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ABSTRACT

Existing methods for style transfer operate either with paired sentences or distribu-
tionally matched corpora which differ only in the desired style. In this paper, we
relax this restriction and consider data sources with additional confounding differ-
ences, from which the desired style needs to be inferred. Specifically, we first learn
an invariant style classifier that takes out nuisance variation, and then introduce
an orthogonal classifier that highlights the confounding cues. The resulting pair
of classifiers guide us to transfer text in the specified direction, creating sentences
of the type not seen during training. Experiments show that using positive and
negative review datasets from different categories, we can successfully transfer the
sentiment without changing the category.1

1 INTRODUCTION

Despite advances in neural text generation (Brown et al., 2020), fine-grained control over generated
outputs remains challenging. Indeed, the ability to easily transfer output style by altering attributes
such as sentiment, formality, genre, and personal styles would make text generation tools more
appealing (Hu et al., 2017; Shen et al., 2017; Rao & Tetreault, 2018; Xu et al., 2012).

Solving style transfer typically requires the method to be able to disentangle what should be transferred
from orthogonal aspects of sentences that ought to be kept intact. This disentanglement problem can
be largely avoided in simple supervised scenarios with access to parallel sentences differing only
in style (e.g., sentiment transfer with parallel negative and positive sentences, Figure 1.a). Recent
approaches address a more difficult version of the task by dispensing with parallel sentences (Shen
et al., 2017). Nevertheless, they assume that the corpora differing in style remain distributionally
matched in other ways (e.g., sentiment transfer with negative and positive reviews from the same
category of products, Figure 1.b).

However, data available for training style transfer models is rarely distributionally matched, and often
involves changes other than style as well (e.g., sentiment transfer where negative and positive reviews
come from different product categories, Figure 1.c). This means that the desired style difference is no
longer illustrated directly as the difference between the two corpora, making the task substantially
more challenging. More subtly, the model is asked to generate sentences it has not seen during
training, since the generated sentences in a new style should not also reproduce those confounding
differences present in the training data.

Solving style transfer with confounding cues requires us to also learn what the desired style difference
is. This can be facilitated by dividing the data into two groups of different styles, while the sets
within each group illustrate variation we do not wish to alter. In the example in Figure 1.c, reviews
are divided into two groups according to their sentiment. Within a group, each dataset corresponds to
a different product category which should be preserved. Besides sentiment transfer, this setup easily
generalizes to other style transfer tasks, e.g., dialectal transfer. In this case, the groups will be divided
according to the dialects, and sets within each group will represent different speakers whose personal
style should be preserved.

Our model builds on invariant risk minimization (Arjovsky et al., 2019) to infer the style as an
invariant distinction across different datasets from the two groups. The resulting style classifier
leaves complementary aspects of sentences to be controlled (preserved). We can illustrate aspects
orthogonal to style with new sets of environments and learn another invariant classifier. Together,

1Our code will be publicly released after the review process.
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Figure 1: Different learning scenarios for style transfer. a) With parallel examples, learning of the
transfer mapping is supervised. b) With non-parallel, distributionally matched datasets, learning
of the transfer mapping is unsupervised. Nevertheless, style is given as the dataset difference, and
generation takes place in-distribution. c) With non-parallel, not distributionally matched datasets,
style needs to be inferred by excluding confounding differences. Not only is learning of the transfer
mapping unsupervised, but generation is also out-of-distribution.

the two classifiers are used to guide sentence generation in a style transfer model along the desired
direction. Combining with back-translation (Sennrich et al., 2015; Zhu et al., 2017) and language
model regularization (He et al., 2020) techniques, we can generate new types of sentences that have
not been seen during training.

We empirically evaluate our proposed model in two sentiment transfer settings that involve con-
founding factors. In the first setting, we augment original review data with special tokens, creating
a spurious correlation with sentiment. In the second setting, we consider sentiment transfer where
negative and positive reviews come from non-overlapping product categories. In both cases, we
assess the ability of the model to transfer the sentiment, while preserving other aspects – special
tokens in the first case, and product category in the second case. Our experiments demonstrate
that our model successfully achieves both tasks, bringing significant gains over baselines that do
not consider confounding factors. For instance, on the the task of sentiment transfer from different
product categories, the model yields 28.4% increase in category preservation; according to human
evaluation, its success rate is 6.2% higher than the best previous system.

