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Figure 1: Our method produces high-fidelity generation results from a single-view image.

ABSTRACT
Recently, image-to-3D approaches have significantly advanced the
generation quality and speed of 3D assets based on large recon-
struction models, particularly 3D Gaussian reconstruction models.
Existing large 3D Gaussian models directly map 2D image to 3D
Gaussian parameters, while regressing 2D image to 3D Gaussian
representations is challenging without 3D priors. In this paper, we
propose a large Point-to-Gaussian model, that inputs the initial
point cloud produced from large 3D diffusion model conditional
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on 2D image to generate the Gaussian parameters, for image-to-
3D generation. The point cloud provides initial 3D geometry prior
for Gaussian generation, thus significantly facilitating image-to-
3D Generation. Moreover, we present the Attention mechanism,
Projection mechanism, and Point feature extractor, dubbed as APP
block, for fusing the image features with point cloud features. The
qualitative and quantitative experiments extensively demonstrate
the effectiveness of the proposed approach on GSO and Objaverse
datasets, and show the proposed method achieves state-of-the-art
performance.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies→ Appearance and texture represen-
tations; Virtual reality.

KEYWORDS
3D Generation, 3D Gaussian Splatting, Single-View Reconstruction,
Point Cloud
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1 INTRODUCTION
Generating high-quality 3D assets from images is a pivotal task in
numerous fields, notably in gaming, film production, and VR/AR,
etc. The learning-based 3D generation algorithms [12, 33] allow
rapid generation of high-quality 3D assets free of tedious manual
processes and complex computer graphics tools.

Recently, the realm of 3D generation has witnessed a surge of
innovative techniques, with particular prominence given to two
main approaches: 2D-lifting-based generation and feed-forward
generation, driving the field’s progress. Following the pioneering
work [33], the 2D-lifting approaches [17, 33, 50] leverages Score
Distillation Sampling (SDS) [33] to distill 3D implicit representa-
tions (e.g., NeRF [30]) from large diffusion models [20, 21], while
feed-forward generation approaches [12, 15, 45, 51] straightfor-
ward reconstruct 3D implicit representations from 2D image with-
out iterative optimization. Compared to 2D-lifting approaches that
require extensive optimization time, the feed-forward generation
techniques can generate 3D assets within a few seconds. Besides, in-
spired by recent 3D Gaussian Splatting (3D-GS) [14] with promising
rendering quality in the novel view synthesis (NVS) and fast render-
ing speed, the latest approaches improve the speed and quality of
3D generation by integrating the 3D-GS into 2D-lifting generation
[6, 41, 52] or feed-forward generation [40, 49, 55].

The previous feed-forward approaches with 3D-GS [40, 49, 55]
build mappings directly from implicit image features to Gaussian
parameters. However, this regression based method is non-trivial
for 3D-GS learning, given that the input 2D image does not always
contain efficient 3D information for the corresponding object. By
contrast, Point Cloud as an effective 3D representation is capable
of providing informative geometry priors for the generation of
explicit 3D Gaussians, whilst the current large 3D diffusion model
(e.g. Point-E [31]) can generate diverse and satisfying initial point
cloud for the input image. Therefore, we present to generate Gauss-
ian parameters from point cloud, dubbed as Point-to-Gaussian, to
advance the 3D-GS learning for image-to-3D generation as shown
in Fig. 2.

Nevertheless, it is still non-trivial to convert the coarse point
cloud from 3D large models to Gaussian representations given that
the generated point cloud might sparse and noisy, which carrying
insufficient appearance feature and inaccurate geometry structural
information to provide informative prior for precise Gaussians gen-
eration. We thus first utilize a point cloud upsampler to densify
it and thus enhance the features, and then utilize a point feature
extractor to extract the feature from the point cloud. Besides, con-
sidering that the input image contains rich appearance information,
we present to enhance the corss modality features to fuse the 2D
image representations to the 3D point cloud for facilitating the 3D
representations. Specifically, we project the 3D point to 2D image
according to camera pose to obtain the features. However, there
are occlusions in the point cloud during the projection. We intro-
duce an attention mechanism to selectively query features for 3D
points, enhancing their representations, particularly under occlu-
sion. Subsequently, we integrate the 3D representations obtained
from the Attention mechanism, pose-aware Projection mechanism,
and Point cloud feature extractor, termed APP Block, to conduct
cross modality enhancement for more effective Gaussian learning.

