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Abstract

Large language models (LLMs) possess impressive linguistic capabilities but often1

fail to faithfully retain factual knowledge, leading to hallucinations and unreliable2

outputs. Understanding LLMs’ knowledge deficiencies by exhaustively evaluating3

against full-scale knowledge bases is computationally prohibitive, especially for4

closed-weight models. We propose stochastic error ascent (SEA), a scalable and ef-5

ficient framework for discovering knowledge deficiencies (errors) in closed-weight6

LLMs under a strict query budget. Rather than naively probing all knowledge7

candidates, SEA formulates error discovery as a stochastic optimization process: it8

iteratively retrieves new high-error candidates by leveraging the semantic similarity9

to previously observed failures. To further enhance search efficiency and coverage,10

SEA employs hierarchical retrieval across document and paragraph levels, and11

constructs a relation directed acyclic graph to model error propagation and identify12

systematic failure modes. Empirically, SEA uncovers 40.7× more knowledge13

errors than Automated Capability Discovery and 26.7% more than AutoBencher,14

while reducing the cost-per-error by 599× and 9×, respectively. Human evaluation15

confirms the high quality of generated questions, while ablation and convergence16

analyses validate the contribution of each component in SEA.17

1 Introduction18

Large language models (LLMs) are pretrained on vast corpora, including comprehensive knowledge19

sources such as Wikipedia. Despite this extensive exposure, LLMs often fail to retain or accurately20

reproduce factual information, resulting in misinformation and hallucinations (Gekhman et al.,21

2023; Zhang et al., 2023; Manakul et al., 2023; Jiang et al., 2024; Yu et al., 2024). For instance,22

LLM mistakes France’s capital as Berlin (Simhi et al., 2024), or may fabricate a plausible-looking23

citation by attributing a fictitious paper to a real researcher in the relevant domain (Merken, 2025).24

These knowledge deficiencies pose significant challenges for downstream applications, particularly in25

high-stakes domains like healthcare, law, and scientific research, where factual accuracy is paramount.26

To this end, we propose stochastic error ascent, a scalable framework for uncovering knowledge27

deficiencies in LLMs under a query budget. Exhaustively querying a massive knowledge base is28

infeasible, so we iteratively select subsets that are likely to induce new model errors by formulating29

the task as a stochastic optimization problem. At each step, SEA approximates the per-step optimal30

subset by retrieving samples most similar to prior errors, leveraging the observation that model31

failures often exhibit shared characteristics (Li et al., 2024a). To enhance efficiency, we adopt a32

hierarchical strategy—finding the samples first at the document level and then at the paragraph33

level. We construct a relation directed acyclic graph (relation DAG) that traces source-target error34

dependencies and prunes low-impact nodes based on cumulative errors, helping discover systematic35

weaknesses.36
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We conduct extensive quantitative and qualitative evaluations of SEA over eight commonly used37

LLMs. Compared to two baselines—Automated Capability Discovery (ACD, Lu et al. (2025)) and38

AutoBencher (Li et al., 2024a)—SEA uncovers 40.7× more errors than ACD and 26.7% more than39

AutoBencher, while reducing cost per error by 599× and 9×, respectively. Human evaluation over40

1,000 randomly sampled questions confirms a 100% pass rate, i.e., all the model-generated questions41

in SEA are reliable. SEA exhibits consistent error discovery across steps, with all components42

contributing comparably, as shown in convergence and ablation studies.43

2 Deficiency Discovery for Large Language Models44

Consider we have a massive knowledge base K, a closed-weight foundation model fclose, and a given45

budget C. K includes N documents, each with an abstract and Mi paragraphs p, i.e., K = {p(i)j |i =46

1, ..., N ; j = 1, ...,Mi}. Our goal is to find an optimal paragraph subset Ŝ =
{
p1, · · · , p|Ŝ|

}
from47

K that can maximize the error TŜ(fclose) of the closed-weight language model fclose under the budget48

C for fclose (e.g., the price for all tokens or a number of API calls). Specifically, we aim to solve the49

following optimization problem:50

argmax
S⊂K

TS(fclose) s.t.
∑
|g(S)|

cost(fclose) < C, (1)

where51

TS(fclose) =
1

|g (S)|
∑

p
(i)
j ∈S

 ∑
(x,y)∈g

(
p
(i)
j

)1[fclose(x) ̸=y]

 . (2)

Eq. (2) denotes the average error of the closed-weight model fclose, where (x, y) is the multiple-choice52

question-answer pairs generated from each p
(i)
j by prompting a question generator LLM g(·), and53

1[·] is an indicator function. To avoid the accidental error triggered by the prompt sensitivity of fclose,54

we rephrase each question multiple times and generate semantically equivalent variants. To simplify,55

we use TS for TS(fclose) in the later sections.56

2.1 Stochastic Error Ascent57

To achieve our optimization objective in Eq. (1), we propose a multi-step stochastic error ascent58

(SEA) algorithm. Generally, SEA iteratively performs error-based subset updates with hierarchical59

error-related retrieval until we reach the budget C. During the error-related retrieval, we construct60

a relation directed acyclic graph (relation DAG) with the source errors as nodes and error relations61

across each timestamp as edges. We further prune the source error by tracking the quality of the62

per-step source error. We present the overall algorithm in Alg. 1.63

Error-based subset update. Given a large K, it is nearly impossible to let fclose go through all64

questions generated from p ∈ K to find an optimal set of paragraphs Ŝ that can achieve the Eq.(1)65

under a limited budget. Therefore, we consider updating S iteratively. At timestamp t, we find a66

batch of candidate paragraphs Pt =
{
p
(1)
t , · · · , p(|Pt|)

t

}
from K that can maximize the probability67

of TSt∪Pt > TSt , which can be represented as:68

St+1 = St ∪ argmax
Pt⊂K

Pr (TSt∪Pt
> TSt

) . (3)

