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ABSTRACT

Machine learning models are routinely used to support decisions that affect indi-
viduals – be it to screen a patient for a serious illness or to gauge their response
to treatment. In these tasks, we are limited to learning models from datasets with
noisy labels. In this paper, we study the instance-level impact of learning under
label noise. We introduce a notion of regret for this regime, which measures the
number of unforeseen mistakes due to noisy labels. We show that standard ap-
proaches to learning under label noise can return models that perform well at a
population-level while subjecting individuals to a lottery of mistakes. We present
a versatile approach to estimate the likelihood of mistakes at the individual-level
from a noisy dataset by training models over plausible realizations of datasets
without label noise. This is supported by a comprehensive empirical study of la-
bel noise in clinical prediction tasks. Our results reveal how failure to anticipate
mistakes can compromise model reliability and adoption – we demonstrate how
we can address these challenges by anticipating and avoiding regretful decisions.

1 INTRODUCTION

Machine learning models are routinely used to support or automate decisions that affect individuals
– be it to screen a patient for a mental illness [52], or assess their risk for an adverse treatment
response [3]. In such tasks, we train models with labels that reflect noisy observations of the true
outcome we wish to predict. In practice, such noise may arise due to measurement error [e.g.,
23, 39], human annotation [30], or inherent ambiguity [39]. In all these cases, label noise can
have detrimental effects on model performance [11]. Over the past decade, these issues have led to
extensive work on learning from noisy datasets [see e.g., 11, 32, 40, 44, 49]. As a result, we have
developed foundational results that characterize when label noise can be ignored and algorithms to
mitigate its detrimental effects.

By and large, this work has focused on the impact of label noise at the population-level. In contrast,
studying the effects of label noise at the instance-level has received limited attention. This oversight
reflects the fact that we cannot provide meaningful guarantees on individual predictions under label
noise [32]. In a best-case scenario, where we have perfectly specified distributional assumptions on
label noise, we can learn a model that performs well on average, but we cannot identify where it
makes mistakes; as a result, individuals are subject to a “lottery of mistakes.”

These effects undermine the utility of models in major real-world applications, as label noise arises
in many settings where models are used to support or automate individual decisions [see, e.g., 55, for
a meta-review of 72 cases in medicine]. In medical decision support tasks, our inability to identify
mistakes can lead to overreliance, where physicians rely on predictions that may be incorrect [7, 29].
In automation tasks, our failure to assess the confidence of predictions can prevent us from reaping
broader benefits – e.g., by abstention [10, 18].

In this work, we study how label noise affects individual predictions. Our motivation stems from
the fact that, even if we cannot fully resolve the effects of label noise at the instance-level, we can
mitigate harm by anticipating regretful predictions through uncertainty quantification. To this end,
our main contributions are:

1. We introduce a notion of regret for learning from noisy datasets, capturing how label uncertainty
affects individual predictions. We show that learning under label noise leads to inevitable regret,
characterizing key limitations in a wide class of methods for learning from label noise.
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ỹi

<latexit sha1_base64="KpFUhhp32+45HNcOgFnhtoJdtkc="></latexit>

f(xi) 6= ỹi
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Figure 1: Datasets with noisy labels only contain a single draw of label noise. In such settings, we can learn a
model that performs well at a population-level but cannot anticipate its mistakes. We characterize the number of
individuals who are subjected to a lottery of mistakes in terms of regret – i.e., the difference between anticipated
mistakes and actual mistakes. Here, we show a stylized classification task with 5 points, where each point with
a positive label may be flipped with a probability of 30%. In this case, 4 points are subject to a lottery of
mistakes and our model assigns regretful predictions to 2 points, highlighted in yellow.

2. We develop a method to flag regretful predictions by training models on plausible realizations of
a clean dataset. Our approach can measure the sensitivity of individual predictions under label
noise and incorporates common noise assumptions while controlling for plausibility.

3. We conduct a comprehensive empirical study on clinical prediction tasks. Our findings highlight
the instance-level impact of label noise, and we demonstrate how our approach can support safer
inference by flagging potential mistakes.

