Dynamical Low-Rank Compression of Neural
Networks with Robustness under Adversarial Attacks

Steffen Schotthofer; H. Lexie Yang] and Stefan Schnake*
*Computer Science and Mathematics Division, fGeospatial Science and Human Security Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831 USA
{schotthofers,yangh,schnakesr}@ornl.gov

Abstract

Deployment of neural networks on resource-constrained devices demands models
that are both compact and robust to adversarial inputs. However, compression and
adversarial robustness often conflict. In this work, we introduce a dynamical low-
rank training scheme enhanced with a novel spectral regularizer that controls the
condition number of the low-rank core in each layer. This approach mitigates the
sensitivity of compressed models to adversarial perturbations without sacrificing
accuracy on clean data. The method is model- and data-agnostic, computationally
efficient, and supports rank adaptivity to automatically compress the network at
hand. Extensive experiments across standard architectures, datasets, and adversarial
attacks show the regularized networks can achieve over 94% compression while
recovering or improving adversarial accuracy relative to uncompressed baselines.

1 Introduction

Deep neural networks have achieved state-of-the-art performance across a wide range of tasks in com-
puter vision and data processing. However, their success comes at a cost of substantial computational
and memory demands, which hinders deployment in resource-constrained environments. While sig-
nificant progress has been made in scaling up models through data centers and specialized hardware,
a complementary and equally important challenge lies in the opposite direction: deploying accurate
and robust models on low-power platforms such as unmanned aerial vehicles (UAVs) or surveillance
sensors. These platforms often operate in remote locations with limited power and compute resources,
and are expected to function autonomously over extended periods without human intervention.

This setting introduces three interdependent challenges:

* Compression: Models must operate under strict memory, compute, and energy budgets.

* Accuracy: Despite being compressed, models must maintain high performance to support critical
decision-making.

* Robustness: Inputs may be corrupted by noise or adversarial perturbations, requiring models to be
resilient under distributional shifts.

Recent work has shown that these three objectives are inherently at odds. Compression via low-rank
[38] or sparsity techniques [14] often leads to reduced accuracy. Techniques to improve adversar-
ial robustness—such as data augmentation [24] or regularization-based defenses [S4]—frequently
degrade clean accuracy. Moreover, it has been observed that low-rank compressed networks can
exhibit increased sensitivity to adversarial attacks [35]]. Finally, many methods to increase adversarial
robustness of the model impose additional computational burdens during training [43} 8] or inference
[9} 1151 28], further complicating deployment on constrained hardware.

Our Contribution. We summarize our main contributions as follows:

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

* Low-rank compression framework. We introduce a novel regularization and integration method
to modify a class of low-rank training methods that yields low-rank compressed neural networks,
achieving a more than 10X reduction in both memory footprint and compute cost, while maintaining
clean accuracy and adversarial robustness on par with full-rank baselines.

* Theoretical guarantees. We analyze the proposed regularizer and derive an explicit bound on
the condition number « of each regularized layer. The bound gives further confidence that the
regularizer improves adversarial performance.

* Preservation of performance. We prove analytically—and verify empirically—that our regularizer
neither degrades training performance nor reduces clean validation accuracy across a variety of
network architectures.

» Extensive empirical validation. We conduct comprehensive experiments on multiple architectures
and datasets, demonstrating the effectiveness, robustness, and broad applicability of our method.

Beyond these core contributions, our approach is model- and data-agnostic, can be integrated
seamlessly with existing adversarial defenses, e.g., adversarial training [13]], and never requires
assembling full-rank weight matrices—the last point guaranteeing a low memory footprint during
training and inference. Moreover, by connecting to dynamical low-rank integration schemes and
enabling convergence analysis via gradient flow, we offer new theoretical and algorithmic insights.
Finally, the use of interpretable spectral metrics enhances the trustworthiness and analyzability of the
compressed models.

2 Controlling the adversarial robustness of a neural network through the
singular spectrum of its layers

We consider a neural network f as a concatenation of L layers z+1 = o (W*2*) with matrix valued'|
parameters W* € R™*" layer input z¢ € R"*? and element-wise nonlinear activation o. For
simplicity of notation, we do not consider biases, but they are included for the numerical experiments
in Section@ The data X constitutes the input to the first layer, i.e. 20 = X. We assume that the layer
activations o are Lipschitz continuous, which is the case for all popular activations [35]. The network
is trained on a loss function £ which we assume to be locally bounded with a Lipschitz continuous

gradient. Throughout this work, we call a network in the standard format a “baseline”” network.

Low-rank Compression: The compression the network for training and inference is typically
facilitated by approximating the layer weight matrices by a low-rank factorization W* = U¢S‘v4 T
with U Z, VvVt e R"™" and S¢ € R"™™", where r < n is the rank of the factorization. In this
work, we generally assume that U*, V¢ are orthonormal matrices at all times during training and
inference. This assumption deviates from standard low-rank training approaches [17]], however recent
literature provides methods that are able to fulfill this assumption approximately [S5] and even exactly
[38,137]. If » < n, the low-rank factorization with a storage and matrix-vector computation cost
cost of O(2nr + r?) is computationally more efficient than the standard matrix format W with a
computational cost of O(n?).

Adversarial robustness: The adversarial robustness of a neural network f, a widely used trustwor-
thiness metric, can be measured by its relative sensitivity S to small perturbations J, e.g., noise, of

the input data X [49] [11]], i.e., S(f, X,0) := W% In this work, we consider the

sensitivity in the Euclidean (¢2) norm, i.e., || - || = || - ||2. For neural networks consisting of layers
with Lipschitz continuous activation functions o, S can be bounded [33] by the product

S(£,X,0) < (TTy kW) (112, K(0)) 6))

where (W) := ||[W|| |[WT]| is the condition number of a matrix W, W is the pseudo-inverse of
W, and k(o) is the condition number of the layer activation function o. The condition number of the
element-wise non-linear activation functions o can be computed with the standard definitions (see
[45] and [35] for condition numbers of several popular activation functions). Equation @ allows us
to consider each layer individually, thus we drop the superscript ¢ for brevity of exposition.

'We provide an extension to tensor-valued layers, e.g. in CNNs, in Section

2Note that the difference between the baseline and low-rank singular spectrum may be less pronounced for
other layers and architectures. However, we have observed in all test cases that regularization with R makes the
singular spectrum of the low-rank network more benign.

The sensitivity of a low-rank factor-

ized network can be readily deducted ’

from Equation (I) by leveraging 2] 5

orthonormality of U and V, i.e, “ Al thusﬂl’Lf}Td

k(USVT) = k(S). Thus, we only e e

consider the r x r coefficient matrix LR e e
S to control the sensitivity of the index i

network. The condition number x(S)
can be determined via a singular
value decomposition (SVD) of S,
which is computationally feasible
when r < n.

Figure 1: The singular values ¢; (W) of sequential layer 7 in
VGG16 for baseline training, unregularized dynamical low-
rank training, and RobustDLRT with our condition number
regularizer R with 5 = 0.075 (see Section[3)). The matrix
W is formed as the first-mode unfolding of the convolutional
Adversarial robustness-aware low- tensor. Conditioning of the regularized low-rank layer is
rank training: Enhancing the adver- significantly improved compared to the non-regularized low-
sarial robustness of the network dur- rank and baseline layer.?

ing low-rank training thus boils down

to controlling the conditioning of .S, which is a non-trivial task. Moreover, the dynamics of the
singular spectrum of .S of adaptive low-rank training schemes as Dynamical Low-Rank Training
(DLRT) [38] become more ill-conditioned than the baseline during training, even if S is always
full rank. In Figure|l] we observe that the singular values ¢ of a rank 64 factorization of a network
layer compressed with DLRT range from ¢,—; = 2.7785 to ¢,—g4 = 0.8210 yielding a condition
number of k(S) = 3.3844. In comparison, the baseline network has singular values ranging from
Gr=1 = 1.8627 t0 G,—128 = 0.9445 yielding a lower condition number of x(.S) = 1.9722. As a result,
an ¢2-FGSM attack with strength € = 0.3, reduces the accuracy of the baseline network to 54.96%,
while the accuracy of the low-rank network drops to 43.39%, see Table

3 Related work

Low-rank compression is a prominent approach for reducing the memory and computational cost
of deep networks by constraining weights to lie in low-rank subspaces. Early methods used post-
hoc matrix [12] and tensor decompositions [23l], while more recent approaches enforce low-rank
constraints during training for improved efficiency and generalization.

Dynamical Low-Rank Training [38]] constrains network weights to evolve on a low-rank manifold
throughout training, allowing substantial reductions in memory and FLOPs without requiring full-
rank weight storage. The method has been extended to tensor-valued neural network layers [53]],
and federated learning [36]. Pufferfish [47]] restricts parameter updates to random low-dimensional
subspaces, while intrinsic dimension methods [2] argue that many tasks can be learned in such
subspaces. GaL.ore [56] reduces memory cost by projecting gradients onto low-rank subspaces.