We solve Eq.(3) by focusing on paragraphs that resemble the error-inducing examples. Specifically,69

we target regions in K that are likely to further challenge the model, resulting in retrieving an error-70

related batch E that is semantically similar to a set of source error paragraphs: P(t)
source ⊂

⋃t
i=1 Si.71

Here, P(t)
source comprises paragraphs for which the LLM exhibits a high error rate (i.e., T{p} > ξ for72

all p ∈ P(t)
source, with ξ being a predefined error threshold). Practically, we retrieve the error-related73

batch E by ranking candidates from K based on their semantic similarity to P(t)
source, using tools74

such as Sentence Transformers (Reimers & Gurevych, 2019), and selecting the top-k candidates.75
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Given a Sentence Transformer fs : p→ Rd, where d is the embedding dimension, we can define the76

error-related batch as:77

E = FindSim(K,P(t)
source) =

pc | pc ∈
⋃

ps∈P(t)
source

Topk

(
fs(ps) · fs(K)
∥fs(ps)∥∥fs(K)∥

) , (4)

where fs(K) = [fs(p1), · · · , fs(p|K|)]
⊤. To improve the efficiency of calculating Eq.(4), we perform78

hierarchical retrieval from document to paragraph levels. We first pre-process the embeddings for the79

abstract of all documents di ∈ K asDabs, where di contains a set of paragraphs that can be represented80

as {p(i)1:Mi
}. We then retrieve a set of candidate error-related documents Dc by performing Eq.(4)81

between Dabs and Psource, i.e., Dc = FindSim(Dabs,Psource). Finally, we retrieve error-related batch82

E by comparing the paragraphs in document Dc and source errors, i.e., E = FindSim(Dc,Psource).83

In this way, we finish the hierarchical retrieval.84

Relation DAG construction and source pruning. To identify systematic issues in fclose, such85

as flaws localized within specific regions of the knowledge base, we construct a relation DAG86

G = (P(t)
source, E(P(t)

source,P(t+1)
source )). G is constructed by linking each paragraph p ∈ P(t)

source to its top87

semantically similar error-inducing paragraphs in P(t+1)
source , based on the hierarchical error-related88

retrieval described above, forming directed edges that represent potential error propagation paths. We89

then assess the quality of Psource based on cumulative error. We define the cumulative error πG(p)90

for paragraph p ∈ Psource as the average error across its descendants’ error:91

πG(p) =
1

|DescE(p)|
∑

v∈DescE(p)

T{v}, (5)

where DescE(p) denotes all descendants of p that can be reached via the edge space E . We prevent92

loops in G by removing new source errors in each step from K (line 11 in Alg. 1). We then perform a93

threshold filter according to πG(p) at each step to prune Psource.94

3 Comparing Stochastic Error Ascent with Baselines95

Knowledge base details. We collect a large-scale English-based knowledge base from96

Wikipedia (Wikipedia contributors, 2004), comprising 7.1M documents and 28.8M paragraphs97

across 13 top-level categories with hierarchical subcategories.98

Evaluation protocol. We use an LLM generator (gpt-4o) to generate and rephrase questions for99

each paragraph. Specifically, the LLM generator will take a paragraph as input and output a list of100

questions in JSON format. We perform the human evaluation of the generated questions and put101

the quality analysis in Sec. A. We compute accuracy for the questions answered by all models by102

comparing the ground truth answer provided by the LLM generator and the answer from the testee103

models. We formulate all the questions with the same template for all testee models.104

Implementation details. For fclose selection, besides widely used closed-weight models, we also105

simulate open-weight models in the closed-weight setting to expand the scope of evaluation. Specif-106

ically, we evaluate GPT-series models: gpt-4o (OpenAI et al., 2024), gpt-4o-mini (OpenAI,107

2024a), and o1-mini (OpenAI, 2024b), and DeepSeek-series models: Deepseek-V3 (Liu et al.,108

2024), Deepseek-R1, and R1-Distill-Llama-70B (DeepSeek-AI et al., 2025). We also include109

two widely used models hosted on DeepInfra1: Qwen2.5-72B-Instruct (Qwen et al., 2025) and110

Llama-3.3-70B-Instruct (Grattafiori et al., 2024). We adopt mGTE (Zhang et al., 2024b) as our111

Sentence Transformer model for hierarchical retrieval. We set the decoding parameters to temperature112

0.1 and top-p 0.9 for deterministic responses. Thresholds for source error judgment and source error113

pruning are set to ξ = γ = 0.5. We use the average accuracy across the 25 generated questions for114

source error judgment. We set the k as 50 in Eq.(4) and randomly select 40 paragraphs from the115

retrieved paragraphs as the error-related batch E. For the initial batch B, we uniformly retrieve 40116

paragraphs from 13 predefined Wikipedia categories.117

Baselines and budget settings. Research on automatically generating questions to self-discover118

misinformation and vulnerabilities in LLMs remains limited. We select two closely related methods,119

1https://deepinfra.com/
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Figure 1: Comparison of errors discovered by ACD, AutoBencher, and SEA. We compare ACD with SEA
among the same budget while comparing AutoBencher among the same question size. For ACD, we summarized
the number of failed tasks, and for SEA, we summarized the number of source errors. We let AutoBencher
create 13 benchmarks, each of which takes one of the Wikipedia categories as an interesting topic. We let SEA
search the same number of questions according to each model. o1-mini failed on ACD due to the violation of
the prompt usage policy from OpenAI.

