for uniformity. The
selected 100,000 images serve as the primary dataset for our subsequent forgery manipulations.

3
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Table 1: Comparison of face forgery datasets and their attributes. “Cls.” refers to classification tasks
that identify if a sample is manipulated, “Seg.” refers to segmentation tasks that localize manipulated
regions, and “Cap.” refers to captioning tasks that describe the manipulations. Pristine Samples are
original images/videos used to create manipulated versions. Unique Fake Samples count distinct
fake samples generated through various techniques, excluding minor variations. Released Samples
indicate the total number of real and fake samples publicly shared by authors. Manipulation types
indicate the primary techniques used, such as DeepFake, GAN, or Image Inpainting. GT Type spec-
ifies ground truth labels, such as Image label for classification or Mask for pixel-level annotation.
Text Annotation shows whether the dataset contains detailed textual descriptions that offer addi-
tional context and explain the manipulations, marked by ✓ for presence and ✗ for absence.

Dataset Task Modality Pristine
Samples

Unique Fake
Samples

Released
Samples

Manipulation
Types GT Type Text

Annotation
Celeb-DF Cls. Video 590 5,639 6,229 DeepFake Image label ✗

FaceForensics++ Seg. + Cls. Video 1,000 4,000 5,000 Multi-Face Mods Image label + Mask ✗
DFDC Cls. Video 48,190 104,500 128,154 DeepFake Image label ✗

DeeperForensics-1.0 Cls. Video 1,000 1,000 10,000 GAN Image label ✗
MMTT

(Our Dataset) Seg. + Cap. Text + Image 100,000 128,303 128,303 GAN,
Inpainting Mask,Text ✓

3.2 FORGERY GENERATION

Generation and editing are two main threats for the face image protection, We incorporate both
techniques for forgery image generation to construct a more challenging dataset. To keep pace
with the latest techniques, we employ three manipulation methods: face swapping (Abou Akar
et al., 2024), along with image inpainting techniques, which include both Transformer-based (Li
et al., 2022) and diffusion-based methods (Podell et al., 2023), to produce a comprehensive forgery
dataset.

Face Swapping. For the face swapping task, we employ E4S (Abou Akar et al., 2024), a GAN-
based model designed specifically for high-quality face swapping. Given a target image It and a
source image Is, E4S generates a swapped face image If by replacing the entire face region in It
with the facial features from Is. For the CelebA-HQ dataset, target and source images are randomly
paired from the entire dataset, while for FFHQ, the source image is chosen from a separate subfolder
to maintain visual diversity.

During the swapping process, E4S automatically generates a binary mask M , which covers the
entire face region of the target image It. This dynamically generated mask is used to blend facial
features from Is into It, ensuring the swapped image If only alters the facial region and preserves
non-facial elements like hair and background from the target image.

The generated binary mask M is stored as the ground-truth annotation for the altered regions, rep-
resenting the full face replacement for both CelebA-HQ and FFHQ datasets. As a result, the final
outputs include both the forged images If and their corresponding binary masks M , providing a
consistent representation of the modified regions for subsequent training and evaluation tasks.

Image Inpainting. For generating localized facial manipulations, we utilize MAT(Li et al., 2022)
(transformer-based) and SDXL (Podell et al., 2023) (diffusion-based).

For each image I , the process commences by defining a binary mask M that indicates the regions to
be inpainted. Depending on the dataset, the process of mask generation varies. For the CelebAMask-
HQ dataset, which contains predefined masks for 21 facial components (e.g., eyes, nose, mouth, and
eyebrows), we randomly select between 1 to 11 facial regions for modification. Specifically, we
generate a random number k within this range, representing the number of facial parts to be altered.
These regions are then randomly sampled and merged to create the final mask M . And for the Flickr-
Faces-HQ dataset, which lacks predefined facial masks, we employ Dlib (King, 2009) to detect key
facial landmarks. This allows us to segment the face into different regions such as eyebrows, eyes,
nose, mouth, ears, and the entire face. For each image, we first decide whether to apply a complete
face mask with a probability of 0.2. If not, we randomly select k regions (where k is again randomly
chosen between 1 and 11) to construct the final mask M .