Related Work Our work is related to a stream of research on learning from noisy labels. We focus
on applications where we cannot resolve label noise by acquiring clean labels [see e.g., 11, 49, for
surveys]. Many methods learn models by hedging for uncertainty in labels [33, 40, 44]. As we
show in Section 2, such approaches are robust to label noise at a population-level while subjecting
individuals to a lottery of mistakes. Our work highlights the limitations of this regime. In this sense,
our results complement the work of Oyen et al. [43], who characterize the lack of robustness to label
noise under general distributional assumptions.

We propose to mitigate these issues through a principled approach to uncertainty quantification. Our
approach relates to recent work on model multiplicity, which shows how changes in the machine
learning pipeline can produce models that assign conflicting predictions [see e.g., 4, 8, 20, 35, 38,
42, 53] and lead to downstream effects on fairness, explanations, and recourse [5, 17, 27, 36]. With
respect to the literature on label noise, our approach is similar to the work of Reed et al. [47], who
propose training an ensemble of deep neural networks by sampling alternative realizations of clean
labels. In contrast, our procedure samples plausible realizations of clean labels and retrains plausible
models to quantify uncertainty at an individual-level rather than predict.

2 PRELIMINARIES

We consider a classification task where we wish to learn a model f : X → Y to predict a label
y ∈ Y from a feature vector x ∈ X ⊆ Rd. In a standard regime, we would be given a dataset
D = {(xi, yi)}ni=1 where each (xi, yi) is drawn from a joint distribution of random variables, X
and Y . Given the dataset, we would learn a model that performs well in deployment – i.e., that
minimizes the true risk R(f) := EX,Y [I [f(X) ̸= Y ]].

We consider a variant of this task where we learn a model from a noisy dataset D̃ = {(xi, ỹi)}ni=1,
where each noisy label ỹi represents a potentially corrupted true label yi. In what follows, we refer
to this corruption as a flip and denote it ui := I [yi ̸= ỹi]. Given the flip ui, we can express noisy
labels in terms of true labels as ỹi := yi⊕ui and vice-versa as yi := ỹi⊕ui. Here, a⊕b := a+b−2ab
is the XOR operator. Given a noisy dataset, we represent all flips as a vector called the noise draw.
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Definition 1. Given a binary classification task with n examples, the noise draw u = [u1, . . . , un] ⊆
{0, 1}n is a realization of n random variables [U1, . . . , Un] ⊆ {0, 1}n.

Given an example (xi, yi), each flip ui is drawn from a Bernoulli distribution with parameters
pu|yi,xi

:= Pr(Ui = 1 | X = xi, Y = yi). Thus, the noise is generated by the random process:

Ui ∼ Bernouilli(pu|yi,xi
)

ỹi = yi ⊕ Ui

In what follows, we assume that the values pu|yi,xi
are determined by a generic noise model that can

take on different forms – e.g., uniform, class-level, or instance-level as shown in Table 1. We write
pu instead of pu|yi,xi

when conditioning terms are irrelevant or clear from context. We assume that
the model is correctly specified and that pu < 0.5 for all points to ensure there are more clean than
noisy labels [c.f., 1, 40, 44].

Given a noisy dataset, we denote the noise draw over all instances as the true draw utrue :=
[utrue

1 , . . . , utrue
n ]. In practice, the true draw utrue is fixed but unknown. From the practitioner’s

perspective, utrue could be any realization of random variables U . If they knew utrue, they could
recover the true labels as yi = ỹi ⊕ utrue

i and learn without label noise. As this is infeasible,
given the noise model and a set of priors, practitioners can estimate the posterior noise model
qu|ỹi,xi

:= Pr(Ui = 1 | X = xi, Ỹ = ỹi) to infer clean labels from observed noisy labels.

Noise Type PGM Noise Model Posterior Model Inference Requirements Sample Use Case

Uniform

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y X
U

pu = Pr (U = 1) qu = Pr (U = 1) –
Screening tests with a fixed failure rate
[e.g., COVID rapid tests 2].

