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Abstract

Training GNNs over large graphs is a long-standing challenge due to the inefficiency of
the message passing mechanism. Message passing, typically represented as the produc-
tion between sparse adjacency matrix and node features, is difficult to be accelerated with
commodity hardware, such as GPUs. Prior dropping based mechanism (e.g., edge or node
dropping), can be adopted to reduce the computation cost of sparse matrix multiplica-
tion. However, two under-explored pain points still persist in this paradigm: @ Inefficiency.
Dropping-based methods lack hardware efficiency. Such mechanism randomly remove non-
zero entries from edge indices, which later needs to be converted into sparse matrix format
for computational ease. This conversion may counteract the speedup gained from reduc-
ing FLOPs. @ Poor generalization. Previous sampling-based method utilizes a fixed subset
of nodes or edges to emphasize on efficiency, but sacrifice generalizability due to under-
fitting on the remaining subgraph. Aiming to promote the accuracy-efficiency trade-off, we
propose Structured Dropout, a.k.a, StructDrop. Specifically, we remove a set of selected
columns directly from the sparse adjacency matrix format, hence bypassing the sparse ma-
trix reconstruction and data access. To further mitigate the training shifting due to random
column-row pair dropping, we adopt instance normalization following the sparse production.
Comprehensive experiments on four benchmark datasets and four popular GNNs validate
the superiority of our framework: StructDrop achieves up to 5.29x end-to-end speedup with
negligible accuracy loss or even better accuracy compared with vanilla GNNs.

1 Introduction

Graph Neural Networks (GNNs) have made significant advancements in various graph-related tasks Hamilton
et al| (2017a); Hu et al.| (2020)); [Ying et al.|(2018); Jiang et al.| (2022); Zhou et al.| (2022} 2023). Specifically,
GNNs process the underlying graph structure and node features in a layer-wise manner with two interleaved
phases: aggregation and update. During the aggregation phase, each node accumulates messages from its
direct neighbors, which is computationally realized by sparse matriz-based operations to multiply the set
of node features with a sparse adjacency matrix. Following this, in the update phase, nodes transform the
aggregated features with a differentiable layer (e.g., multi-layer perceptron) dominated by dense matriz-based
operations.

Despite their strong performance, training GNNs is time-inefficient, especially on large graphs. As shown in
Figure [} we analyze the fine-grained time cost of GNNs where SpMM and MatMul represents the sparse and
dense operators, respectively. Notably, the neighborhood aggregations included at forward and backward
propagations consume 70-90% of the total GNN training time, as supported by [Han et al. (2023)). This
inefficiency stems from the nature of sparse matrix operations, which require numerous random memory
accesses with minimal data reuse. Several works have highlighted that community hardware (e.g., CPUs and
GPUs) designed on the single-instruction multiple-data (SIMD) principle will struggle in efficiently accessing
neighborhood features with discontinuous indexes |Duan et al.| (2022)); [Han et al.| (2016)); [Liu et al.| (2023b).

Existing work towards reducing the time cost of neighborhood aggregation mainly adopt randomized drop-
ping algorithms, which can be roughly grouped into two categories. Firstly, edge-oriented dropping methods
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Rong et al| (2019); |[Eppstein et al.| (1997); [Liu et al.| (2023b) remove part of the edges randomly during
training, or deterministically in preprocessing stage. Secondly, node-oriented dropping methods
(2020); |Chiang et al| (2019); Hamilton et al| (2017b) prune certain nodes and their associated edges from
the input graph. However, from the efficiency aspect, an issue with both approaches is that the overhead
from removing edges or nodes may counteract the speedup from the FLOPS reduction. Specifically, this is
due to the need to reconstruct the sparse adjacency matrix after removing edges or nodes from the input
graph, which involves processing the whole graph and is notably time-consuming.

A less explored method to speed up the aggregation phase is to use a fast but approximated version of the
SpMM instead of the exact one. To illustrate, consider a linear operation involving two matrices, A € R™*"
and B € R™*9. We first create reduced matrices A’ € R"** and B’ € R**9 (k < m) by choosing k
representative columns from A and their corresponding rows from B, referred to as column-row pairs. This
approximation, AB ~ A’B’, aims to reduce both the number of floating-point operations (FLOPs) and the
data that needs to be accessed, as only k/m of the column-row pairs are processed. This method avoids
the need to reconstruct a sparse matrix by structurally selecting entire columns and rows. Although this
approach has shown promise in other fields|Adelman et al.|(2021)), our tests reveal that it significantly reduces
the accuracy of GNNs, leading to even a 8% loss in accuracy (as shown in Table [1)) on standard datasets
and models, which is impractical for real-world applications.

In this work, we promote the accuracy-efficiency
trade-off via approximating the sparse matrix pro- i
duction in both the forward and backward pro- Time Breakdown
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prior research suggests the probability of choosing
each column-row pair should be in proportion to the
production of the respective row norm and column 200
norm [Drineas et al.| (2006). Interestingly, we ob-

served that the column-row pairs selected in the for- _ : _

ward pass exhibited a remarkable consistency across B e Bﬁ;‘ﬁ;- Ao ﬁgﬁﬁﬁ;rgﬂﬁ‘c’{‘gp
nearby iterations. We hypothesize that this consis- Dataset

tency will cause under-fitting problem as they only

utilize the same subset of nodes and edges during Figure 1: The time profiling of a three-layer GCNs
training. Drawing from this insight, we propose a on different datasets. SpMM may take 70~90% of the
straightforward strategy: the uniform selection total time. Qur method (StructDrop ) can reduce
of column-row pairs. Namely, we assign the same the total training time by 6.48x. We measure the
probability to be sampled for each column-row pair time on a NVIDIA A40 GPU. The detailed software

and term such structured dropping as StructDrop. and hardware information can be found in Appendix
Surprisingly, we found that this simple strategy can @

often outperform the complicated norm-based one

in the graph learning problem. To further reduce

the negative impact of the variance from uniform sampling, we propose to utilize instance normalization
following the approximated production to stabilize the training process. In summary, our contributions are
summarized as follows:
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o We explore to speedup GNN training from a novel randomized dropping perspective. We approx-
imate sparse matrix multiplication at forward and backward paths with sampling a subset of the
column-row pairs to reduce FLOPs and data access with accuracy preserved.

e We propose a hybrid solution of random dropping and normalization to maintain generalizabil-
ity with efficiency. We design a straightforward yet effective strategy, uniform sampling, which
overcomes underfitting in global graph. Additionally, we recommend incorporating instance normal-
ization into the sampling process so as to mitigate the embedding shift resulted from sampling.
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e We conduct comprehensive experiments on seven popular GNNs and four large graphs. Compared
with vanilla GNN, our achieve up to 5.29x speedup with negligible accuracy loss or better accuracy.
We obtain a superior efficiency or accuracy while keeping the other metric comparable with other
baselines.