With the mask M determined, the image I is processed using the respective inpainting method.
The masked image I · (1 − M) and its binary mask M are fed into the inpainting model, which

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Simple Screening

Quality Control

He sports false hair that lacks 

sections, his pupils vary in size 

with the right one being smaller 

than the left, the left eyelash is 

missing, and the outline of the 

lower lip is obscure.

Final Description

Ear

False 

Positive 

Region

Simple Screening

Quality Control

He sports false hair that lacks 

sections, his pupils vary in size 

with the right one being smaller 

than the left, the left eyelash is 

missing, and the outline of the 

lower lip is obscure.

Final Description

Ear

False 

Positive 

Region

Image Input Inconsistency Inspection Inconsistent Regions Textual Annotation Textual Description Final DescriptionAnnotator

Quality Control

Textual Annotation

Inconsistent

Regions

He sports false hair that lacks sections, 

his pupils vary in size with the right 

one being smaller than the left, the left 

eyelash is missing, the outline of the 

lower lip is obscure, and the left ear 

appears to have an unnatural shape 

with irregular contours.

Textual 

Description

Hair

Pupils

Eyelash

Lip

Ear

Hair

Pupils

Eyelash

Lip

Ear

Textual Annotation

Inconsistent

Regions

He sports false hair that lacks sections, 

his pupils vary in size with the right 

one being smaller than the left, the left 

eyelash is missing, the outline of the 

lower lip is obscure, and the left ear 

appears to have an unnatural shape 

with irregular contours.

Textual 

Description

Hair

Pupils

Eyelash

Lip

Ear

Inconsistency Inspection

Pupils vary,

the right one smaller 

than the left

Left eyelash missed

Outline of the lower 

lip obscure

Inconsistent

Regions

Inconsistent

Regions
Forged Image If

Left ear odd

Hair lacks sectionsHair lacks sections

Inconsistency Inspection

Pupils vary,

the right one smaller 

than the left

Left eyelash missed

Outline of the lower 

lip obscure

Inconsistent

Regions

Inconsistent

Regions
Forged Image If

Left ear odd

Hair lacks sections

Original Image Io

Forged Image If
 with Mask

Original Image Io

Forged Image If
 with Mask

Minimum Time Constraint 

(≥ 1 min observation)

Maximum Length Constraint 

(≤ 120 words)

Minimum Time Constraint 

(≥ 1 min observation)

Maximum Length Constraint 

(≤ 120 words)

Simple Screening

Quality Control

He sports false hair that lacks 

sections, his pupils vary in size 

with the right one being smaller 

than the left, the left eyelash is 

missing, and the outline of the 

lower lip is obscure.

Final Description

Ear

False 

Positive 

Region

Image Input Inconsistency Inspection Inconsistent Regions Textual Annotation Textual Description Final DescriptionAnnotator

Quality Control

Textual Annotation

Inconsistent

Regions

He sports false hair that lacks sections, 

his pupils vary in size with the right 

one being smaller than the left, the left 

eyelash is missing, the outline of the 

lower lip is obscure, and the left ear 

appears to have an unnatural shape 

with irregular contours.

Textual 

Description

Hair

Pupils

Eyelash

Lip

Ear

Inconsistency Inspection

Pupils vary,

the right one smaller 

than the left

Left eyelash missed

Outline of the lower 

lip obscure

Inconsistent

Regions

Inconsistent

Regions
Forged Image If

Left ear odd

Hair lacks sections

Original Image Io

Forged Image If
 with Mask

Minimum Time Constraint 

(≥ 1 min observation)

Maximum Length Constraint 

(≤ 120 words)

Figure 2: Annotation pipeline for forgery interpretation. Annotators review the original and forged
images (Io, If ), conduct an Inconsistency Inspection with a Minimum Time Constraint (≥ 1 min),
and identify Inconsistent Regions. These regions are used to produce Textual Descriptions within a
Maximum Length Constraint (≤ 120 words). Quality Control then screens for false positives (e.g.,
Ear), ensuring only accurate descriptions are included in the Final Description.

predicts the missing pixels Imodel
g for the masked regions, resulting in the inpainted image: If =

(1−M) · I +M · Imodel
g , where model = {MAT,SDXL}.