2 RELATED WORK

The task of style transfer is related to paraphrasing, whose goal is to generate multiple linguistic
realizations of the same underlying content (Androutsopoulos & Malakasiotis, 2010). However,
style transfer adds an additional complexity – the requirement to control for a specific realization
characteristic during rewriting. While paraphrasing models have been used in the past for the task
of style transfer, these models are impacted by arbitrary variations present in paraphrasing datasets
(Preotiuc-Pietro et al., 2016; Gröndahl & Asokan, 2019; Krishna et al., 2020). We instead take a
data-driven approach for discerning style from content, where the style is not strictly limited to
paraphrasing and can involve more general attribute transfer such as sentiment and political slant
transfer (Prabhumoye et al., 2018).

Recent work in non-parallel style transfer proposes different techniques such as cross-alignment
(Shen et al., 2017), delete and retrieval (Li et al., 2018), or parallel latent sequences (He et al., 2020).
The generation of these approaches all takes place “in-distribution”, i.e., realizing sentences of the
type already seen during training. The sentences we generate are by design not seen during training
(Figure 1.c). Subramanian et al. (2018) proposed multi-attribute style transfer that controls both the
sentiment and the category of a sentence. However, similar to other prior work, they assumed access
to all sentiment-category combinations for training. In contrast, we assume that negative and positive
sentences come from non-overlapping categories.

Since we have to infer style from datasets with confounding cues, we make use of invariant learning
(Peters et al., 2016; Arjovsky et al., 2019) to estimate style as an invariant direction. Moreover, our
classifiers need to perform well across different combinations of source/target datasets and generalize
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to generated text (out-of-distribution samples) to properly guide the transfer model. Therefore, our
problem is also related to domain adaptation (Ben-David et al., 2010; Ganin & Lempitsky, 2015;
Ganin et al., 2016) and domain generalization (Blanchard et al., 2011; Muandet et al., 2013). Our
main contribution is the utilization of invariance for guiding the generation process.

3 STYLE TRANSFER WITH CONFOUNDERS

We consider two groups of datasets: GA = {A1, . . . , An} where each Ai (i = 1, . . . , n) is a dataset
consisting of sentences with style sA (e.g., negative sentiment), and GB = {Bn+1, . . . , Bn+m}
where each Bj (j = n+ 1, . . . , n+m) similarly conforms to style sB (e.g., positive sentiment). In
addition to style, a dataset has its own characteristics different from each other (e.g., category). Our
goal is to transfer a sentence x of style sA into style sB (and vice versa) without changing its content
or other characteristics.

One attempt is to aggregate collections of sentences in each group A = A1 ∪ · · · ∪ An, B =
Bn+1 ∪ · · · ∪Bn+m and perform style transfer between them. However, the specific characteristics
of Ai and Bj will become confounding factors and will be changed along with style. Instead, we
notice that style is an invariant distinction between group GA and group GB . In other words, the
style difference is stable across different Ai and Bj . Therefore, we can learn to isolate it by taking
out intra-group variations. Once we have access to style, we can learn to transfer sentences along this
direction while preserving other sentence characteristics.

We take a two-step procedure to accomplish this task. We first learn a pair of invariant classifiers to
detect style and orthogonal characteristics. Then we use the classifiers to guide the learning of a style
transfer model. Each part of the model is described in detail below.

3.1 INVARIANT CLASSIFIERS

We make use of Invariant Risk Minimization (Arjovsky et al., 2019, IRM) to learn our style and
orthogonal classifiers. IRM requires us to specify a set of environments E = {e1, . . . , eE}, where
each e ∈ E represents data {(xei , yei )}ne

i=1 collected under a certain environment. The different
environments account for nuisance variation that the classifier should not pay attention to. The IRM
objective is to learn a feature representation that enables a classifier to be simultaneously optimal for
all environments. The rationale is that such representation likely involves primarily causal features
that remain stable regardless of the nuisance variation. Therefore, the classifier can better generalize
to new, unseen test environments compared to the standard Empirical Risk Minimization (ERM)
classifier trained on the pooled data from all environments.