Class-Level

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y X
U

pu|y = Pr (U = 1 | Y = y) qu|ỹ = Pr
(
U = 1 | Ỹ = ỹ

)
πy = Pr (Y = y)

Chest X-ray diagnosis where label noise Ỹ

changes based on the disease Y

[e.g., pneunomia vs COVID 15].

Group-Level

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y

X
U

Y

G
U pu|y,g = Pr (U = 1 | Y = y,G = g) qu|ỹ,g = Pr

(
U = 1 | Ỹ = ỹ, G = g

)
πy,g = Pr (Y = y | G = g)

Diagnostic tasks where the incidence of label
noise changes across subpopulations
[e.g., racial bias in diagnosis 14, 51].

Instance-Level

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y

X
U

Y

G
Upu|y,x = Pr (U = 1 | Y = y,X = x) qu|ỹ,x = Pr

(
U = 1 | Ỹ = ỹ, X = x

)
πy,x = Pr (Y = y,X = x)

Data-driven discovery tasks where Ỹ is an
experimental outcome confirmed by a
hypothesis test with type I/II error [16, 39] .

Table 1: Common noise models that we consider in this work. We represent each model as a probability
distribution with parameters pu|y,x and show its corresponding probabilistic graphical model (PGM). Given a
noisy dataset, noise model, and prior distribution πy , we infer noise draws from a posterior distribution with
parameters qu|ỹ,x.

3 REGRETFUL DECISIONS

Consider a practitioner who learns a model f : X → Y from a noisy dataset. In practice, they
may learn a model that performs well on average. However, they cannot determine where it makes
mistakes. In such tasks, individuals are subject to a lottery of mistakes. We characterize this effect
in terms of regret.

Definition 2. Given a classification task where we learn a model f : X → Y from a noisy dataset,
we define the regret for an instance (xi, ỹi) as:

Regret(f(xi), ỹi, Ui) := I
[
epred(f(xi), ỹi) ̸= etrue(f(xi), yi(Ui))

]
Here:

• etrue(f(xi), yi(Ui)) := I [f(xi) ̸= yi(Ui)] indicates an actual mistake with respect to the true
label. We write the true label as yi(Ui) := ỹi ⊕ Ui to show that it is a random variable.

• epred(f(xi), ỹi) indicates the model has made an anticipated mistake – i.e., that it appears to have
made a mistake based on what we can tell during training.

In practice, epred(·) is determined by how we account for noise, if at all. If we ignore label noise and
fit a model via standard ERM on the noisy dataset, then epred(f(xi), ỹi) := I [f(xi) ̸= ỹi]. If we fit
a model via noise-tolerant ERM [e.g., 40, 44], then epred(f(xi), ỹi) := ℓ̃01(f(xi), ỹi) where ℓ̃01(·)
is an unbiased loss defined such that EU [ℓ̃01(xi, ỹi)] = ℓ01(f(xi), yi).
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Regret captures the irreducible error we incur due to randomness. In online learning, regret arises
because we cannot foresee randomness in the future. In learning from noisy labels, regret arises
because we cannot infer randomness from the past. In this case, randomness undermines our abil-
ity to determine which predictions are correct. In this regime, as individual predictions cannot be
assumed to be accurate even on the training data. As a result, we cannot rely on predictions to sup-
port individual decisions. Moreover, we cannot rely on any downstream applications that depend
on the correctness of individual predictions – e.g., model explanations [6, 48] or post-hoc analyses
[25, 26, 34]. In Prop. 3, we explore the relationship between these effects and label noise.
Proposition 3. In a classification task where we learn a classifier f from a noisy dataset D̃:

EU |X,Ỹ

[
Regret(f(X), Ỹ , U)

]
= Pr(U = 1 | Ỹ , X).

Prop. 3 provides an opportunity to highlight several implications of learning from label noise at the
instance-level. On the one hand, this result implies that regret is unavoidable when learning under
label noise. In practice, we can only avoid it by “predicting less” (e.g., via selective classification)
or by “removing noise” (e.g., via relabeling). On the other hand, the result also implies that we can
estimate the expected number of regretful predictions in terms of the posterior noise rate. In practice,
however, we cannot tell how these mistakes are distributed over all instances.