3.3 INTERPRETATION ANNOTATION.

Annotation Guidance. Figure 2 shows the pipeline of our annotation process. To ensure the annota-
tion quality, our expert team manually provides interpretations. The goal is to produce explanations
that interpret the localization of forgeries and emphasize the most conspicuously artificial areas. As
shown in Figure 2, annotators are presented with both the original and manipulated images, with the
manipulated areas indicated by the groundtruth mask. They are instructed as follows:

• Carefully examine the pair of images and describe any irregularities or artificial appear-
ances in the manipulated regions.

• Focus on annotating only the unnatural or poorly integrated facial features, disregarding
areas that appear authentic.

• Avoid using language that requires reference to the original image, as this is not feasible in
practical scenarios.

• Keep descriptions concise, limiting them to no more than 120 words.

Annotation Process. The annotation process involves 30 annotators. As shown in Figure 2, each
annotator is presented with the original image Io and the forged image If , and asked to compare
them. Based on the comparison and the annotation guidance, they identify and annotate the regions
in If that exhibit unnatural or illogical alterations. The steps in the annotation process are as follows:

• Step 1: Annotators are given an original-forgery image pair (Io, If ).

• Step 2: Annotators examine the images for inconsistencies in facial regions, such as un-
usual textures, asymmetry, or irregular shading.

• Step 3: Annotators provide a textual description T , explaining the nature of the alteration
(e.g., ”The nose texture appears unnaturally smooth, lacking real skin details.”).

Integrating all above annotated clues, each annotated sample in our MMTT dataset is finally formed
as a triplet p = (If ,M, T ).

Annotation Quality Control. To ensure the quality of the annotations, strict quality control mea-
sures are applied:

• Minimum Annotation Time. Each annotator is required to spend at least one minute on
each image, ensuring a thorough examination of the details in both Io and If .
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Figure 3: Overview of the MMTT dataset statistics, where GAN-FS represents GAN-based Face
Swapping, Trans. Inp. denotes Transformer-based Inpainting, and Diff. Inp. refers to Diffusion-
based Inpainting. (a) shows the distribution of these three manipulation methods; (b) depicts the
frequency distribution of modified facial parts for each inpainting method (excluding GAN-FS, as
it involves whole-face manipulation); (c) visualizes the distribution of modified parts per image
for Transformer-based and Diffusion-based inpainting (excluding GAN-FS due to the absence of
localized edits); (d) displays the proportional distribution of caption lengths for all methods.

• Simple Screening. We conduct a basic screening of the annotations. If annotators label
regions that were not manipulated, we remove those labels to ensure dataset accuracy.

3.4 DATASET STATISTICS

The MMTT dataset D consists of 128,303 triplets, each represented by a forged face image, a
binary mask, and a corresponding caption. The dataset is generated using three primary methods:
GAN-based face swapping (44,343 samples), Transformer-based inpainting (37,440 samples), and
Diffusion-based inpainting (46,520 samples).

Image Statistics: The most frequently manipulated regions in the entire dataset are the Eye
(66,403), Eyebrow (83,594), and Lip (61,844). For example, in the transformer-based inpainting
samples, the Eyebrow (22,993) and Eye (18,484) regions are particularly emphasized, accounting
for 61.4% and 49.3% of the total images in this category, respectively. In contrast, diffusion-based
methods, which are known for superior texture generation, target regions such as the Lip (24,483)
and Eye (25,014), covering 52.6% and 53.8% of its samples.

Additionally, combining both transformer-based and diffusion-based methods, the dataset reveals
that: 21.7% have three modifications, 22.4% of samples have four modified regions, and 17.4% of
samples have five regions altered simultaneously. This distribution increases the difficulty of forgery
localization tasks, as models must handle varying levels of complexity across different manipulation
techniques.