We adopt the IRMv1 formulation, which does not explicitly separate the representation from the
classifier but treats the classifier output itself as the representation. In this vein, the objective becomes
to minimize the classifier loss across all the data while penalizing per-environment gradients with
respect to any multiplier of the classifier output:

min
Φ:X→Y

∑
e∈E

Re(Φ) + λ‖∇w|w=1.0R
e(w · Φ)‖2 (1)

where Re(f) := EXe,Y e [`(f(Xe), Y e)] is the risk of f under environment e (` can be any loss
function), and λ is a hyperparameter weighting the gradient penalty term. Gradients would be zero if
Φ is per-environment optimal. It remains to define suitable environments for the invariant classifiers
to separate style and confounding factors in our task.

3.1.1 STYLE CLASSIFIER

To learn a classifier to distinguish between styles sA and sB without relying the specific characteristics
of each dataset, we pair each Ai and each Bj to form environments:

ei,j = {(x, y = 0) | x ∈ Ai} ∪ {(x, y = 1) | x ∈ Bj} (2)
and learn an IRM classifier Cs : X → Y to predict the group label across environments
{ei,j}1≤i≤n,n+1≤j≤n+m (cf. Figure 2.a). Since all Ai datasets share style sA, and all Bj datasets
share style sB , style is a feature representation that elicits an invariant classifier across different
environments. Conversely, if the classifier uses any features specific to Ai/Bj , it will not be optimal
in another environment consisting of a different pair Ai′/Bj′ , thus violating the IRM constraint.
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Figure 2: Illustration of the learning of the invariant classifiers. a) The style classifier Cs is trained to
be invariant across different pairs of Ai and Bj datasets. b) The orthogonal classifier Co is trained to
highlight changes in sentences other than the style identified by Cs.

3.1.2 ORTHOGONAL CLASSIFIER

In addition to requiring the transferred output to have a different style from the input, we also
require it to retain the other characteristics of the input. To detect style-independent characteristics,
we construct environments based on predictions of the style classifier Cs. These style-dependent
environments serve to illustrate to the second invariant classifier Co what it should not rely on.

Let D = {(x, y = 0) | x ∈ A} ∪ {(x, y = 1) | x ∈ B} be the entire dataset, aggregate of all corpora.
We create two environments2:

e1 = {(x, y) ∈ D | Cs(y|x) > 0.5} (3)
e2 = {(x, y) ∈ D | Cs(y|x) ≤ 0.5}

and learn an IRM classifier Co : X → Y across {e1, e2}. In this way, Co cannot depend on
the direction quantified by Cs (i.e., the inferred style), and must find other orthogonal features to
distinguish A from B (cf. Figure 2.b).

Note that if we have successfully transferred a sentence in Ai to style sB , then Cs should predict
label 1 for the output sentence because its style has been changed, while Co should continue to assign
label 0 as the orthogonal characteristics ought to have remained intact.

3.2 STYLE TRANSFER MODEL

Based on the pair of invariant classifiers, we can now build a style transfer model to transfer a
sentence to a different style specified by Cs while preserving other characteristics controlled by Co.
Formally, we have dataset D = {(x, y)}, where y denotes the group label of sentence x. We learn a
style transfer model M : X × Y → X that takes a source sentence x and a target group y as input,
and outputs a revised sentence that conforms to the style of group y. The model is learned first in a
reconstruction phase and then in a transfer phase, discussed in turn.

When the input sentence x is from group y, M should behave as an autoencoder and reconstruct x.
Therefore, we have the reconstruction loss:

Lrec(θM ;x, y) = − log pM (x|x, y) (4)

where θM denotes the parameters of M to be learned. We first use Lrec to train M on D for an epoch
to provide the model with a good initialization to generate realistic sentences.