In contrast, low-rank fine-tuning methods like low-rank adaptation (LoRA) [17] inject trainable
low-rank updates into a frozen pre-trained model, enabling efficient adaptation with few parameters.
Extensions such as GeoLoRA [37], AdaLoRA [55]], DyLoRA [46], and DoRA [31] incorporate rank
adaptation or structured updates, improving performance over static rank baselines. However, these
fine-tuning methods do not reduce the cost of the full training and inference, thus are not applicable
to address the need of promoting computational efficiency.

Pruning is another well studied approach to reduce the number of parameters of a trained neural net-
work [181126140L57.[7,[19] by either sparsifying weight matrices or layer output channels of a network.
Typically sparsity pruning is performed after training a fully parametrized neural network and thus
only reduces memory and compute load during inference, while treating training as an offline cost.

Improving adversarial robustness with orthogonal layers has been a recently studied topic in
the literature [3 4} 48, 10, 35]]. Many of these methods can be classified as either a soft approach,
where orthogonality is imposed weakly via a regularizer, or a hard approach, where orthogonality is
explicitly enforced in training.

Examples of soft approaches include the soft orthogonal (SO) regularizer [48], double soft or-
thogonal regularizer [4], mutual coherence regularizer [4], and spectral normalization [32]]. These
regularization-based approaches have several advantages; namely, they are more flexible to many

problems/architectures and are amenable to transfer learning scenarios (since pertained models are
admissible in the optimization space). However, influencing the spectrum weakly via regularization
cannot enforce rigorous and explicit bounds on the spectrum.

Many hard approaches strongly enforce orthogonality/well-conditioned constraints by training on
a chosen manifold using Riemannian optimization methods [25} 1} 35]. A hard approach built for
low-rank training is given in [35]; this method clamps the extremes of the spectrum to improve the
condition number during training. The clamping gives a hard estimate on the range of the spectrum
which enables a direct integration of the low-rank equations of motion with reasonable learning rates.
However, this method requires a careful selection of the rank r, which is viewed as a hyperparameter
in [35]. If r is chosen incorrectly, the clamping of the spectrum, a hard-thresholding technique, acts
as a strong regularizer which could affect the validation metrics of the network.

Our regularization method detailed below falls neatly into a soft approach and our proposed regularizer
can be seen as an extension of the soft orthogonality (SO) regularizer [48]] to well-conditioned matrices
in the low-rank setting. As noted in [4], the SO regularizer only works well when the input matrix
is of size m x n with m < n. However, we avoid this issue since the regularizer is applied to the
square 7 X r matrix .S; an extension to convolutional layers is discussed in Section In the context
of low-rank training, the soft approach enables rank-adaptivity of the method.

4 Improving conditioning via regularization

We design a computationally efficient regularizer R to control and decrease the condition number of
each network layer during training. The regularizer R only acts on the small 7 X r coefficient matrices
S of each layer and thus has a minimal memory and compute overhead over low-rank training. The
regularizer is differentiable almost everywhere and compatible with automatic differentiation tools.
Additionally, R has a closed form derivative that enables an efficient and scalable implementation of
V'R. Furthermore, R is compatible with any rank-adaptive low-rank training scheme that ensures
orthogonality of U, V, e.g., [55, 136} 37, 35]].

Definition 1. We define the robustness regularizer R for any S € R™*" by
1
R(S) = |STS — I, where o =~ 2)
r
and I = I, is the r X r identity matrix.

The regularizer R can be viewed as an extension of the soft orthogonal regularizer [48| 4] where
we penalize the distance of STS to the well-conditioned matrix a%l. Here ag is chosen such that
[IS|| = llasI]|- Moreover, R is also a scaled standard deviation of the squared singular values
{Gi(9)*}r_,, ie.,

T

SRS = 23 (687 — (2o w(81) G

r
i=1

See Appendix for the proof. Therefore, R is a unitarily invariant regularizer; namely, R(USV ") =

R(S) for orthogonal U, V. These two forms of R are useful in the properties shown below.

Proposition 1. The gradient of R in @) is given by VR(S) = 25(S"S — a%1)/R(S).

See Appendix [C|for the proof. The gradient computation consists only of 7 x 7 matrix multiplications

and a Frobenius norm evaluation. Thus V'R is computationally efficient for r < m. Further, its closed
form enables a straight-forward integration into existing optimizers such as Adam or SGD applied to .S.

Proposition 2 (Condition number bound). For Table 1: VGG16 on UCM data. Comparison of

any S € R"™" there holds regularized LoRA and DLRT trained networks un-
1 der the £2-FGSM attack. Orthogonality of U,V
k(S) < exp (R(S)) . (4) increases adversarial performance significantly.
V26,:(5)?
Method cr. [%] | clean Acc [%] | (>-FGSM, € = 0.1
See Appendix [C] for the proof. Thus, if ¢.(S) IEIRTS Zovrs ossd | oaer 7868
is not too small, we can use R(S) as a good [ra5-007s o583 | 8857 | oY

measure for the conditioning of .S. Note that the

— B=0.01 10? \1\ e — B=001
B=0.05 \\ B=0.05
— g=01 \\ —— B=01
—— B=0.15 — B=015
= \ — B=02
B=02 £ 104 3001
I\| \ A B=0.05
I M I e -
111 =Y.
1071 I v) — B=02
" L | A 1\ Vv 100
250000 0 _— - 250000 0 - 250000
optimizer step optimizer step optimizer step
(@ k(S(1)) (b) R(S(1)) (©) L(1)

Figure 2: UCM Dataset, x(S(t)) and R(S(t)) of layer 4 of VGG16 for different regularizations
strengths 3. Each line is the median of 5 training runs. Higher (8 values lead to faster reduction of
the layer condition £(S), which quickly approaches its minimum value 1, and faster decay of R.
Unregularized training (8 = 0) leads to £(S) > 1000 after a few iterations.

singular value truncation used in rank-adaptive methods ensures that ¢,.(.5) is always sufficiently
large. Figures|2aland [2b| show the dynamics of R(S(¢)) and x(S(t)) during low-rank regularized
training; we see that x(S(t)) decays as R(S(t)) decays, validating Proposition 2]

Remark 1. When U,V are not orthonormal, e.g., in simultaneous gradient descent training (LoRA),
the smallest n — r singular values of USV' T are often zero-valued; thus, the bound of Equation @
is not useful. Table [l shows that the clean accuracy and adversarial accuracy of regularized LoRA is
significantly lower than standard or regularized training with orthonormal U, V.

We now study the stability of the regularizer when applied to a least squares regression problem, i.e.,
given a fixed M € R"*" we seck to minimize 7 (S) := BR(S) + 3||S — M||? over S € R™*".

Proposition 3. Consider the dynamical system generated by the gradient flow of J; namely, S(t) +
BVR(S(t)) + S(t) = M. Then for any t > 0 we have the long-time stability estimate

t
%HS(t)—Mll%r?B/o eTTIR(S()) dr < GeT![[S(0) = M*+2(1 - e")B(L+2B)|M % (5)

See Appendix |C|for the proof. We note that unlike standard ridge and lasso regularizations methods,
‘R lacks convexity; thus long-time stability of the regularized dynamics is not obvious. However, VR
possesses monotonicity properties that we leverage to show in (5) that the growth in 7 only depends
on 3, M, and the initial loss. Moreover, for large ¢, the change in the final loss by the regularizer
only depends on 3 and the true solution M and not the specific path S(¢). While training on the
non-convex loss will not provide the same theoretical properties as the convex least-square loss used
in Proposition 3] the experiments in Figure [2] give confidence that adding our regularizer does not
yield a relatively large change in the loss decay rate over moderate training regimes. Particularly, we
observe empirically in Figurethat the condition number «(S) of decreases alongside the regularizer
value R during training.

Remark 2. We note R? can also be used in place of R. While R? is differentiable at R(S) = 0, we
choose R as our regularizer due to the proper scaling in {@).

5 A rank-adaptive and adversarial robustness increasing dynamical low-rank
training scheme

In this section we integrate the regularizer R into a rank-adaptive, orthogonality preserving, and
efficient low-rank training scheme. We are specifically interested in a training method that 1)
enables separation of the spectral dynamics of the coefficients S from the bases U, V' and 2) ensures
orthogonality of U, V' at all times during training to obtain control layer conditioning in a compute
and memory efficient manner. Popular schemes based upon simultaneous gradient descent of the
low-rank factors such as LoRA [17] are not suitable here. These methods typically do not ensure
orthogonality of U and V. Consequently, R(USV ") # R(S), and this fact renders evaluation of
the regularizer R computationally inefficient.

Thus we adapt the two-step scheme of [36] which ensures orthogonality of U, V. The method
dynamically reduces or increases the rank of the factorized layers depending on the training dynamics
and the complexity of the learning problem at hand. Consequently, the rank of each layer is no longer
a hyper-parameter that needs fine-tuning, c.f. [35]), but is rather an interpretable measure for the
inherent complexity required for each layer.

To facilitate the discussion, we define £ = £ + BR as the regularized loss function of the training
process with regularization parameter S > 0. To construct the method we consider the (stochastic)

gradient descent-based update of a single weight matrix Wy, = Wy —)\VWLN for minimizing £

with step size A > 0. The corresponding continuous time gradient flow reads W (t) = —Vw L(W (t)),
which is a high-dimensional dynamical system with a steady state solution. We draw from established
dynamical low-rank approximation (DLRA) methods, which were initially proposed for matrix-
valued dynamical systems [20]. DLRA was recently extended to neural network training [38], 53}, 36,
to formulate a consistent gradient flow evolution for the low-rank factors U, S, and V.