2 Preliminaries and Background

2.1 Graph Neural Networks

We consider an undirected graph G = (V, £), where V and € denote the sets of nodes and edges, respectively,
ofsize N = |V| and E = |€|. Let A € R™*" denote the adjacency matrix, A, ; = 1if (v;,v;) € Eelse A, ; =0,
and let X € R"*? denotes the feature matrix. Based on the spatial message passing, GNNs learn the node
representation through aggregating the neighbors’ embeddings and combining with itself layer by layer. For
example, the node embedding learning at the [*" layer of Graph Convolutional Network (GCN) [Kipf &
Welling) (2017) is defined as:

HO = AXUDwO xO = ReLUHW), (1)

where X € RVN*? is the node embedding matrix at the " layer and X = X; A= D 2(A+I)D 2 is
normalized adjacency matrix, D is the diagonal degree matrix of A+ I; W) € R%*4 i trainable weight. In
practice, A is often stored in sparse matrix format like compressed sparse row (CSR) to save the computation
cost [Fey & Lenssen| (2019)). Each training step has two phases, i.e., forward and backward passes. From the
implementation perspective, its computation can be written as:

Forward Pass JO = MatMul(X(lfl), W(l)),
H®Y =spmi(A, JV), (2a)
Backward Pass VJU = SpMM(AT,VH(l)), (2b)

VXD = MatMul(VJY, w®),
VWU = MatMul (X DT v g0),

where SpMM(+, -) is the Sparse-Dense Matrix Multiplication and MatMul(-, -) is the normal Dense-Dense Matrix
Multiplication. From above, we can see that each training step has exactly two SpMM operations.
In practice, although using a sparse matrix format can reduce memory cost compared to using a dense
representation of the adjacency matrix, it is still notoriously inefficient on commodity hardware due to the
cache miss problem [Han et al.| (2016]). As shown in Figure |1, we observed that SpMM can take a large fraction
of the training time.

2.2 Fast Matrix Multiplication with Sampling

Given matrices X € R"*™ and Y € R™*4, our goal is to efficiently estimate the matrix product XY. The
Truncated Singular Value Decomposition (SVD) offers an optimal low-rank approximation of the product
XY |Adelman et al.| (2021), but its computational cost is almost equivalent to matrix multiplication. To
address the challenge, sampling algorithms have been introduced as a means of approximating the matrix
product XY. Such methods sample k£ columns from X and the corresponding rows from Y, resulting
in smaller matrices. These matrices are then multiplied in the traditional manner Drineas et al.| (20006).
Such an approach cuts down the computational complexity from O(mng) to O(kng). Mathematically, the
approximation is given by:

k
1
XY = Z S—tX:,itYit,: = approx(XY), (3)

t=1
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where X ; and Y; . represent the i* column of X and the i** row of Y, respectively. Within this context,
we define the (X.;,Y;.) as the i*h column-row pair. The term %k denotes the number of samples. {p;}I",
represents a probability distribution across the column-row pairs. i; € {1,---m} is the index of the sampled
column-row pair at the t*" trial. s; is the scale factor. |Drineas et al.| (2006) indicates that setting s; = k;l

guarantees the expectation of low-rank approximation equals to the results of actual matrix multiplicationt.
Furthermore, the approximation error is minimized when the sampling probabilities are proportional to the

product of the norms of column-row pairs:

i = 1 X ill2 ||Yi[2
P = ™ .
> e 1 X ll2 Y502

(4)

Though the above sampling method effectively accelerates matrix multiplication Drineas et al.| (2006), its
direct application to neural networks might not be optimal. This is because it overlooks the unique distri-
bution of neural network weights. Observations indicate that neural network weight distributions tend to
remain centered around zero during training |Glorot & Bengio| (2010); [Han et al.| (2015)). Using this insight,
Adelman et al|(2021)) introduced the Top-k sampling method: deterministically selecting the k column-
row pairs that have the highest values according to Equation [} without any scaling. This equates to setting
the probability p; of the top k column-row pairs to 1, and to 0 for the others, with the scale factor s;, being
consistently 1.

Furthermore, |Liu et al.[(2023a) adapted the top-k sampling technique to the domain of graph learning. To
guarantee gradient unbiasedness, they restricted the use of randomized matrix multiplication to the
backward pass only, i.e., VJ® = SpMM(AT, VH®) in Equation This decision was influenced by the
understanding that the non-linear activation functions can alter the expected outcome of the approximated
matrix multiplication Liu et al. (2023a). While this approach preserves the final model accuracy, its potential
for computational speedup is limited at 2x, given that it optimizes only the backward computations.

In the following sections, we investigate the feasibility to employ randomized matrix multiplication through-
out the entire training with of better acceleration while effectively addressing the challenge of preserving
accuracy.

3 Methodology

We propose StructDrop as an efficient yet accurate graph training
scheme. We first present an interesting finding, that the sound
theoretical guarantee of minimal error in Top-k sampling might not
be the most robust algorithm. We analyze and conduct experiments
to answer why Top-k sampling cannot maintain the accuracy in
Sec Based on this observation, we propose StructDrop in
Section [3:2] which uniformly select the column-row pairs during
graph training. In Sec we further suggest integrating instance
normalization to further enhance the stability of training process
when working with StructDrop.
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We first investigate the potential for expediting the SpMM operations Figure 2: The Jaccard Similarity of se-
in both the forward (Equation and backward (Equation lected column-row pairs across the iter-
passes with Top-k sampling. More specifically, we substitute the ations in Top-k Sampling. Top-k incurs
forward and backward SpMM with their approximated counterparts greatly repetative col/row pairs caus-
in Equation In this experiment, we set the k as 0.1|V| across ing under-fitting problem.

different layers. We detail the model configuration in Appendix [A]

The performance results are presented in Table As indicated by the results, we observed a substantial
decrease in accuracy. This outcome is both surprising and intriguing, considering that theory Drineas
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et al| (2006) has previously demonstrated that Top-k sampling should yield a satisfactory approximation
with minimal reconstruction error to the original matrix multiplication. To dig in further, we examine
the Jaccard similarity for the selected column/row pairs. We conduct this analysis using GCN training
with the ogbn-Arxiv dataset as an example, and present the results in Figure 2] Upon closer inspection,
we discovered that the Top-k sampling consistently selects nearly identical column-row pairs in adjacent
iterations. Specifically, the Jaccard similarity between iterations in close proximity is approximately 90%.
This suggests that the Top-k sampling consistently utilizes the same subset of nodes and edges throughout
graph learning. Consequently, a substantial portion of the graph information will be excluded during message
aggregation, which leads to under-fitting problem.