After initializing M as an autoencoder, we use the pair of invariant classifiers to guide it towards
appropriate style transfer. Given an example (x, y) in D, we let x̃ ∼ pM (·|x, 1−y) be the transferred
output sampled from the model. If successfully transferred, x̃ should have style different from x
according to the style classifier Cs, and all the other characteristics should be the same as x according

2A set of more segmented environments can be created based on the confidence of Cs. However, we did not
observe performance gains with more environments.
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to the orthogonal classifier Co. Namely, Cs should treat x̃ as coming from a different group, and Co

should treat x̃ as coming from the same group. These two constraints lead to losses:

LCs
(θM ; y, x̃) = − log pCs

(1− y|x̃) (5)
LCo(θM ; y, x̃) = − log pCo(y|x̃) (6)

We further use a pre-trained language model L and introduce a KL divergence term DKL(pM (·|x, 1−
y)‖pL) to regularize the transfer distribution. Estimating the KL divergence with one sample of
x̃ ∼ pM (·|x, 1− y), we have:

LLM(θM ;x, y, x̃) = − log pL(x̃) + log pM (x̃|x, 1− y) (7)

The first term ensures the fluency of the generated sentence x̃. The second term corresponds to
the negative entropy of the transfer distribution −HpM (·|x,1−y). Maximizing this entropy term
encourages exploration and helps to avoid bad local optima of constantly generating similar sentences
(He et al., 2020).

Finally, we include the back-translation loss that the original sentence x should be generated if we
take x̃ as input and set the target label to be y (Sennrich et al., 2015; Zhu et al., 2017):

LBT(θM ;x, y, x̃) = − log pM (x|x̃, y) (8)

Taken together, our overall training objective is:

E(x,y)∼D,x̃∼pM (·|x,1−y)[λ1LCs + λ2LCo + λ3LLM + λ4LBT] (9)

In practice, we use word-level loss for LLM and LBT (i.e., divided by the sentence length) to make
them comparable in magnitude to LCs

and LCo
. We use Gumbel-Softmax (Jang et al., 2016) to

approximate the discrete sampling process of x̃ to compute gradients. At test time, we perform greedy
decoding to generate the transferred output.

4 EXPERIMENTS

To assess the ability of our model to perform style transfer in the presence of confounders, we
consider two experimental settings. In the first experiment, we compose a synthetic task by modifying
sentence punctuation to create a spurious correlation with sentiment (Choe et al., 2020). The model
needs to transfer the sentiment while preserving the punctuation. In the second experiment, we
consider sentiment transfer across different product categories. The goal is to transfer sentiment
without changing the product category.

Baselines We consider two variants of our full model: the first is guided by the style classifier
Cs alone without the orthogonal classifier Co; the second is guided by an ERM classifier CERM
trained on D, performing direct transfer between A and B without taking into account confounders.
We also compare with He et al. (2020), whose training objective has a back-translation loss and a
KL divergence term similar to ours. They do not use a classifier, but rely on two language models
separately trained on A and B to promote the transferred sentence to have the target style. Finally, we
compare with a paraphrasing based method of Krishna et al. (2020), which again transfers between
the aggregated A and B without considering confounding factors.

Model Architecture We implement the classifiers Cs, Co using TextCNN (Kim, 2014) with sliding
windows over 3-5 words. On the synthetic task, however, we found that because the dataset is simple
to classify, the training loss of the CNN classifier is close to 0. This removes any guidance from
IRM constraints, degenerating the resulting classifier to a standard ERM version. Therefore, to
ensure that we estimate invariant classifiers, we use less powerful Bag-of-Words classifiers in the
synthetic task. The employed language model L is a 1-layer LSTM trained on A ∪ B. The style
transfer model M consists of a 1-layer LSTM encoder and a 1-layer LSTM decoder augmented with
attention mechanism (Bahdanau et al., 2014). To achieve style control through y, we learn two style
embeddings for y = 0, y = 1 respectively, and add the corresponding one to each word embedding
before feeding to the decoder.
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Table 1: Classifier accuracy in the synthetic task when the spurious correlation is reversed.