Automated Capability Discovery (ACD, Lu et al. (2025)) and AutoBencher (Li et al., 2024a), as120

baselines to compare the ability of error discovery and cost. In our experiments, we use gpt-4o as121

the generator model for task/benchmark generation for ACD and AutoBencher. We let ACD take122

one of the Wikipedia topics as seed tasks for task generation, and let AutoBencher use all categories123

as interest topics and generate 13 benchmarks, including 2,000 questions in total. We adopt two124

different budget settings for SEA according to the features of ACD and AutoBencher. Specifically,125

we set the budget as 20,000 API calls for fclose plus the cost for QA generation when comparing with126

ACD, and the budget as AutoBencher to generate 13 benchmarks when comparing with AutoBencher.127

3.1 Results128

Comparing with ACD We first compare the number of errors ACD and SEA discovered among129

the same budget, including question generation and testee inference. Specifically, we let ACD130

start searching from a free-style handwritten task conditioning on one of the 13 general Wikipedia131

categories and summarize the error tasks discovered by ACD. Error tasks and source errors both reflect132

LLM misinformation in a category. Therefore, we summarize the comparison results between error133

tasks and source errors found by ACD and SEA, respectively, for each model across 13 categories in134

Fig. 1. We can observe a significant gap between the number of errors found by SEA and ACD. SEA135

can discover at most 55.83 times as many as the errors of ACD on DeepSeek-V3 model.136

Comparing with AutoBencher We compare the error rates of questions generated by SEA and137

AutoBencher. Specifically, we let AutoBencher generate 13 benchmarks, each corresponding to a138

distinct Wikipedia category as the input topic. We then concatenate all benchmarks as one (resulting139

in 2,000 questions) and evaluate all models based on it. We compare the error rate between the140

AutoBencher benchmark and the error rate on an equal number of questions generated by SEA. The141

results are summarized in Fig. 1. As shown in Fig. 1, SEA outperforms AutoBencher across all142

evaluated models in terms of error rate. The average error rate across all models is 0.38 for SEA143

versus 0.30 for AutoBencher, reflecting a 26.7% increase in error detection efficiency.144

4 Conclusion145

In this work, we introduced stochastic error ascent (SEA) that can discover knowledge deficiencies146

of language models on a massive knowledge base. SEA identify knowledge deficiencies in closed-147

weight LLMs by framing it as a budget-constrained stochastic optimization process. SEA surpass148

previous baselines, including ACD and AutoBencher, by uncovering 40.72 times and 26.7% more149

errors, respectively, at 599 and 9 times lower cost per error. SEA achieves a 100% human pass rate150

on generated questions, exposes distinct error clusters across models such as gpt-4o, DeepSeek-V3,151

and o1-mini, and delivers critical insights for enhancing model reliability.152
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Algorithm 1: Stochastic Error Ascent

Input: Knowledge base K, closed-weight model fclose, budget C, random initial paragraph set B,
threshold ξ and γ.

Output: Optimal paragraph set Ŝ
1 Initialization: t← 1, cost← 0, St ← ∅, P(t)

source ← ∅
2 while cost < C do
3 if t = 1 then
4 E ← B ▷ No source error at step 1; use random initial batch.
5 else
6 E ← FindSim(K,P(t)

source) ▷ Eq.(4): Sample an error related candidate batch.
7 St+1 = St ∪ E ▷ Update the target subset.
8 P(t+1)

source ← P(t)
source

⋃{
p ∈ E | T{p} > ξ

}
▷ Update source error set.

9 K ← K \
{
p ∈ E | T{p} > ξ

}
▷ Remove new source error from K to avoid loop.

10 Gt+1 ←
(
P(t+1)

source , E
(
P(t)

source,P(t+1)
source

))
▷ Update relation DAG.

11 P(t+1)
source ← P(t+1)

source \
{
p ∈ P(t+1)

source | πGt+1
(p) < γ

}
▷ Eq.(5): Pruning Psource.

12 cost← cost(TE(fclose)) ▷ Update cost. We did one-time inference on E.
13 t← t+ 1

14 return Ŝ
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Figure 2: Per-step error TE(fclose) and cumulative error TS(fclose) for each model. We observe that the errors
of all models are positively related to step, indicating SEA can gradually and continually find the model’s
knowledge deficiencies from the knowledge base.