Interpretation Statistics: In terms of textual annotations, the average caption length is 26.94 words,
with the longest caption containing 123 words and the shortest having only 3 words. The total word
count for all captions reaches 3,456,202, underscoring the comprehensiveness of the annotations.
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Figure 4: Illustration of our ForgeryTalker. ForgeryTalker augments the InstructBlip framework
by integrating a Forgery Prompter Network (FPN) and a Mask Decoder. The framework processes
an image into patch embeddings using Vision Transformer. These embeddings are utilized by the
mask decoder for forgery localization and the Q-former in InstructBlip for interpretation report gen-
erataion. The FPN is initially trained to generate regional prompts, which is subsequently merged
with an instruction template and fed into Q-former together with the image embeddings. The re-
sulting multimodal features are then passed through a large language model to craft a descriptive
explanation of the forgery.

Captions in the GAN-based category frequently mention regions such as Eye (38,399) and Eye-
brow (30,454), reflecting their prominence in face-swapping operations. In transformer-based and
diffusion-based methods, the Eye and Lip regions appear most often, with 30,487 and 24,516 men-
tions, respectively. Overall, the Eye (108,750) and Eyebrow (83,606) regions are the most frequently
described, constituting over 84.6% of all textual references.

4 FORGERYTALKER

4.1 ARCHITECTURE

Our framework, ForgeryTalker, extends the InstructBlip (Dai et al., 2023) model by introducing a
Forgery Prompter Network (FPN) and a Mask Decoder. The system accepts a tampered image I
and encodes it into patch embeddings following Vision Transformer (Dosovitskiy, 2020). These
embeddings are then dually processed by the mask decoder for localization. The FPN is initially
trained to produce region prompts, which are then combined with an instruction template and fed
into the Q-former of InstructBlip. The ensuing multimodal features are channeled through a large
language model to produce an interpretive narrative of the forgery. The training is performed in
a two-stage fashion: initially, the FPN is trained with a classification loss, followed by a second
phase where the FPN is fixed while the mask decoder and Q-former are collectively optimized with
segmentation and language generation losses.

4.2 FORGERY PROMPTER NETWORK

Motivation. Accurately identifying the most salient manipulated regions in forged images is diffi-
cult due to the high visual fidelity of modern manipulation techniques. Even human reviewers often
need to inspect the image closely to spot inconsistencies. Thus, we propose the Forgery Prompter
Network to provide an initial set of salient region keywords, guiding the downstream reasoning and
facilitating the coherent generation of explanations.

GroundTruth Extraction. We first extract the region labels from our interpretation annotations.
The label space is the 21 face semantics, each image’s label is a 21-dimensional vector Y , where
i-th position is marked as 1 if the corresponding face part occurs in the interpretation, 0 otherwise.
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FPN takes the vision transformers as the main architecture. Considering the crucial role of fine-
grained local context in identifying subtle flaws, we introduce a convolution branch at the early
stage to complement the global contexts captured by the vision transformer. As shown in Fig-
ure 4, the forgery image I concurrently traverses self-attention blocks and convolution blocks
in parallel, producing global-aware features Fg = {F 0

g , F
2
g , ..., F

m−1
g } and local-aware features

Fl = {F 0
l , F

2
l , ..., F

m−1
l }. At each encoding level, the corresponding features are element-wise

summed and fed into next attention block:
F i
g = MHAi−1(F

i−1
g ), F i

l = Convi−1(F
i−1
l ), i = 1, ....m. (1)

F i
g = MHAi(F

i
g + F i

l ), (2)
where “MHA” and “Conv” mean the multi-head attention and convolution, respectively. Further-
more, we note that the positioning of facial regions in a natural image follows a rigid and predictable
structure, with the eyes typically positioned laterally relative to the nose and the eyebrows aligned
above the eyes. Leveraging this regularity, we integrate coordinate convolution (Liu et al., 2018) in
the initial convolutional layer to detect anomalies in the arrangement of facial features, i.e., Conv0

= CoorConv.

The resultant feature Fm
g contains both global and local contexts and is then fed into the subsequent

multi-head attention blocks and a classification head to produce the probability Ŷ across regions.
Finally, the forgery prompter network is optimized by a combined loss, incorporating both Binary
Cross-Entropy (BCE) loss and Dice loss to effectively balance region classification and overlap
precision:

LBCE = − 1

21

21∑
i=1

Yi log Ŷi + ω(1− Yi) log(1− Ŷi), (3)

where ω is a discount factor set such that ω < 1 to address the imbalance caused by a higher number
of unmodified regions.