The Gaussian parameters are finally generated using a multi-head
Gaussian decoder, and the novel view images are rendered by con-
ventional Gaussian splatting.

Our method converges quickly, which is trained only on the
objaverse-LVIS [10] subset and achieves the comparable results of
previous state-of-the-art methods trained with much more data,
which indicates the effectiveness of the proposed method.

In summary, our main contributions are as follow:

• We propose a novel framework to generate high-quality
3D Gaussians with point cloud input. To our knowledge,
our method is the first attempt to utilize the generalizable
Point-to-Gaussian Generator for feed-forward image-to-3D
generation.

• We introduce the Attention mechanism, Projection mecha-
nism, and Point feature extractor as APP block into Point-to-
Gaussian generator for Cross Modality Enhancement, which
further integrate the geometric structural features with the
2D texture features for more effective learning.

• Qualitative and quantitative results demonstrate that our
method achieves comparable performance with the previous
state-of-the-arts, even trained with much smaller dataset.

2 RELATEDWORK
2.1 Diffusion Priors for 3D Generation
Recent efforts for generating 3D contents are mostly inspired from
the success of 2D generative models [35]. They usually rely on
Score Distillation Sampling (SDS) proposed in DreamFusion [33],
which minimizes the difference between rendered images from the
3D object and the 2D diffusion with CLIP priors [34]. [43] interprets
predictions from pretrained diffusion models as a score function
of the data log-likelihood to optimize 3D representations via score
matching. Subsequent work has made further enhancements based
on SDS-based optimization. [17] increased the resolution of the
generation, and introduced direct mesh optimizations. [47] pro-
posed Variational Score Distillation (VSD) to enhance the quality
and diversity of the generations. [50] introduced 3D shape prior
from text-to-shape for better alignment between text and 3D shape.
[4, 16, 36, 38] are proposed to achieve substantial improvement
in quality, and further alleviate the Janus problem. [29, 41] aim to
improve the optimization speed of 3D generation. Besides, many
efforts [19–22, 24, 27, 37, 44] extend text-to-3D to single-view 3D
generation. Theses methods focus on exploring non-optimization
paradigms, and proposemulti-view diffusionmodels which incorpo-
rates the information between different views for more consistent
multi-view generation. Then the 3D reconstruction approaches are
applied to obtain the 3D representations. SV3D and V3D [8, 42] are
proposed to leverage video diffusion models for generating more
consistent multi-view images.

2.2 Single-Stage 3D Generation
Unlike the SDS-based approach, the single-stage 3D generation
method obtains 3D representation directly from image or text by a
single feed-forward. Previous works attempt to train 3D diffusion
models directly on point clouds or volumes [3, 13, 31]. However,
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Figure 2: Illustration of our full pipeline. Given a single-view image as input, the corresponding point cloud is first generated
via pre-trained 3D diffusion model [13]. Then the point cloud is sent as the input of our proposed Point-to-Gaussian Generator.
The input image is introduced as complementary condition to our Gaussian generator.

they do not generalize well to other scenes and cannot provide satis-
factory textures. Recently, LRM [12] first utilizes large transformers
trained on large-scale 3D datasets [9, 10] to directly predict triplane
NeRF from single view in a few seconds. [45] and [15] extend the
input from single-view to sparse views. [15, 51] combine the large
reconstruction model with diffusion priors to achieve text-to-3D
and image-to-3D generation. However, these methods utilize vol-
ume rendering based triplane NeRF as the 3D representation, which
still require massive forward inferences and computation.

2.3 Gaussian Splatting in 3D Generation
3DGaussian Splatting (3D-GS) [14] showedmarvelous performance
in novel view synthesis for single scene optimization. This repre-
sentation has been applied in many downstream tasks, such as
generalizable reconstruction [1, 5, 39], human reconstruction [54],
and 4D generation [18], etc. Some concurrent works [7, 41, 52] adopt
3D-GS for SDS-based optimization to decrease generation time. In
the field of single-stage 3D generation, [55] combines LRM with
3D-GS for faster rendering speed and superior rendering quality,
[49] proposes two-stage optimization with 3D-GS for high-quality
generation, [40] extends the single view Gaussian generation to
sparse views for higher resolution. In this paper, we follow the
feed-forward based image-to-3D generation scheme and propose
a generalizable point-to-Gaussian model to advance the 3D-GS
learning for image-to-3D generation.