A Analyzing Stochastic Error Ascent475

Validating with human evaluation. In this study, we utilize gpt-4o as the question-answer generator.476

We assess the quality of its outputs through a human evaluation involving five college-level students,477

who verify the truthfulness of the generated answers by cross-referencing them with corresponding478

paragraphs in the knowledge base, mirroring the input provided to the generator. From 1,000479

randomly selected questions generated across 20 steps, our evaluation achieved a 100% human pass480

rate, confirming that all answers were both present and correct within the associated paragraphs,481

consistent with the results in Li et al. (2024a), which also uses LLM as a question generator with482

Wikipedia documents.483

Convergence analysis. To analyze the convergence behavior of SEA, we conduct an empirical484

study, given the inaccessibility of internal activations in closed-weight models during the search485

process. We track both the cumulative error TS(fclose) and per-step error TE(fclose) over 20 iterations486

of SEA (Fig. 2). For cumulative error (left), we observe a steep initial increase followed by a plateau487

across all models, indicating that SEA rapidly identifies high-impact errors early in the search, then488

gradually uncovers subtler or less frequent failure modes. Notably, models such as o1-mini and489

R1-Distill-Llama-70B exhibit higher peak cumulative errors, while DeepSeek-R1 shows a more490

gradual ascent. Per-step error (right) further highlights the adaptability of SEA, as it consistently491
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Figure 3: Ablation studies on the component contribution of SEA. We compare SEA with its two variants:
without source pruning (i.e., pass the lines 10 and 11 in Alg. 1) and random selection (i.e., pass the lines 9, 10,
and 11 in Alg. 1). We observe that each component contributes equally to SEA.

Model Cost DeepSeek-R1 R1-Distill-Llama-70B o1-mini DeepSeek-V3 Llama-3.3-70B Qwen2.5-72B gpt-4o-mini gpt-4o
Generation Cost (US $) 28.163 28.660 31.094 30.208 29.776 29.542 28.243 32.897
Inference Cost (US $) 48.360 7.888 39.708 1.261 0.868 0.37 0.347 7.905
Inference Output Tokens 19,608,736 10,836,882 8,507,015 380,099 1,024,942 272,566 125,117 308,145

Table 1: Question generation cost, inference cost, and output tokens at inference time across 20 steps (results
in Fig.2; 20,000 questions in total). We can see a significant gap between reasoning models (DeepSeek-R1,
R1-Distill-Llama-70B, and o1-mini) and other non-reasoning models.

uncovers challenging inputs. The slope of per-step error varies across models: gpt-4o-mini shows492

a relatively flat trajectory, while o1-mini and DeepSeek-V3 show steeper climbs.493

Ablation studies. SEA has two significant procedures: (1) collecting and updating the source error494

set (line 9 in Alg. 1) and (2) directed graph construction and source pruning (lines 10 and 11 in495

Alg. 1). Procedure Two relies on the result from Procedure One. To analyze the contribution to both496

procedures, we conduct two ablation experiments on four selected LLMs (Qwen2.5-72B-Instruct,497

gpt-4o, Llama-3.3-70B-Instruct, and DeepSeek-V3) by removing procedure one and both498

procedures to create two variants of SEA: (i) w/o pruning and (ii) random selection. For the499

random selection, we change all error-related batches into random batches where we randomly select500

paragraphs from the knowledge base. We summarize the results in Fig. 3, from which we observe501

that the contribution of each procedure to SEA is linearly increasing. The cumulative error of random502

selection barely increases, while the gap between SEA and w/o pruning variant starts increasing after503

a few steps, indicating that low-quality sources that haven’t been pruned by the cumulative error start504

negatively affecting SEA.505

Cost Analysis We summarize all the model’s costs for Fig. 2 results in Tab. 1. We use506

cloud API served by DeepSeek and DeepInfra for all open-sourced models (DeepSeek-R1,507

R1-Distill-Llama-70B, DeepSeek-V3, Llama-3.3-70B, and Qwen2.5-72B), and our cost calcu-508

lation is based on their token price per million tokens. We observe that the variance for the generation509

cost is low, while that for the inference cost is high. A significant difference can be discovered by510

looking into the inference cost between reasoning models (DeepSeek-R1, R1-Distill-Llama-70B,511

and o1-mini) and other non-reasoning models. DeepSeek-R1 has extremely long inference token512

length even for the multiple choice questions, which causes the highest cost, though its price-per-token513

is lower than o1-mini and gpt-4o.514

B Analyzing LLMs from the Discovered Deficiencies515

Query 1: How does the model perform on other LLMs’ optimal subset? In this study, we search516

for eight LLMs’ deficiencies and consequently create eight unique optimal subsets according to517

Eq. 1. We conduct the cross-validation by testing each model (testee) on the other models’ (providers)518

subsets, with correlation and accuracy results summarized in Fig. 42. Our analysis revealed an asym-519

metrical correlation pattern, where the direction of testing significantly influenced outcomes—for520

instance, gpt-4o-mini as the testee exhibited a high correlation (0.917) with gpt-4o as the provider,521

yet the reverse yielded a notably lower correlation (0.423), suggesting that gpt-4o-mini may be a dis-522

tilled variant optimized to emulate gpt-4o’s behavior, while its subset highlights divergent behaviors.523

Models from similar families, such as gpt-4o and gpt-4o-mini, demonstrated higher correlations,524

2We omit the DeepSeek-R1 due to the budget limitation.