One of the key issues in this regime is that the value of a prediction may be compromised, as each
instance where qu|x,ỹ > 0 is subject to a lottery of mistakes. Consider screening for a rare disease
using a diagnostic test. In such cases, we can view the presence of the disease as a clean label yi
and the test outcome as a noisy label ỹi. Given a disease that affects 10% of patients and a class-
level noise model that flips 10% of positive cases, an average draw of label noise would affect 1%
of predictions. In practice, such conditions would undermine the value of screening because any
patient with a negative test may have the disease. We characterize these effects by measuring the
proportion of instances in a dataset that are susceptible to regret – i.e., that are subject to the lottery
of mistakes. Given a noisy dataset D̃ and a posterior noise model Pr

(
U = 1 | X, Ỹ

)
, the number

of points susceptible to regret is:

Susceptibility(D̃) :=
1

n

n∑
i=1

I
[
Pr

(
U = 1 | X = xi, Ỹ = ỹi

)
> 0

]
(1)

On the Regret of Hedging One of the benefits of studying regret in this regime is that we can
characterize when learning is feasible at both the population and instance-levels. Many algorithms
for learning from noisy labels are designed to hedge against label noise [46]. Given a noisy dataset
and a noise model, hedging minimizes the expected risk over all possible noise draws. In some cases,
algorithms may implement this strategy explicitly via ERM with a modified loss [see e.g., 37, 40].
In others, algorithms may hedge implicitly – e.g., by assigning sample weights to training instances
and setting their values to minimize expected risk over all possible draws [see e.g., 33, 44, 54].

In a best-case scenario, where we correctly specify the noise model and fit a model that minimizes
the average number of mistakes over all noise draws, we would still incur regret. Formally, we
would expect EU |X,Y [∆Error(f, D̃, U)] = 0 where:

∆Error(f, D̃;U) :=

n∑
i=1

epred(f(xi), ỹi)︸ ︷︷ ︸
Predicted Training Error

−
n∑

i=1

etrue(f(xi), yi)︸ ︷︷ ︸
True Training Error

(2)

However, the resulting model f would still incur regret EU |X,Ỹ

[
Regret(f, D̃, U)

]
> 0. In Prop. 4,

we show that the classical hedging algorithm of Natarajan et al. [40] exhibits this behavior.
Proposition 4. Consider training a model f : X → Y on a noisy dataset via ERM with a modified
loss function ℓ̃ : Y ×Y → R+ such that EU [ℓ̃(f(x), ỹ)] = ℓ(f(x), y) for all (x, ỹ). In this case, the
model minimizes risk for an implicit noise draw umle = [umle

1 , . . . , umle
n ] where umle

i corresponds to
most likely outcome under the posterior noise model qu|ỹi,xi

.

Prop. 4 implies that hedging will incur regret unless the implicit noise draw umle matches the true
noise in the dataset utrue. In practice, this event is unlikely as limn→∞ Pr

(
umle = utrue

)
= 0 (see

Appendix A).
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4 ANTICIPATING MISTAKES WITH PLAUSIBLE MODELS

Our results in Section 2 show how a model we learn under label noise will output regretful pre-
dictions. In this section, we develop methods to estimate the likelihood of an individual instance
yielding a regretful prediction.

4.1 MOTIVATION

Our goal is to evaluate the correctness of individual predictions for models learned from noisy data.
In a standard classification task, we apply an algorithm for ERM to a clean dataset, recover the
model f̂ ∈ argminf∈F

1
n

∑n
i=1 I [f(xi) ̸= yi], and evaluate the correctness of each prediction on

the training data in terms of mistakes. When we learn from a noisy dataset D̃ = {(xi, ỹi)}ni=1, the
corresponding measure is no longer deterministic:

Mistake(xi, Yi, F̂ ) = I
[
F̂ (xi) ̸= Yi

]
. (3)

In this case, the randomness stems from: (1) the true label Yi, which is a random variable that
can only be inferred from the observed noisy label ỹi and the posterior noise model; (2) the model
F̂ : X → Y , which is the output of a learning algorithm on the noisy dataset.