3 METHOD
In this section, we first present the fundamental background of
3D Gaussian splatting (Section 3.1). Then, the Point to Gaussian
generator, which takes the sparse point cloud generated from the
pretrained 3d diffusion model and the paired images condition as
inputs and outputs the 3D Gaussian representations, is introduced
in (Section 3.2). To employ image conditions for further enhancing
the geometric and texture features of 3D Gaussians, we present
to integrate the 3D representations obtained from the Attention,
Projection, and Point feature extractor, termed APP Block in (Sec-
tion 3.3) to enhance the cross modality features. Lastly, the loss
function and data augmentation are introduced in (Section 3.4) for
optimization.

3.1 Preliminary: 3D Gaussian Splatting
3D Gaussian Splatting (3D-GS) [14] shows high-fidelity rendering
quality and real-time speed in novel view synthesis (NVS), which
has gained a lot of popularity. 3D-GS renders images via splatting
instead of volume rendering that is commonly used in implicit
representation like NeRF [30]. Specifically, 3D-GS represents scenes
with a set of explicit anisotropic 3D Gaussians. Each Gaussian
distribution is defined by a 3D covariance matrix 𝚺 and a center
position at point (mean) X. A 3D Gaussian distribution 𝐺 (X) is
formulated as follows:

𝐺 (X) = 𝑒−
1
2 X

𝑇
𝚺
−1X . (1)

For more effectively optimized by gradient decent, the 3D co-
variance matrix Σ can be decomposed into a rotation matrix R and
a scaling matrix S:

𝚺 = RSS𝑇R𝑇 , (2)
where R and S are two learnable parameters. During optimization,
the rotation matrix 𝑅 is transformed to quaternion 𝑟 . Each Gaussian
consists of an opacity 𝜎 and spherical harmonics (SH) coefficients
𝑐 for rendering. Therefore, the complete Gaussian parameters are
defined by G = {(X𝑖 , S𝑖 ,R𝑖 , 𝜎𝑖 , 𝑐𝑖 )}𝑛𝑖=0. The Gaussians are projected
from 3D space to 2D image plane for rasterization with viewing
transformW, then the 2D covariance matrix 𝚺

′ can be computed
as

𝚺
′ = JW𝚺W𝑇 J𝑇 , (3)

where J is the Jacobian of the affine approximation of the projection
transformation. Finally, the color 𝐶 of each pixel is accumulated by
blending the overlapping Gaussians:

𝐶 = 𝚺𝑖∈𝑁𝛼𝑖𝑐𝑖Π
𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ), (4)

where 𝛼𝑖 is 𝜎𝑖 multiplied by 𝚺
′. The tile-based rasterizer is utilized

for efficient forward and backward pass. In this paper, we reduce the
degree of the SH coefficients in Gaussians to zero which represents
only the diffuse color. We also remove the densification and pruning
proposed in conventional per-scene 3D-GS optimization to adapt
amortized optimization.

3.2 Point to Gaussian Generator
In this section, we introduce the architecture of our Point to Gauss-
ian Generator. As shown in Fig. 3, the Point to Gaussian Generator
shares the encoder-decoder structure, which converts the point



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

A
PP

U
p 

B
lo

ck

A
PP

U
p 

B
lo

ck

A
PP

 U
p 

B
lo

ck

A
PP

D
ow

n 
B

lo
ck

A
PP

D
ow

n 
B

lo
ck

A
PP

 B
lo

ck

ViT

𝒔

𝜶

𝒄

𝒓

Projection

Attention
Image
Tokens

Point
Tokens

Point Feature 
Extractor

M
ul

ti 
L

in
ea

r 
H

ea
ds

Po
in

t C
lo

ud
 U

ps
am

pl
er

Multi-Scale

APP Down Block

Image Feature
Camera

Avg : Average Aggregation

: Pose-Aware Projection

: Cross Attention

: Sampling and Grouping

Image Condition

Input

3D Gaussians

Splatting

… …

A
vg

𝝌

Figure 3: Detailed architecture of Point-to-Gaussian Generator. Given the input point cloud and the corresponding image, a
point cloud upsampler is first applied to increase the number of 3D points, followed by an encoder consisting of several APP
Down Blocks to extract the multi-scale point cloud features. Each APP Block contains point feature extractor, projection and
attention for cross modality feature enhancement. The point cloud features are decoded by a series of APP Up Blocks and Multi
Linear Heads to obtain the final 3D Gaussians, and then the novel view images are obtained by conventional Gaussian splatting.