To validate our hypothesis, we plot the train-

ing and test accuracy of a three-layer GCN S ——

model on ogbn-Products using various train- s /ﬁj} <80

ing schemes, as shown in Figure[3] The under- e H T

fitting hypothesis finds support in Figure g ‘\/ g

where the training accuracy using Top-k sam- § 401 i 240 E—

pling is significantly lower compared to the Ezo Top-k Sampling ﬁzo Top-k Sampling
baseline. As a consequence, Figure shows — StructDrop — StructDrop
that the test accuracy of GNNs trained with 0 100 Ei‘;‘zh 300 400 0 100 Ei‘;gh 300 400
Top-k sampling is also substantially inferior to

the baseline. (a) Training Accuracy (b) Test Accuracy

Figure 3: Training and testing accuracy comparison be-
3.2 StructDrop : An Efficient Sampling tween different baselines on GCN with ogbn-Product.
Scheme with Increased Generalizability

Motivated by the observation that Top-

k sampling leads to under-fitting due Taple 1: Preliminary results on three datasets. “+Top-k Sam-
to the consistent selection of the same pling” means we replace both the forward and backward SpMM
graph information during training, we with their approximated version. Here we set the k as 0.1V

explore a straightforward strategy: uni- across different layers. All reported results are averaged over six
form selection of each column-row pair. random trials.
In other words, each column-row pair

has an equal probability of being Reddit ogbhn-Arxiv. ogbn-Product
sampled, and we sample a total of & aox Baseline 95.30 + 0.05 72.09 + 0.26 76.05 + 0.10
column-row pairs without replace- +Top-k Sampling  93.53 £ 0.44 70.33 £ 0.86 74.73 £ 1.81
ment. We call this simple yet effective CraphSAGE Baseline 96.59 + 0.03 70.44 £ 0.31  78.05 & 0.90
strategy StructDrop, structurally sam- +Top-k Sampling 90.35 £ 1.22  62.10 & 0.52  70.17 + 0.32

pling the whole graph. Experiments re-

sult in section [£:3] show that this structured sampling method yields better performance compared to the
unstructured dropout approach. Here we analyze the potential of our method from a generalizability and
efficiency perspective.

Generalizability Analysis As demonstrated in Figure 2] StructDrop employs a varied set of column-row
pairs throughout the training process, indicating that StructDrop effectively integrates information from the
entire graph. From a different perspective, StructDrop eliminates entire columns in the adjacency matrix
while leaving rows unchanged. This results in the removal of all outgoing edges for a specific set of nodes.
The operation applied to such a sampled adjacency matrix and node embeddings introduces randomness
during aggregation, which can be regarded as a form of data augmentation. Consequently, there is increased
randomness and variability in the aggregated nodes, which enhances generalizability. As a result, both Figure
[3a] and Figure [3D] illustrate that the training and test accuracy of StructDrop closely match those of the
baseline. This suggests that StructDrop effectively mitigates the under-fitting issue.

Efficiency Analysis Previous approaches have utilized edge/node dropping as data augmentation tech-
niques to enhance generalizability. Such methods also appear to increase computing speed due to the FLOPs
reduction, which is achieved by dropping entries in the adjacency matrix. However, these methods encounter
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efficiency challenges because the speedup gained from reducing FLOPs is often offset by the complex oper-
ations involved in manipulating the adjacency matrix.

Digging deeper, a graph can usually be represented by two data structures: the sparse adjacency matrix and
edge index. The adjacency matrix can be viewed as a data structure optimized for computation time, and
employing the adjacency matrix often leads to much faster computations compared to using the edge index
format [spmy; [pyg (2023]). Nonetheless, a gap emerges because such computation-friendly data structure is
usually represented in the Compress Sparse Row (CSR) format |Arai et al| (2016), which cannot be easily
manipulated due to the compression of the row indices. On the contrary, the edge index is an manipulation-
friendly data structure that can be easily modified. Thus, edge/node dropping operations are typically
carried out on the edge index |dro| (ajb)). However, this process introduces time overhead because the data
structure must be converted back to the computation-friendly adjacency matrix for faster computation. This
additional conversion offsets the speed gains achieved through reduced FLOPs.

With the structured dropping approach, we can directly manipulate the computation-friendly adjacency
matrix since we only drop the column-wise outgoing edges, which can be directly implemented upon the CSR
format. Consequently, our method bypasses the conversion from edge indices to sparse adjacency matrix,
resulting in fast sampling implementation. Our extensive experiment results in Sec demonstrates that our
structured dropping method achieves a substantial increase in efficiency when compared to the edge/node-
oriented dropping methods. Importantly, this efficiency boost introduced in our method is achieved without
sacrificing accuracy during training.

3.3 Instance Normalization Meets the Sampling Scheme

While the fast matrix multiplication with random sampling brings notable efficiency benefits, a side effect is
the distribution shift of node embeddings during training. This shift arises due to the random sampling of
column-row pairs between epochs, leading to the entirely different node embeddings learned from the diverse
sets of neighbors. It is widely observed that such a sharp distribution shift can impede the learning rate and
even steer the model towards the convergence of suboptimal points. Bjorck et al,| (2018)); [loffe & Szegedy
(2015); Bjorck et al.| (2018)).

To mitigate the training shift which causes the unstable convergence, we apply instance normalization at
critical point following the approximated matrix multiplication. Mathematically, recalling the forward pass
in Equation we use H) = SpMM(StructDrop(A, JW)) to represent the node embeddings after neighbor
aggregation. These embeddings are obtained by uniformly dropping the column-row pairs over matrices A
and J® and then performing sparse matrix production on them. Considering embedding vector hz(-l) € R¢
of node v;, i.e., the i*" row in H®, the instance normalization rescales it by [Ulyanov et al. (2016):

R = Y —ERY)] / sqrt(Var(h") + €) x v + B. (5)

E(+), Sqrt(+), and Var(-) denote operations of expectation, squared root, and variance, respectively; v, 8 € R?
represents the trainable weights for the running variance and mean, respectively. Each node embedding is
rescaled to mitigate the effects of sampling randomness, thereby facilitating the convergence of the model
with improved generalization. Detailed experiments discussing node embedding shifting and generalization
performance are provided in the experimental section to substantiate our proposed approach.

4 Experiments

In our experiments, we evaluate our proposed framework through answering the following research questions:
Q1: How effectively is StructDrop’s generalizability? Q2: To what extent does StructDrop accelerate the
training speed? Q3: How crucial is the role of instance normalization within the sampling scheme?
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4.1 Implementation Details

Datasets, Backbones and Baselines To evaluate StructDrop, we adopt four large scale graph bench-
marks which are commonly used in different domains: Reddit [Hamilton et al.| (2017a)), Reddit2 |Zeng et al.
(2020) E|, ogbn-Arxiv [Hu et al.| (2020) and ogbn-Products Hu et al.| (2020). We evaluate StructDrop using
both the full-batch and sub-batch training settings. We intergate StructDrop with seven popular schemes
in large graph training including GCN, GraphSAGE, GCNII, GIN and other subsampling based mechanism
(GraphSAINT, GraphSAGE and ClusterGCN). The comparison are made against four different baselines
introduced in Sec We detail our hyperparameter settings in Appendix [A]

4.2 Superior Generalizability and Efficiency

In this section, we first evaluate the generalizability and efficiency of StructDrop in comparison to different
baselines. As mentioned in Sec StructDrop greatly accelerates the graph computation while simul-
taneously enhancing generalizability. This is evident from the negligible accuracy loss observed, coupled
with significantly faster training speeds, as illustrated in our experimental results. We provide a detailed
experimental findings below.