The DLRA method constrains the trajectory of W to the manifold M,., consisting of n X n matrices
with rank r, by projecting the full dynamics W onto the local tangent space of M, via an orthogonal
projection, see Figure [3| The low-rank matrix is represented as USV T € M,., where U € R"*"
and V' € R™*" have orthonormal columns and S € R"*" is full-rank (but not necessarily diagonal).
An explicit representation of the tangent space leads to equations for the factors U, S, and V in [20}
Proposition 2.1]. However, following these equations requires a prohibitively small learning rate
due to the curvature of the manifold [29]. Therefore, specialized integrators have been developed to
accurately navigate the manifold with reasonable learning rates [29, (6] [5]].

Below we list the method of [36] with the changes introduced by adding our robustness regularizer.
We call the resulting scheme RobustDLRT, and a single iteration of RobustDLRT is specified in
Algorithm [T}

Basis Augmentation: The method first augments the
current bases U, V' at optimization step ¢ by their gradi-
ent dynamics Vy L, Vy L via

U = orth([U" | Vo L(U'S'VET)]) € RM¥?,

(6)
V = orth([V! | Vy LU'STVET)]) € R™*2,

to double the rank of the low-rank representation and

subsequently creates orthonormal bases U ,V. Here
orth(A) denotes an orthonormal basis for the range
of A and | denotes horizontal concatenation of matri-
ces. Since R(USVT) = R(S), VeR(USVT) =
VyR(USVT) = 0; hence ViyL = VyL and Vi L =
Vv L are used in (6). The span of U contains U*, which is
needed to ensure of the loss does not increase during aug-
mentation, and a first-order approximation of span(U**1)
using the exact gradient flow for U, see [36, Theorem 2] Figure 3: Geometric interpretation of

for details. Geometrically, the latent space Algorithm [T} First, we compute the
A parametrization of the tangent plane
S={UzV':Z R} (7) Tm,. Then we compute the projected

gradient update with VL. Lastly, we
can be seen as subspaceEl of the tangent plane of M, at atract the updated coefficients back onto

U'S'VhT, see Flgure the manifold M,.. The regularizer R
steers training to regions of M, with

LatentASpace Training: We update the latent coeffi- lower curvature.

cients S via a Galerkin projection of the training dynam-

ics onto the latent space S. The latent coefficients .S

are updated by integrating the projected gradient flow

3Technically the latent space contains extra elements not in the tangent space, but the extra information only
helps the approximation.

A N R W N =

10
11
12
13

14
15
16

Algorithm 1: Single iteration of RobustDLRT.

Input :Initial orthonormal bases U, V' € R™*" and diagonal S € R"*";
¥: singular value threshold for rank truncation; A: learning rate.

Evaluate L(USV ") /* Forward evaluate */
Gy + VyL(USVT); Gy «+ VyLUSVT) /* Backprop on basis */
U « orth([U | Gy)); V < orth([V | Gv]) /* augmentation in parallel */
S« UTUsSvVvV /* coefficient augmentation */
S« coefficient_update(§,s*,)\76) /* regularized coefficient training */

USs, v <—truncation(§, U, 17)

def coefficient_update(Sy: coefficient, s.: # local steps, \: learning rate, B: robustness
regularization weight):

fors=1,...,s,do
Gg + —/\V§£(USS_1VT) — BVgS’R(SS)
§3 — gs_l + optim(Gyg) /* optimizer update, e.g., SGD or Adam */

return S,

def truncation(S: augmented coefficient, U: augmented basis, V : augmented co-basis):

P, %, Q. <« truncated svd(S) with threshold ¢ to new rank r4

U+ UPTI; V « XA/Q,«1 /* Basis update */
S X, /* Coefficient update with diagonal X, */
return U, S,V

S=-U TVWZ‘A/ = —ng using stochastic gradient
descent or an other suitable optimizer for a number of s, local iterations, i.e.,

Set1 =8 = AVgL — BVGR(S,), s5=0,...,5. — 1. (8)
Equation (8)) is initialized with Sy =UTUSVETYV € R2%2" and we set S = S,.

Truncation: Finally, the latent solution U.S VT is retracted back onto the manifold M,.. The retrac-
tion can be computed efficiently by using a truncated SVD of .S that discards the smallest r singular
values. To enable rank adaptivity, the new rank r; instead of can be chosen by a variety of criteria,
e.g., a singular value threshold ||[s,, .. ., S2r]l5 < 9. Once a suitable rank is determined, the bases
U and V are updated by discarding the basis vectors corresponding to the truncated singular values.

Remark 3. We note that R will likely increase the smallest singular values of S to improve k(S).
This could theoretically increase the truncated rank over non-regularized DLRT and result in less
compression. However, we find in the experiments in Section [6] that RobustDLRT has similar
compression rates to DLRT.

Computational cost: The computational cost of RobustDLRT is asymptotically the same as LoRA,
since the reconstruction of the full weight matrix W is never required. The orthonormalization,
computation of the regularizer R, and the SVD for accounts for O(nr?), O(r?), O(r?) floating point
operations, respectively. When using multiple coefficient update steps s. > 1, the amortized cost
is lower than that of LoRA, since only the gradient with respect to S' is required in most updates.
While the regularizer may be applied to full-rank baseline models, its O(n?) computational scaling
significantly increases training costs.

5.1 Extension to convolutional neural networks

The convolution layer map in 2D CNNs translates a W x H image with N} in-features to Np
out-features. Using tensors, this map is expressed as Y = C x X where X € RN>XWxH 'y ¢
RNoxWxH 'and ¢ € RNoxNixSwxSu g the convolutional kernel with a convolution window size
Sw x Sp. Neglecting the treatment of strides and padding, C' + X is given as a tensor contraction by

Y(o,w,h) =3, . o, Clo.¢,su,80)X(c,w+ sw, b+ s1) ©)

Table 2: UCM and Cifar10 benchmark. Clean and adversarial accuracy means and std. devs. of the
baseline and regularized low-rank networks for different architectures. We report the low-rank results
for 8 = 0.0 (DLRT) and the best performing 3 that is given in Table[9] Algorithm [I](RobustDLRT)
is able to match or surpass baseline adversarial accuracy values at compression rates of up to 94% in
most setups. All runs where RobustDLRT surpasses the uncompressed baseline are highlighted.

UCM Data Clean Acc [%] for (2-FGSM, ¢ Acc [%] for Jitter, ¢ Acc [%] for Mixup, €
Method cr (%] Acc. [%] 0.05 0.1 03 | 0035 0045 | 0025 0.1 0.75
© Baseline 0.0 94.40+£0.72 | 86.71+£1.90 76.40+2.84 54964299 | 89.58+2.99 85.05+£3.40 | 77.77+1.61 37254366 23.05+3.01
9 DLRT 9530 93924023 | 87.95+1.02 72414208 4339+4.88 | 83.99+1.22 67.41+1.63 | 8579+151 40424289 20.13+2.92
S RobustDLRT 9584 94614035 | | 89.124£133 [78.6842.30 5330+3.14 | 88.33+1.20 79.81+093 | [90.33£0.90 [70.1243.08 47.31+2.78
= Baseline 0.0 94.23+0.71 | 89.93+£1.33 78.66+2.46 39.4542.98 | 90.25+1.66 8524+1.90 | 83.10+£147 40.34+4.88 22.01+3.21
Q DLRT 94890 93.70+0.71 | 86.58+122 67.55+2.16 28.92+2.65 | 83.90+£1.36 63.41+139 | 87.15+1.18 40.17+4.96 14.18+3.78
S RobustDLRT 9459 93.57+0.84 | 87.90+£0.91 72.96+1.55 32.85+246 | 86.77+0.76 7431+150 | [88.00£1.13 [60.97+4.18 | 28.56:£3.64
£ Baseline 0.0 96.72+036 | 93.02+0.38 92.18+0.31 89714028 | 93714122 9321+1.17 | 89.62+1.81 51.05+3.17 43.91+3.97
o DLRT 86.7 96.38+0.60 | 91214044 82104032 6245041 | 86.67+1.05 79.81+0.81 | 8048+1.82 41524324 3591+3.76
S RobustDLRT 87.9 96.41+0.67 | 92.57+0.34 85.67+041 69.94+042 | 91.03+0.86 84.19+1.39 | 87.33+181 4639+275 40.76+3.88
Cifar10 Data
S Baseline 0.0 80.82+40.45 | 76224138 63.78+2.01 34974254 | 78.60+1.12 7354+155 | 7151131 37.36%2.60 16.12+2.12
§ DLRT 9437 89.23+0.62 | 7407+123 59554179 28744221 | 72514104 66214141 | 79.56+1.15 59.88+2.26 38.98+1.94
S RobustDLRT 94.18 89.49+0.58 | 76.04+1.18 62.08+1.69 32.77+2.04 | 75.53+098 69.93+122 | [87.6241.07 84.8042.01 | 81.26%2.15
= Baseline 0.0 8834049 | 75894142 64214196 31764245 | 7496+1.09 68.59+£1.63 | 74774126 40.88+258 08.95+1.98
Q DLRT 95.13 88.13+0.56 | 72.02+1.34 55834192 21.59+2.16 | 66.98+1.05 58.57+155 | 79.42+1.08 47.95+2.18 22.92+1.77
S RobustDLRT 94.67 87.97+0.52 | [76.04£126 63.82+1.83 30.774230 | 71.06+1.00 65634138 | [8493+1.10 |7835£1.89 | 65.93+2.04
€ Baseline 0.0 95424035 | 79.94+£095 63.66+1.62 32.0942.05 | 84.65+0.88 77.20£1.04 | 5217+149 16.03+234 13.29+2.01
o DLRT 7342 95394041 | 79.50+091 61.62+148 30324194 | 8333+£0.80 76.16+0.95 | 58.32+144 17434228 14.49+1.92
S RobustDLRT 7521 94.66+0.38 | [82.03+£0.88 [69.20+1.43 [38.05£1.99 | 87.97£0.75 [83.03£091 | 7449132 [27.80+2.11 |1834£1.87
where s, and sy, range from —Sy//2,...,Sw /2 and —Sg/2,...,SH/2 respectively, and 0o =

1,....No,w=1,...,W,andh=1,...,H.

