
Under review as submission to TMLR

StructDrop: A Structured Random Algorithm Towards
Efficient Large-Scale Graph Training

Anonymous authors
Paper under double-blind review

Abstract

Training GNNs over large graphs is a long-standing challenge due to the inefficiency of
the message passing mechanism. Message passing, typically represented as the produc-
tion between sparse adjacency matrix and node features, is difficult to be accelerated with
commodity hardware, such as GPUs. Prior dropping based mechanism (e.g., edge or node
dropping), can be adopted to reduce the computation cost of sparse matrix multiplica-
tion. However, two under-explored pain points still persist in this paradigm: ① Inefficiency.
Dropping-based methods lack hardware efficiency. Such mechanism randomly remove non-
zero entries from edge indices, which later needs to be converted into sparse matrix format
for computational ease. This conversion may counteract the speedup gained from reduc-
ing FLOPs. ② Poor generalization. Previous sampling-based method utilizes a fixed subset
of nodes or edges to emphasize on efficiency, but sacrifice generalizability due to under-
fitting on the remaining subgraph. Aiming to promote the accuracy-efficiency trade-off, we
propose Structured Dropout, a.k.a, StructDrop. Specifically, we remove a set of selected
columns directly from the sparse adjacency matrix format, hence bypassing the sparse ma-
trix reconstruction and data access. To further mitigate the training shifting due to random
column-row pair dropping, we adopt instance normalization following the sparse production.
Comprehensive experiments on four benchmark datasets and four popular GNNs validate
the superiority of our framework: StructDrop achieves up to 5.29x end-to-end speedup with
negligible accuracy loss or even better accuracy compared with vanilla GNNs.

1 Introduction

Graph Neural Networks (GNNs) have made significant advancements in various graph-related tasks Hamilton
et al. (2017a); Hu et al. (2020); Ying et al. (2018); Jiang et al. (2022); Zhou et al. (2022; 2023). Specifically,
GNNs process the underlying graph structure and node features in a layer-wise manner with two interleaved
phases: aggregation and update. During the aggregation phase, each node accumulates messages from its
direct neighbors, which is computationally realized by sparse matrix-based operations to multiply the set
of node features with a sparse adjacency matrix. Following this, in the update phase, nodes transform the
aggregated features with a differentiable layer (e.g., multi-layer perceptron) dominated by dense matrix-based
operations.

Despite their strong performance, training GNNs is time-inefficient, especially on large graphs. As shown in
Figure 1, we analyze the fine-grained time cost of GNNs where SpMM and MatMul represents the sparse and
dense operators, respectively. Notably, the neighborhood aggregations included at forward and backward
propagations consume 70-90% of the total GNN training time, as supported by Han et al. (2023). This
inefficiency stems from the nature of sparse matrix operations, which require numerous random memory
accesses with minimal data reuse. Several works have highlighted that community hardware (e.g., CPUs and
GPUs) designed on the single-instruction multiple-data (SIMD) principle will struggle in efficiently accessing
neighborhood features with discontinuous indexes Duan et al. (2022); Han et al. (2016); Liu et al. (2023b).

Existing work towards reducing the time cost of neighborhood aggregation mainly adopt randomized drop-
ping algorithms, which can be roughly grouped into two categories. Firstly, edge-oriented dropping methods

1

Under review as submission to TMLR

Rong et al. (2019); Eppstein et al. (1997); Liu et al. (2023b) remove part of the edges randomly during
training, or deterministically in preprocessing stage. Secondly, node-oriented dropping methods Feng et al.
(2020); Chiang et al. (2019); Hamilton et al. (2017b) prune certain nodes and their associated edges from
the input graph. However, from the efficiency aspect, an issue with both approaches is that the overhead
from removing edges or nodes may counteract the speedup from the FLOPS reduction. Specifically, this is
due to the need to reconstruct the sparse adjacency matrix after removing edges or nodes from the input
graph, which involves processing the whole graph and is notably time-consuming.

A less explored method to speed up the aggregation phase is to use a fast but approximated version of the
SpMM instead of the exact one. To illustrate, consider a linear operation involving two matrices, A ∈ Rn×m

and B ∈ Rm×q. We first create reduced matrices A′ ∈ Rn×k and B′ ∈ Rk×q (k < m) by choosing k
representative columns from A and their corresponding rows from B, referred to as column-row pairs. This
approximation, AB ≈ A′B′, aims to reduce both the number of floating-point operations (FLOPs) and the
data that needs to be accessed, as only k/m of the column-row pairs are processed. This method avoids
the need to reconstruct a sparse matrix by structurally selecting entire columns and rows. Although this
approach has shown promise in other fields Adelman et al. (2021), our tests reveal that it significantly reduces
the accuracy of GNNs, leading to even a 8% loss in accuracy (as shown in Table 1) on standard datasets
and models, which is impractical for real-world applications.

Reddit ogbn-Arxiv ogbn-Products
Dataset

0

200

400

600

La
te

nc
y

(m
s)

353

82
23 17

755

323

Baseline StructDrop Baseline StructDrop Baseline StructDrop

Time Breakdown
Other
Matmul(forward)
Matmul(backward)
SpMM(forward)
SpMM(backward)

Figure 1: The time profiling of a three-layer GCNs
on different datasets. SpMM may take 70∼90% of the
total time. Our method (StructDrop) can reduce
the total training time by 6.48×. We measure the
time on a NVIDIA A40 GPU. The detailed software
and hardware information can be found in Appendix
A.

In this work, we promote the accuracy-efficiency
trade-off via approximating the sparse matrix pro-
duction in both the forward and backward pro-
cesses of GNNs. Based on the column-row pair
sampling, our core idea is to adapt the sampling
policy and normalize the result of SpMM to stably
approximate the neighbor aggregation. Specifically,
prior research suggests the probability of choosing
each column-row pair should be in proportion to the
production of the respective row norm and column
norm Drineas et al. (2006). Interestingly, we ob-
served that the column-row pairs selected in the for-
ward pass exhibited a remarkable consistency across
nearby iterations. We hypothesize that this consis-
tency will cause under-fitting problem as they only
utilize the same subset of nodes and edges during
training. Drawing from this insight, we propose a
straightforward strategy: the uniform selection
of column-row pairs. Namely, we assign the same
probability to be sampled for each column-row pair
and term such structured dropping as StructDrop.
Surprisingly, we found that this simple strategy can
often outperform the complicated norm-based one
in the graph learning problem. To further reduce
the negative impact of the variance from uniform sampling, we propose to utilize instance normalization
following the approximated production to stabilize the training process. In summary, our contributions are
summarized as follows:

• We explore to speedup GNN training from a novel randomized dropping perspective. We approx-
imate sparse matrix multiplication at forward and backward paths with sampling a subset of the
column-row pairs to reduce FLOPs and data access with accuracy preserved.

• We propose a hybrid solution of random dropping and normalization to maintain generalizabil-
ity with efficiency. We design a straightforward yet effective strategy, uniform sampling, which
overcomes underfitting in global graph. Additionally, we recommend incorporating instance normal-
ization into the sampling process so as to mitigate the embedding shift resulted from sampling.

2

Under review as submission to TMLR

• We conduct comprehensive experiments on seven popular GNNs and four large graphs. Compared
with vanilla GNN, our achieve up to 5.29x speedup with negligible accuracy loss or better accuracy.
We obtain a superior efficiency or accuracy while keeping the other metric comparable with other
baselines.