4.2.1 Operational level acceleration

We first evaluate the speed improvements at the operation level introduced by StructDrop. Figure
illustrates the speed improvements at the operation level achieved by StructDrop. We measured the wall
clock completion time of various operators across different datasets. With StructDrop, the computational
complexity in sparse matrix multiplication is significantly reduced in a hardware-friendly way, resulting in
faster completion times. Across datasets, the forward pass SpMM operation is accelerated by 1.9 to 5.5 times,
while the backward pass SpMM is accelerated by a factor of 2.62 to 4.8 times. Overall, StructDrop achieves
a maximum wall clock time speedup of 5.29x compared to the vanilla baseline as shown in table [2]

4.2.2 End-to-end performance analysis

Next, we assess the end-to-end training speedup and model accuracy of StructDrop in comparison to different
methods. Specifically, we compare our approach against: I, Vanilla baseline with the standard training
process without any approximations; 2, Top-k sampling |Adelman et al| (2021) and &, DropEdge [Rong
et al. (2019) and DropNode [Feng et al.| (2020). We conduct the experiments with the same sampling ratio
across all different baselines to ensure a fair comparison. We present the fullgraph setting results on GCN,
GraphSAGE, GIN and GCNII and subgraph sampling based ClusterGCN, GraphSAGE and GraphSAINT
in Table We see StructDrop achieves superior performance consistently on different architectures. We
detail the performance analysis of StructDrop below.

StructDrop achieves much faster speed with
almost no accuracy drop or even better accu-
racy StructDrop achieves remarkable speedup with
negligible accuracy loss (within 0.5%) or even bet-
ter accuracy compared to vanilla training scheme.
As discussed in Sec[3.2] the maintained or enhanced
accuracy is attributed to StructDrop’s random sam- Topk Sampling
pling during the message aggregation phase. These " 100 200 300 400 0 100 200 300 400
samples introduce randomness, effectively acting as Epoch Epoch

data augmentation, which enhances StructDrop’s (a) GCN layers (b) GraphSAGE layers

generalizability. Further discussion on generalizabil-
ity is in Sec {223 Figure 4: Embedding sparsity on different Archs.
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In terms of efficiency, StructDrop achieves up to a
5.29x speedup in end-to-end training time over the vanilla baseline (Table . This gain comes from a

I This is a sparser version of the original Reddit dataset ( 23M edges instead of 114M edges), and is used in paper GraphSAINT
Zeng et al.| (2020)
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Table 2: We present a comparison of efficiency and accuracy across different baseline methods using GCN,
GraphSAGE, GIN, GCNII and sub-sampling-based methods including ClusterGCN, GraphSAINT, and
GraphSAGE. The upper part of the table presents fullgraph setting and lower part of the table presents
subgraph setting. We observe that in most experiments, Top-k Sampling experiences a significant accuracy
drop (over 1%, and in most cases exceeding 3%). These accuracy reductions make it unsuitable for real-
world deployment. For the speedup comparison, we exclude results where the accuracy drop is too severe
and highlight the best speedup gains in bold. StructDrop achieves the best speedup gain without accuracy
loss across all settings.

# nodes 232,965 232,965 169,343 2,449,029
# edges 114,615,892 23,213,838 1,166,243 61,859,140
Reddit Reddit2 ogbn-Arxiv ogbn-Products
Model Methods
Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup
Vanilla 95.3 £+ 0.05 1 x 95.38 £ 0.06 1 x 72.09 + 0.26 1 x 76.05 £ 0.10 1 x
Top-k Sampling 93.21 £ 0.15  6.99 x 94.21 £ 0.25 2.72 x 70.84 + 0.63 1.33 x 77.94 £ 247  1.96 x
GCN DropEdge 95.44 £ 0.01 1.87 x 95.47 £ 0.02 1.72 x 72.55 =+ 0.33 1.21 x 78.96 £ 0.60 1.2 x

DropNode 95.34 £ 0.06 2.07 x  95.35 + 0.05 1.7 x 7236 £0.20 1.23 x 7829 4+ 215 1.17 x
StructDrop 95.47 £0.05 3.87 x 9546 + 0.03 2.4 x 7246 £ 0.23  1.29 x  79.24 £ 0.74 1.8 x

Vanilla 96.59 £ 0.03 1 x 96.67 £+ 0.03 1 x 70.44 £ 0.31 1 x 78.05 £ 0.90 1 x
Top-k Sampling 92.73 £ 0.33  9.66 x  93.84 £ 0.28 3.08 x  63.75£042 1.39 x 73.22+023 3.31 x
GraphSAGE DropEdge 96.65 £ 0.03  2.65 x 96.55 £0.03 1.54 x 70.23+0.19 081 x 7857 £0.09 1.33 x

DropNode 96.36 £ 0.06 2.72 x 9633 £0.01 1.78 x  69.99 £0.29 1.02 x 7893 £0.20 1.32 x
StructDrop 96.65 £ 0.04 4.26 x 96.56 £ 0.03 2.33 x 70.03 +£0.26 1.15 x 7897 £0.17 2.47 x

Vanilla 94.39 £ 0.08 1 x 94.76 £ 0.03 1 x 70.86 + 0.18 1 x 78.02 £ 0.15 1 x
Top-k Sampling 91.21 £ 0.22 245 x  91.77 £ 0.34  2.33 x 70.82 +£0.10 1.16 x  75.59 +£ 0.08 1.34 x
GIN DropEdge 94.54 £ 0.07 294 x 9483 £0.08 2.31 x 71.11 +£0.15 1.18 x  78.65 + 0.13 1.18 x

DropNode 94.41 £0.05 3.73 x  94.69 £0.01  2.59 x 70.64 +£0.12 123 x 7816 £ 0.19 1.16 x
StructDrop 94.48 £ 0.07 5.29 x 9486 £0.03 3.06 x 70.64 +0.10 1.28 x 7873 £0.05 2.12 x

Vanilla 96.81 £ 0.03 1 x 96.80 £ 0.02 1 x 72.12 £ 0.24 1 x 76.70 £ 0.12 1 x
Top-k Sampling 91.46 £ 1.00 5.14 x 93561 £0.58 2.11 x  71.09 £0.09 1.21 x 7427 +0.34 1.74 x
GCNII DropEdge 96.81 £ 0.07 2.02x 96.72+£0.01 1.61 x 7224+030 1.14x 7749 £0.09 1.02 x