DLRT was extended to convolutional layers in [53]] by compressing C' with a Tucker factorization.
Little is gained in compressing the window modes as they are typically small. Thus, we only factorize
C in the feature modes with output and input feature ranks ro < Np and r; < Ny as

C(0,1, 8w, 5n) = >0 —1 Uo(0,40)U1(i,q1)S(q0. 41, 3w, Sn)- (10)
Substituting (T0) into (9) and rearranging indices yields
Y(o,w,h) =3, Uo(o, 40)Y (g0, w, h), (11a)
?(q@ w,h) =32, o 6 500,41, uw, Sh)X(gI, W+ Sy, b+ 8p), (11b)
)Z'((H,w +sw,h+5n) = Ur(c,qr) X(c,w + su, h + sp). (11¢)

Remark 4. Aside from the prolongation (113) and retraction (L1c) from/to the low-rank latent space,
the low-rank convolution map (1)) features a convolution (L1D) similar to Q) but in the reduced
dimension low-rank latent space.

Robustness regularization for convolutional layers. The contractions in () and (TTb) show that
the output channels arise from a tensor contraction of the input channel and window modes; hence,
both (9) and (T1ID) can be viewed as matrix-vector multiplications where C' is matricised on the output
channel mode; i.e., C — Mat(C) € RNoxNiSwSu and § — Mat(S) € Rmoxr15wSu Therefore,
we only regularize Mat(.S) with our robustness regularizer. Moreover, we assume ro < r;.Sw SH,
which is almost always the case since ro and r; are comparable and Sy Sy > 1. Then we regularize
convolutional layers by R(Mat(S) ") so that SST is an 7o x 7o matrix, which is computationally
efficient.

We remark that the extension of Algorithm[I]to a tensor-valued layer with Tucker factorization only
requires to change the truncation step; the SVD is replaced by a truncated Tucker decomposition
of S. The Tucker bases Up and U can be augmented in parallel similarly to the matrix case.

6 Numerical Results

We evaluate the numerical performance of Algorithm [I| compared with non-regularized low-rank
training, baseline training, and several other robustness-enhancing methods the VGG16, VGG11,
and ViT-16b architectures and University of California, Merced (UCM), Cifar10, and ImageNet1k
datasets. Detailed descriptions of the models, datasets, pre-processing, training hyperparameters,

Table 3: Imagenet Benchmark, ViT-32lI trained with baseline Adam, DLRT, and RobustDLRT. We
report the low-rank results for unregularized 8 = 0.0 and the best performing /3, given in Table [9]
Algorithm [I] (RobustDLRT) is able to match or surpass baseline adversarial accuracy values in most
setups. All runs where RobustDLRT surpasses the uncompressed baseline are highlighted.

Top1/Top5 Clean Top1/Top5 Acc [%] for £2-FGSM, ¢ Top1/Top5 Acc [%] for Jitter, €

Method cr. [%] Acc. [%] 0.05 0.1 0.3 0.035 0.045

Baseline 0 74.37/92.20 43.58/73.75 31.42/63.42 16.03/43.41 43.09/78.24 35.57/74.96
DLRT 58.02 72.27/90.06 42.70/70.43 30.32/60.90 15.47/40.58 43.98/74.49 38.44/71.31
RobustDLRT 57.98 72.25/90.03 43.17/71.58 [35.11 /62.82 25.24/50.65 48.22 /77.35 43.51/75.14

and competitor methods are given in Appendix [B] A reference implementation is provided at
https://github.com/ScSteffen/RobustDLRT. We measure the compression rate (c.r.) as the

relative amount of pruned parameters of the target network, i.e. c.r. = (1 — %) x 100.
The reported numbers in the tables represent the average over 10 stochastic training runs. We observe
in Table E] that clean accuracy results exhibit a standard deviation of less than 0.8%; the standard
deviation increases with the attack strength ¢ for all tests and methods. This observation holds true

for all presented results; thus, we omit the error bars in the other tables for the sake of readability.

UCM dataset We observe in Table [2] that Algorithm [T] can compress the VGG11, VGG16 and
ViT-16b networks equally well as the non-regularized low-rank compression and achieves the first
goal of high compression values of up to 94% reduction of trainable parameters. Furthermore,
the clean accuracy is similar to the non-compressed baseline architecture; thus, we achieve the
second goal of (almost) loss-less compression. Noting the adversarial accuracy results under the
2-FGSM, Jitter, and Mixup attacks with various attack strengths ¢, we observe that across all tests,
the regularized low-rank network of Algorithm [I] significantly outperforms the non-regularized
low-rank network. For the £2-FGSM attack, our method is able to recover the adversarial accuracy
of the baseline network. For Mixup, the regularization almost doubles the baseline accuracy for
VGG16. By targeting the condition number of the weights, which gives a bound on the relative
growth of the loss w.r.t. the size of the input, we postulate that the large improvement could be
attributed to the improved robustness against the scale invariance attack [27, Section 3.3] included in
Mixup. We refer the reader to Appendix for a precise definition of the Mixup attack featuring
scale invariance. However, this hypothesis was not further explored and is delayed to a future
work. Finally, we are able to recover half of the lost accuracy in the Jitter attack. Overall, we
achieved the third goal of significantly increasing adversarial robustness of the compressed networks.
We refer to Table [9] for the used values of 5 and Appendix for extended numerical results.

Cifar10 dataset We repeat the methodology
of the UCM dataset for Cifar10, and observe
similar computational results in Table 2] Fur-
thermore, we compare our method in Table E]to
several methods of the recent literature, see Sec-
tion 3] We compare the adversarial accuracy un-
der the ¢*-FGSM attack, see Appendixfor
details, for consistency with the literature results.
We find that our proposed method achieves the

Table 4: Comparison to literature on CIFARI10
with VGG16 under the ¢'-FGSM attack. The first
three rows list the computed mean over 10 random
initializations. The values of all other methods,
given below the double rule, are taken from [35,
Table 1]. RobustDLRT has higher adversarial ac-
curacy at higher compression rates than all listed
methods.

: ; :dati (*-FGSM, ¢
highest adversarial validation accuracy for 'all Method er[%] | 00 0002 0004 0006
attack strengths €, even surpassing the baseline -

. . Baseline 0 89.83 78.61 64.66 53.71
adversarial accuracy. Addltlonally, we find an at DLRT 94.58 89.55 7471 59.61 47.56
least 15% higher compression ratio with Robust- ~ RobustDLRT 8 =0.15 9435 | 89.35 7872 66.02 54.15
DLRT than the second best compression method, cayley SGD 23] 0 ‘ 89.62 7446 58.16 4529
CondLR [35]. A similar experiment for the Pro- Projected SGD [l 0 89.70 7455 58.32 4574
jected Gradient Descent (PGD) attack [30] is CondLR [35]7=0.5 50 89.97 7225 60.19 50.17

. . . CondLR [35] 7 = 0.5 80 89.33 6823 48.54 36.66
given in Appendix [A.7]

LoRA [17] 50 ‘ 89.97 6771 4886 38.49
ImageNetlk dataset Finally we repeat the LoRAI[L7] 80 88.10 64.24 42.66 29.90
methodology for the ImageNetlk dataset, us- SVD prune [51] 50 89.92 6730 4777 36.98
SVD prune [51] 80 87.99 6357 4206 29.27

ing the ViT-32] vision transformer trained from

an ImageNet2 1k checkpoint, and report the results in Table 3] The hyperparameters are obtained by

https://github.com/ScSteffen/RobustDLRT

an initial sweep and reported in Tables [§|and[0] RobustDLRT consistently yields higher Top-1/Top-5
accuracy across £2-FGSM and Jitter attacks than DLRT, with especially pronounced gains at larger
perturbations (e.g., +9 points in Top-1 accuracy under /2-FGSM e = 0.3). These trends are con-
sistent with our ViT experiments in Table[2] demonstrating that adversarial regularization enhances
robustness without compromising scalability. We benchmark the training runtime of one ImageNet
epoch on an A100 80GB GPU. DLRT requires 26m 07s, while RobustDLRT (with the regularizer)
requires 27m S1s, corresponding to an overhead of approximately 3%. This overhead can likely be
reduced with further implementation optimizations, indicating that our approach is computationally
scalable.