2 Preliminaries and Background

2.1 Graph Neural Networks

We consider an undirected graph G = (V, E), where V and E denote the sets of nodes and edges, respectively,
of size N = |V| and E = |E|. Let A ∈ Rn×n denote the adjacency matrix, Ai,j = 1 if (vi, vj) ∈ E else Ai,j = 0,
and let X ∈ Rn×d denotes the feature matrix. Based on the spatial message passing, GNNs learn the node
representation through aggregating the neighbors’ embeddings and combining with itself layer by layer. For
example, the node embedding learning at the lth layer of Graph Convolutional Network (GCN) Kipf &
Welling (2017) is defined as:

H(l) = ÃX(l−1)W (l), X(l) = ReLU(H(l)), (1)

where X(l) ∈ RN×d is the node embedding matrix at the lth layer and X(0) = X; Ã = D̃− 1
2 (A + I)D̃− 1

2 is
normalized adjacency matrix, D̃ is the diagonal degree matrix of A+I; W (l) ∈ Rd×d is trainable weight. In
practice, Ã is often stored in sparse matrix format like compressed sparse row (CSR) to save the computation
cost Fey & Lenssen (2019). Each training step has two phases, i.e., forward and backward passes. From the
implementation perspective, its computation can be written as:

Forward Pass J (l) = MatMul(X(l−1), W (l)),
H(l) = SpMM(Ã, J (l)), (2a)

Backward Pass ∇J (l) = SpMM(Ã⊤, ∇H(l)), (2b)
∇X(l−1) = MatMul(∇J (l), W (l)),

∇W (l) = MatMul(X(l−1)⊤, ∇J (l)),

where SpMM(·, ·) is the Sparse-Dense Matrix Multiplication and MatMul(·, ·) is the normal Dense-Dense Matrix
Multiplication. From above, we can see that each training step has exactly two SpMM operations.
In practice, although using a sparse matrix format can reduce memory cost compared to using a dense
representation of the adjacency matrix, it is still notoriously inefficient on commodity hardware due to the
cache miss problem Han et al. (2016). As shown in Figure 1, we observed that SpMM can take a large fraction
of the training time.

2.2 Fast Matrix Multiplication with Sampling

Given matrices X ∈ Rn×m and Y ∈ Rm×q, our goal is to efficiently estimate the matrix product XY . The
Truncated Singular Value Decomposition (SVD) offers an optimal low-rank approximation of the product
XY Adelman et al. (2021), but its computational cost is almost equivalent to matrix multiplication. To
address the challenge, sampling algorithms have been introduced as a means of approximating the matrix
product XY . Such methods sample k columns from X and the corresponding rows from Y , resulting
in smaller matrices. These matrices are then multiplied in the traditional manner Drineas et al. (2006).
Such an approach cuts down the computational complexity from O(mnq) to O(knq). Mathematically, the
approximation is given by:

XY ≈
k∑

t=1

1
st

X:,it
Yit,: = approx(XY), (3)

3

Under review as submission to TMLR

where X:,i and Yi,: represent the ith column of X and the ith row of Y , respectively. Within this context,
we define the (X:,i, Yi,:) as the ith column-row pair. The term k denotes the number of samples. {pi}m

i=1
represents a probability distribution across the column-row pairs. it ∈ {1, · · · m} is the index of the sampled
column-row pair at the tth trial. st is the scale factor. Drineas et al. (2006) indicates that setting st = 1

kpit

guarantees the expectation of low-rank approximation equals to the results of actual matrix multiplication.
Furthermore, the approximation error is minimized when the sampling probabilities are proportional to the
product of the norms of column-row pairs:

pi = ||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

. (4)

Though the above sampling method effectively accelerates matrix multiplication Drineas et al. (2006), its
direct application to neural networks might not be optimal. This is because it overlooks the unique distri-
bution of neural network weights. Observations indicate that neural network weight distributions tend to
remain centered around zero during training Glorot & Bengio (2010); Han et al. (2015). Using this insight,
Adelman et al. (2021) introduced the Top-k sampling method: deterministically selecting the k column-
row pairs that have the highest values according to Equation 4, without any scaling. This equates to setting
the probability pi of the top k column-row pairs to 1, and to 0 for the others, with the scale factor sit

being
consistently 1.

Furthermore, Liu et al. (2023a) adapted the top-k sampling technique to the domain of graph learning. To
guarantee gradient unbiasedness, they restricted the use of randomized matrix multiplication to the
backward pass only, i.e., ∇J (l) = SpMM(Ã⊤, ∇H(l)) in Equation 2b. This decision was influenced by the
understanding that the non-linear activation functions can alter the expected outcome of the approximated
matrix multiplication Liu et al. (2023a). While this approach preserves the final model accuracy, its potential
for computational speedup is limited at 2×, given that it optimizes only the backward computations.

In the following sections, we investigate the feasibility to employ randomized matrix multiplication through-
out the entire training with of better acceleration while effectively addressing the challenge of preserving
accuracy.

3 Methodology

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
be

tw
ee

n
sa

m
pl

ed
 c

ol
s/

ro
w

s

Top-k Sampling
StructDrop

Figure 2: The Jaccard Similarity of se-
lected column-row pairs across the iter-
ations in Top-k Sampling. Top-k incurs
greatly repetative col/row pairs caus-
ing under-fitting problem.

We propose StructDrop as an efficient yet accurate graph training
scheme. We first present an interesting finding, that the sound
theoretical guarantee of minimal error in Top-k sampling might not
be the most robust algorithm. We analyze and conduct experiments
to answer why Top-k sampling cannot maintain the accuracy in
Sec 3.1. Based on this observation, we propose StructDrop in
Section 3.2, which uniformly select the column-row pairs during
graph training. In Sec 3.3, we further suggest integrating instance
normalization to further enhance the stability of training process
when working with StructDrop.

3.1 The Under-fitting Problem in Top-k Sampling

We first investigate the potential for expediting the SpMM operations
in both the forward (Equation 2a) and backward (Equation 2b)
passes with Top-k sampling. More specifically, we substitute the
forward and backward SpMM with their approximated counterparts
in Equation 3. In this experiment, we set the k as 0.1|V| across
different layers. We detail the model configuration in Appendix A.

The performance results are presented in Table 1. As indicated by the results, we observed a substantial
decrease in accuracy. This outcome is both surprising and intriguing, considering that theory Drineas

4

Under review as submission to TMLR

et al. (2006) has previously demonstrated that Top-k sampling should yield a satisfactory approximation
with minimal reconstruction error to the original matrix multiplication. To dig in further, we examine
the Jaccard similarity for the selected column/row pairs. We conduct this analysis using GCN training
with the ogbn-Arxiv dataset as an example, and present the results in Figure 2. Upon closer inspection,
we discovered that the Top-k sampling consistently selects nearly identical column-row pairs in adjacent
iterations. Specifically, the Jaccard similarity between iterations in close proximity is approximately 90%.
This suggests that the Top-k sampling consistently utilizes the same subset of nodes and edges throughout
graph learning. Consequently, a substantial portion of the graph information will be excluded during message
aggregation, which leads to under-fitting problem.

0 100 200 300 400
Epoch

20

40

60

80

Tr
ai

ni
ng

 a
cc

ur
ac

y
%

Vanilla
Top-k Sampling
StructDrop

(a) Training Accuracy

0 100 200 300 400
Epoch

20

40

60

80

 T
es

tin
g

ac
cu

ra
cy

 %

Vanilla
Top-k Sampling
StructDrop

(b) Test Accuracy

Figure 3: Training and testing accuracy comparison be-
tween different baselines on GCN with ogbn-Product.

To validate our hypothesis, we plot the train-
ing and test accuracy of a three-layer GCN
model on ogbn-Products using various train-
ing schemes, as shown in Figure 3. The under-
fitting hypothesis finds support in Figure 3a,
where the training accuracy using Top-k sam-
pling is significantly lower compared to the
baseline. As a consequence, Figure 3b shows
that the test accuracy of GNNs trained with
Top-k sampling is also substantially inferior to
the baseline.

3.2 StructDrop : An Efficient Sampling
Scheme with Increased Generalizability

Table 1: Preliminary results on three datasets. “+Top-k Sam-
pling” means we replace both the forward and backward SpMM
with their approximated version. Here we set the k as 0.1|V|
across different layers. All reported results are averaged over six
random trials.