cloud to 3D Gaussians. Specifically, we leverage the point cloud
generated by a pretrained diffusion model [31] for initialization,
and then upsample the points with densification operation. Mean-
while, the conditional images (could be single or multi) are also
incorporated to enrich the Gaussian features. Finally, a multi-head
gaussian decoder is incorporated to decode the features into Gauss-
ian parameters for splatting. Denote that the point cloud with color
is of 𝑃𝑁 ∗6, conditioning images {𝐼𝑣}𝑉𝑣=1 and camera parameters
{𝐶𝑣}𝑉𝑣=1, the output can be formulated as

G = Φ(𝑃, {𝐼𝑣}𝑉𝑣=1, {𝐶𝑣}𝑉𝑣=1) . (5)

Here, the G = {(X𝑖 , S𝑖 ,R𝑖 , 𝜎𝑖 , 𝑐𝑖 )}𝑁𝑖=0 represents the 𝑁 Gaussians.

3.2.1 Point Cloud Upsampler. To simplify the learning of 3D Gaus-
sians, we utilize the point cloud as input. In single-scene optimiza-
tion, as reported in the primitive 3D-GS [14], pruning and densifi-
cation techniques are employed to adjust the Gaussian numbers.

Generally, sufficient number of 3D Gaussians can fairly represent
the corresponding 3D objects, but an excess of Gaussians can also
introduce computational and storage overheads. However, in the
generalized 3D Gaussian framework, the gradient operates on the
network, instead of the Gaussian itself, making it challenging to
control and adjust the number of Gaussians dynamically. To strike
a balance between performance and overhead, we initially perform
a densification operation by upsampling the point cloud generated

from the pretrained 3D diffusion model, thereby augmenting the
number of Gaussians in the network’s final output. Specifically,
we rely on the methodology outlined in [48] to implement a dense
sampling operation on the point cloud.

3.2.2 Multi-Scale Gaussian Decoder. The Gaussian decoder’s ar-
chitecture adopts a U-Net structure, akin to that described in [23].
Following densification, as detailed in Section 3.2.1, the point cloud
is inputted into the network. During downsampling, the number
of point clouds progressively decreases, and the current layer’s
point cloud is derived via farthest point sampling (FPS) from the
preceding shallower layer, thereby generating multi-scale point
cloud features and expanding the receptive field. To further enrich
the point cloud features and Gaussian attributes, we introduce pro-
jection and attention mechanisms for cross modality enhancement.
For further elaboration, please refer to Section 3.3.

After obtaining the enhanced features, we introduce the multi
linear heads, which utilizes multiple decoder heads for different
attributes in the Gaussian. Since the coordinates of the point cloud
and the Gaussian are not exactly the same in space, we take inspi-
ration from [55] and learn the positional offset of the Gaussians
concerning the point cloud, instead of the centers themselves, to
simplify the learning process.
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Figure 4: Visualization of pose-aware projection. The red tri-
angle and yellow star represents the corresponding position
during projection. The self-occluded view only projects to
the corresponding part of the point cloud during projection.

3.3 Cross Modality Enhancement
In this section, we present the core component of the our Point
to Gaussian generator, which integrate the 3D representations ob-
tained from the Attention mechanism, Projection mechanism, and
Point feature extractor, termed asAPP, for cross modality enhance-
ment, as shown in Fig. 3. The point feature extractor we employ
combines an efficient fusion of point-based methods [2] with the
strong spatial inductive bias of voxel-based methods [56], which
extracts the geometry and texture feature from the colored point
cloud. Despite employing a multi-scale feature extraction module
to provide a larger receptive field, the features extracted from point
cloud input remain carries insufficient appearance feature and in-
accurate geometry structural information to provide informative
prior for precise GS generation. To further integrate the rich texture
from the image modality into the point cloud tokens, we designed
projection and attention modules which will be discussed in the
following sections.