Black-box attacks We investigate the scenario where an attacker has knowledge of the used model
architecture, but not of the low-rank compression. We use the Imagenet-1k pretrained VGG16 and
VGG11 and re-train it with Algorithm [T] and baseline training on the UCM data using the same
training hyperparameters. Then we generate adversarial examples with the baseline network and
evaluate the performance on the low-rank network with and without regularization. The results are
given in Table[5] In this scenario, the weights from low-rank training, being sufficiently far away
from the baseline, provide an effective defense against the attack. Further, the proposed regularization
significantly improves the adversarial robustness when compared to the unregularized low-rank
network. Even for extreme attacks with e = 1, the regularized network achieves 84.76% and 87.33%
accuracy for VGG16 and VGG11 respectively.

Adversarial Training We evaluate the performance of low-rank training for VGG16 on the UCM
dataset using adversarial training. Following [[13]], we use the #2-FGSM attack for different values of
e and train on both 50% clean and attacked images per batch. The results reported in Table[6]illustrate
that RobustDLRT is both compatible with and able to benefit from adversarial training. DLRT
without regularization benefits from adversarial training, but exhibits a clear margin to RobustDLRT.
Additionally, RobustDLRT is able to approximately match the non-compressed baseline.

Table 5: UCM dataset — Black-box attack. Ad- Table 6: UCM dataset — Adversarial Training.
versarial images with the /2-FGSM attack are VGGI6 is trained on 50% clean images and
generated by the baseline network for differ- 50% images attacked with ¢2-FGSM for vari-

ent values of e. The baseline, DLRT (5 = 0), ous €. The displayed numbers are the mean of
and RobustDLRT (8 = 0.075) networks are 5 repeated runs. RobustDLRT (5 = 0.075) is
then evaluated on these images. Regularized superior to DLRT (3 = 0) and is able to approx-
low-rank compression achieves high adversar- imately match the non-compressed baseline.

ial accuracy, even under strong attacks.

(2-FGSM, ¢ (2-FGSM, €
Method cr. [%] | 0.05 0.1 0.25 0.5 0.75 1.0 Method cr[%] | 0.0 0.1 0.5 0.75 1.0
© Baseline 0.0 86.71 76.40 4876 39.33 3523 3323 Baseline 0.0 92,61 9191 9190 89.61 89.91
8 B=0 95.30 93.03 91.81 88.09 83.14 7895 76.00 B=0 94.46 92,55 9191 8798 8537 8296
S BA=0.05 9515 92.66 9247 9133 8876 86.85 84.76 £ =0.075 94.19 9249 9249 9098 89.56 89.42
= Baseline 0.0 89.93 78.66 60.76 4523 3838 35.52
8 B=0 95.82 9276 91.81 8825 84.09 80.57 77.71
S =005 96.12 9295 92.66 92.00 91.04 88.66 87.33

7 Conclusion

RobustDLRT enables highly compressed neural networks with strong adversarial robustness by
controlling the spectral properties of low-rank factors. The method is efficient, rank-adaptive, and
yields an up to 94% parameter reduction across a diverse suite of models and datasets. The method
achieves competitive accuracy, even for strong adversarial attacks, surpassing the current literature
results by a significant margin. Therefore, we conclude the proposed method scores well in the
combined metric of compression, accuracy and adversarial robustness.

The accomplished high compression and adversarial robustness advance computer vision models and
enable broader applications on resource-constrained edge devices. These achievements also enhance
energy efficiency and trustworthiness, positively impacting society. The regularization and condition
number bounds further improve interpretability, which is crucial for transparency and accountability
in critical decision-making when applying the proposed methods.

10

Acknowledgments and Disclosure of Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725
with the U.S. Department of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).

This material is based upon work supported by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. De-AC05-000R22725.

S. Schotthéfer, H. L. Yang, and S. Schnake were supported by the Artificial Intelligence Initiative
of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory
(ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. De-
ACO05-000R22725.

This research used resources of the Compute and Data Environment for Science (CADES) at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-000R22725.

References

[1] P.-A. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM Journal on
Optimization, 22(1):135-158, 2012.

[2] A. Aghajanyan, S. Gupta, and L. Zettlemoyer. Intrinsic dimensionality explains the effectiveness
of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319-7328, 2021.

[3] C. Anil, J. Lucas, and R. Grosse. Sorting out Lipschitz function approximation. In International
conference on machine learning, pages 291-301. PMLR, 2019.

[4] N. Bansal, X. Chen, and Z. Wang. Can we gain more from orthogonality regularizations in
training deep networks? Advances in Neural Information Processing Systems, 31, 2018.

[5] G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, pages 1-26, 2022.

[6] G. Ceruti and C. Lubich. An unconventional robust integrator for dynamical low-rank approxi-
mation. BIT Numerical Mathematics, 62(1):23-44, 2022.

[7] T. Chen, H. Zhang, Z. Zhang, S. Chang, S. Liu, P.-Y. Chen, and Z. Wang. Linearity grafting:
Relaxed neuron pruning helps certifiable robustness, 2022.

[8] G. Cheng, X. Sun, K. Li, L. Guo, and J. Han. Perturbation-seeking generative adversarial net-
works: A defense framework for remote sensing image scene classification. IEEE Transactions
on Geoscience and Remote Sensing, 60:1-11, 2022.

[9] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving
robustness to adversarial examples. In D. Precup and Y. W. Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 854-863. PMLR, 06—-11 Aug 2017.

[10] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving
robustness to adversarial examples. In International Conference on Learning Representations
(ICLR), 2017.

[11] W. Czaja, N. Fendley, M. Pekala, C. Ratto, and I.-J. Wang. Adversarial examples in remote
sensing. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, SIGSPATIAL ’18, page 408—411, New York, NY, USA,
2018. Association for Computing Machinery.

11

http://energy.gov/downloads/doe-public-access-plan

[12] E.L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. Advances in neural information processing
systems, 27, 2014.

[13] I.J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[14] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. Advances in neural
information processing systems, 29, 2016.

[15] M. Hein and M. Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. Advances in neural information processing systems, 30, 2017.

[16] A. Hnatiuk, J. Kusch, L. Kusch, N. R. Gauger, and A. Walther. Stochastic aspects of dynamical
low-rank approximation in the context of machine learning. Optimization Online, 2024.

[17] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[18] T.Jian, Z. Wang, Y. Wang, J. Dy, and S. Ioannidis. Pruning adversarially robust neural networks
without adversarial examples, 2022.

[19] A.Jordao and H. Pedrini. On the effect of pruning on adversarial robustness. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 1-11, 2021.

[20] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis
and Applications, 29(2):434—454, 2007.

[21] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In
International Conference on Learning Representations, 2017.

[22] J. Kusch, S. Schotthofer, and A. Walter. An augmented backward-corrected projector splitting
integrator for dynamical low-rank training. arXiv preprint arXiv:2502.03006, 2025.

[23] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up convolutional
neural networks using fine-tuned CP-decomposition. In International Conference on Learning
Representations, 2015.

[24] H. Lee, S. Han, and J. Lee. Generative adversarial trainer: Defense to adversarial perturbations
with GAN. arXiv preprint arXiv:1705.03387, 2017.

[25] J. Li, F. Li, and S. Todorovic. Efficient Riemannian optimization on the Stiefel manifold via the
Cayley transform. In International Conference on Learning Representations, 2020.

[26] Z.Li, T. Chen, L. Li, B. Li, and Z. Wang. Can pruning improve certified robustness of neural
networks?, 2022.

[27] J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft. Nesterov accelerated gradient and scale
invariance for adversarial attacks. In International Conference on Learning Representations,
2020.

[28] X. Liu, Y. Li, C. Wu, and C.-J. Hsieh. Adv-BNN: Improved adversarial defense through robust
Bayesian neural network. In International Conference on Learning Representations, 2010.

[29] C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical low-rank approxi-
mation. BIT Numerical Mathematics, 54(1):171-188, 2014.

[30] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.

[31] Y. Mao, K. Huang, C. Guan, G. Bao, F. Mo, and J. Xu. DoRA: Enhancing parameter-efficient
fine-tuning with dynamic rank distribution. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 11662—11675, Bangkok, Thailand, Aug. 2024. Association for
Computational Linguistics.

12

[32] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. In International Conference on Learning Representations, 2018.

[33] J. Nagy. Uber algebraische gleichungen mit lauter reellen wurzeln. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 27:37-43, 1918.

[34] R. Nenov, D. Haider, and P. Balazs. (Almost) smooth sailing: Towards numerical stability of
neural networks through differentiable regularization of the condition number, 2024.

[35] D. Savostianova, E. Zangrando, G. Ceruti, and F. Tudisco. Robust low-rank training via
approximate orthonormal constraints. Advances in Neural Information Processing Systems,

36:66064—-66083, 2023.

[36] S. Schotthofer and M. P. Laiu. Federated dynamical low-rank training with global loss conver-
gence guarantees. arXiv preprint arXiv:2406.17887, 2024.