Reddit ogbn-Arxiv ogbn-Product

GCN Baseline 95.30 ± 0.05 72.09 ± 0.26 76.05 ± 0.10
+Top-k Sampling 93.53 ± 0.44 70.33 ± 0.86 74.73 ± 1.81

GraphSAGE Baseline 96.59 ± 0.03 70.44 ± 0.31 78.05 ± 0.90
+Top-k Sampling 90.35 ± 1.22 62.10 ± 0.52 70.17 ± 0.32

Motivated by the observation that Top-
k sampling leads to under-fitting due
to the consistent selection of the same
graph information during training, we
explore a straightforward strategy: uni-
form selection of each column-row pair.
In other words, each column-row pair
has an equal probability of being
sampled, and we sample a total of k
column-row pairs without replace-
ment. We call this simple yet effective
strategy StructDrop, structurally sam-
pling the whole graph. Experiments re-
sult in section 4.3 show that this structured sampling method yields better performance compared to the
unstructured dropout approach. Here we analyze the potential of our method from a generalizability and
efficiency perspective.

Generalizability Analysis As demonstrated in Figure 2, StructDrop employs a varied set of column-row
pairs throughout the training process, indicating that StructDrop effectively integrates information from the
entire graph. From a different perspective, StructDrop eliminates entire columns in the adjacency matrix
while leaving rows unchanged. This results in the removal of all outgoing edges for a specific set of nodes.
The operation applied to such a sampled adjacency matrix and node embeddings introduces randomness
during aggregation, which can be regarded as a form of data augmentation. Consequently, there is increased
randomness and variability in the aggregated nodes, which enhances generalizability. As a result, both Figure
3a and Figure 3b illustrate that the training and test accuracy of StructDrop closely match those of the
baseline. This suggests that StructDrop effectively mitigates the under-fitting issue.
Efficiency Analysis Previous approaches have utilized edge/node dropping as data augmentation tech-
niques to enhance generalizability. Such methods also appear to increase computing speed due to the FLOPs
reduction, which is achieved by dropping entries in the adjacency matrix. However, these methods encounter

5

Under review as submission to TMLR

efficiency challenges because the speedup gained from reducing FLOPs is often offset by the complex oper-
ations involved in manipulating the adjacency matrix.

Digging deeper, a graph can usually be represented by two data structures: the sparse adjacency matrix and
edge index. The adjacency matrix can be viewed as a data structure optimized for computation time, and
employing the adjacency matrix often leads to much faster computations compared to using the edge index
format spm; pyg (2023). Nonetheless, a gap emerges because such computation-friendly data structure is
usually represented in the Compress Sparse Row (CSR) format Arai et al. (2016), which cannot be easily
manipulated due to the compression of the row indices. On the contrary, the edge index is an manipulation-
friendly data structure that can be easily modified. Thus, edge/node dropping operations are typically
carried out on the edge index dro (a;b). However, this process introduces time overhead because the data
structure must be converted back to the computation-friendly adjacency matrix for faster computation. This
additional conversion offsets the speed gains achieved through reduced FLOPs.

With the structured dropping approach, we can directly manipulate the computation-friendly adjacency
matrix since we only drop the column-wise outgoing edges, which can be directly implemented upon the CSR
format. Consequently, our method bypasses the conversion from edge indices to sparse adjacency matrix,
resulting in fast sampling implementation. Our extensive experiment results in Sec 4.2 demonstrates that our
structured dropping method achieves a substantial increase in efficiency when compared to the edge/node-
oriented dropping methods. Importantly, this efficiency boost introduced in our method is achieved without
sacrificing accuracy during training.

3.3 Instance Normalization Meets the Sampling Scheme

While the fast matrix multiplication with random sampling brings notable efficiency benefits, a side effect is
the distribution shift of node embeddings during training. This shift arises due to the random sampling of
column-row pairs between epochs, leading to the entirely different node embeddings learned from the diverse
sets of neighbors. It is widely observed that such a sharp distribution shift can impede the learning rate and
even steer the model towards the convergence of suboptimal points. Bjorck et al. (2018); Ioffe & Szegedy
(2015); Bjorck et al. (2018).

To mitigate the training shift which causes the unstable convergence, we apply instance normalization at
critical point following the approximated matrix multiplication. Mathematically, recalling the forward pass
in Equation 2a, we use H(l) = SpMM(StructDrop(Ã, J (l))) to represent the node embeddings after neighbor
aggregation. These embeddings are obtained by uniformly dropping the column-row pairs over matrices Ã

and J (l) and then performing sparse matrix production on them. Considering embedding vector h
(l)
i ∈ Rd

of node vi, i.e., the ith row in H(l), the instance normalization rescales it by Ulyanov et al. (2016):

h̃
(l)
i = [h(l)

i − E(h(l)
i)] / Sqrt(Var(h(l)

i) + ϵ) ∗ γ + β. (5)

E(·), Sqrt(·), and Var(·) denote operations of expectation, squared root, and variance, respectively; γ, β ∈ Rd

represents the trainable weights for the running variance and mean, respectively. Each node embedding is
rescaled to mitigate the effects of sampling randomness, thereby facilitating the convergence of the model
with improved generalization. Detailed experiments discussing node embedding shifting and generalization
performance are provided in the experimental section 4.3 to substantiate our proposed approach.

4 Experiments

In our experiments, we evaluate our proposed framework through answering the following research questions:
Q1: How effectively is StructDrop’s generalizability? Q2: To what extent does StructDrop accelerate the
training speed? Q3: How crucial is the role of instance normalization within the sampling scheme?

6

Under review as submission to TMLR

4.1 Implementation Details

Datasets, Backbones and Baselines To evaluate StructDrop, we adopt four large scale graph bench-
marks which are commonly used in different domains: Reddit Hamilton et al. (2017a), Reddit2 Zeng et al.
(2020) 1, ogbn-Arxiv Hu et al. (2020) and ogbn-Products Hu et al. (2020). We evaluate StructDrop using
both the full-batch and sub-batch training settings. We intergate StructDrop with seven popular schemes
in large graph training including GCN, GraphSAGE, GCNII, GIN and other subsampling based mechanism
(GraphSAINT, GraphSAGE and ClusterGCN). The comparison are made against four different baselines
introduced in Sec 4.2.2. We detail our hyperparameter settings in Appendix A.

4.2 Superior Generalizability and Efficiency

In this section, we first evaluate the generalizability and efficiency of StructDrop in comparison to different
baselines. As mentioned in Sec 3.3, StructDrop greatly accelerates the graph computation while simul-
taneously enhancing generalizability. This is evident from the negligible accuracy loss observed, coupled
with significantly faster training speeds, as illustrated in our experimental results. We provide a detailed
experimental findings below.

4.2.1 Operational level acceleration

We first evaluate the speed improvements at the operation level introduced by StructDrop. Figure 1
illustrates the speed improvements at the operation level achieved by StructDrop. We measured the wall
clock completion time of various operators across different datasets. With StructDrop, the computational
complexity in sparse matrix multiplication is significantly reduced in a hardware-friendly way, resulting in
faster completion times. Across datasets, the forward pass SpMM operation is accelerated by 1.9 to 5.5 times,
while the backward pass SpMM is accelerated by a factor of 2.62 to 4.8 times. Overall, StructDrop achieves
a maximum wall clock time speedup of 5.29× compared to the vanilla baseline as shown in table 2.

4.2.2 End-to-end performance analysis

Next, we assess the end-to-end training speedup and model accuracy of StructDrop in comparison to different
methods. Specifically, we compare our approach against: 1, Vanilla baseline with the standard training
process without any approximations; 2, Top-k sampling Adelman et al. (2021) and 3, DropEdge Rong
et al. (2019) and DropNode Feng et al. (2020). We conduct the experiments with the same sampling ratio
across all different baselines to ensure a fair comparison. We present the fullgraph setting results on GCN,
GraphSAGE, GIN and GCNII and subgraph sampling based ClusterGCN, GraphSAGE and GraphSAINT
in Table 2. We see StructDrop achieves superior performance consistently on different architectures. We
detail the performance analysis of StructDrop below.