The Dice loss is employed to measure the overlap between the predicted labels Ŷ and ground truth
Y , ensuring that less frequent classes receive more attention:

LDice = 1−
2
∑21

i=1 YiŶi∑21
i=1 Yi +

∑21
i=1 Ŷi

. (4)

The final loss function is defined as the average of the BCE and Dice losses:

Lf =
1

2
(LBCE + LDice). (5)

4.3 INTERPRETATION GENERATION

We take the region predictions from FPN as a prior clues to aid the interpretation generation. Assume
the set of regions from FPN is R = {r1, r2, ...}, we next design a particular template to include R
to form a interpretation-friendly instruction T:

These facial areas may be manipulated by AI: [R]. Please describe
the specific issues in these areas.

The structured prompt serves as the guiding context for the language model, thereby ensuring that
the final output accurately reflects the manipulations detected by the FPN. This integration enhances
the interpretability and coherence of the generated explanations, offering a comprehensive under-
standing of the tampered regions. Subsequently, the instruction and the image embeddings into the
Q-former and the resultant feature are fed into the large-language model to generate the interpreta-
tion text T , which is then supervised by language modeling loss:

Lt = −E(I,T )∼D[

K∑
k=1

logP (t̂k|(I,T), t̂0, · · · , t̂k−1)], (6)

where t̂k is k-th predicted words, P is the word probability distribution from LLM.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of generated captions across different models. The interpretation
from SCA is wild with words repetition, its BLUE is unnormally high. Consequenly, we exclude it
for comparing (marked as gray).

Method CIDEr Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE L IoU
SCA 17.6 58.8 46.27 36.4 29.4 13.0 17.8 72.87
InstructBLIP 20.9 30.6 16.8 9.8 5.6 14.7 24.8 67.38
ForgeryTalker 21.5 31.1 16.9 9.8 5.9 13.9 24.3 70.81

Table 3: Ablation Study on the Impact of Different Variants. w/ and w/o mean equipping or not
equipping the following modules.

Method CIDEr Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE L IoU
ForgeryTalker w/ FPN-GT 48.1 38.0 22.4 14.4 9.5 18.7 32.3 70.26
ForgeryTalker w/o FPN 20.9 30.6 16.8 9.8 6.0 14.7 24.8 67.38
ForgeryTalker 21.5 31.1 16.9 9.8 5.9 13.9 24.3 70.81

4.4 MASK DECODER

We employ SAM’s Two-way Transformer (Kirillov et al., 2023) as the mask decoder. Particularly,
the image encoder of InstructBLIP encodes the forgery image and the resultant feature is fed into
the Two-way transformer to predict the forgery mask M̂ . The cross entropy loss is performed:
Lm = − 1

HW logMij log M̂ij , where H,W is the height and width of image.

Overall, the full loss in the second stage for interpretation and forgery localization is formulated as:

L = Lt + Lm. (7)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Implementation Details. We implement our ForgeryTalker framework using PyTorch and train it
on four NVIDIA A100 GPUs. The Forgery Prompter Network is fine-tuned for 125,000 steps with
a batch size of 16, an initial learning rate of 7.5e-3, using a cosine decay strategy and warmup steps
of 125. The convolution branch in FPN includes one 3×3 Coordinate Convolution (CoordConv)
layer and one 5×5 Convolution layer. The discount factor in Eq. 3 is set as ω = 0.2 to balance the
unmodified regions. Next, we fix FPN and tune the Q-former and the mask decoder by 60 epochs,
starting with a learning rate of 4e-6. The training setup includes a batch size of 16 and a gradient
accumulation strategy with an accumulation step of 1, with mixed-precision training (fp16) enabled
for faster convergence and reduced memory usage. The Multi-Modal Tampering Tracing (MMTT)
dataset is divided into training, validation, and test sets with a ratio of 8:1:1.