3.3.1 Projection. Numerous studies have been conducted in multi-
modal fusion, where an efficient and intuitive approach is projection.
Inspired by this, we fuse multi-scale point cloud tokens with image
tokens using projection, complementing each point cloud with a
feature from the image modality based on its position in space and
the view of the input image. Specifically, drawing on insights from
[28], the projection considers the self-occlusion of the point cloud
in space and employs a fast rasterization technique to map the
pixel-wise image features to the visible points.

However, considering that the point cloud is assumed to be
volumetric and non-transparent during the rasterization process,
it is inevitable that points opposing the current camera viewpoint
will be invisible during this process. As illustrated in Fig. 4, in the
two provided viewpoints on the left side, we can only observe one

side of the character, implying that the occluded point cloud on the
other side will not participate in the projection process.

3.3.2 Attention. To further compensate for the point clouds that
are against the current projection view, we propose using the at-
tention mechanism to enhance the point cloud features further.
Specifically, the point cloud features and image features interact via
cross-attention, which further fuses the features of both modalities.
It is worth noting that we do not explicitly define the mapping
between the point cloud and the image but encourage the network
itself to model the positional relationship between them. This ap-
proach differs from the projection process, where we align the
point cloud and image based on the camera parameters and then
explicitly fuse them.

This implicit fusion enables all points in the space to be aug-
mented with image features obtained from DINOv2 [32]. Assuming
the point cloud tokens are 𝑻𝒑 , which are treated as the query, and
the image tokens are 𝑻𝒊 , which as key and value. The point cloud
features interact with all the image tokens globally to obtain the
output, which can be expressed as:

𝑻𝒂𝒕𝒕 = 𝑪𝒓𝒐𝒔𝒔𝑨𝒕𝒕 (𝑻𝒑, 𝑻𝒊, 𝑻𝒊) (6)

3.3.3 Aggregation. To enhance the features of the point cloud, we
introduce projection and attention mechanisms for cross modality
enhancement, respectively. Finally, we aggregate the enhanced
features using average aggregation:

𝑻𝒐𝒖𝒕 = 𝑨𝒗𝒈(𝑻𝒑, 𝑻𝒑𝒓𝒐, 𝑻𝒂𝒕𝒕 ) (7)

3.4 Optimization
3.4.1 Training Loss. The Gaussian generator is trained using ren-
dering loss. In each iteration, we randomly select 𝑀 views, with
one serving as the conditional input, while the remaining 𝑀 − 1
views are employed for supervision. Following the methodology
of prior research [40], we compute the photometric loss and alpha
loss between the rendered image and the ground truth image. Our
objective is to minimize the following objective function.

𝐿 = 𝐿𝑝𝑖𝑥𝑒𝑙 + 𝜆𝑝𝑐𝐿𝑝𝑐 (8)

𝐿𝑝𝑐 = 𝐿𝑐𝑑 + 𝐿𝑒𝑚𝑑 (9)

𝐿𝑝𝑖𝑥𝑒𝑙 = 𝐿
𝑟𝑔𝑏

𝑀𝑆𝐸
+ 𝜆𝐿𝑃𝐼𝑃𝑆𝐿

𝑟𝑔𝑏

𝐿𝑃𝐼𝑃𝑆
+ 𝜆𝛼𝐿

𝛼
𝑀𝑆𝐸

(10)
where 𝜆𝐿𝑃𝐼𝑃𝑆 and 𝜆𝛼 are corresponding weight coefficient, and

𝐿𝐿𝑃𝐼𝑃𝑆 are perceptual image patch similarity [53].

3.4.2 Data Augmentation. During training, we use point cloud
data from ground truth (GT), but when inference, the model inputs
are generated from the 3D diffusion model. To mitigate the gap in
data distributions, we perturb the point cloud data when training
the model using data augmentation. Specifically, we jitter the coor-
dinates and RGB values of the input point cloud by adding noise to
them, thereby enhancing the robustness of the model to the input.