0 100 200 300 400
Epoch

0.0

0.1

0.2

0.3

0.4

Em
be

dd
in

g
sp

ar
si

ty

Vanilla
StructDrop
Top-k Sampling

(a) GCN layers

0 100 200 300 400
Epoch

0.2

0.4

0.6

0.8

1.0

Em
be

dd
in

g
sp

ar
si

ty

Vanilla
StructDrop
Top-k Sampling

(b) GraphSAGE layers

Figure 4: Embedding sparsity on different Archs.

StructDrop achieves much faster speed with
almost no accuracy drop or even better accu-
racy StructDrop achieves remarkable speedup with
negligible accuracy loss (within 0.5%) or even bet-
ter accuracy compared to vanilla training scheme.
As discussed in Sec 3.2, the maintained or enhanced
accuracy is attributed to StructDrop’s random sam-
pling during the message aggregation phase. These
samples introduce randomness, effectively acting as
data augmentation, which enhances StructDrop’s
generalizability. Further discussion on generalizabil-
ity is in Sec 4.2.3.

In terms of efficiency, StructDrop achieves up to a
5.29× speedup in end-to-end training time over the vanilla baseline (Table 2). This gain comes from a

1This is a sparser version of the original Reddit dataset (23M edges instead of 114M edges), and is used in paper GraphSAINT
Zeng et al. (2020)

7

Under review as submission to TMLR

Table 2: We present a comparison of efficiency and accuracy across different baseline methods using GCN,
GraphSAGE, GIN, GCNII and sub-sampling-based methods including ClusterGCN, GraphSAINT, and
GraphSAGE. The upper part of the table presents fullgraph setting and lower part of the table presents
subgraph setting. We observe that in most experiments, Top-k Sampling experiences a significant accuracy
drop (over 1%, and in most cases exceeding 3%). These accuracy reductions make it unsuitable for real-
world deployment. For the speedup comparison, we exclude results where the accuracy drop is too severe
and highlight the best speedup gains in bold. StructDrop achieves the best speedup gain without accuracy
loss across all settings.

nodes 232,965 232,965 169,343 2,449,029
edges 114,615,892 23,213,838 1,166,243 61,859,140

Model Methods
Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCN

Vanilla 95.3 ± 0.05 1 × 95.38 ± 0.06 1 × 72.09 ± 0.26 1 × 76.05 ± 0.10 1 ×
Top-k Sampling 93.21 ± 0.15 6.99 × 94.21 ± 0.25 2.72 × 70.84 ± 0.63 1.33 × 77.94 ± 2.47 1.96 ×

DropEdge 95.44 ± 0.01 1.87 × 95.47 ± 0.02 1.72 × 72.55 ± 0.33 1.21 × 78.96 ± 0.60 1.2 ×
DropNode 95.34 ± 0.06 2.07 × 95.35 ± 0.05 1.7 × 72.36 ± 0.20 1.23 × 78.29 ± 2.15 1.17 ×

StructDrop 95.47 ± 0.05 3.87 × 95.46 ± 0.03 2.4 × 72.46 ± 0.23 1.29 × 79.24 ± 0.74 1.8 ×

GraphSAGE

Vanilla 96.59 ± 0.03 1 × 96.67 ± 0.03 1 × 70.44 ± 0.31 1 × 78.05 ± 0.90 1 ×
Top-k Sampling 92.73 ± 0.33 9.66 × 93.84 ± 0.28 3.08 × 63.75 ± 0.42 1.39 × 73.22 ± 0.23 3.31 ×

DropEdge 96.65 ± 0.03 2.65 × 96.55 ± 0.03 1.54 × 70.23 ± 0.19 0.81 × 78.57 ± 0.09 1.33 ×
DropNode 96.36 ± 0.06 2.72 × 96.33 ± 0.01 1.78 × 69.99 ± 0.29 1.02 × 78.93 ± 0.20 1.32 ×

StructDrop 96.65 ± 0.04 4.26 × 96.56 ± 0.03 2.33 × 70.03 ± 0.26 1.15 × 78.97 ± 0.17 2.47 ×

GIN

Vanilla 94.39 ± 0.08 1 × 94.76 ± 0.03 1 × 70.86 ± 0.18 1 × 78.02 ± 0.15 1 ×
Top-k Sampling 91.21 ± 0.22 2.45 × 91.77 ± 0.34 2.33 × 70.82 ± 0.10 1.16 × 75.59 ± 0.08 1.34 ×

DropEdge 94.54 ± 0.07 2.94 × 94.83 ± 0.08 2.31 × 71.11 ± 0.15 1.18 × 78.65 ± 0.13 1.18 ×
DropNode 94.41 ± 0.05 3.73 × 94.69 ± 0.01 2.59 × 70.64 ± 0.12 1.23 × 78.16 ± 0.19 1.16 ×

StructDrop 94.48 ± 0.07 5.29 × 94.86 ± 0.03 3.06 × 70.64 ± 0.10 1.28 × 78.73 ± 0.05 2.12 ×

GCNII

Vanilla 96.81 ± 0.03 1 × 96.80 ± 0.02 1 × 72.12 ± 0.24 1 × 76.70 ± 0.12 1 ×
Top-k Sampling 91.46 ± 1.00 5.14 × 93.51 ± 0.58 2.11 × 71.09 ± 0.09 1.21 × 74.27 ± 0.34 1.74 ×

DropEdge 96.81 ± 0.07 2.02 × 96.72 ± 0.01 1.61 × 72.24 ± 0.30 1.14 × 77.49 ± 0.09 1.02 ×
DropNode 96.39 ± 0.05 2.16 × 96.31 ± 0.03 1.63 × 72.35 ± 0.01 1.13 × 77.72 ± 0.18 1.01 ×

StructDrop 96.82 ± 0.02 3.43 × 96.72 ± 0.03 1.97 × 72.16 ± 0.12 1.19 × 77.55 ± 0.31 1.62 ×

ClusterGCN

Vanilla 95.77 ± 0.16 1 × 95.85 ± 0.14 1 × 71.12 ± 0.09 1 × 78.88 ± 0.12 1 ×
Top-k Sampling 89.14 ± 1.21 1.61 × 90.59 ± 1.03 1.25 × 65.48 ± 0.35 1.16 × 69.64 ± 0.13 1.17 ×

DropEdge 95.73 ± 0.09 0.53 × 95.62 ± 0.11 0.74 × 71.07 ± 0.36 0.51 × 78.72 ± 0.02 0.41 ×
DropNode 95.71 ± 0.05 0.56 × 95.72 ± 0.07 0.76 × 70.62 ± 0.19 0.63 × 76.36 ± 0.43 0.42 ×

StructDrop 95.69 ± 0.14 1.36 × 95.60 ± 0.05 1.2 × 71.04 ± 0.44 1.12 × 78.34 ± 0.03 1.1 ×

GraphSAINT

Vanilla 95.85 ± 0.13 1 × 96.22 ± 0.05 1 × 70.72 ± 0.17 1 × 78.67 ± 0.23 1 ×
Top-k Sampling 90.36 ± 0.84 1.56 × 91.27 ± 0.50 1.08 × 65.77 ± 0.41 1.11 × 75.59 ± 0.37 1.33 ×

DropEdge 95.92 ± 0.06 0.7 × 96.12 ± 0.03 0.67 × 69.56 ± 0.06 0.79 × 79.50 ± 0.18 0.53 ×
DropNode 95.73 ± 0.08 0.73 × 96.05 ± 0.11 0.68 × 69.47 ± 1.08 0.82 × 79.27 ± 0.33 0.52 ×

StructDrop 95.87 ± 0.05 1.33 × 96.09 ± 0.03 1.05 × 69.40 ± 0.94 1.07 × 79.59 ± 0.37 1.27 ×

GraphSAGE

Vanilla 96.47 ± 0.10 1 × 96.53 ± 0.04 1 × 70.49 ± 0.29 1 × 78.67 ± 0.16 1 ×
Top-k Sampling 93.19 ± 1.42 1.23 × 94.04 ± 0.10 1.26 × 62.85 ± 2.34 1.11 × 76.47 ± 0.34 1.2 ×

DropEdge 94.57 ± 0.13 0.92 × 95.92 ± 0.11 0.89 × 68.57 ± 0.18 0.87 × 79.40 ± 0.21 0.49 ×
DropNode 95.12 ± 0.15 0.92 × 96.11 ± 0.09 0.92 × 69.34 ± 0.61 0.88 × 78.81 ± 0.44 0.52 ×

StructDrop 96.34 ± 0.08 1.28 × 96.49 ± 0.02 1.23 × 69.2 ± 0.56 1.12 × 78.90 ± 0.17 1.21 ×

fast approximation operation during message aggregation, reducing computational complexity without extra
overhead. Overall, StructDrop accelerates GNN training while maintaining accuracy. Next, we compare
our training scheme with other baselines.