[37] S. Schotthofer, E. Zangrando, G. Ceruti, F. Tudisco, and J. Kusch. GeoLoRA: Geometric
integration for parameter efficient fine-tuning. In The Thirteenth International Conference on
Learning Representations, 2025.

[38] S. Schotthofer, E. Zangrando, K. Jonas, G. Ceruti, and F. Tudisco. Low-rank lottery tickets:
finding efficient low-rank neural networks via matrix differential equations. In Advances in
Neural Information Processessing Systems, 2022.

[39] L. Schwinn, R. Raab, A. Nguyen, D. Zanca, and B. Eskofier. Exploring misclassifications of
robust neural networks to enhance adversarial attacks. Applied Intelligence, 53(17):19843—
19859, 2023.

[40] V.Sehwag, S. Wang, P. Mittal, and S. Jana. Hydra: Pruning adversarially robust neural networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 19655-19666. Curran Associates, Inc.,
2020.

[41] R. Sharma, M. Gupta, and G. Kapoor. Some better bounds on the variance with applications.
Journal of Mathematical Inequalities, 4(3):355-363, 2010.

[42] S.P. Singh, G. Bachmann, and T. Hofmann. Analytic insights into structure and rank of neural
network Hessian maps. In Advances in Neural Information Processing Systems, volume 34,
2021.

[43] Y. Su, G. Zhang, S. Mei, J. Lian, Y. Wang, and S. Wan. Reconstruction-assisted and distance-
optimized adversarial training: A defense framework for remote sensing scene classification.
IEEE Transactions on Geoscience and Remote Sensing, 61:1-13, 2023.

[44] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

[45] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[46] M. Valipour, M. Rezagholizadeh, I. Kobyzev, and A. Ghodsi. Dylora: Parameter efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

[47] H. Wang, S. Agarwal, and D. Papailiopoulos. Pufferfish: Communication-efficient models at no
extra cost. Proceedings of Machine Learning and Systems, 3:365-386, 2021.

[48] D. Xie, J. Xiong, and S. Pu. All you need is beyond a good init: Exploring better solution for
training extremely deep convolutional neural networks with orthonormality and modulation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
61766185, 2017.

[49] Y. Xu and P. Ghamisi. Universal adversarial examples in remote sensing: Methodology and
benchmark. IEEE Transactions on Geoscience and Remote Sensing, 60:1-15, 2022.

13

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Y. Xu and P. Ghamisi. Universal adversarial examples in remote sensing: Methodology and
benchmark. IEEE Trans. Geos. Remote Sens., 60:1-15, 2022.

H. Yang, M. Tang, W. Wen, F. Yan, D. Hu, A. Li, H. Li, and Y. Chen. Learning low-rank deep
neural networks via singular vector orthogonality regularization and singular value sparsification.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops, pages 678-679, 2020.

Y. Yang and S. Newsam. Bag-of-visual-words and spatial extensions for land-use classification.
In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS ’10, page 270-279, New York, NY, USA, 2010. Association for
Computing Machinery.

E. Zangrando, S. Schotthofer, G. Ceruti, J. Kusch, and F. Tudisco. Rank-adaptive spectral
pruning of convolutional layers during training. In Advances in Neural Information Processing
Systems, 2024.

H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. Theoretically principled
trade-off between robustness and accuracy. In International conference on machine learning,
pages 7472-7482. PMLR, 2019.

Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. AdaLoRA: Adaptive
budget allocation for parameter-efficient fine-tuning. In The Eleventh International Conference
on Learning Representations, 2023.

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. GalLore: Memory-efficient
LLM training by gradient low-rank projection. In International Conference on Machine
Learning, pages 61121-61143. PMLR, 2024.

Q. Zhao, T. Konigl, and C. Wressnegger. Non-uniform adversarially robust pruning. In I. Guyon,
M. Lindauer, M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the First
International Conference on Automated Machine Learning, volume 188 of Proceedings of
Machine Learning Research, pages 1/1-16. PMLR, 25-27 Jul 2022.

14

A Additional Numerical Results

A.1 UCM Dataset

The numerical results for the whitebox #2-FGSM, Jitter, and Mixup adversarial attacks on the VGG16
and VGG11 architectures can be found in Figure[d] Figure[5] and Figure[6] The regularizer confidently
increases the adversarial validation accuracy of the networks.

In Table |10} we observe that the regularizer R (W) applied to the full weight matrices (and flattened
tensors) W in baseline format is able to increase the adversarial robustness of the baseline network in
the UCM/VGG16 test case. However, the increased adversarial robustness comes at the expense of
some of the clean validation accuracy.

A.2 Cifar10 Dataset

We run the same experiment in Table |4 but with the (2-PGD attack, which is an iterative version
of /2-FGSM with an random perturbation of the input image as the initial condition [30]. Overall,
we see that RobustDLRT is competitive with the other robustness-improving methods when the
compression rate is taken into account.

Table 7: Comparison to literature on CIFAR10 with VGG16 under the /2-PGD attack. The first
three rows list the computed mean over 10 random initializations. The values of all other methods,
given below the double rule, are taken from [35) Table 5]. RobustDLRT has competitive adversarial
accuracy to all methods with a compression rate > 80%.

2-PGD, ¢

Method cr.[%] | 0.0 0.1 0.13 0.16 0.2 023 0.26 0.3

RobustDLRT 8 = 0.15 94.18 88.80 62.58 5347 4495 34775 2833 2264 16.59
DLRT 94.53 88.58 59.34 50.06 41.50 31.82 2567 2048 15.04
Baseline 0 90.48 63.01 54.66 47.87 40.77 36.75 33.51 29.93
Cayley SGD [25] 0 89.62 67.68 59.38 51.09 40.87 34.46 2921 23.62
Projected SGD [1] 0 89.70 67.64 59.25 51.06 40.86 34.51 29.19 23.64
CondLR [35] 7=0.1 50 90.93 67.03 62.08 59.15 5692 5596 55.28 54.58
CondLR [35] 7 =0.5 50 89.97 64.84 60.25 57775 56.03 5521 5475 54.25
CondLR [35] 7 = 0.1 80 9048 61.00 50.84 42.19 33.70 29.44 26.55 23.97
CondLR [35] 7 =0.5 80 89.33 5745 46.35 37.20 2830 23.82 20.65 17.84
LoRA [17] 50 89.97 5574 45.11 36.86 29.62 2628 24.02 21.84
LoRA [17] 80 88.10 5140 39.70 30.12 2097 1629 13.15 10.37
SVD prune [51] 50 89.92 54.87 43.85 3523 2795 2438 2206 19.94
SVD prune [51] 80 87.99 50.64 39.06 29.57 20.16 1549 1222 9.57

B Details to the numerical experiments of this work

B.1 Recap of adversarial attacks

In the following we provide the defintions of the used adversarial attacks. We use the implementation
of [50] for the £2-FGSM, Jitter, and Mixup attack. For the ¢ L_FGSM attack, we use the implementation
of https://github.com/COMPiLELab/CondLR.

B.1.1 /2-FGSM attack

The Fast Gradient Sign Method (FGSM)[21]] is a single-step adversarial attack that perturbs an input
in the direction of the gradient of the loss with respect to the input. Given a neural network classifier
fo with parameters 6, an input x, and its corresponding label y, the attack optimizes the cross-entropy
loss Lcge(fo(x),y) by modifying x along the gradient’s sign. The adversarial example is computed

15

as:
vw£CE(f9 (Z‘), y)

IVaLer(fo(2),y)lloo”

where « controls the perturbation magnitude. To ensure the perturbation remains bounded, the
difference o’ — z is clamped by an € bound, i.e.,

¥=z+a (12)

2’ = x + max(—e, min(z’ — x,€)). (13)

In this work we fix oo = €. The attack can be iterated to increase its strength.

B.1.2 /'-FGSM attack
The ¢'-FGSM attack [44] is used in the reference work of [35] and uses the same workflow as (B.1.1)),

where (12) is changed to
sign(VaLeg(fo(2),y))
E)
where X denotes the standard deviation of the data-points in the training data-set and the sign of the
gradient matrix is taken element wise.

¥=z+a- (14)

B.1.3 Jitter attack

The Jitter attack [39] is an adversarial attack that perturbs an input by modifying the softmax-
normalized output of the model with random noise before computing the loss. Given a neural network
classifier fy with parameters 6, an input x, and its corresponding label ¥, the attack first computes the
network output z = fy(x) and normalizes it using the £>° norm:

2=Sﬁmw<8w), (15)
(B
where s is a scaling factor. A random noise term 17 ~ A (0, o?) is added to 2, i.e.,
Z=Z40-n. (16)
The attack loss function is a mean squared error between perturbed input and target, given by
L=|z-yls. (17)
The adversarial example is then computed using the gradient of £ with respect to x:
VL
x':x+a~m. (18)

To ensure the perturbation remains bounded, the modification 2’ — x is clamped within an € bound:
z’ = z + max(—e, min(z’ — z,¢)). (19)
In this work, we fix a = € and set ¢ = 0.1. The Jitter attack can be performed iteratively. Then, for
each but the first iteration &, the attack loss is normalized by the perturbation of the input image,
5 2
12—yl
/ I
12 = 2} lloo

L= k>0 (20)

In this work, we use 5 iterations of the Jitter attack for each image.