Our proposed measure, which we call ambiguity, quantifies the expected likelihood of a learning
algorithm making a mistake on the training data – i.e., the expected value of (3).

Ambiguity(xi, ỹi) := EYi,F̂ |D̃
[
Mistake(xi, Yi, F̂ )] = Eu∼U |D̃

[
I[F̂ (xi) ̸= (ỹi ⊕ Ui)]

]
(4)

Ambiguity uses all the information we have at hand: a noisy dataset and a noise model. In Prop. 5,
we show how ambiguity corresponds to regret as it correctly ranks the instances based on the likeli-
hood of experiencing regret.

Proposition 5. Given a classification task, denote the clean label risk of a model F̂ (xi) on an
instance xi as e, that is e := Pr

(
F̂ (xi) ̸= yi

)
. When e < 0.5 – that is, a model makes more

correct than incorrect predictions – a higher label noise rate for instance xi corresponds to higher
Ambiguity(xi, ỹi).

Since Prop. 3 establishes that regret corresponds to the posterior noise rate, Prop. 5 suggests that
ambiguity serves as a viable measure of regret, given its correspondence to the posterior noise rate.

4.2 ESTIMATION

We can construct unbiased estimates of ambiguity using Algorithm 1. Given a noisy dataset and
a noise model, this procedure generates plausible realizations of a clean dataset, and then trains a
set of plausible models that can be used to estimate ambiguity. In what follows, we describe this
procedure in greater detail.

Sampling Plausible Draws Given a noisy dataset D̃, class-level noise model pu, and prior distri-
bution πy := Pr (Y = y), we can sample noise draws from the posterior distribution:

qu|ỹ =
(1− πỹ) · pu|1−ỹ

pu|ỹ · (1− πỹ) + (1− pu|ỹ) · πỹ
(5)

This generalizes to different types of noise models (see e.g., Table 1). We can use these samples
from the posterior distribution to estimate ambiguity directly. In practice, however, it may lead to
biased estimates by returning atypical draws – unlikely noise draws under a given noise model (e.g.,
a noise draw that flips 30% of labels under a uniform noise model with a noise rate of 10%). In
settings where we wish to estimate ambiguity using a limited number of draws, an atypical draw can
bias our estimates and undermine their utility. Although we could moderate this bias by increasing
the number of draws, this would require training a separate model for each draw. We address these
issues by sampling from a set of plausible draws.
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Algorithm 1 Generate Plausible Draws, Datasets, and Models
Input noisy dataset (xi, ỹi)

n
i=1, noise model pu|y , number of models m ≥ 1, atypicality ϵ ∈ [0, 1]]

Initialize F̂plaus
ϵ ← {}

1: repeat
2: ui ∼ Bernouilli(qu|ỹ,x) for i ∈ [n] generate noise draw by posterior inference
3: if [u1, . . . , un] ∈ Uϵ then check if draw is plausible using Def. 6
4: ŷi ← ỹi ⊕ ui for i ∈ [n]

5: D̂ ← {(xi, ŷi)}ni=1 construct plausible clean dataset

6: f̂ ← argminf∈F R̂(f ; D̂) train plausible model

7: F̂plaus
ϵ ← F̂plaus

ϵ ∪ {f̂ } update plausible models
8: end if
9: until |F̂plaus

ϵ | = m

Output F̂plaus
ϵ , sample of m models from the set of plausible models Fplaus

ϵ

Definition 6. Given a noise draw u ∈ {0, 1}n, denote its true posterior noise rate as qu|ỹ := Pr(U =

1 | Ỹ = ỹ) and empirical noise rate as q̂u|ỹ := 1
n

∑n
i=1 I [ui = 1 | ỹi = y]. For any ϵ ∈ [0, 1], the

set of plausible draws contains all draws whose empirical noise rate is within ϵ of the posterior rate:

Uϵ(ỹ) := {u ∈ {0, 1}n s.t. |qu|ỹ − q̂u|ỹ| < ϵ · qu|ỹ for all u ∈ {0, 1}}.