Model Sentiment ACC Punctuation ACC
CERM 54.4 45.6
Cs 75.3 -
Co - 89.9

Training Regime and Hyperparameters During the training of the invariant classifiers, we lin-
early anneal the gradient penalty coefficient λ from 0 to λmax over the first 100K steps, and continue
training with λ = λmax for another 200K steps. We try λmax in {1000, 3000, 5000} and choose the
one with the best performance on the validation set. In the training of the style transfer model M , we
linearly anneal the temperature of Gumbel-Softmax from 1 to 0.1 in the first 20K steps, and then keep
it at 0.1 in the next 10K steps. We try the weights of the loss terms {λ1, λ2, λ3, λ4} in {1, 2, 4}, and
select a model that strikes a good balance between output perplexity, BLEU with input, and accuracies
according to the style and orthogonal classifiers. We note that different weight combinations will
lead to different trade-offs (Pang, 2019), and we provide more detailed results in Appendix B.

4.1 SENTIMENT TRANSFER WITH DIFFERENT PUNCTUATION

We aim to emulate the presence of confounding factors by modifying sentences in a standard sentiment
transfer dataset with special symbols. For a sentence x, we remove its original punctuation, and then
add either an exclamation mark “!” or a period “.” at the end. Let p be the probability of adding “!”,
and 1− p be the probability of adding “.”. p varies across different corpora. This setting enables us
to measure model’s ability to transfer sentence sentiment without changing its punctuation.

Dataset We adapt the sentiment transfer dataset introduced by Shen et al. (2017), which has 177K
negative sentences and 267K positive sentences for training, 2K negative and positive sentences for
validation, and 500 negative and positive sentences for testing. We obtain new training, validation
and test sets using the following procedure: (1) negative sentences are modified with p = 0 to form
A1; (2) positive sentences are equally divided into two sets, and modified with p = 1, p = 0.8 to
form B2, B3 respectively. By construction, the punctuation strongly correlates with the sentiment.
Therefore, a direct transfer between A1 and B2 ∪B3 is likely to change the punctuation as well. By
observing that sentiment is invariant while p is variant in B2 and B3, we aim to transfer only the
sentiment, not the punctuation.

Evaluation We assess transfer accuracy by comparing change in sentiment in the input and output
sentences. To automate this evaluation, we utilize a separate sentiment classifier trained on negative
and positive sentences both modified with p = 0.5. In this way, its prediction will not be affected by
punctuation. Note that this classifier is only used for evaluation, not for training the style transfer
model. We also evaluate model’s ability to keep punctuation intact during transfer by directly
comparing input and output punctuation. To measure fluency, we report the perplexity of the output
measured by an unbiased language model trained on sentences modified with p = 0.5. Finally, we
compute the BLEU score of the output with respect to a human reference (Li et al., 2018).

Results We first report performance of the invariant classifiers Cs and Co in the setting reflecting
their intended use in our style transfer model. We reverse the correlation between punctuation and
sentiment labels to simulate style transferred sentences, and assess their ability to predict the desired
aspects. Specifically, we test the accuracy of classifiers on positive sentences modified with p = 0 and
negative sentences modified with p = 1, p = 0.8. Table 1 shows results of Cs and Co compared with
the standard CERM classifier trained on D. As expected, CERM performs poorly, mixing sentiment
and punctuation clues. In contrast, the invariant classifier successfully separating the two aspects,
achieving accuracy of 75.3% on sentiment prediction and 89.9% on punctuation prediction.

Table 2 summarizes style transfer results. The paraphrasing-based method of Krishna et al. (2020)
is not suitable for sentiment transfer that requires semantic changes, as shown by its low sentiment
accuracy of 28.4%. Moreover, it has the lowest BLEU score because it introduces unnecessary
rewriting learned from the paraphrasing dataset. Despite reaching high sentiment accuracy, the direct

6



Under review as a conference paper at ICLR 2022

Table 2: Automatic evaluation results of the synthetic sentiment transfer task. Accuracies less than
30 are marked in red.

Model Sentiment ACC Punctuation ACC PPL BLEUref

Krishna et al. (2020) 28.4 44.7 53.2 10.1
He et al. (2020) 82.2 4.6 27.0 20.4

M w/ CERM 65.1 4.5 40.4 28.8
M w/ Cs 70.4 5.5 43.3 27.2
M w/ Cs, Co (Ours) 84.3 97.7 48.1 24.3

Input Copy 2.4 100.0 34.0 32.8
Reference 76.8 100.0 42.3 100.0

Table 3: Example outputs of the synthetic sentiment transfer task.

Input the sales people here are terrible .
Reference the sales people are great .