DropNode 96.39 £ 0.05 216 x  96.31 £0.03 1.63 x 7235+ 0.01 113 x 77724+ 0.18 1.01 x
StructDrop 96.82 £ 0.02 3.43 x 96.72+£0.03 1.97 x 7216 +0.12 1.19 x 77.55 £0.31 1.62 x

Vanilla 95.77 £ 0.16 1 x 95.85 £ 0.14 1 x 71.12 + 0.09 1 x 78.88 £ 0.12 1 x
Top-k Sampling 89.14 £1.21 1.61 x 90.59 £ 1.03 125 x 6548 £0.35 1.16 x 69.64 = 0.13 1.17 x
ClusterGCN DropEdge 95.73 £0.09 053 x 9562+ 0.11 074 x 71.07+0.36 051 x 7872£0.02 041 x
DropNode 95.71 £0.05 0.56 x  95.72+£0.07 0.76 x 70.62 +0.19 0.63 x 76.36 £0.43 0.42 x
StructDrop 95.69 £ 0.14 1.36 x  95.60 + 0.05 1.2 x 71.04 £ 044 1.12 x 7834 £ 0.03 1.1 x
Vanilla 95.85 £ 0.13 1 x 96.22 £ 0.05 1 x 70.72 £ 0.17 1 x 78.67 £ 0.23 1 x
Top-k Sampling 90.36 £ 0.84 1.56 x  91.27 £ 0.50 1.08 x  65.77 £0.41 1.11 x 7559 £ 0.37 1.33 x
GraphSAINT DropEdge 95.92 £ 0.06 0.7 x 96.12 £ 0.03  0.67 x  69.56 £ 0.06 0.79 x  79.50 £ 0.18  0.53 x
DropNode 95.73 £0.08 0.73 x  96.05 £ 0.11 0.68 x 6947+ 1.08 0.82x 7927 +£0.33 0.52 x
StructDrop 95.87 £0.05 1.33 x 96.09 £0.03 1.05 x 69.40 £ 0.94 1.07 x 79.59 £ 0.37 1.27 X
Vanilla 96.47 £ 0.10 1 x 96.53 £ 0.04 1 x 70.49 + 0.29 1 x 78.67 £ 0.16 1 x
Top-k Sampling 93.19 £ 1.42 123 x 9404 +0.10 1.26 x 6285 £234 1.11 x 7647 +£0.34 1.2 x
GraphSAGE DropEdge 9457 £0.13 092 x 9592+ 0.11 089 x 6857+ 0.18 0.87 x 7940 £0.21 0.49 x
DropNode 95.12 £0.15 092 x  96.11 £0.09 092 x 69.34 £ 0.61 0.88 x 7881 £044 0.52 x
StructDrop 96.34 £ 0.08 1.28 x 96.49 £0.02 1.23 x 69.2 £056 1.12 x 7890 £0.17 1.21 x

fast approximation operation during message aggregation, reducing computational complexity without extra
overhead. Overall, StructDrop accelerates GNN training while maintaining accuracy. Next, we compare
our training scheme with other baselines.
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Notable accuracy improvement compared to Top-k sampling: We now compare StructDrop with
Top-k sampling. We highlight the significant accuracy improvement achieved by StructDrop here. As shown
in table [2] Top-k sampling results in an unacceptable performance loss compared to both the vanilla baseline
and StructDrop. The performance drop stems from Euclidean norm-based sampling, which overly focuses
on a few columns and rows, as shown by the Jaccard similarity analysis in Figure 2] This leads to the loss
of global graph information during message aggregation, causing underfitting behavior.

In contrast, the uniform random sampling strategy employed in StructDrop results in the collection and
utilization of global graph knowledge during message aggregation, as every column-row pair has the potential
to be involved. This approach facilitates more comprehensive graph learning.

Another significant factor to the poor performance of Top-k sampling is the information loss that occurs dur-
ing training. We conducted profiling of the embedding sparsity after message aggregation with vanilla, Top-k
and StructDrop shown in Figure [d] We found that after sampling and message passing, the embeddings
obtained through the Top-k sampling exhibit a high rate of zero entries. Although Euclidean norm-based
sampling maintains minimal reconstruction error when compared to vanilla sparse matrix multiplication, it
tends to select cols/rows with lower degrees |Liu et al|(2023a)). This selection results in higher sparsity and
consequently leads to more significant information loss during aggregation, exacerbating the underfitting
problem.

As depicted in Figure[d the embedding sparsity of StructDrop is comparable to that of the vanilla scheme,
resulting in less information loss during message passing. In Appendix we further demonstrate that
under the same accuracy requirements, StructDrop achieves better accuracy and speedup compared to
Top-k sampling. In summary, StructDrop outperforms the Top-k sampling scheme with significantly better
accuracy.

Considerably faster training speed compared to DropEdge and DropNode: DropEdge Rong et al.
(2019) mitigates overfitting and oversmoothing by randomly dropping edges, while DropNode |Feng et al.
(2020) enhances robustness through node feature dropout as data augmentation. Both methods sample
edges or nodes with predefined probabilities. As shown in Table [2] StructDrop achieves comparable accu-
racy (within 0.5%) to DropEdge and DropNode across datasets, demonstrating the effectiveness of sampled
message passing for data augmentation.

However, StructDrop’s true strength lies in its substan-
tial efficiency gains compared to the other two baselines. Typle 3 StructDrop’s speedup vs. DropEdge
Table [3|shows the speedup gain of StructDrop on Graph- apd DropNode
SAGE. Overall StructDrop can achieve up to 2.07x and
2.42x speedup compared to DropEdge and DropNode re- Reddit Reddit2 ogbn-Arxiv _ogbn-Products

. - . . . . vs. DropEdge  1.61 x 151 x 1.42 x 1.86 x
spectively, primarily driven by hardware efficiency. While —= DropNode 157 x 131 x IR 1o <
the number of preserved edges during training remains
consistent, DropEdge and DropNode exhibit significantly
smaller dropping granularity compared to StructDrop. Manipulating such sampling operations incurs ad-
ditional conversion overhead, as discussed in Sec In contrast, StructDrop’s random dropping operation
on all the outgoing edges in the entire columns can be applied directly to the computation-friendly adjacency
matrix. This faster sampling introduces almost no additional performance overhead while expediting graph
training with much faster computation, ultimately translating into speed improvements.

StructDrop acceleration effect on full-graph and subgraph training. StructDrop is a mechanism
for column and row sampling during graph training, which can be seamlessly integrated into both full-graph
and subgraph-based training. We observe that StructDrop achieves more significant speedup in full-graph
training. Additionally, the speedup effect scales as the size of the subgraph increases. Table [I0] in Sec
provides details from our ablation study. In practice, large subgraphs are preferred to preserve global
information and optimize hardware efficiency. Nevertheless, StructDrop can substantially accelerate graph
training for both full-graph and subgraph-based approaches.