The set of plausible draws is a strongly typical set [see 9]. In a classification task where n is large,
we can expect most (but not all) draws to concentrate in Uϵ [see Theorem 3.1.2 in 9]. We can limit
atypical draws by setting the atypicality parameter ϵ, which represents the relative deviation between
the true noise rate qu|ỹ and the noise rate of sampled draws. Given a uniform noise model where
qu|ỹ = 0.1, we would set ϵ = 0.2 to only consider draws that flip between 8% to 12% of instances.
Alternatively, we can set ϵ to ensure that Uϵ(ỹ) will include a particular noise draw u∗ ∈ Fplaus

ϵ with
high probability (see Prop. 9 in Appendix A). By default, we set ϵ = 0.1 to consider draws within
10% of what we would expect.

Estimating Ambiguity Given a plausible noise draw uk ∈ Uϵ(ỹ), we construct a plausible clean
dataset by pairing each xi with a plausible value of true label ŷki = uk ⊕ ỹi.
Definition 7. The set of ϵ-plausible models contains all models trained using ϵ-plausible datasets:

Fplaus
ϵ :=

{
f̂ ∈ argmin

f∈F
R̂(f, D̂) | D̂ := {(xi, ŷ

k
i )}ni=1,u ∈ Uϵ(ỹ)

}
.

In an ideal case, where we recover a plausible draw that matches the true draw uk = utrue,
our procedure returns a plausible dataset D̂k and model f̂k that perfectly flags all regretful pre-
dictions. Seeing how utrue is unknown, we repeat this process m times and use the m plau-
sible models to get an unbiased estimate of ambiguity for each point in our noisy dataset as:
µ̂(x, ỹ) := 1

m

∑
k∈[m] I

[
f̂k(x) ̸= ŷk

]
.

In practice, we can use ambiguity as a confidence score to operationalize techniques to learn or
predict reliably. We propose a few examples and demonstrate how these perform in Section 6:

• Data Cleaning: We can use ambiguity to flag regretful instances in a training dataset to drop or
relabel. Given the correspondence between regret and noise (Prop. 3), this approach can be used
to “de-noise” a dataset to train models that generalize better on clean test data.

• Selective Prediction: We can use ambiguity to abstain from potentially regretful predictions at test
time via selective prediction [12]. This approach can be used in instances such as clinical decision
support, where we only show sufficiently reliable predictions and defer uncertain predictions to a
clinician.

Discussion The main limitation of this approach is that we assume access to a correctly specified
noise model. This assumption is a practical limitation and can be validated by comparing it against
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distributions estimated from a noisy dataset [see e.g., 31, 33, 44]. When working with simple noise
models (e.g., uniform or class-level), we may be conservative and assume a higher noise rate. Al-
ternatively, we can hedge against misspecification by setting ϵ to capture a larger set of plausible
draws. The set of plausible models can also be used in ways to construct uncertainty measures, as
demonstrated in Sections 5 and 6.

We also note that our estimates of ambiguity assume that the true noise draw, utrue, is typical. In
practice, although utrue is unknown, most draws can be shown to be typical – this follows from a
standard application of a Chernoff bound [9].

5 EXPERIMENTS

In this section, we present an empirical study on clinical prediction tasks. Our goals are to document
the effects of label noise on individual-level predictions. Supporting material and code can be found
in Appendix B and GitHub.

Setup We work with 5 classification datasets from clinical applications where models support
individual medical decisions (see Table 3). We treat the labels in each dataset as true labels. We
create noisy datasets by corrupting the labels using a noise draw sampled according to three class-
level noise models with noise rates [5%, 20%, 40%] where label noise only affects positive instances
(yi = 1). We split each dataset into a training sample (80%), which we use to train a logistic
regression model (LR) and a neural network (DNN) using noisy labels, and a test sample (20%),
which we use to measure out-of-sample performance using true labels. We train these models using
the following methods:

1. Ignore, where we ignore label noise and fit a model to predict noisy training labels; and
2. Hedge where we hedge against label noise using the method of Natarajan et al. [40].