Krishna et al. the people here are absolutely terrible .
He et al. the sales people here are great !
M w/ CERM the sales people here are amazing !
M w/ Cs the sales people here are fantastic !
Ours the sales people here are amazing .

Input great food but horrible staff and very very rude workers .
Reference great food and excellent staff and very very nice workers .

Krishna et al. great food , but very poor service .
He et al. great food but excellent staff and very very friendly workers !
M w/ CERM great food and great staff and very very nice workers !
M w/ Cs great food but great staff and very very friendly workers !
Ours great food and great staff and very very friendly workers .

Input the food is delicious and plentiful !
Reference the food was tough and dry !

Krishna et al. the food is delicious and plentiful ! ” .
He et al. the food is mediocre and plentiful .
M w/ CERM the food was mediocre and plentiful .
M w/ Cs the food is mediocre and plentiful .
Ours the food was mediocre , too !

Input excellent combination of flavors , very unique !
Reference the flavors are nothing to write home about !

Krishna et al. very unique combination of flavors , very unique ! ” .
He et al. horrible customer service .
M w/ CERM terrible combination of flavors , very disappointing .
M w/ Cs terrible combination of flavors , not unique .
Ours terrible combination of flavors , not outstanding !
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Table 4: Automatic evaluation results of sentiment transfer from different categories.

Model Sentiment ACC Category ACC PPL BLEUsrc

Krishna et al. (2020) 22.6 57.4 35.8 19.2
He et al. (2020) 77.7 22.5 44.6 47.6

M w/ CERM 89.6 14.6 42.4 47.0
M w/ Cs 78.0 36.4 45.1 59.2
M w/ Cs, Co (Ours) 79.9 50.9 49.2 57.4

Input Copy 3.1 75.3 34.5 100.0

transfer methods of He et al. (2020) and M guided by CERM have low punctuation accuracy (4.6%
and 4.5%, respectively). Our full model achieves both high sentiment accuracy (84.3%) and high
punctuation accuracy (97.7%). The reliance on the orthogonal classifier Co is proved critical – its
omission results in dramatic drop of punctuation accuracy (5.5%). Output examples in Table 3
provide multiple illustrations of these phenomena: Krishna et al. (2020) often paraphrases the input
without changing the sentiment, while other models consistently change punctuation; only our full
model successfully transfers the sentiment without changing the punctuation.

4.2 SENTIMENT TRANSFER WITH DIFFERENT CATEGORIES

Our second experiment focuses on sentiment transfer with product category as a confounding factor.
Previous work took negative and positive reviews from the same category (Li et al., 2018). Our
setting is more challenging where negative and positive reviews belong to distinct, non-overlapping
categories. The model needs to infer that it is the sentiment to be transferred, not the category.

Dataset We use the 5-core Amazon review data (Ni et al., 2019), focusing on four large product
categories: Clothing Shoes and Jewelry (CSJ), Home and Kitchen (HK), Electronics (E), and Cell
Phone and Accessories (CPA). We further filter reviews based on their length, keeping reviews of
length 5-20 words. Following standard practice, reviews with rating above three are considered
positive, and those below three are considered negative. Reviews with rating three are discarded.
Specifically, A1 consists of negative reviews from the CSJ category, A2 - negative reviews from HK,
B3 - positive reviews from E, and B4 - positive from CPA. We create a dataset of 150K sentences for
each category, in which 130K are used for training, 10K for validation and 10K for testing. Note that
we do not use any review data of different sentiments from the same category.

Evaluations To assess sentiment transfer accuracy automatically, we train a classifier on complete
data which includes negative and positive reviews from all four categories. It has test accuracy of
96.0%. Moreover, we train a 4-way category classifier using complete data to assess whether the
output preserves input product category. It has test accuracy3 71.0%. As in the previous task, we
report the perplexity of the output measured by an unbiased language model trained on the complete
data. Note that these omniscient models are used only for evaluation and not for training the style
transfer model. Since we do not have human references for this task, we compute the BLEU score
with respect to source sentences as a rough indicator of content preservation (Zhao et al., 2018). In
addition, we conduct human evaluation by asking human judges to rate each output on a Likert scale
from 1 to 5 on three criteria: sentiment transfer, content preservation, and fluency. We consider a
generated output successful if it is rated 4 or 5 on all three criteria. We evaluated 200 randomly
sampled examples (100 negative and 100 positive) and collected two annotations for each sentence.