Under review as submission to TMLR

Table 5: Accuracy and speedup on different sample ratios

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup  Accuracy Speedup  Accuracy Speedup  Accuracy Speedup

0.1 95.44 £ 0.04 5.63 x 95.39 £ 0.05 2.81 x 72.16 £ 0.21 1.35 x 79.51 £1.07 2.04 x
0.2 95.47 £ 0.05 3.87 x 95.46 £ 0.03 2.40 x 72.46 £ 0.23 1.29 x 79.24 £0.74 1.8 x
0.3 95.47 £ 0.04 2.89 x 95.48 £ 0.03  2.05 x 72.44 £ 024 1.22 x 78.95 £ 0.46 1.6 x
0.4 95.43 £ 0.04 2.26 x 95.46 + 0.04 1.78 x 72.66 £ 0.23 1.17 x 78.63 £ 0.29 1.43 x

GCN

Overall, StructDrop achieves up to 5.29x speedup with minimal or even improved accuracy, as shown in
Tables[2 While the speedup ratio varies, the performance boost remains consistent across architectures and
datasets. A detailed discussion on these variations is provided in Appendix [C}

4.2.3 Generaliability Study of StructDrop

In this section, we aim to gain a deeper un-

derstanding of StructDrop’s generalizability. sovaoman w0 sovaoman
We begin by using ogbn-Products as an exam- — ;1‘::12:&&: 3 05 - ;,‘::;g

ple to plot the training loss and generalization DropNode 0o DropNode
gap for different baselines and GNN architec-

tures in Figure [f] and [} The generalization ~—— 05 \ WM
gap is quantified as the difference between the TR R T v TR
training and testing loss, with a higher loss Epoch Epoch

gap indicating better generalizability. Despite (a) Training loss on GCN (b) Gen. gap on GCN

the Top-k sampling mechanism exhibiting the
highest training loss and underfitting during
training with the GCN, StructDrop achieves
the largest generalization gap. These results are consistent with previous analysis, suggesting that random-
ness and diversity introduced by StructDrop act as a form of data augmentation, thereby enhancing the
model’s generalizability.

Figure 5: Training curve on GCN with ogbn-Products
dataset.

4.2.4 Ablation Studies of Dropping Ratio

In this section, we provide a comprehen-

sive analysis of StructDrop with respect Table 4: Ablation study of instance normalization.
to the dropping ratio using GCN as an
example. We also included the results of Reddit ogbn-Arxiv  ogbn-Products

other backbones in Appendix [E] w/ instance norm  95.47 + 0.05 7246 + 0.23  79.24 + 0.74

Tabl @ ts St D , ‘ w/o instance norm  94.01 &+ 1.04 69.30 £ 1.19  74.55 £ 3.51
able resents StructDrop’s perfor-

p diff " E) p ti GraphSAGE w/ instance norm  96.65 £+ 0.04 70.03 £ 0.26  78.97 + 0.17
mance across diilerent samplng ratlos w/o instance norm  96.52 & 0.04  69.00 + 0.45  78.25 & 0.21

and datasets on GCN. The impact of the
sample ratio on accuracy varies depend-
ing on the datasets. For smaller datasets like ogbn-Arxiv which contain a small number of edges, higher
sample ratios tend to lead to higher accuracy, as there is less information loss. Conversely, for larger datasets
like ogbn-Products which potentially have more information redundancy due to the large number of edges,
accuracy is inversely proportional to the sample ratio. This is because redundant edges can cause the node
embeddings to be smoothed by their neighbors, resulting in a loss of node features with the converged em-
beddings. Regarding efficiency, lower sampling ratios result in higher computation speeds. The trends for
GraphSAGE and other model architectures are similar.

GCN

4.3 Benefits of Instance Normalization in Sampling

We further evaluate the advantages with incorporating instance normalization during sampling. Instance
norm serves as a mitigator of distribution shifts, reducing the shifts in embeddings induced by random
sampling between epochs. The results presented in Figure [6] demonstrate that instance norm serves as an
effective factor in smoothing the training process, ultimately leading to improved accuracy.

10
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Ablation Study of Instance Norm We evaluate the accuracy improvement resulting from the inclusion of
instance norm. We summarize the accuracy using GCN and GraphSAGE as examples on different datasets
w /o instance norm applied. As depicted in Table [4l the accuracy with instance norm applied is consistently
higher than that without it across datasets. Instance norm is beneficial for random sampling, resulting in
improved accuracy.

Effect for Smooth Training Next we deep
dive into why instance norm helps boost the
accuracy. We plot the distribution shift of
the embedding after message aggregation with
sampled columns/rows in Figure @ We use
the norm difference of the embedding between
subsequent epochs to measure the training ‘ AT o1 |
smoothness. As shown in Figure [f] training S I
without instance norm causes much larger em- Epoch Epoch

bedding shifts, making the training process not (a) GCN (b) GraphSAGE
smooth as the model needs to constantly adapt

to new inputs distribution. This effect exacer- Figure 6: Embedding shifts between epochs.

bates as the random samples causes message

aggregation in different epochs varies drastically. Instance norm successfully lowers the embedding shifts,
thus stabilize the training process and leads to better accuracy.

5 Related Work

3x10" I 3x10"

2x10°" 2x10°

—— W/ instance norm —— W/ instance norm

W/o instance norm W/o instance norm

Embedding norm shift
Embedding norm shift

6x10°

Large-scale Graph Learning Massage passing over graph can described by sparse matrix multiplication.
Such operation is resource consuming, where the memory and time complexities depend on the amounts of
nodes and edges, respectively. To address the scalability issue, numerous families of algorithms have been
explored, including the subgraph-based GNN training Hamilton et al.| (2017al); Huang et al.| (2018) , graph
precomputation Wu et al.| (2019)); [Klicpera et al.| (2018]); [Yu et al.| (2020), and distributed training |Zha et al.
(2023 2022); [Yuan et al.| (2022)); Wang et al.| (2022). The common merit of them is to divide the large graph
into pieces, each of which could be handled by the resource-limited GPU.

Related work on Efficient Training Algorithms, Subgraph Sampling, Random Dropout, Graph
Condensation and other topics are also important. Due to space limitations, we defer the discussion on
them to Appendix [G]

6 Conclusions

In our work, we introduce StructDrop to replace time-consuming message passing with fast sparse matrix
multiplication (SpMM) during whole training process of GNNs. StructDrop uniformly samples column-
row pairs in the adjacency matrix, reducing computational complexity in SpMM. To address distribution
shifts resulting from random sampling, we apply instance norm after SpMM to rescale node embeddings
and stabilize the training. Extensive experiments on benchmark datasets confirm the effectiveness of our
approach, achieving a superior trade-off between efficiency and generalization performance.