This yields 12 models for each dataset (3 noise regimes × 2 model classes × 2 training procedures).

Metric Definition Description

TrueError(f, D̃) 1

n

∑
i∈[n]

e
true

(f(xi), yi) Error rate of f on the clean training labels.

AnticipatedError(f, D̃) 1

n

∑
i∈[n]

e
pred

(f(xi), ỹi) − e
true

(f(xi), yi) Error rate of f on the noisy labels.

Susceptibility(D̃) 1

n

∑
i∈[n]

I
[

Pr
(
U = 1 | X = xi, Ỹ = ỹi

)
> 0

]
Proportion of instances in D̃ subject to regret.

Regret(f, D̃) 1

n

∑
i∈[n]

I
[
e

pred
(f(xi), ỹi) ̸= e

true
(f(xi), yi)

] Mean regret across all instances in D̃. We expect
Regret(f, D̃) ≈

∑
y qu|y · πy under class-level label noise.

Overreliance(f, D̃) 1

n

∑
i∈[n]

I
[
e

true
(f(xi), yi) = 1, e

pred
(f(xi), ỹi) = 0

] Proportion of predictions in D̃ that are
incorrectly perceived as accurate.

Table 2: Overview of summary statistics in Table 3. We report these metrics for models that we train from
noisy labels using a specific training procedure, model class, noise model, and dataset. We evaluate all models
trained on a given dataset and noise model using a fixed noise draw.

We characterize the accuracy and reliability of predictions from each model using the measures in
Table 2. We report our results for LR models in Table 3 and results for DNN models in Appendix B.
In what follows, we discuss all results.

On Label Noise, Regret, and Hedging Our results in Table 3 highlight several implications of
learning under label noise. We confirm that our result in Prop. 3 holds empirically – i.e., the ex-
pected prevalence of regretful predictions corresponds to the effective noise rate in each dataset. We
observe similar effects across all datasets, model classes, and noise regimes, underscoring the need
to quantify the effect of label noise on individual predictions.

Existing approaches to handle label noise (i.e., hedging) can learn models that are robust to noise
at a population-level but still experience regret. As shown in Table 3, we observe that Hedge can
moderate the impact of label noise at a population-level by reducing the true (clean label) error
compared to Ignore. Even with more noise robustness, regret is unchanged, and remains high across
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all experimental conditions. On the mortality dataset, for example, Hedge reduces the error
rate by over 13% compared to Ignore for a LR model under 40% label noise. However, regret
is unchanged and continues to affect 19.5% of instances. It is interesting to note that Hedge can
moderate the effects of overrelianceby redistributing unforeseen mistakes from instances that lead
to overreliance to instances where epred(f(xi), ỹi) = 1 and etrue(f(xi), yi) = 0 – i.e., where a
practitioner may fail to reap the benefits of a correct prediction because it appears to be incorrect.

pu|y=1 = 5% pu|y=1 = 20% pu|y=1 = 40%

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [45]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

24.4%
25.7%

3.0%
1.1%

52.6%

23.5%
25.2%

3.0%
0.9%

52.6%

27.1%
28.3%
10.1%

6.3%
59.7%

24.6%
29.4%
10.1%

3.8%
59.7%

41.0%
28.2%
19.7%
22.6%
69.3%

24.3%
33.5%
19.7%

7.9%
69.3%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [22]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