B.1.4 Mixup attack

The Mixup attack [49]] is an adversarial attack that generates adversarial samples that share similar
feature representations with an given virtual example. Inspired by the Mixup data augmentation
technique, this attack aims to create adversarial examples that maintain characteristics of both the
original sample and its adversarial counterpart. Given a neural network classifier fy with parameters
#, an input x, and its corresponding label y, the attack first computes a linear combination of
cross-entropy and negative KL-divergence loss,

5
Loip = B Les <fe (55): y> - Lu e
k=1

16

Table 8: Training hyperparameters for the UCM, Cifar10, and ImageNet Benchmarks. The first
set hyperparameters apply to both DLRT and baseline training, and we train DLRT with the same
hyperparameters as the full-rank baseline models. The second set of hyper-parameters is specific to
DLRT. The DLRT hyperparameters are selected by an initial parameter sweep. We choose the DLRT

truncation tolerance relative to the Frobenius norm of S, i.e. = 7|5 . as suggested in [38].

Hyperparameter VGG16 VGG11 ViTieb ViT321
Batch Size (UCM) 16 16 16 n.a.
Batch Size (Cifar10) 128 128 128 n.a.
Batch Size (ImageNet) n.a. n.a. n.a. 256
Learning Rate 0.001 0.001 0.001 0.001
Number of Epochs 20 20 5 10
L2 regularization 0 0 0.001 0.0001
Optimizer AdamW AdamW AdamW AdamW
DLRT rel. truncation tolerance 7 0.1 0.05 0.08 0.013
Coefficient Steps s, 10 10 10 75
Initial Rank 150 150 150 200
Parameters 138M 132M 86M 304M

5—a Vi Lce(fo(),y) 22)

B IVaLer(fo(z),y)lloo
Equation (21)) features a scale invariance attack applied to the loss [27, Section 3.3].

The final adversarial example is computed as a convex combination of the original input and its
perturbed version:

' =Xr+ (1—-N)(z+9), (23)

where A ~ Beta(,) is sampled from a Beta distribution with hyperparameter 3, controlling the
interpolation between clean and perturbed inputs. The perturbation is further constrained within an
e-ball to ensure bounded adversarial modifications:

2’ =z + max(—e¢, min(z’ — x,¢€)). (24)

In this work, we fix o = 1 and set 3 = 1073. The attack can be iterated to increase its effectiveness,
refining the adversarial perturbation at each step. We use 5 iterations of the Mixup Attack for each
image.

B.2 Network architecture and training details

In this paper, we use the pytorch implementation and take pretrained weights from the imagenetlk
dataset as initialization. The data-loaded randomly samples a batch for each batch-update which
is the only source of randomness in our training setup. Below is an overview of the used network
architectures

* VGG16 is a deep convolutional neural network architecture that consists of 16 layers, including 13
convolutional layers and 3 fully connected layers.

* VGGI11 is a convolutional neural network architecture similar to VGG16 but with fewer layers,
consisting of 11 layers: 8 convolutional layers and 3 fully connected layers. It follows the same
design principle as VGG16, using small 3x3 convolution filters and 2x2 max-pooling layers.

* ViT16b is a Vision Transformer with 16x16 patch size, a deep learning architecture that leverages
transformer models for image classification tasks.

* ViT32l is a Vision Transformer with 32x32 patch size, a deep learning architecture that leverages
transformer models for image classification tasks. We use the Imagenet21k weights from the
huggingface endpoint google/vit-large-patch32-224-in21k as weight initialization.

The full training setup is described in Table [§] We train DLRT with the same hyperparameters
as the full-rank baseline models. It is known [37] that DLRT methods are robust w.r.t. common

17

Table 9: Overview of the 3 for best performing regularization strength for RobustDLRT of Table[fl

UCM Dataset Cifar10 Dataset ImageNet Dataset
Architecture | FGSM Jitter Mixup | FGSM Jitter Mixup | FGSM Jitter ~Mixup
VGG16 0.075 02 0.15 0.05 0.05 0.05 n.a. n.a. n.a.
VGG11 0.1 005 0.15 0.15 0.05 0.2 n.a. n.a. n.a.
ViT16b 0.1 0.15 0.15 0.01 0.01 0.05 n.a. n.a. n.a.
ViT321 n.a. n.a. n.a. n.a. n.a. n.a. 0.075 0.075 0.075

Table 10: UCM Data, VGG16, baseline training. Data is averaged over 10 stochastic training runs.
The regularizer is able to increase the adversarial robustness of the baseline training network, at the
cost of some reduction of its clean validation accuracy. The provided results are averaged over 5
iterations.

Acc [%] under the £2-FGSM attack with e
I} 0 0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.4 0.5

0 9240 91.72 90.65 86.71 81.32 76.40 64.52 5496 4938 4514
0.0001 | 91.69 91.69 91.10 87.73 83.14 7843 6321 5331 47.18 4299
0.001 88.81 88.78 87.90 84.40 80.00 7634 62.61 53777 48.09 44.38
0.01 88.22 88.19 87.12 8278 7752 7272 5832 4889 4283 38.61
0.05 9045 9043 89.63 8723 84.11 8055 68.66 5929 5262 46.61
0.1 92.51 92,51 9211 9045 8843 8632 7691 6801 6129 5552
0.2 89.20 89.18 88.85 86.66 8436 8196 7325 6520 58.61 53.29

hyperparameters as learning rate, and batch-size, and initial rank. The truncation tolerance 7 is
chosen between 0.05 and 0.1 per an initial parameter study. These values are good default values, as
per recent literature [36, 142]. In general, there is a trade-off between target compression ratio and
accuracy, as illustrated e.g. in [38]] for matrix-valued and [42] for tensor-valued (CNN) layers.

B.3 UCM Test Case

The University of California, Merced (UCM) Land Use Dataset is a benchmark dataset in remote
sensing and computer vision, introduced in [52]. It comprises 2,100 high-resolution aerial RGB
images, each measuring 256x256 pixels, categorized into 21 land use classes with 100 images per
class. The images were manually extracted from the USGS National Map Urban Area Imagery
collection, covering various urban areas across the United States. The dataset contains images with
spatial resolution approximately 0.3 meters per pixel (equivalent to 1 foot), providing detailed visual
information suitable for fine-grained scene classification tasks.

We normalize the training and validation data with mean [0.485, 0.456, 0.406] and standard deviation
[0.229,0.224,0.225] for the rgb image channels. The convolutional neural neural networks used in
this work are applied to the original 256 x 256 image size. The vision transformer data-pipeline
resizes the image to a resolution of 224 x 224 pixels. The adversarial attacks for this dataset are
performed on the resized images.

B4 Cifarl0

The Cifar10 dataset consists of 10 classes, with a total of 60000 rgb images with a resolution of
32 x 32 pixels.

We use standard data augmentation techniques. That is, for CIFAR10, we augment the train-
ing data set by a random horizontal flip of the image, followed by a normalization using mean
[0.4914, 0.4822, 0.4465] and std. dev. [0.2470,0.2435, 0.2616]. The test data set is only normalized.
The convolutional neural neural networks used in this work are applied to the original 32 x 32 image
size. The vision transformer data-pipeline resizes the image to a resolution of 224 x 224 pixels. The
adversarial attacks for this dataset are performed on the resized images.

18

Low-Rank VGG16, FGSM whitebox attack

4
C
< 192.40 | 91.72 | 90.65 | 86.71 64.52 54.96 49.38 0.00 90
2
S - 93.92 | 93.86 | 93.00 | 87.95 72.41 52.12 95.30 80
—
_8-94.03| 93.94 93.04 | 88.70 74.10 53.70 95.51
o 70
5 8
= >
8S-093.64 94.36 | 93.83 | 90.64 95.42 g
s 60 3
3 (v}
8- 93.77 | 93.90 | 93.40 | 90.03 95.15
° 50
é’_ - 93.01 | 92.78 | 92.25 | 88.83 95.88
40
n
5 - 9261 92.83 9227 89.12 84.10 95.84
o
1 1 1 30

1 1 T
0.0 0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.4 0.5 c.r.[%]
Attack (g)

Figure 4: UCM Dataset, VGG16 clean and adversarial accuracy under the FGSM attack. Data is
averaged over 10 stochastic training runs. The top row displays the full baseline network with 0%
c.r. and the matrix below displays the low-rank and regularized networks trained with Algorithm [I]
All numbers display the mean of 10 randomized training runs, where the randomness stems from
shuffled batches. The initial condition of all runs is given by Imagenet- 1k pretrained weights. The
regularized low-rank networks with 5 = 0.075 are able to recover the adversarial robustness of the
baseline training while compressed by 95.84%. Results for VGG11 and Vitl6b are similar.

B.5 ImageNet-1k

The ImageNet dataset consists of 1000 classes and over 1.2 million RGB training images, with a
standard resolution of 224 x 224 pixels. We follow the standard data augmentation pipeline for
ImageNet, which includes a random resized crop to 224 x 224, and normalization using mean
[0.5,0.5,0.5] and standard deviation [0.5, 0.5, 0.5]. The test set is only resized and center-cropped to
224 x 224, followed by normalization. Adversarial attacks are generated on the normalized, resized
images.