7 Impact Statements

This paper introduces research aimed at pushing the boundaries of Machine Learning. While our work might
have several potential societal consequences, we feel there is nothing specifically to highlight here.
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A Configuration and hyperparameter setting

StructDrop only has one hyperparameter which is the sampling ratio. We present comprehensive sample
ratio ablation study in Sec We adopt a similar approach to prior study Liu et al. (2023a)) by sam-
pling every ten training steps. Below tables show the configurations of different model architectures (GCN,
GraphSAGE, GCNII and GraphSAINT) in graph training.

Table 6: Configuration of Full-Batch GCN.

Training Archtecture
Dataset Learning Hidden
Rates Epochs Dropout | BatchNorm Layers Dimension
Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
ogbn- 0.01 500 0.1 No 3 512
Arziv
ogbn-
Products 0.001 400 0.5 No 3 256
Table 7: Configuration of Full-Batch GraphSAGE.
Dataset Learning Training Archtecture Hidden
Rates Epochs Dropout | BatchNorm Layers Dimension
Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
ogbn- 0.01 500 0.1 No 3 512
Arziv
ogbn-
Products 0.001 500 0.5 No 3 256
Table 8: Configuration of Full-Batch GCNII.
Dataset Learning Training Archtecture Hidden
Rates Epochs Dropout | Alpha&Theta Layers Dimension
Reddit 0.01 400 0.5 0.1&0.5 4 256
Reddit2 0.01 400 0.5 0.1&0.5 4 256
ogbn- 0.01 500 0.1 0.1&0.5 4 512
Arziv
ogbn-
Products 0.001 500 0.1 0.1&0.5 3 128

B Detailed analysis of StructDrop’s performance in subgraph training

For the subgraph sampling scheme, we found the subgraph size affects the speedup gain. we conduct a further
ablation study on input subgraph size and show the results in Table The input subsampled graph size
is proportional to some hyper-parameters such as random walk length and batch sizes in GraphSAINT. We
use Reddit/Reddit2 dataset and train the model based on the GraphSAINT-based method. We study the
speedup gain with different random walk lengths. In this experiment, a larger random walk length leads to
a larger subgraph, maintaining more global information during training. As shown in below table, we see
that the speedup gain increased from 1.33 to 1.6 on Reddit, and respectfully 1.05 to 1.43 on Reddit2 when
the walk length is larger. That being said, the StructDrop acceleration effect scales up when the subgraph
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Table 9: Configuration of GraphSAINT.

Training Archtecture
Dataset Learning Hidden
Rates Epochs Dropout | Walk length Layers Dimension
Reddit 0.01 40 0.1 4 3 512
Reddit2 0.01 40 0.1 4 3 512
ogbn- 0.01 75 0.1 1 4 512
Arxiv
ogbn-
Products 0.01 20 0.5 3 3 256

is larger. Such speedup gain enabled by StructDrop is non-trivial. In the real-world setting, the size of the
input subgraph is typically large. There are two considerations: 1. From GNN training perspective, a larger
subgraph will preserve more global information, reducing information loss in the graph; 2. From the training
efficiency side, it needs sufficient batches to keep the hardware fully occupied. With large graph, speeding
up incurred in training will significantly save the training time and hardware resources, which could bring
benefits and bring down the costs during training.

C Speedup gain percentage difference between architectures and datasets

As discussed in Sec StructDrop’s consistently speedup the training among different architectures and
datasets. There are percentage different in acceleration among datasets/architectures. We detail the explana-
tion here. StructDrop’s operation-level acceleration (specifically, message passing operation acceleration as
mentioned in Sec which is an efficiency bottleneck during training) remains consistent across different
architectures. However, different backbones might incur other operations other than the message passing (i.e.
different linear layer dimensions). These operations are not accelerated and their overheads varies between
backbones. Consequently, the percentage of acceleration differs across architectures. To further explain, if
the operation-level acceleration is p, the overall speedup gain can be denoted as (p * Overhead_ OP + Over-
head_ Other) / (Overhead_OP + Overhead_ Other), which will vary depending on different architectures.
Similarly, different datasets with different size of the input graph will cause varying overhead. Nonetheless,
StructDrop is able to speed the most inefficient message aggregation as mentioned in Sec and the
end to end speedup effect is consistent among different architectures and datasets as shown in Table

Table 10: Ablation study on StructDrop’s acceleration effects
with random walk length in GraphSAINT. Larger walk length

D Discussion on the choice will result in larger subgraph in GraphSAINT.

of Top-k and StructDrop under

relaxed accuracy requirements. Walk length 4 8 16
Reddit Speedup 1.33x 1.47x 1.6x

As discussed in Sec Top-k method Accuracy 95.87 £ 0.05 96.32 £ 0.02 95.97 £ 0.08

results in large accuracy drop (~8%) in  Reddit2  Speedup 1.05x 1.24x 1.43x

some cases due to the under-fitting prob- Accuracy  96.09 £ 0.03 9647 + 0.06  96.20 = 0.02

lem. Novetheless, one might be curious
how should Top-k and StructDrop be chosen under a relaxed accuracy requirements (~2%). Under a loose
accuracy requirements, although top-k method is in general faster (with lower accuracy), we would like to
point out that the practitioner can accelerate StructDrop by reducing the percentage of columns/rows sam-
pled in computation. We provide some experimental results as a comparison in the below Table We use
Reddit2 and Arxiv dataset with GCN dataset as the demonstration. Note that the Top-k’s accuracy is com-
promised a lot compared to Vanilla solution. We reduce the sample ratio of StructDrop in this experiment
to check whether the speedup can catch up with the Top-k mechanism.
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Table 12: Ablation study on accuracy and speedup with different sample ratios on GraphSAGE, GCNII and
GraphSAINT architecture

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products
Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

Vanilla  96.59 + 0.03 1 x 96.67 + 0.03 1 x 70.44 £+ 0.31 1 x 78.05 £+ 0.90 1 x
0.1 96.53 £ 0.04 648 x 9642 +0.04 293 x 68.83+0.30 1.33 x  79.29 £ 0.07 2.96 X
0.2 96.65 + 0.04 4.26 x  96.56 + 0.03 2.33 x  70.03 +£0.26 1.15 x  78.97 £ 0.17  2.48 x

0.3 96.69 + 0.04 3.13 x  96.63 +£0.04 2.0l x 70.35 +£0.24 1.12 x  78.63 £ 0.12 2.1 x
0.4 96.68 + 0.02 242 x  96.67 £0.03 1.79 x  70.65+0.34 1.06 x  78.31 £0.09 1.81 x