4 EXPERIMENTS
In this section, we initially delve into the specifics of the experi-
ments, followed by a discussion on the dataset employed in our
training and testing. Then we present our experimental results,
offering both qualitative and quantitative analyses between ours
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Figure 5: Qualitative results among baselines of single view image-to-3D reconstruction on Objaverse [10] and Google Scanned
Objects [11] dataset. Our method outperforms previous Gaussian based baselines in both geometry and texture representations,
and in particular our method generates more consistent multi-view rendering results, thanks to the informative geometry
prior of the point cloud input.

and other methods. We conduct an ablation study to validate the
effectiveness of our proposed modules lastly.

4.1 Implementation Details
The 3D diffusion model we deployed is Point-E [31], which presents
commendable performance. Alternative methods for obtaining
point clouds, such as DUSt3R [46], sparse reconstruction [25], or
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Figure 6: Visualization of the training process. Three columns on the left represents splatted images from Gaussians in different
iterations; Three columns on the right visualize the geometry of Gaussian centers during training. The first row represents that
Gaussian centers are directly regressed while the second rows is that the learning of Gaussian centers’ offsets.

Table 1: Qualitative rendering results on single-view image-
to-3D. We compare the reconstruction quality for 32 novel
views with 100 random objects selected from GSO [11]. Our
method outperformed relevant feed-forward based gener-
ation baselines with comparable inference speed. The best
results are bolded.

PSNR↑ SSIM↑ LPIPS↓ Time↓
One-2-3-45 [20] 17.54 0.80 0.21 ∼ 50s
Point-E [31] 15.50 0.69 0.37 ∼ 7s
LRM [12] 16.09 0.79 0.28 ∼ 6s
TriplaneGaussian [55] 16.15 0.82 0.27 ∼ 1s
LGM [40] 17.13 0.81 0.25 ∼ 6s
Ours 18.09 0.82 0.19 ∼ 7s

even 3D scanners, can also be utilized. The implementation of point
cloud upsampler is modified form [48], which takes a 4K input and
generates a 16K point cloud output. The image encoder utilized is
the pretrained DINOv2 [32], and the architecture of our Point to
Gaussian generator is based on the [23], with both the encoder and
decoder consisting of four layers. Besides, to conserve computa-
tional resources, we incorporate the APP module solely into the
encoder during the training process. The loss weights for mask and
LPIPS losses are both set to 1. Meanwhile, the loss weights for point
clouds are gradually attenuated from 1 to 0.05 using cosine anneal-
ing. During the training process, the number of views per iteration
was set to 4 (i.e., 𝑀 = 4). The experiment was conducted with 16
NVIDIA Tesla A100 GPUs for training, spanning approximately 3
days. The resolution of novel view rendering was 256, with a batch
size of 128 (batch size 8 for each GPU).

4.2 Dataset
The model is trained on the Objaverse-LVIS [10] dataset. We render
RGB images from 32 perspectives by rotating around the object’s
surface. Regarding the point cloud, we utilized the point cloud data
provided by [26]. Through farthest point sampling, we obtained a 4k
point cloud as the input. We evaluate our methods on the Objaverse
and Google Scanned Objects [11] and randomly selected 100 test
samples from each of the two datasets, respectively. For each case,
akin to the training set, we rendered 32 different perspectives.

w/o. ca and prow/o. ca Ours w/o. pro 

Figure 7: Visualization of effects inside the proposed APP
block. w/o.pro represents removing projection mechanism
from APP block, and w/o. ca represents removing cross-
attention mechanism, w/o. ca represents that the APP block
contains only point feature extractor.
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Figure 8: Visualization of rendered images and 3D Gaussians.
the effect of different number of input views.

4.3 Results
4.3.1 Qualitative Comparison. We predominantly compare our
approach with recent Gaussian-based 3D generation methods on
the Objaverse [10] and Google Scanned Objects [11]. The qualitative
comparison of the results is depicted in Fig. 5. As observed, our
method demonstrates richer high-frequency details compared to
other models for both datasets. This outcome can be attributed to
the cross modality enhancement, which incorporates projection
and attention to optimally utilize the input image.