8

Under review as submission to TMLR

Notable accuracy improvement compared to Top-k sampling: We now compare StructDrop with
Top-k sampling. We highlight the significant accuracy improvement achieved by StructDrop here. As shown
in table 2, Top-k sampling results in an unacceptable performance loss compared to both the vanilla baseline
and StructDrop. The performance drop stems from Euclidean norm-based sampling, which overly focuses
on a few columns and rows, as shown by the Jaccard similarity analysis in Figure 2. This leads to the loss
of global graph information during message aggregation, causing underfitting behavior.

In contrast, the uniform random sampling strategy employed in StructDrop results in the collection and
utilization of global graph knowledge during message aggregation, as every column-row pair has the potential
to be involved. This approach facilitates more comprehensive graph learning.

Another significant factor to the poor performance of Top-k sampling is the information loss that occurs dur-
ing training. We conducted profiling of the embedding sparsity after message aggregation with vanilla, Top-k
and StructDrop shown in Figure 4. We found that after sampling and message passing, the embeddings
obtained through the Top-k sampling exhibit a high rate of zero entries. Although Euclidean norm-based
sampling maintains minimal reconstruction error when compared to vanilla sparse matrix multiplication, it
tends to select cols/rows with lower degrees Liu et al. (2023a). This selection results in higher sparsity and
consequently leads to more significant information loss during aggregation, exacerbating the underfitting
problem.

As depicted in Figure 4, the embedding sparsity of StructDrop is comparable to that of the vanilla scheme,
resulting in less information loss during message passing. In Appendix D, we further demonstrate that
under the same accuracy requirements, StructDrop achieves better accuracy and speedup compared to
Top-k sampling. In summary, StructDrop outperforms the Top-k sampling scheme with significantly better
accuracy.

Considerably faster training speed compared to DropEdge and DropNode: DropEdge Rong et al.
(2019) mitigates overfitting and oversmoothing by randomly dropping edges, while DropNode Feng et al.
(2020) enhances robustness through node feature dropout as data augmentation. Both methods sample
edges or nodes with predefined probabilities. As shown in Table 2, StructDrop achieves comparable accu-
racy (within 0.5%) to DropEdge and DropNode across datasets, demonstrating the effectiveness of sampled
message passing for data augmentation.

Table 3: StructDrop’s speedup vs. DropEdge
and DropNode

Reddit Reddit2 ogbn-Arxiv ogbn-Products
vs. DropEdge 1.61 × 1.51 × 1.42 × 1.86 ×
vs. DropNode 1.57 × 1.31 × 1.13 × 1.87 ×

However, StructDrop’s true strength lies in its substan-
tial efficiency gains compared to the other two baselines.
Table 3 shows the speedup gain of StructDrop on Graph-
SAGE. Overall StructDrop can achieve up to 2.07x and
2.42x speedup compared to DropEdge and DropNode re-
spectively, primarily driven by hardware efficiency. While
the number of preserved edges during training remains
consistent, DropEdge and DropNode exhibit significantly
smaller dropping granularity compared to StructDrop. Manipulating such sampling operations incurs ad-
ditional conversion overhead, as discussed in Sec 3.2. In contrast, StructDrop’s random dropping operation
on all the outgoing edges in the entire columns can be applied directly to the computation-friendly adjacency
matrix. This faster sampling introduces almost no additional performance overhead while expediting graph
training with much faster computation, ultimately translating into speed improvements.

StructDrop acceleration effect on full-graph and subgraph training. StructDrop is a mechanism
for column and row sampling during graph training, which can be seamlessly integrated into both full-graph
and subgraph-based training. We observe that StructDrop achieves more significant speedup in full-graph
training. Additionally, the speedup effect scales as the size of the subgraph increases. Table 10 in Sec B
provides details from our ablation study. In practice, large subgraphs are preferred to preserve global
information and optimize hardware efficiency. Nevertheless, StructDrop can substantially accelerate graph
training for both full-graph and subgraph-based approaches.

9

Under review as submission to TMLR

Table 5: Accuracy and speedup on different sample ratios

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products
Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCN

0.1 95.44 ± 0.04 5.63 × 95.39 ± 0.05 2.81 × 72.16 ± 0.21 1.35 × 79.51 ± 1.07 2.04 ×
0.2 95.47 ± 0.05 3.87 × 95.46 ± 0.03 2.40 × 72.46 ± 0.23 1.29 × 79.24 ± 0.74 1.8 ×
0.3 95.47 ± 0.04 2.89 × 95.48 ± 0.03 2.05 × 72.44 ± 0.24 1.22 × 78.95 ± 0.46 1.6 ×
0.4 95.43 ± 0.04 2.26 × 95.46 ± 0.04 1.78 × 72.66 ± 0.23 1.17 × 78.63 ± 0.29 1.43 ×

Overall, StructDrop achieves up to 5.29× speedup with minimal or even improved accuracy, as shown in
Tables 2. While the speedup ratio varies, the performance boost remains consistent across architectures and
datasets. A detailed discussion on these variations is provided in Appendix C.

4.2.3 Generaliability Study of StructDrop

0 100 200 300 400
Epoch

1

2

3

4

Tr
ai

ni
ng

 lo
ss

Top-k Sampling
StructDrop
Vanilla
DropEdge
DropNode

(a) Training loss on GCN

0 100 200 300 400
Epoch

0.5

0.0

0.5

1.0

G
en

er
al

iz
at

io
n

ga
p

Top-k Sampling
StructDrop
Vanilla
DropEdge
DropNode

(b) Gen. gap on GCN

Figure 5: Training curve on GCN with ogbn-Products
dataset.

In this section, we aim to gain a deeper un-
derstanding of StructDrop’s generalizability.
We begin by using ogbn-Products as an exam-
ple to plot the training loss and generalization
gap for different baselines and GNN architec-
tures in Figure 5 and 7. The generalization
gap is quantified as the difference between the
training and testing loss, with a higher loss
gap indicating better generalizability. Despite
the Top-k sampling mechanism exhibiting the
highest training loss and underfitting during
training with the GCN, StructDrop achieves
the largest generalization gap. These results are consistent with previous analysis, suggesting that random-
ness and diversity introduced by StructDrop act as a form of data augmentation, thereby enhancing the
model’s generalizability.

4.2.4 Ablation Studies of Dropping Ratio

Table 4: Ablation study of instance normalization.

Reddit ogbn-Arxiv ogbn-Products

GCN w/ instance norm 95.47 ± 0.05 72.46 ± 0.23 79.24 ± 0.74
w/o instance norm 94.01 ± 1.04 69.30 ± 1.19 74.55 ± 3.51

GraphSAGE w/ instance norm 96.65 ± 0.04 70.03 ± 0.26 78.97 ± 0.17
w/o instance norm 96.52 ± 0.04 69.00 ± 0.45 78.25 ± 0.21

In this section, we provide a comprehen-
sive analysis of StructDrop with respect
to the dropping ratio using GCN as an
example. We also included the results of
other backbones in Appendix E.