12



Llam
a-3

.3-7
0B

-In
stru

ct

Deep
See

k-R1

-Disti
ll-L

lam
a-7

0B

Deep
See

k-V3

Qwen2.5
-72

B

-In
stru

ct
o1-m

ini

gpt-4
o-m

ini
gpt-4

o

Subset Provider

Llama-3.3-70B
-Instruct

DeepSeek-R1
-Distill-Llama-70B

DeepSeek-V3

Qwen2.5-72B
-Instruct

o1-mini

gpt-4o-mini

gpt-4o

Te
ste

e

1.000 0.576 0.511 0.466 0.479 0.503 0.503

0.524 1.000 0.488 0.463 0.520 0.477 0.479

0.490 0.490 1.000 0.419 0.495 0.484 0.499

0.445 0.461 0.455 1.000 0.491 0.490 0.492

0.450 0.488 0.415 0.424 1.000 0.472 0.461

0.495 0.506 0.437 0.472 0.522 1.000 0.917

0.428 0.442 0.470 0.369 0.448 0.423 1.000

Result Correlation Between Testee and Provider

Llam
a-3

.3-7
0B

-In
stru

ct

Deep
See

k-R1

-Disti
ll-L

lam
a-7

0B

Deep
See

k-V3

Qwen2.5
-72

B

-In
stru

ct
o1-m

ini

gpt-4
o-m

ini
gpt-4

o

Subset Provider

0.531 0.569 0.525 0.602 0.599 0.667 0.665

0.523 0.537 0.482 0.579 0.526 0.655 0.656

0.542 0.569 0.490 0.625 0.596 0.692 0.689

0.513 0.556 0.507 0.537 0.561 0.628 0.629

0.380 0.394 0.351 0.422 0.418 0.506 0.515

0.451 0.499 0.461 0.502 0.518 0.603 0.586

0.559 0.621 0.562 0.652 0.633 0.719 0.603

Testee Accuracy on Provider's Test Set

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Figure 4: Comparison of cross-validation between each model. X-axis indicates the subset provider (i.e., Ŝ
provider; sourced from experiments in Fig. 2), and Y-axis denotes the testee. We summarize two results: (1)
correlation between testee result and provider result, and (2) accuracy of testee on each provider’s results. The
higher the correlation, the more similar the answers of the two models are. Similarly, the higher the testee’s
accuracy, the more challenging the provider’s question.

Cluster ID Models Main Categories Error Pattern

3
gpt-4o
DeepSeek-V3
o1-mini

Culture and the arts

(1) Challenging in Chronological Analysis
(2) Unfamiliar with Locational Details
(3) Issues in Pattern Recognition
(4) Inaccurate Data Synthesis
(5) Collaborative and Relational Patterns

5
Qwen2.5-72B-Instruct
Llama-3.3-70B-Instruct
R1-Distill-Llama-70B

Health and fitness
Natural and physics science

(1) Challenges with Chronological and Historical Data
(2) Issues with Contextual and Performance-Related Information
(3) Inaccurate Interpretation of Patterns and Trends
(4) Over-reliance on Assumptions and Generalizations
(5) Difficulty with Contextual Associations and Identifications

Table 2: Error patterns for models in cluster 3 and 5 in Fig. 5. We aggregate error patterns from the question
level to the paragraph level and finally to the model level.

indicative of shared output patterns, whereas cross-family comparisons, like Llama-3.3-70B versus525

gpt-4o, showed moderate correlations (0.4–0.5). The accuracy matrix illustrates model performance526

across subsets generated by different providers, with gpt-4o and gpt-4o-mini’s subsets being less527

challenging, yielding higher accuracies from testee models, while DeepSeek-V3’s subset posed a528

greater difficulty, and o1-mini consistently underperformed, underscoring varying model capabilities529

and subset complexities.530

Query 2: What kind of knowledge do the models lack? To investigate this, we visualize the531

source error p ∈ Psource in Ŝ of each model by compressing the embedding of Psource with t-532

SNE (Van der Maaten & Hinton, 2008) in Fig. 5. We mark different models in different colors, and533

different Wikipedia categories in different marker shapes. We can see that gpt-4o, DeepSeek-V3,534

and o1-mini overlap highly, with errors concentrated in culture and the arts. gpt-4o-mini and535

DeepSeek-R1 have unique clusters, less overlapping with other models, while both weaknesses536

include history and events, and society and social science. We also notice that DeepSeek-V3,537

R1-Distill-Llama-70B, and Qwen2.5-72B-Instruct have error overlap on health and fitness,538

and natural and physical sciences, while Qwen2.5-72B-Instruct also has its only cluster on tech-539

nology and applied sciences, general reference, natural and physical sciences, and history and events.540

Errors from Llama-3.3-70B-Instruct have overlap with DeepSeek-R1-Distill-Llama-70B541

on history and events, indicating the possible inherent relationship between these two models. We542

observe that a wide range (5 out of 13) of categories can trigger o1-mini’s error, including culture543

and the arts, society and social sciences, general reference, philosophy and thinking, and history544

and events, indicating a significant gap of training data and training strategies between o1-mini and545

other models.546
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gpt-4o, DeepSeek-V3, and o1-
mini: Mainly about culture and 
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Figure 5: Error distribution of each testee model. We search with the same initial set from thirteen categories of
Wikipedia. We visualize the results by t-SNE without a clustering algorithm. Each point in the figure denotes the
corresponding model’s source error p ∈ Psource. Different colors denote different models, and different markers
denote different categories. We can observe natural clusters of each model discovered by SEA according to their
knowledge omission areas.