Reconstructing the backside view is a formidable challenge, as
demonstrated by the results of LGM in the Second line. The results
for the backside of the bottle appear inconsistent with the input
view. However, our results exhibit remarkable consistency, and the
Gaussians generated by our method more accurately recover the
content from the input view, yielding more coherent and reasonable
geometry and texture details. This improvement can be ascribed to
the point cloud input, which simplifies the learning of Gaussians.

4.3.2 Quantitative Comparison. We also carried out a quantitative
comparison with other methodologies and calculate PSNR, SSIM,
and LPIPS [53] metrics to assess the quality of images. The quanti-
tative results are presented in Table 1. As evident from the table,
our method surpasses other feed-forward methods in terms of gen-
eration quality across all metrics, while maintaining a comparable
inference speed. The time intensity of our process is primarily at-
tributed to the initial stage of point cloud acquisition, as can be
deduced by comparing our time usage with that of Point-E. How-
ever, in the second stage, the Point to Gaussian Generator can be
inferred in real-time due to the fast rendering speed of splatting.

4.4 Ablation Study
4.4.1 APP Block. We first trained a baseline model using the point
feature extractor only. Based on it, we added projection and atten-
tion respectively. The quantitative experimental results are pre-
sented in Table 2, which indicates the projection and attention we
designed can significantly facilitate the learning of Gaussian at-
tributes. Moreover, when both mechanism are employed, which
further enhances the performance. A qualitative comparison of the
results, is shown in Fig. 7, which also demonstrates that the quality
of the reconstructed images is significantly improved.

4.4.2 Number of Views. With the assistance of existing image dif-
fusion models, for example, MVDream [38], our method can also
supportmulti-image input. To be specific, we first convert the single-
image input into four consistent images and then feed them into

Table 2: Ablation study on our proposed APP block. The best
results are bolded.

Point Feature Extractor Attention Projection PSNR↑ SSIM↑ LPIPS↓
✔ 15.84 0.72 0.31
✔ ✔ 17.17 0.78 0.22
✔ ✔ 17.25 0.80 0.25
✔ ✔ ✔ 17.92 0.81 0.21

Table 3: Ablation study on the number of input. Given multi-
view image input, our proposed Point-to-Gaussian Generator
achieves better reconstruction results compared to single-
view image input.

Single View Multi View
PSNR↑ 17.92 18.09
SSIM↑ 0.81 0.82
LPIPS↓ 0.21 0.19

the Gaussian generator. The results are presented in Section 4.4.2
indicating that more image input can further improve the recon-
struction quality compared to single. The qualitative results in
Fig. 8 also support this conclusion, as the reconstructed image with
multi-image input exhibits better clarity and geometric consistency.

4.4.3 Learning Offsets for Gaussian Centers. To demonstrate the
efficiency of Gaussian center offsets learning, we conducted a com-
parative analysis between involving Gaussian center offsets learn-
ing and direct Gaussian centers learning. We visualize the rendered
images and 3D Gaussians at different iterations, as displayed in
Fig. 6. The top row presents the outcome of direct Gaussian cen-
ters learning. At the beginning of training, the 3D Gaussians are
predominantly characterized by noise, and the model requires ap-
proximately 5k iterations before revealing the basic shape of the
bag. In contrast, with offset learning, as depicted in the bottom
row, the 3D Gaussians exhibit good geometry during the initial
training and demonstrate faster convergence speed. After just 300
iterations, the model can reconstruct the basic geometry of the
input object. With offset learning, the Gaussians can be initialized
to a suitable position by the point cloud at the beginning of training.
This approach allows the model to concentrate more on modeling
other Gaussian attributes and is considerably simpler than mapping
from images to Gaussians.

5 CONCLUSION
In this paper, we present a large point-to-Gaussian model for image-
to-3D generation. Point-to-Gaussian model inputs point cloud to
generate Gaussian parameters, in which the input point cloud is
generated from a large 3D diffusionmodel (e.g. Point-E) from the 2D
image.With the geometry prior from point cloud, Point-to-Gaussian
model is able to significantly improve image-to-3D generation. In
addition, based on a multi-scale network, we further devise a APP
block, which fuse the image features into point cloud represen-
tations with an attention mechanism and pose-aware projection
mechanism. Extensive experiments demonstrate the effectiveness
of the proposed approach on GSO and Objaverse datasets, and the
proposed method achieves state-of-the-art performance.
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