Results Table 4 shows automatic evaluation results for different models. Our model yields signifi-
cant performance gains over the baselines, achieving 57.3% absolute increase in sentiment transfer
compared to Krishna et al. (2020), and 28.4% increase in category preservation compared to He et al.
(2020). The human evaluation results in Table 5 further verify the superiority of our model. Krishna
et al. (2020) has the highest score in fluency as their model is fine-tuned from GPT2-Large. Our
model achieves the highest sentiment transfer score and the highest success rate.

3This accuracy can be attributed to the fact that some short sentences do not have clear indicators of their
product category.
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Table 5: Human evaluation results of sentiment transfer from different categories.

Model Sentiment Content Fluency Success
Krishna et al. (2020) 1.9 4.2 4.4 11.8%
He et al. (2020) 3.3 3.6 4.0 24.3%
Ours 3.4 4.1 4.1 30.5%

Table 6: Example outputs of sentiment transfer from different categories.

Clothing, Shoes and Jewelry (negative → positive)

Input this shirt was too tight . the sizing seems off .
Krishna et al. the shirt is too tight .
He et al. this case was great . the protection seems great .
Ours this shirt works just perfect . the sizing seems well .

Home and Kitchen (negative → positive)

Input the containers do not lock well and are made of low quality materials .
Krishna et al. the containers do not fit securely and are made from poor quality material .
He et al. the phones work well and has made of sound quality of low quality materials .
Ours the containers does the job well and are made of high quality materials .

Electronics (positive → negative)

Input exactly as advertised . converted a molex plug into a sata
Krishna et al. the molex plug was convert to sata as advertised .
He et al. way too big . leaves a inaccurate cut into a bath
Ours not as advertised . converted a molex plug into a sata

Cell Phones and Accessories (positive → negative)

Input very sturdy and helpful to use while driving .
Krishna et al. drives very well and is very useful .
He et al. very stiff and weak to use while washing .
Ours very thin and uncomfortable to use while driving .

Example outputs in Table 6 show that our model successfully isolates sentiment from product category,
preserving the latter during transfer. In contrast, He et al. (2020) mixes up categories by changing
product specific nouns, such as rewriting “shirt” to “case”, “containers” to “phones”, and “driving” to
“washing”. Table 10 in the appendix provide more examples, some of which illustrate several failure
modes of the model. For instance, when transferring sentiment of the sentence “very poor quality .
crooked on one end .”, the model only modifies the sentiment of the first clause, leaving the second
clause intact. Another failure case is the use of inappropriate adjectives, such as rewriting “the drive
works as designed” to “the drive is too large”.

5 CONCLUSION

In this paper, we consider a new, challenging version of the style transfer task, where the model has to
exclude confounders and infer the desired transfer direction from data. We propose to learn a pair of
invariant classifiers to detect style and orthogonal characteristics, and then use them to guide a style
transfer model. We empirically demonstrate significant performance gains over direct style transfer
in two experimental settings. While this technology shows significant promise, it still requires further
development to be used in practice. However, as style transfer algorithms continue to advance, their
ability to support rapid, at scale content modification will increase. This can potentially result in
dissemination of fake news and other forms of misinformation.
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APPENDIX

A CLASSIFIER ACCURACY IN THE REAL TASK

Here, we report performance of the invariant classifiers Cs and Co to classify based on sentiment and
category respectively when their coupling is reversed (Section 4.2). We take positive reviews from
CSJ and HK, and take negative reviews from E and CPA. The test accuracy in shown in Table 7.

Table 7: Classifier accuracy in the real task when sentiment-category coupling is reversed.

Model Sentiment ACC Category ACC
CERM 64.0 36.0
Cs 80.4 -
Co - 62.9

B TRADE-OFF OF DIFFERENT WEIGHT COMBINATIONS OF LOSS TERMS

Table 8: Automatic evaluation results of sentiment transfer from different categories. Accuracies less
than 30 are marked in red.