Query 3: What pattern causes a model to fail in a specific category? To understand the behavior547

of a model’s error, we aggregate the question-level error into paragraph-level errors and further548

summarize them as the model’s error behavior. We choose clusters 3 and 5 in Fig. 5 and perform the549

multi-level aggregation by prompting an LLM to retrieve question-level error pattern, paragraph-level550

pattern, and finally the model and cluster-level error pattern. We only analyze clusters 3 and 5 for551

budget reasons and summarize the error patterns in Tab. 2. The models in cluster 3 appear to have552

difficulties with tasks requiring historical context, spatial awareness, and relational reasoning in the553

domain of culture and arts. The models in cluster 5 seem to have broader issues with contextual554

understanding and precision, particularly in domains requiring empirical rigor. Both clusters exhibit555

challenges with chronological analysis and pattern recognition, indicating that these might be common556

limitations across various LLMs when dealing with complex domains.557

C Related work558

Dynamic benchmarking. Static benchmarks (Chen et al., 2021; Hendrycks et al., 2021b,a; Song559

et al., 2023; Liang et al., 2024; Yue et al., 2024; Li et al., 2024b; Yang et al., 2024; Wang et al., 2024b;560

Jain et al., 2024; Shi et al., 2024, 2025; Phan et al., 2025) suffer from data leakage and high building561

costs. Dynamic frameworks address this via automated, evolving data generation. Dynabench (Kiela562

et al., 2021) integrates human-model interaction, while Task Me Anything (Zhang et al., 2024a)563

enables scalable, user-driven evaluation. Recent work—DyVal (Zhu et al., 2024a,b), UniGen (Wu564

et al., 2024), and Benchmark Self-Evolving (Wang et al., 2024a)—employs probing agents and multi-565

agent systems for iterative refinement. AutoBencher (Li et al., 2024a) casts benchmark construction566

as optimization to surface model flaws but remains limited by static templates or annotated data567

(Huang et al., 2025). In contrast, SEA adopts a fully adaptive, error-driven probing strategy using568

relation DAG to uncover failures.569

Model behavior understanding. We investigate factual knowledge modeling in LLMs, focusing570

on distinguishing correct from plausible-but-false outputs—a challenge rooted in their latent fac-571

tual encoding (Petroni et al., 2019). Techniques such as gradient-guided prompt generation (Shin572

et al., 2020), systematic prompt design (Jiang et al., 2020), and tools like Automated Capability573

Discovery (Lu et al., 2025) further expand the evaluation scope. EvalTree (Zeng et al., 2025) further574

reveals vulnerabilities via hierarchical capability trees. However, reliance on hand-crafted prompts or575

constrained queries limits their efficacy in surfacing nuanced misinformation.576
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Figure 6: Error distribution of each testee model. We search with the same random initial set from Wikipedia
without specifying specific topics. We visualize the results by t-SNE without a clustering algorithm. Each
point in the figure denotes the corresponding model’s source error p ∈ Psource. Different colors denote different
models, and different markers denote different categories.

D Extra Analysis and Case Studies577

Query 4: Will LLM produce misinformation on its unknown knowledge? In order to investigate578

this question, we randomly sampled 5 questions from the gpt-4o optimal subset, specifically selecting579

those where SEA previously identified factual errors or vulnerabilities in LLMs, representing unknown580

knowledge. In this experiment, we modify these questions into a free-response format using gpt-4o581

and retest them on gpt-4o. Errors such as Tab. 3 (incorrect doctoral year), Tab. 4 (misidentified582

event), Tab. 5 (wrong attribution of artist and medium), Tab. 6 (misattributed venue), and Tab. 7583

(erroneous exhibition location) clearly show that when LLM encounter unknown knowledge, they584

may produce misinformation, as highlighted by the underlined errors in each example.585

Query 5: Will LLM exhibit memory-context conflict when answering questions related to586

the detected deficiencies? Memory-context conflicts are known as conflicts between pre-trained587

parametric knowledge and retrieved information (Su et al., 2024; Zhao et al., 2025). To evaluate588

whether LLM exhibits such a memory-context conflict when addressing questions probing their589

deficiencies, we randomly sampled 1000 incorrect questions from the gpt-4o QA set and augmented590

each with its corresponding retrieved factual context, testing on gpt-4o. Despite this external591

supplementation, the accuracy of gpt-4o improved only to 28.6%, indicating that the model adopts592

the provided context in merely about one-third of cases while predominantly relying on its pre-trained593

internal knowledge in the remaining instances. This outcome indicates that even essential external-594

augmented information may not sufficiently override LLM’s entrenched memory. Therefore, our595

findings mean that LLM do exhibit a clear memory-context conflict. The relevant testee prompt is596

listed in Tab. 12.597

Query 6: What deficiencies can be discovered from a random initial set without category598

constraints? As described in Sec. 3, our random initial batch is uniformly sampled across 13599

Wikipedia categories. However, the downstream task may lack well-defined categories. To investigate600

the solution, we test six models (gpt-4o, gpt-4o-mini, o1-mini, Qwen2.5-72B-Instruct,601

DeepSeek-R1-Distill-Llama-70B, and DeepSeek-V3) by adopting a complete random initial602

batch without any topic constraint when performing SEA. We search each model for 20 steps with the603

same setting as described in Sec. 3, summarizing the topic from each model by LDA (Blei et al., 2003)604

and aggregating the topic from all models into 10 general topics, including: Baseball, American605

Football, Metro/Railway/Transportation Projects, Swimming/Paralympic/Olympic606

Sports, Music, Soccer/Association Football, Simple Time/Date/Day Mentions,607

College Football Polls/All-American Lists, Coaching/Teams/Seasons, and Russian608

Localities/Districts. These topics are mainly about sports and health, identifying sys-609
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Example 1

Title:
James B. Stump/Career

Original question:
What year did James B. Stump receive his doctoral degree from Boston University?