Table 5 presents StructDrop’s perfor-
mance across different sampling ratios
and datasets on GCN. The impact of the
sample ratio on accuracy varies depend-
ing on the datasets. For smaller datasets like ogbn-Arxiv which contain a small number of edges, higher
sample ratios tend to lead to higher accuracy, as there is less information loss. Conversely, for larger datasets
like ogbn-Products which potentially have more information redundancy due to the large number of edges,
accuracy is inversely proportional to the sample ratio. This is because redundant edges can cause the node
embeddings to be smoothed by their neighbors, resulting in a loss of node features with the converged em-
beddings. Regarding efficiency, lower sampling ratios result in higher computation speeds. The trends for
GraphSAGE and other model architectures are similar.

4.3 Benefits of Instance Normalization in Sampling

We further evaluate the advantages with incorporating instance normalization during sampling. Instance
norm serves as a mitigator of distribution shifts, reducing the shifts in embeddings induced by random
sampling between epochs. The results presented in Figure 6 demonstrate that instance norm serves as an
effective factor in smoothing the training process, ultimately leading to improved accuracy.

10

Under review as submission to TMLR

Ablation Study of Instance Norm We evaluate the accuracy improvement resulting from the inclusion of
instance norm. We summarize the accuracy using GCN and GraphSAGE as examples on different datasets
w/o instance norm applied. As depicted in Table 4, the accuracy with instance norm applied is consistently
higher than that without it across datasets. Instance norm is beneficial for random sampling, resulting in
improved accuracy.

0 100 200 300 400
Epoch

104

6 × 103

2 × 104

3 × 104

Em
be

dd
in

g
no

rm
 sh

ift

W/ instance norm
W/o instance norm

(a) GCN

0 100 200 300 400
Epoch

104

6 × 103

2 × 104

3 × 104

Em
be

dd
in

g
no

rm
 sh

ift

W/ instance norm
W/o instance norm

(b) GraphSAGE

Figure 6: Embedding shifts between epochs.

Effect for Smooth Training Next we deep
dive into why instance norm helps boost the
accuracy. We plot the distribution shift of
the embedding after message aggregation with
sampled columns/rows in Figure 6. We use
the norm difference of the embedding between
subsequent epochs to measure the training
smoothness. As shown in Figure 6, training
without instance norm causes much larger em-
bedding shifts, making the training process not
smooth as the model needs to constantly adapt
to new inputs distribution. This effect exacer-
bates as the random samples causes message
aggregation in different epochs varies drastically. Instance norm successfully lowers the embedding shifts,
thus stabilize the training process and leads to better accuracy.

5 Related Work
Large-scale Graph Learning Massage passing over graph can described by sparse matrix multiplication.
Such operation is resource consuming, where the memory and time complexities depend on the amounts of
nodes and edges, respectively. To address the scalability issue, numerous families of algorithms have been
explored, including the subgraph-based GNN training Hamilton et al. (2017a); Huang et al. (2018) , graph
precomputation Wu et al. (2019); Klicpera et al. (2018); Yu et al. (2020), and distributed training Zha et al.
(2023; 2022); Yuan et al. (2022); Wang et al. (2022). The common merit of them is to divide the large graph
into pieces, each of which could be handled by the resource-limited GPU.

Related work on Efficient Training Algorithms, Subgraph Sampling, Random Dropout, Graph
Condensation and other topics are also important. Due to space limitations, we defer the discussion on
them to Appendix G.

6 Conclusions
In our work, we introduce StructDrop to replace time-consuming message passing with fast sparse matrix
multiplication (SpMM) during whole training process of GNNs. StructDrop uniformly samples column-
row pairs in the adjacency matrix, reducing computational complexity in SpMM. To address distribution
shifts resulting from random sampling, we apply instance norm after SpMM to rescale node embeddings
and stabilize the training. Extensive experiments on benchmark datasets confirm the effectiveness of our
approach, achieving a superior trade-off between efficiency and generalization performance.

7 Impact Statements

This paper introduces research aimed at pushing the boundaries of Machine Learning. While our work might
have several potential societal consequences, we feel there is nothing specifically to highlight here.

References
Pytorch-Geometric dropedge implementation. https://pytorch-geometric.readthedocs.io/en/latest/

modules/utils.html#torch_geometric.utils.dropout_edge, a.

Pytorch-Geometric dropnode implementation. b. https://pytorch-geometric.readthedocs.io/en/
latest/modules/utils.html#torch_geometric.utils.dropout_node.

11

https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_edge
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_edge
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_node
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_node

Under review as submission to TMLR

Pytorch-Sparse sparse matrix multiplication cuda kernel. https://github.com/rusty1s/pytorch_sparse/
blob/master/csrc/cuda/spmm_cuda.cu.

Pytorch-Geometric memory efficient aggregation. https://pytorch-geometric.readthedocs.io/en/
latest/notes/sparse_tensor.html, 2023.

Menachem Adelman, Kfir Levy, Ido Hakimi, and Mark Silberstein. Faster neural network training with
approximate tensor operations. Advances in Neural Information Processing Systems, 34:27877–27889,
2021.

Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu Iwamura. Rabbit order:
Just-in-time parallel reordering for fast graph analysis. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 22–31, 2016. doi: 10.1109/IPDPS.2016.110.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normalization.
Advances in neural information processing systems, 31, 2018.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas Markovich, Nils
Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks for link prediction with
subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance
reduction. In International conference on machine learning. PMLR, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via importance
sampling. arXiv preprint arXiv:1801.10247, 2018.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266, 2019.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i: Ap-
proximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, and
Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and rethinking.
2022.

David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. Sparsification—a technique for
speeding up dynamic graph algorithms. Journal of the ACM (JACM), 44(5):669–696, 1997.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov,
and Jie Tang. Graph random neural networks for semi-supervised learning on graphs. Advances in neural
information processing systems, 33:22092–22103, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and expressive
graph neural networks via historical embeddings. In International conference on machine learning, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–
256. JMLR Workshop and Conference Proceedings, 2010.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–
1035, 2017a.

12

https://github.com/rusty1s/pytorch_sparse/blob/master/csrc/cuda/spmm_cuda.cu
https://github.com/rusty1s/pytorch_sparse/blob/master/csrc/cuda/spmm_cuda.cu
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html

Under review as submission to TMLR

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. arXiv
preprint arXiv:1706.02216, 2017b.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. Eie:
Efficient inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture
News, 44(3):243–254, 2016.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn training
acceleration with mlp initialization. ICLR, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph repre-
sentation learning. In Advances in Neural Information Processing Systems, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. pmlr, 2015.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, and Xia Hu. Fmp: Toward fair
graph message passing against topology bias. arXiv preprint arXiv:2202.04187, 2022.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation for
graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin. Condensing
graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 720–730, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural
networks meet personalized pagerank. In International Conference on Learning Representations, 2018.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural networks
training via extreme activation compression. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=vkaMaq95_rX.

Zirui Liu, Chen Shengyuan, Kaixiong Zhou, Daochen Zha, Xiao Huang, and Xia Hu. Rsc: Accelerate graph
neural networks training via randomized sparse computations. In International Conference on Machine
Learning, pp. 21951–21968. PMLR, 2023a.

Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. Dspar: An
embarrassingly simple strategy for efficient gnn training and inference via degree-based sparsification.
Transactions on Machine Learning Research, 2023b.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Zhuang Wang, Zhaozhuo Xu, Xinyu Wu, Anshumali Shrivastava, and TS Eugene Ng. Dragonn: Distributed
randomized approximate gradients of neural networks. In International Conference on Machine Learning,
pp. 23274–23291. PMLR, 2022.

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=vkaMaq95_rX

Under review as submission to TMLR

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pp. 6861–6871. PMLR,
2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983, 2018.

Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural networks for heterogeneous
graphs. arXiv preprint arXiv:2011.09679, 2020.

Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Chris Jermaine.
Distributed learning of fully connected neural networks using independent subnet training. Proc. VLDB
Endow., 15(8):1581–1590, 2022. URL https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong Tian,
Arun Kejariwal, and Xia Hu. Dreamshard: Generalizable embedding table placement for recommender
systems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=_atSgd9Np52.

Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen Huang,
Yuandong Tian, Arun Kejariwal, and Xia Hu. Pre-train and search: Efficient embedding table sharding
with pre-trained neural cost models. CoRR, abs/2305.01868, 2023. doi: 10.48550/arXiv.2305.01868. URL
https://doi.org/10.48550/arXiv.2305.01868.

Kaixiong Zhou, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Table2graph: Transforming tabular
data to unified weighted graph. In Luc De Raedt (ed.), Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. 2420–2426.
ijcai.org, 2022. doi: 10.24963/ijcai.2022/336. URL https://doi.org/10.24963/ijcai.2022/336.

Kaixiong Zhou, Soo-Hyun Choi, Zirui Liu, Ninghao Liu, Fan Yang, Rui Chen, Li Li, and Xia Hu. Adaptive
label smoothing to regularize large-scale graph training. In Proceedings of the 2023 SIAM International
Conference on Data Mining (SDM), pp. 55–63. SIAM, 2023.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. arXiv preprint arXiv:1911.07323, 2019.

14

https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=_atSgd9Np52
https://doi.org/10.48550/arXiv.2305.01868
https://doi.org/10.24963/ijcai.2022/336

Under review as submission to TMLR

A Configuration and hyperparameter setting

StructDrop only has one hyperparameter which is the sampling ratio. We present comprehensive sample
ratio ablation study in Sec 4.2.4. We adopt a similar approach to prior study Liu et al. (2023a) by sam-
pling every ten training steps. Below tables show the configurations of different model architectures (GCN,
GraphSAGE, GCNII and GraphSAINT) in graph training.

Table 6: Configuration of Full-Batch GCN.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers Hidden
Dimension

Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256

ogbn-
Arxiv 0.01 500 0.1 No 3 512

ogbn-
Products 0.001 400 0.5 No 3 256

Table 7: Configuration of Full-Batch GraphSAGE.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers Hidden
Dimension

Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256

ogbn-
Arxiv 0.01 500 0.1 No 3 512

ogbn-
Products 0.001 500 0.5 No 3 256

Table 8: Configuration of Full-Batch GCNII.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Alpha&Theta Layers Hidden
Dimension

Reddit 0.01 400 0.5 0.1&0.5 4 256
Reddit2 0.01 400 0.5 0.1&0.5 4 256

ogbn-
Arxiv 0.01 500 0.1 0.1&0.5 4 512

ogbn-
Products 0.001 500 0.1 0.1&0.5 3 128

B Detailed analysis of StructDrop’s performance in subgraph training

For the subgraph sampling scheme, we found the subgraph size affects the speedup gain. we conduct a further
ablation study on input subgraph size and show the results in Table 10. The input subsampled graph size
is proportional to some hyper-parameters such as random walk length and batch sizes in GraphSAINT. We
use Reddit/Reddit2 dataset and train the model based on the GraphSAINT-based method. We study the
speedup gain with different random walk lengths. In this experiment, a larger random walk length leads to
a larger subgraph, maintaining more global information during training. As shown in below table, we see
that the speedup gain increased from 1.33 to 1.6 on Reddit, and respectfully 1.05 to 1.43 on Reddit2 when
the walk length is larger. That being said, the StructDrop acceleration effect scales up when the subgraph

15

Under review as submission to TMLR

Table 9: Configuration of GraphSAINT.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Walk length Layers Hidden
Dimension

Reddit 0.01 40 0.1 4 3 512
Reddit2 0.01 40 0.1 4 3 512

ogbn-
Arxiv 0.01 75 0.1 4 4 512

ogbn-
Products 0.01 20 0.5 3 3 256

is larger. Such speedup gain enabled by StructDrop is non-trivial. In the real-world setting, the size of the
input subgraph is typically large. There are two considerations: 1. From GNN training perspective, a larger
subgraph will preserve more global information, reducing information loss in the graph; 2. From the training
efficiency side, it needs sufficient batches to keep the hardware fully occupied. With large graph, speeding
up incurred in training will significantly save the training time and hardware resources, which could bring
benefits and bring down the costs during training.

C Speedup gain percentage difference between architectures and datasets

As discussed in Sec 4.2.2, StructDrop’s consistently speedup the training among different architectures and
datasets. There are percentage different in acceleration among datasets/architectures. We detail the explana-
tion here. StructDrop’s operation-level acceleration (specifically, message passing operation acceleration as
mentioned in Sec 4.2.1, which is an efficiency bottleneck during training) remains consistent across different
architectures. However, different backbones might incur other operations other than the message passing (i.e.
different linear layer dimensions). These operations are not accelerated and their overheads varies between
backbones. Consequently, the percentage of acceleration differs across architectures. To further explain, if
the operation-level acceleration is p, the overall speedup gain can be denoted as (p * Overhead_OP + Over-
head_Other) / (Overhead_OP + Overhead_Other), which will vary depending on different architectures.
Similarly, different datasets with different size of the input graph will cause varying overhead. Nonetheless,
StructDrop is able to speed the most inefficient message aggregation as mentioned in Sec 4.2.1, and the
end to end speedup effect is consistent among different architectures and datasets as shown in Table 2.

Table 10: Ablation study on StructDrop’s acceleration effects
with random walk length in GraphSAINT. Larger walk length
will result in larger subgraph in GraphSAINT.

Walk length 4 8 16
Reddit Speedup 1.33x 1.47x 1.6x

Accuracy 95.87 ± 0.05 96.32 ± 0.02 95.97 ± 0.08
Reddit2 Speedup 1.05x 1.24x 1.43x

Accuracy 96.09 ± 0.03 96.47 ± 0.06 96.20 ± 0.02

D Discussion on the choice
of Top-k and StructDrop under
relaxed accuracy requirements.

As discussed in Sec 4.2.2, Top-k method
results in large accuracy drop (∼8%) in
some cases due to the under-fitting prob-
lem. Novetheless, one might be curious
how should Top-k and StructDrop be chosen under a relaxed accuracy requirements (∼2%). Under a loose
accuracy requirements, although top-k method is in general faster (with lower accuracy), we would like to
point out that the practitioner can accelerate StructDrop by reducing the percentage of columns/rows sam-
pled in computation. We provide some experimental results as a comparison in the below Table 11. We use
Reddit2 and Arxiv dataset with GCN dataset as the demonstration. Note that the Top-k’s accuracy is com-
promised a lot compared to Vanilla solution. We reduce the sample ratio of StructDrop in this experiment
to check whether the speedup can catch up with the Top-k mechanism.

16

Under review as submission to TMLR

Table 12: Ablation study on accuracy and speedup with different sample ratios on GraphSAGE, GCNII and
GraphSAINT architecture

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products
Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

Vanilla 96.59 ± 0.03 1 × 96.67 ± 0.03 1 × 70.44 ± 0.31 1 × 78.05 ± 0.90 1 ×
0.1 96.53 ± 0.04 6.48 × 96.42 ± 0.04 2.93 × 68.83 ± 0.30 1.33 × 79.29 ± 0.07 2.96 ×

GraphSAGE
0.2 96.65 ± 0.04 4.26 × 96.56 ± 0.03 2.33 × 70.03 ± 0.26 1.15 × 78.97 ± 0.17 2.48 ×
0.3 96.69 ± 0.04 3.13 × 96.63 ± 0.04 2.01 × 70.35 ± 0.24 1.12 × 78.63 ± 0.12 2.1 ×
0.4 96.68 ± 0.02 2.42 × 96.67 ± 0.03 1.79 × 70.65 ± 0.34 1.06 × 78.31 ± 0.09 1.81 ×

GCNII

Vanilla 96.81 ± 0.03 1 × 96.80 ± 0.02 1 × 72.12 ± 0.24 1× 76.70 ± 0.12 1 ×
0.1 96.72 ± 0.03 4.61 × 96.65 ± 0.03 2.19 × 71.52 ± 0.07 1.24 × 77.50 ± 0.35 1.77 ×
0.2 96.82 ± 0.02 3.43 × 96.72 ± 0.03 1.97 × 72.16 ± 0.12 1.19 × 77.55 ± 0.31 1.62 ×
0.3 96.84 ± 0.03 2.67 × 96.76 ± 0.03 1.77 × 72.22 ± 0.21 1.15 × 77.50 ± 0.31 1.49 ×
0.4 96.85 ± 0.01 2.16 × 96.80 ± 0.03 1.59 × 72.20 ± 0.15 1.11 × 77.25 ± 0.18 1.37 ×