B.6 Computational hardware

All experiments in this paper are computed using workstation GPUs. Each training run used a single
GPU. Specifically, we have used 5 NVIDIA RTX A6000, 3 NVIDIA RTX 4090, and 8 NVIDIA
A-100 80G.

The estimated time for one experimental run depends mainly on the data-set size and neural network
architecture. For training, generation of adversarial examples and validation testing we estimate 30
minutes on one GPU for one run.

C Proofs

To facilitate the proofs, we remark the definition of L-continuity: A function f(z) is Lipschitz
continuous on a domain D if there exists a constant L > 0 such that for all z,y € D,

1f(2) = F W)l < Lllx =y

The smallest such L is called the Lipschitz constant.

19

Low-Rank VGG16, Jitter whitebox attack

~ -95
T
] 9442 93.41 0.00
H
90
S- 9319 92.15 95.30
85
—
_2- 9397 93.10 95.51
s o
s 80 R
= >
TS 9234 91.58 95.42 g
Z o o
s 3
=] 75 ©
2 <
2. 9229 91.59 95.15
70
n
~ S 91.89 95.88
65
N. 9259 91.96 95.84
1 1 T 60
0.0 0.025 0.03 0.035 0.04 0.045 crl%]

Attack (g)

Figure 5: UCM Dataset, VGG16 clean and adversarial accuracy under the Jitter attack. Data is
averaged over 10 stochastic training runs. The top row displays the full baseline network with 0%
c.r. and the matrix below displays the low-rank and regularized networks trained with Algorithm [I]
All numbers display the mean of 10 randomized training runs, where the randomness stems from
shuffled batches. The initial condition of all runs is given by Imagenet- 1k pretrained weights. The
regularized low-rank networks are able to recover most of the adversarial robustness of the baseline
network. Results for VGG11 and Vit16b are similar.

For the following proofs, let
(A, B) = trace(BTA) = Z AijBij
j

be the Frobenius inner product that induces the norm || A|| = /(A, A). By the cyclic property of the
trace, we have

(AB,CD) = (B,CDA") = (C'AB, D). (25)

for matrices A, B, C, and D of appropriate size.

Proof of (3). We calculate

R(S)? = (S8'S —aZI,S'S — a2I)
= [|STS|* = 222 (STS, I) + as(1, 1)
= [ISTS|”” - £lIs|*

Y alsTS) . (Z gi<s>2>2 26)
=1 i=1
(3 gcxs%’)? -(; ggm)"’))

Since STS is symmetric positive semi-definite, ¢;(S'.S) = ¢;(S)2. Applying this substitution yields
(3). The proof is complete. U

20

Low-Rank VGG16, Mixup whitebox attack

~

c

& 52.85 | 45.50 | 37.25 27.11 | 23.91 0.00 L g0

5

w

S- 95.30

80

—
9 95.51
@ ©
5 g
b= >
KR 95.42 g
o o
2 3
§a 60 &

—

- 95.15

i 50

= 95.88

o

- 91.96 | 88.62 | 88.62 95.84 40

1
0.0 0.01 0.025

T
0.075 0.1 0.25 0.5 0.75 c.r. [%]
Attack (g)

Figure 6: UCM Dataset, VGG16 clean and adversarial accuracy under the Mixup attack. Data is
averaged over 10 stochastic training runs. The top row displays the full baseline network with 0%
c.r. and the matrix below displays the low-rank and regularized networks trained with Algorithm [I]
All numbers display the mean of 10 randomized training runs, where the randomness stems from
shuffled batches. The initial condition of all runs is given by Imagenet- 1k pretrained weights. The
regularized low-rank networks almost double the adversarial accuracy of the baseline network at
95.84% compression rate. Results for VGG11 and Vit16b are similar.

Proof of Proposition[l] Given S € R"*", the Fréchet derivative for © = R? at S is a linear operator
Z — VQ(S)[Z] for Z € R™*". Denote Wg = S TS — a1 which is symmetric. Since Q is an inner
product, we calculate VO(S)[Z] as

1YO(8)[7] = (Ws, 278 + 877 — 2(8, 2)1)

=(Ws,Z'S)+ (Ws,S'2) — 2(S,2)(Ws, 1) @n
= (SWq,Z) + (SWs, Z) — 2(S, Z)(Ws, I)
=2(S(S'S —a3l),Z) — 2(S,2)(S'S — aZl,I).
Note by definition of a3,
(STS —ail, 1) = ||S|* — a|lI||* = 0. (28)
Hence
VO(S) =4S(S'S — aZI). (29)
Since R? = Q, therefore
VR(S) = 3o5- (30)
The desired estimate follows. The proof is complete. O
Proof of Proposition[2] From (26) there holds
Ly =13 asTsr - (L3 aiss)) 61
" "= Z "= Z .

21

From (1), 1R(S5)? is the variance of the sequence {s;(S'S)}/_;. The Von Szokefalvi Nagy
inequality [33]] bounds the variance of a finite sequence of numbers below by the range of the
sequence (see [41]]). Applied to (3T), this yields

(8T8 = (ST _ (al8)? — s (8)*)?

1 2o (_
;R(S) = 2r - 2r ' (32)

Hence
V2R(S) > 61 (9)? — . (9)2. (33)
An application of the Mean Value Theorem for logarithms (see [34, Proof of Theorem 2.2]), gives

51(5)? = (5)?

1 S)) < —F— 34
n(s(8)) < 55 G4
Combining (33) and (34) yields
1
In(k(S)) < —=———R(S), (35)
((8) < 5 R(S)
which, after exponentiation, yields @). The proof is complete. O

Proof of Proposition[3] Since W is constant, we rewrite the dynamical system S+ BVR(S)+ S =
W as

L(S—W)+ BVR(S) + (S —W) =0. (36)
Testing (36) by S — W and rearranging yields
3318 = W + B(VR(S), 8) + |5 = W|* = B(VR(S), W). (37)

We calculate (VR(S), S). Note
(S(STS —ail),S)=(S'S —a%l,S'S)

(38)
= [|STS|? — aZ(1,578) = |STS|* — ;|IS|I* = R(S)?,
where the last equality is due to (26). Hence
25(STS —a2I,9)
R(S),S) = =2R(S). 39
Using Holder’s inequality, the sub-multiplicative property of || - ||, and Young’s inequality, we bound
the right hand side of (37) by
IS(STS — a3 D)
VR(S), W) <2 W < 28||S||[|W
BVR(S), W) < 28022 S| < 2581w w0
< 26(|S = WIWIl + [W]*) < 518 = W +25(1 + 28)[W]J*.
Applying (39) and to (36) we obtain
232 ll8 = WP +28R(S) + 31 = WII* < 28(1 + 28) W] (41)

An application of Gronwall’s inequality on [0, ¢] yields
¢
31lS(t) —W||2+25/ e 'R(S(r)) dr = 57 S(0) = WP +2(1—e~")B(1+26) W] (42)
0

The proof is complete. O

22

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See contribution paragraph in the introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

23

Justification: We clearly discuss the assumptions of our propositions and discuss suitable
applications of our method. Further, we point out in which applications the method is not
suitable. We end the paper with a conclusion section that reflects back on the proposed
scope of the paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state the global assumptions in the beginning of sections 3 and 4, and
clearly state all local assumptions of the propositions. The proofs do not use additional
assumptions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

24

Answer: [Yes]

Justification: We provide a full description of all used datasets, and neural network architec-
ture details as well as the origin of pretrained weights. Furthermore, we provide all training
details and hyperparemeters that have been selected by our preliminary hyperparameter
search. Detailed algorithmic descriptions allow the reader to implement our method based
on the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
» If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a full description of all used datasets, and neural network architec-
ture details as well as the origin of pretrained weights. Furthermore, we provide all training
details and hyperparemeters that have been selected by our preliminary hyperparameter
search. Detailed algorithmic descriptions allow the reader to implement our method based
on the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All numbers in the result tables of this paper, with the exception of Table
present the mean over 10 stochastic training runs with the prescribed hyper-parameters for
the respective test cases. Table [I0] presents results with 5 stochastic training runs. The
lineplots in this paper show the metrics of the median run of 10 training runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

26

8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational hardware and experiment timing estimates are reported in
Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conforms with the conduct of Ethics and we have no reason to
believe otherwise.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We point out the societal impact in the conclusion section
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

27

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is a methodological research paper and we do not release certain
data and model with potential risk of misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The used data, models, and code are open source and properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

28

paperswithcode.com/datasets

14.

15.

16.

Justification: The paper does not release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

29

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Controlling the adversarial robustness of a neural network through the singular spectrum of its layers
	Related work
	Improving conditioning via regularization
	A rank-adaptive and adversarial robustness increasing dynamical low-rank training scheme
	Extension to convolutional neural networks

	Numerical Results
	Conclusion
	Additional Numerical Results
	UCM Dataset
	Cifar10 Dataset

	Details to the numerical experiments of this work
	Recap of adversarial attacks
	l2-FGSM attack
	l1-FGSM attack
	Jitter attack
	Mixup attack

	Network architecture and training details
	UCM Test Case
	Cifar10
	ImageNet-1k
	Computational hardware

	Proofs