Ground true answer:
2000

Modified question:
Discuss the year in which James B. Stump was awarded his doctoral degree from Boston
University.

Misinformation:
James B. Stump was awarded his doctoral degree from Boston University in 1998.

Table 3: Example 1 for query 4. The correct doctoral year is "2000", but the misinformation incorrectly states
"1998". The incorrect information has been highlighted using underlines.

tematic failure patterns of different LLMs in this area. We further visualize the result of the610

source error in Fig. 6. We first observe a similar distribution as in Fig. 5, where gpt-4o,611

DeepSeek-V3, and o1-mini share similar failure patterns, while Qwen2.5-72B-Instruct and612

DeepSeek-R1-Distill-Llama-70B share similar failure patterns. We notice a large volume of613

DeepSeek-R1-Distill-Llama-70B and o1-mini aligns with the observation in Fig. 5. We also614

observe that gpt-4o, DeepSeek-V3, and o1-mini mainly fail in music-related paragraphs, while615

gpt-4o-mini mainly fails in Baseball and Transportation project-related topics.616

Query 7: How can we extend the searching scope? Following the settings in Zhang et al. (2024a),617

we try fitting a BERT (Devlin et al., 2019) model to identify if a paragraph from a knowledge base618

can trigger an LLM’s error. We first collect 4,402 retrieved paragraphs from 50 rounds of SEA619

searching process on gpt-4o. We annotate the paragraphs as 0 if the average accuracy across the620

generated questions is lower than 0.5, and 1 otherwise. The collected paragraphs are split into621

training, validation, and test sets, respectively, with the ratio 8:1:1. We adopt early-stopping to622

prevent overfitting according to the validation performance. We tried the bert-base-uncased and623

bert-large-uncased respectively. The bert-base-uncased achieves 66.22% average accuracy624

on the test set, while bert-base-uncased achieves 67.85% average accuracy. These results suggest625

that larger BERT models can capture the subtle semantic cues that differentiate paragraphs likely to626

mislead an LLM. However, the overall performance indicates that this is a challenging classification627

task, potentially due to the noisy or indirect relationship between paragraph content and downstream628

model behavior.629

E Prompt of SEA630

This section is supplemented with some additional details when implementing the pipeline of SEA,631

which is introduced in Section 2.1. To be more specific, Tab 8, Tab 9, Tab 10, Tab 11, and Tab 12632

are prompts for multiple choice question generation, question rephrasing, analyzing error pattern,633

SEA testee model, and testee model in query 5, respectively.634
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Example 2

Title:
Mimi Cherono Ng’ok/Group exhibitions

Original question:
In which event was the series "Do You Miss Me? Sometimes, Not Always" by Mimi Cherono
Ng’ok included?

Ground true answer:
African Photography Encounters

Modified question:
Discuss the event in which Mimi Cherono Ng’ok’s series "Do You Miss Me? Sometimes,
Not Always" was included. Provide details about the event and its significance.

Misinformation:
Mimi Cherono Ng’ok’s photographic series "Do You Miss Me? Sometimes, Not Always" was
included in the 2019 Whitney Biennial, a prestigious contemporary art exhibition held at
the Whitney Museum of American Art in New York City. The Whitney Biennial is one of the
most significant events in the art world, known for showcasing the latest trends and emerging
voices in American art. It serves as a barometer of contemporary art in the United States, often
highlighting diverse perspectives and innovative practices.The 2019 edition of the Biennial
was particularly noted for its focus on issues of identity, social justice, and the political climate,
reflecting the broader cultural and social dynamics of the time. Mimi Cherono Ng’ok’s work,
which often explores themes of memory, displacement, and emotional landscapes, fit well
within this context. Her series "Do You Miss Me? Sometimes, Not Always" delves into
personal and collective narratives, capturing the nuances of absence and longing through
evocative imagery.The inclusion of Ng’ok’s work in the Whitney Biennial not only elevated
her profile as an artist but also contributed to the broader discourse on contemporary African
art and its place within the global art scene. Her participation underscored the Biennial’s
commitment to presenting diverse artistic voices and addressing complex themes that resonate
with audiences worldwide.

Table 4: Example 2 for query 4. The proper event is "African Photography Encounters," yet the misinformation
erroneously identifies it as the "2019 Whitney Biennial". The incorrect information has been highlighted using
underlines.
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Example 3

Title:
Museo Nacional Centro de Arte Reina Sofía/Gallery

Original question:
Identify the artist and medium for the 1923 painting ’Portrait of Tristan Tzara’.

Ground true answer:
Robert Delaunay, oil on cardboard

Modified question:
Describe the artist and the medium used for the painting ’Portrait of Tristan Tzara’ created in
1923.

Misinformation:
The painting ’Portrait of Tristan Tzara’ was created by the Romanian avant-garde artist
Marcel Janco in 1923. Marcel Janco was a key figure in the Dada movement, which was
known for its anti-establishment and anti-art sentiments. The medium used for this painting is
oil on canvas. Janco’s work often incorporated elements of abstraction and cubism, reflecting
the experimental and revolutionary spirit of the Dada movement. Tristan Tzara, the subject of
the portrait, was a prominent Dada poet and one of the movement’s founders, making this
painting a significant piece in the context of early 20th-century avant-garde art.

Table 5: Example 3 for query 4. It shows that the true artist and medium are "Robert Delaunay, oil on cardboard",
while the misinformation wrongly lists "Marcel Janco" and "oil on canvas". The incorrect information has been
highlighted using underlines.