We use a range of captioning and segmentation metrics for performance evaluation, including
CIDEr, BLEU, METEOR, and IoU. We use Positive Label Matching (PLM) to evaluate the ef-
fectiveness of FPN. PLM calculates the ratio of correctly predicted positive labels over the union of
predicted and ground-truth positive labels:

PLM =
|Predicted Positive Labels ∩ Ground Truth Positive Labels|
|Predicted Positive Labels ∪ Ground Truth Positive Labels|

. (8)

Unlike IoU, PLM focuses on detecting manipulated regions without being influenced by a large
number of correctly predicted negative labels, making it ideal for tasks with sparse modifications.

5.2 QUATITATIVE RESULTS

As shown in Table 2, we compare our ForgeryTalker framework against two baselines: SCA (Huang
et al., 2024) and InstructBLIP (Dai et al., 2023), equipping with a naive decoder for forgery local-
ization.
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In text generation, ForgeryTalker achieves a CIDEr score of 21.5, surpassing 17.6 for SCA and
20.9 for InstructBLIP. Additionally, ForgeryTalker outperforms InstructBLIP in BLEU-1 (31.1 vs.
30.6), BLEU-2 (16.9 vs. 16.8), and BLEU-4 (5.9 vs. 5.6), demonstrating our framework’s ability
to generate more informative captions. In contrast, SCA exhibits abnormally high BLEU-1 (58.8)
and BLEU-2 (46.27) due to generating nearly identical long sentences across different samples,
resulting in consistently high n-gram overlap. This artificially inflates BLEU scores across BLEU-1
to BLEU-4.

For image localization, our method achieves an IoU score of 70.81, comparable to SCA’s 72.87, and
significantly higher than InstructBLIP’s 67.38. While ForgeryTalker slightly underperforms SCA
in segmentation, our framework provides a better balance between segmentation and text genera-
tion, unlike InstructBLIP, which shows lower overall performance even with added segmentation
capabilities.

Overall, ForgeryTalker maintains a good balance between text generation and image segmentation
tasks. Although some individual metrics favor other models, ForgeryTalker achieves better average
performance across multiple evaluation criteria, demonstrating its robustness for detailed forgery
analysis.

5.3 ABLATION STUDY

We performed ablation experiments to analyze the effects of key components, focusing on
text generation performance (CIDEr). As shown in Table 3, we study several variants:

Table 4: Ablation Study on the Impact of the
Forgery Prompter Network

Model ω Loss PLM
ViT 1 BCE 34.23
ViT 0.2 BCE 38.92
FPN 0.2 BCE 39.16
FPN 0.2 BCE + Dice 41.05

w/ FPN-GT. Uses ground-truth labels instead of
the predicted labels from the Forgery Prompter Net-
work, achieving the best CIDEr score (48.1), indi-
cating the value of precise label guidance.

w/o FPN Removes Forgery Prompter Network,
leading to a significant performance drop (CIDEr:
20.9), demonstrating the importance of our FPN.

The ground-truth (GT) labels show great potential
to enhance the interpretation generation, achieving a
CIDEr score of 48.1 (Table 3). This means that we
can harvest high-quality interpreatation if the region prompts are given accurately. FPN is motivated
by this and targets to yield region prompts. The current interpretation generation is hindered by
the performance of FPN. As shown in Table 4, the PLM of FPN is only 41%, which has great
potential to be improved and will be continually studied in our future work. Table 4 also discusses
the discount hyperparameters factor ω (Eq. 3) and the loss configurations, the resutls reveals that
the discounting the unmodifed regions and equipping the BCE and Dice loss can both promote the
accuracy of region prompts.

6 CONCLUSION

This paper addresses the limitations of traditional image forgery localization methods by introducing
a novel approach that generates interpretive reports for forged images. We argue that existing binary
forgery masks lack the detail necessary to fully understand model predictions and to highlight the
most significant areas of forgery. To overcome this, this paper creates MMTT dataset, which in-
cludes deepfake-manipulated images with corresponding textual annotations. Then we propose the
ForgeryTalker framework, which combines forgery localization with interpretive text generation,
enhancing both the accuracy and transparency of forgery detection. The model’s effectiveness is
validated through experiments on the MMTT dataset, demonstrating its superiority in image forgery
localization and interpretation tasks.
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