Model Sentiment ACC Category ACC PPL BLEUsrc

Krishna et al. (2020) 22.6 57.4 35.8 19.2
He et al. (2020) 77.7 22.5 44.6 47.6

λCERM , λLM, λBT = 1, 1, 1 87.8 15.8 42.8 48.0
λCERM , λLM, λBT = 2, 1, 1 89.6 14.6 42.4 47.0
λCERM , λLM, λBT = 4, 1, 1 90.2 10.3 49.2 47.7

λCs
, λLM, λBT = 1, 1, 1 72.8 38.7 45.3 61.7

λCs
, λLM, λBT = 2, 1, 1 78.0 36.4 45.1 59.2

λCs
, λLM, λBT = 4, 1, 1 85.0 29.5 42.5 53.0

λCs
, λCo

, λLM, λBT = 1, 1, 1, 1 68.9 56.6 49.8 63.4
λCs

, λCo
, λLM, λBT = 2, 1, 1, 1 73.1 53.3 51.7 61.4

λCs
, λCo

, λLM, λBT = 4, 1, 1, 1 79.9 50.9 49.2 57.4

Input Copy 3.1 75.3 34.5 100.0
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C ADDITIONAL EXAMPLES

Table 9: Additional example outputs of the synthetic sentiment transfer task.

Input the new management team is horrible .
Reference the new management team is great .

Krishna et al. the new management team is terrible .
He et al. the new management team is excellent !
M w/ CERM the new management team is amazing !
M w/ Cs the new management team is great !
Ours the new management team is great .

Input did n’t even get a response .
Reference even got a response .

Krishna et al. they didn’t even respond to my question .
He et al. did a great job and the staff is very friendly !
M w/ CERM did n’t even get a response !
M w/ Cs did and even get a response !
Ours always great and always a response .

Input i got my car detailed here and it looked amazing !
Reference car was detailed and came out bad !

Krishna et al. i had a car detailed and it looked incredible ! ) .
He et al. i got my car detailed here and it looked awful .
M w/ CERM i got my car detailed here and it looked terrible .
M w/ Cs i got my car detailed here and it looked horrible .
Ours i got my car detailed here , it looked awful !

Input they are super friendly , very helpful , and amazingly quick !
Reference so slow and rude , not helpful at all !

Krishna et al. they were very friendly , very helpful , and unbelievably quick ! ) .
He et al. they are super rude , very helpful , and amazingly slow .
M w/ CERM they are super rude , very unprofessional , and amazingly quick .
M w/ Cs they are extremely rude , not helpful , and amazingly quick .
Ours they were incredibly rude , not helpful , but amazingly quick !
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Table 10: Additional example outputs of sentiment transfer from different categories.

Clothing, Shoes and Jewelry (negative → positive)

Input very thin material . and too short for me . i ’m 5’10 ”
Krishna et al. love it . just too thin , too short , and too short .
He et al. very nice case . and great for iphone ’s . i ’m 5’10 ”
Ours very nice product . and fits fine for me . i ’m 5’10 ”

Input too big for my face
Krishna et al. too big for my face
He et al. great fit for my s6
Ours works great for my face

Home and Kitchen (negative → positive)

Input does not solve the lid problem !
Krishna et al. no way to fix the problem with the lid !
He et al. does the trick for everything problem !
Ours does the job the lid problem !

Input very poor quality . crooked on one end .
Krishna et al. it is poor quality .
He et al. very good quality . accurate on one end .
Ours very good quality . crooked on one end .

Electronics (positive → negative)

Input this is great . it easy to use
Krishna et al. easy to use .
He et al. this is too small . it had to return
Ours this was broken . it difficult to use

Input the drive works as designed
Krishna et al. the drive works as designed
He et al. the sized did not work properly
Ours the drive is too large

Cell Phones and Accessories (positive → negative)

Input it is durable and not as bulky as i thought
Krishna et al. not as heavy duty as i thought it would be .
He et al. it is uncomfortable and not as bulky as i thought
Ours it is cheap and not as protective as i thought

Input excellent quality and perfect fit
Krishna et al. great quality and perfect fit
He et al. horrible quality and returned it
Ours extremely small and tight fit
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