Example 4

Title:
Paa Joe/Exhibitions/Solo and group exhibitions

Original question:
Identify the venue that hosted the "Six Feet Under" exhibition during the years 2007 and 2008.

Ground true answer:
Deutsches Hygiene-Museum, Dresden

Modified question:
Describe the venue that hosted the "Six Feet Under" exhibition during the years 2007 and
2008.

Misinformation:
The "Six Feet Under" exhibition was hosted at the Kunstmuseum Bern in Switzerland
during the years 2007 and 2008. The Kunstmuseum Bern is renowned for its extensive
collection of fine art, ranging from the Middle Ages to contemporary works. The museum
is situated in the Swiss capital, Bern, and is known for its modern architectural design that
complements its historical setting. The "Six Feet Under" exhibition explored themes related to
death and the afterlife, featuring a diverse array of artworks that engaged with these profound
topics.

Table 6: Example 4 for query 4. In Example 4, the accurate venue is "Deutsches Hygiene-Museum, Dresden", but
the misinformation mistakenly mentions "Kunstmuseum Bern". The incorrect information has been highlighted
using underlines.
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Example 5

Title:
Clare Kenny/Selected exhibitions

Original question:
Which art space featured Clare Kenny’s "If I was a Rich Girl" in 2019?

Ground true answer:
Kunst Raum Riehen

Modified question:
Identify the art space that showcased Clare Kenny’s exhibition titled "If I was a Rich Girl" in
the year 2019. Provide details about the venue and its significance in the art community if
possible.

Misinformation:
Clare Kenny’s exhibition titled "If I was a Rich Girl" was showcased at VITRINE in 2019.
VITRINE is a contemporary art gallery located in London, known for its unique exhibition
format that utilizes both a window gallery space and an interior gallery. This allows for art to
be viewed from the street, making it accessible to a broader audience. VITRINE has gained a
reputation for supporting emerging and mid-career artists, providing them with a platform to
present innovative and experimental works. The gallery’s commitment to showcasing diverse
and thought-provoking art has made it a significant player in the contemporary art scene.

Table 7: Example 5 for query 4. Original testing process correctly names the venue as "Kunst Raum Riehen",
in contrast to the misinformation’s incorrect attribution to "VITRINE".The incorrect information has been
highlighted using underlines.
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Prompt for Multiple Choice Question-answer Pair Generation

According to the following title and context, reply with {num_of_qa} multiple-choice
questions and a statement based on the question.

## Title
{title}

## Context (Only you can see this context)
{context}

## Requirement
- Each question should include 4 options.
- The context is only for you to generate the question. Therefore, your question should not
redirect to this context, like “according to the provided context...”.
- Your question should include enough information that can help the testee to understand the
background.
- Your reply should follow the given JSON format.

## Reply format

[
{

"question": "QUESTION CONTENT",
"options": ["A: ...", "B: ...", "C: ...", "D: ..."],
"statement": "STATEMENT OF THIS QUESTION.",
"answer": "CHOICE FROM THE OPTIONS. For example, A"

},
...

]

Table 8: The prompt for multiple choice question generation.
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Prompt for Question Rephrasing

According to the following title, context, and question, reply with {num_of_qa} rephrased
questions and the corresponding answers. Your question should provide sufficient content to
avoid ambiguity. You should reply with JSON format as follows:

## Title
{title}

## Context (Only you can see this context)
{context}

## Question
{question}

## Requirement
- Your question should have the same meaning as the provided question, only rephrased.
- The context is only for you to generate the question. Therefore, your question should not
redirect to this context, like “according to the provided context...”.
- Your question should include enough information that can help the testee to understand the
background.
- Your reply should follow the given JSON format.

## Reply format

[
{

"question": "QUESTION CONTENT",
"options": ["A: ...", "B: ...", "C: ...", "D: ..."],
"statement": "STATEMENT OF THIS QUESTION.",
"answer": "CHOICE FROM THE OPTIONS. For example, A"

},
...

]

Table 9: The prompt for Question Rephrasing.
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Prompt for Analyzing Error Pattern

Given a context, a question, and its corresponding incorrect solution, generate a gerund
phrase that thoroughly and precisely describes the **specific** skill or capability lacking
that causes the error.

## Context
{context}

## Question
{question}

## Correct Solution
{answer}

## Incorrect Solution
{llm_answer}

## Requirement
- The incorrect Solution is provided by a testee who cannot access the context. Your answer
should not mention that the skill is related to context information retrieval.
- The skill description should be an action-oriented gerund phrase that is **informative** and
**detailed**.
- The phrase should refer to a **specific** skill or capability that comprehensively covers the
key aspects of the solution, without including any context or specifics from the question or
solution.
- Avoid unnecessary elements unrelated to the core capability.
- Please output **only a gerund phrase** describing the skill, with NO additional text.

Table 10: The prompt for Analyzing Error Pattern.

Prompt for Testee Model

Given the topic: {topic}, answer the following question by choosing one option in Options:

Question:
{que}

Options:
{opts}

Your Answer (put your answer in \box{}):

Table 11: The prompt for Testee Model.
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Prompt for Testee Model in Query 5

Given the topic: {topic}, answer the following question by choosing one option from Options
below:

Question:
{question}

Retrieved Fact:
{input}

Options:
{options}

Answer:

Table 12: The prompt for Testee Model in Query 5.
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