GraphSAINT

Vanilla 95.85 ± 0.13 1 × 96.22 ± 0.05 1 × 70.72 ± 0.17 1 × 78.67± 0.23 1 ×
0.1 95.75 ± 0.08 1.47 × 95.89 ± 0.01 1.1 × 68.94 ± 0.62 1.13 × 79.42 ± 0.12 1.34 ×
0.2 95.87 ± 0.05 1.33 × 96.09 ± 0.03 1.05 × 69.40 ± 0.94 1.07 × 79.59 ± 0.37 1.27 ×
0.3 95.88 ± 0.03 1.23 × 96.14 ± 0.05 1.03 × 70.25 ± 0.92 1.05 × 79.41 ± 0.31 1.18 ×
0.4 96.01 ± 0.08 1.09 × 96.19 ± 0.04 1.01 × 70.49 ± 0.58 1.01 × 79.21 ± 0.29 1.1 ×

Table 11: Comparison on efficiency and accuracy between Top-
k and StructDrop under relaxed accuracy requirements. Bold
denotes the highest.

Method Sample Ratio Accuracy Speedup compare to Vanilla
Reddit2 Top-k 0.1 94.21 ± 0.25 2.72 ×

StructDrop 0.2 95.39 ± 0.05 2.81 ×
ogbn-Arxiv Top-k 0.1 70.84 ± 0.63 1.33 ×

StructDrop 0.2 72.16 ± 0.21 1.35 ×

From Table 11, we can see that by reduc-
ing the percentage of the columns/rows
sampled during training, StructDrop’s
speedup gain can be effectively increased.
With that, StructDrop successfully sup-
pressed Top-k at speed while still main-
taining a much more superior accuracy.
That’s why a practitioner should choose
StructDrop under a relaxed accuracy re-
quirement.

At the same time, we believe the accuracy of the model is also important. StructDrop can effectively increase
the training speed, with negligible accuracy loss or even more exciting accuracy in most cases. However,
the model trained with top-k method suffers a lot (sometimes with ∼8%) for accuracy. Although faster,
the experimental results (Table 2) show that Top-k compromise the accuracy too much, which will cause
large trouble during inference/model serving time. This is why we would like to advocate for training using
StructDrop even with relaxed accuracy requirement.

E Ablation study on accuracy and efficiency with Ratio

The relationship between sampling ratios with respect to accuracy and efficiency of StructDrop is shown
in Table 12. The results is consistent with the elaboration in Sec 4.2.4. The impact of the sample ratio
on accuracy varies depending on the datasets. For smaller datasets, higher sample ratios tend to lead to
higher accuracy because of less information loss. On the other hand, larger datasets like ogbn-Products
which potentially have more information redundancy due to the large number of edges, accuracy could be
inversely proportional to the sample ratio because those redundant edges can cause the node embeddings
to be smoothed, which causes converged embeddings. For efficiency, lower sampling ratios result in higher
computation speeds, and the trends for GraphSAGE and other model architectures are similar.

17

Under review as submission to TMLR

0 100 200 300 400 500
Epoch

0

1

2

3

4

Tr
ai

ni
ng

 lo
ss

Top-k Sampling
StructDrop
Vanilla
DropEdge
DropNode

(a) Training loss on GraphSAGE

0 100 200 300 400 500
Epoch

1.0

0.5

0.0

0.5

1.0

G
en

er
al

iz
at

io
n

ga
p

Top-k Sampling
StructDrop
Vanilla
DropEdge
DropNode

(b) Gen. gap on GraphSAGE

Figure 7: Training curve on GraphSAGE with ogbn-Products dataset.

F Generalization ability study on GraphSAGE

The training curve and generalization gap on GraphSAGE training on ogbn-Products dataset is shown in
Figure 7. Similar to the result discussed in Sec 4.2.3, despite Top-k with the highest training loss, StructDrop
achieves the highest generalization gap owing to the randomness and diversity introduced by StructDrop,
which act as a form of data augmentation, and thereby enhancing the model’s generalizability.

G More related work

Efficient Training Algorithms Another orthogonal line is to reduce the memory and time consumption
by approximating the message passing. This can be divided into two categories. First, the adjacency
matrix based approximation aims to compress the non-zero entries or matrix dimension. For example,
Sketch-GNN sketch the graph adjacency matrix into a smaller one using hashing Chamberlain et al. (2022);
DSpar expurgates the non-zero elements based on node degrees to obtain a sparse substitute Liu et al.
(2023b). Second, the node embedding based approximation targets at compress the memory storage of hidden
representations. For example, EXACT stocastically quantizes the node embeddings into low precision Liu
et al. (2022); GNNAutoScale stores the whole list of node embeddings in CPU and retrieve them in forward
propagation Fey et al. (2021).

Random Dropout To improve the generalization performance on graph, there are two main categories of
dropout. Edge-oriented dropout randomly samples a subset of edges to avoid over fitting and over-smoothing,
such as DropEdge Rong et al. (2019), DropNode Feng et al. (2020), etc. On the other hand, Node-oriented
dropout removes node features and links connected to the dropped nodes. The node-oriented dropout is
originally motivated in sampling subgraph for scalable training and in augmenting graphs for contrastive
learning, such as DropNode Feng et al. (2020), FastGCN Chen et al. (2018), etc.

Subgraph-based GNN training This line of works focuses on training GNNs using sampled subgraphs
to minimize the number of nodes stored in memory. Several sampling techniques have been developed
based on this concept, such as node-wise sampling Hamilton et al. (2017a); Chen et al. (2017), layer-wise
sampling Huang et al. (2018); Zou et al. (2019), and subgraph sampling Chiang et al. (2019); Zeng et al.
(2019). StructDrop is a technique that performs row and column sampling on adjacency matrices during
graph training, and it can be seamlessly combined with the previously mentioned subgraph sampling meth-
ods. Our experiments demonstrate that StructDrop improves computational efficiency while maintaining
accuracy.

18

Under review as submission to TMLR

Graph Condensation Graph condensation involves condensing knowledge from a large graph to create
a smaller synthetic graph from scratch. However, the vanilla graph condensation often involves solving a
expensive bi-level optimization problem Jin et al. (2021). Jin et al. (2022) further reduces the cost of graph
condensation through one step gradient matching. We note that the graph condensation is orthogonal to
our proposed method, as the final condensed graph still have the expensive SpMM operations.

H Limitations

Although our proposed method can effectively reduce the training time by reducing the number of active
columns and rows for performing SpMM , it cannot directly reduce the memory usage for storing the large
graph, which is another major bottleneck for scaling GNNs onto large graphs. When the memory is the
major bottleneck, we recommend using our method jointly with other graph reduction methods ,e,g., graph
sparsification Liu et al. (2023b).

19

	Introduction
	Preliminaries and Background
	Graph Neural Networks
	Fast Matrix Multiplication with Sampling

	Methodology
	The Under-fitting Problem in Top-k Sampling
	StructDrop : An Efficient Sampling Scheme with Increased Generalizability
	Instance Normalization Meets the Sampling Scheme

	Experiments
	Implementation Details
	Superior Generalizability and Efficiency
	Operational level acceleration
	End-to-end performance analysis
	Generaliability Study of StructDrop
	Ablation Studies of Dropping Ratio

	Benefits of Instance Normalization in Sampling

	Related Work
	Conclusions
	Impact Statements
	Configuration and hyperparameter setting
	Detailed analysis of StructDrop's performance in subgraph training
	Speedup gain percentage difference between architectures and datasets
	Discussion on the choice of Top-k and StructDrop under relaxed accuracy requirements.
	Ablation study on accuracy and efficiency with Ratio
	Generalization ability study on GraphSAGE
	More related work
	Limitations