Vanilla  96.81 £+ 0.03 1 x 96.80 £+ 0.02 1 x 72.12 £ 0.24 1x 76.70 £ 0.12 1 x
0.1 96.72 + 0.03  4.61 x  96.65 + 0.03 2.19 x  71.52+0.07 1.24 x  77.50 £ 0.35  1.77 x
GCNII 0.2 96.82 + 0.02 343 x  96.72+0.03 1.97 x 7216 +£0.12 1.19 x  77.55 £ 0.31  1.62 x
0.3 96.84 + 0.03  2.67 x  96.76 £ 0.03 1.77 x 7222+ 0.21 1.15x  77.50 £ 0.31 1.49 x
0.4 96.85 £ 0.01 2.16 x 96.80 £+ 0.03 1.59 x 72.20 £+ 0.15 1.11 x 77.25 £ 0.18 1.37 x

Vanilla 95.85 £+ 0.13 1 x 96.22 £ 0.05 1 x 70.72 £ 0.17 1 x 78.67+ 0.23 1 x
0.1 95.75 + 0.08  1.47 x  95.89 + 0.01 1.1 x 68.94 + 0.62 1.13 x 7942 +0.12 1.34 x
GraphSAINT 0.2 95.87 £ 0.05 1.33 x  96.09 £ 0.03 1.05 x  69.40 £0.94 1.07 x  79.59 £ 0.37  1.27 x
0.3 95.88 + 0.03 1.23 x  96.14 +£0.05 1.03 x  70.25+0.92 1.05 x  79.41 +0.31 1.18 x

0.4 96.01 + 0.08 1.09 x  96.19 +£0.04 1.01 x  70.49 +£0.58 1.01 x  79.21 + 0.29 1.1 x

GraphSAGE

From Table([TT] we can see that by reduc-  Table 11: Comparison on efficiency and accuracy between Top-

ing the percentage of the columns/rows k and StructDrop under relaxed accuracy requirements. Bold
sampled during training, StructDrop’s denotes the highest.

speedup gain can be effectively increased.

With that, StructDrop SUCCQSSquy sup- Method Sample Ratio Accuracy Speedup compare to Vanilla
pressed Top-k at speed while still main- Reddit2 Top-k 0.1 94.21 + 0.25 2.72 x
taining a much more superior accuracy. StructDrop 0.2 95.39 & 0.05 2.81 X
That’s why a practitioner should choose ogbn-Arxiv. Top-k 0.1 70.84 + 0.63 1.33 x
StructDrop under a relaxed accuracy re- StructDrop 0.2 72.16 + 0.21 1.35 x
quirement.

At the same time, we believe the accuracy of the model is also important. StructDrop can effectively increase
the training speed, with negligible accuracy loss or even more exciting accuracy in most cases. However,
the model trained with top-k method suffers a lot (sometimes with ~8%) for accuracy. Although faster,
the experimental results (Table show that Top-k compromise the accuracy too much, which will cause
large trouble during inference/model serving time. This is why we would like to advocate for training using
StructDrop even with relaxed accuracy requirement.

E Ablation study on accuracy and efficiency with Ratio

The relationship between sampling ratios with respect to accuracy and efficiency of StructDrop is shown
in Table The results is consistent with the elaboration in Sec The impact of the sample ratio
on accuracy varies depending on the datasets. For smaller datasets, higher sample ratios tend to lead to
higher accuracy because of less information loss. On the other hand, larger datasets like ogbn-Products
which potentially have more information redundancy due to the large number of edges, accuracy could be
inversely proportional to the sample ratio because those redundant edges can cause the node embeddings
to be smoothed, which causes converged embeddings. For efficiency, lower sampling ratios result in higher
computation speeds, and the trends for GraphSAGE and other model architectures are similar.
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Figure 7: Training curve on GraphSAGE with ogbn-Products dataset.

F Generalization ability study on GraphSAGE

The training curve and generalization gap on GraphSAGE training on ogbn-Products dataset is shown in
Figure[7] Similar to the result discussed in Sec[d.2.3] despite Top-k with the highest training loss, StructDrop
achieves the highest generalization gap owing to the randomness and diversity introduced by StructDrop,
which act as a form of data augmentation, and thereby enhancing the model’s generalizability.

G More related work

Efficient Training Algorithms Another orthogonal line is to reduce the memory and time consumption
by approximating the message passing. This can be divided into two categories. First, the adjacency
matrix based approximation aims to compress the non-zero entries or matrix dimension. For example,
Sketch-GNN sketch the graph adjacency matrix into a smaller one using hashing |(Chamberlain et al.| (2022));
DSpar expurgates the non-zero elements based on node degrees to obtain a sparse substitute |Liu et al.
(2023b)). Second, the node embedding based approximation targets at compress the memory storage of hidden
representations. For example, EXACT stocastically quantizes the node embeddings into low precision |[Liu
et al.| (2022); GNNAutoScale stores the whole list of node embeddings in CPU and retrieve them in forward
propagation |Fey et al.| (2021)).

Random Dropout To improve the generalization performance on graph, there are two main categories of
dropout. Edge-oriented dropout randomly samples a subset of edges to avoid over fitting and over-smoothing,
such as DropEdge [Rong et al.| (2019), DropNode [Feng et al.| (2020)), etc. On the other hand, Node-oriented
dropout removes node features and links connected to the dropped nodes. The node-oriented dropout is
originally motivated in sampling subgraph for scalable training and in augmenting graphs for contrastive
learning, such as DropNode [Feng et al.| (2020), FastGCN |Chen et al.| (2018)), etc.

Subgraph-based GNN training This line of works focuses on training GNNs using sampled subgraphs
to minimize the number of nodes stored in memory. Several sampling techniques have been developed
based on this concept, such as node-wise sampling [Hamilton et al.| (2017a)); |(Chen et al.| (2017)), layer-wise
sampling [Huang et al.| (2018)); |Zou et al.| (2019)), and subgraph sampling |Chiang et al. (2019)); |Zeng et al.
(2019). StructDrop is a technique that performs row and column sampling on adjacency matrices during
graph training, and it can be seamlessly combined with the previously mentioned subgraph sampling meth-
ods. Our experiments demonstrate that StructDrop improves computational efficiency while maintaining
accuracy.
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Graph Condensation Graph condensation involves condensing knowledge from a large graph to create
a smaller synthetic graph from scratch. However, the vanilla graph condensation often involves solving a
expensive bi-level optimization problem |Jin et al| (2021). |Jin et al.|(2022) further reduces the cost of graph
condensation through one step gradient matching. We note that the graph condensation is orthogonal to
our proposed method, as the final condensed graph still have the expensive SpMM operations.

H Limitations

Although our proposed method can effectively reduce the training time by reducing the number of active
columns and rows for performing SpMM , it cannot directly reduce the memory usage for storing the large
graph, which is another major bottleneck for scaling GNNs onto large graphs. When the memory is the
major bottleneck, we recommend using our method jointly with other graph reduction methods ,e,g., graph
sparsification |Liu et al.| (2023b)).
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