20.8%
22.1%

2.5%
0.8%

52.5%

20.2%
21.7%

2.5%
0.6%

52.5%

25.0%
26.8%
10.2%

5.8%
60.2%

20.3%
26.4%
10.2%

2.8%
60.2%

34.9%
27.4%
19.8%
18.8%
69.8%

20.1%
32.5%
19.8%

5.5%
69.8%

lungcancer

n = 62, 916

d = 40

NCI [41]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

31.7%
32.2%

2.5%
1.5%

52.7%

30.8%
31.5%

2.5%
1.3%

52.7%

33.7%
32.7%
10.0%

8.1%
60.2%

30.8%
33.6%
10.0%

5.4%
60.2%

43.0%
30.0%
19.7%
23.4%
69.9%

31.1%
36.5%
19.7%
11.3%
69.9%

mortality

n = 20, 334

d = 84

Le Gall et al. [28]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

19.5%
20.7%

2.2%
0.6%

52.2%

19.0%
20.4%

2.2%
0.5%

52.2%

23.2%
25.7%

9.8%
4.9%

59.8%

19.1%
25.0%

9.8%
2.6%

59.8%

33.2%
27.7%
19.5%
17.3%
69.5%

19.4%
30.9%
19.5%

5.8%
69.5%

support

n = 9, 696

d = 114

Knaus et al. [24]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

33.1%
33.4%

2.6%
1.8%

52.6%

33.7%
34.1%

2.6%
1.7%

52.6%

36.7%
34.1%
10.0%

9.6%
60.0%

33.7%
36.0%
10.0%

6.0%
60.0%

44.2%
29.7%
19.6%
24.3%
69.6%

33.9%
38.6%
19.6%
12.1%
69.6%

Table 3: Accuracy and reliability of predictions for LR
models trained on noisy datasets where we flip 5%, 20%
and 40% of positive instances. We defer results for
DNN models to Appendix B for clarity.

On the Lottery of Mistakes Our results
highlight how a small amount of label noise
can undermine common use cases for predic-
tion by subjecting a far greater number of in-
stances to a lottery of mistakes. In Table 3,
for example, we consider a noise model where
only positive instances (y = 1) are subject to
label noise. Thus, every instance with a nega-
tive noisy label (ỹ = 0) is subject to a lottery
of mistakes. We report the proportion of points
that take part in the lottery using the suscepti-
bility metric in Eq. (1). In this case, we can
see that in a task where the label noise is as low
as 5%, over half of instances are subject to lot-
tery across all five datasets. For example, in the
lungcancer dataset, even a small misdiagno-
sis (i.e., label noise) rate, which is inevitable,
can compromise the reliability of half of all di-
agnoses.

On the Consequences of Blindness Our re-
sults highlight the importance of considering
the effect of label noise in instance-level pre-
dictions. Many real-world practitioners assume that their training data is clean and ignore label
noise, but most real-world datasets are not perfectly labeled – this inevitably leads to regretful pre-
dictions on individuals.

To demonstrate how regretful predictions can negatively impact individuals, we consider a partic-
ular flavor of regret – overreliance – the fraction of instances where a practitioner would incor-
rectly assume that a model assigned a correct prediction – i.e. where epred(f(xi), ỹi) = 0 and
etrue(f(xi), yi) = 1. From Table 3, we consider overreliance on the lungcancer dataset, under
40% noise. We observe that up to 23.4% of instances are assigned this type of prediction. In prac-
tice, such instances correspond to patients with cancer but who are classified as cancer-free based
on the prediction of a seemingly accurate model. These are patients where the model is making
a mistake, however, the practitioner cannot tell as it would not appear to be a mistake based on
the noisy label. This highlights the importance of looking at the distribution of regretful instances
across predictions. By analyzing the distribution of regretful predictions, we can adjust our reliance
on model predictions – ensuring that practitioners do not blindly trust or explain away incorrect
model decisions.

6 DEMONSTRATIONS

In this section, we show how the machinery developed in Section 4 can be used to promote safety
at critical parts of the machine learning lifecycle in real-world applications where noisy labels are
inevitable.

Data Cleaning Our approach in Section 4 can clean noisy datasets by using ambiguity to drop
noisy instances from a training dataset. Given the “denoised" dataset, we can then train models that
perform better in deployment. In Fig. 2, we demonstrate the effectiveness of this approach on the
shock_mimic dataset. Here, we drop training examples using a confidence-based threshold rule of
the form I [conf(xi) ≤ τ ], where τ is a threshold set to control the number of instances to drop. We
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compare the performance of this strategy using confidence scores that we can compute on training
data: (1) conf(xi) = 1 − µ̂(xi, ỹi), which is a measure based on the estimated ambiguity that we
recover using Algorithm 1; and (2) conf(xi) = p̂(yi | xi), which is the predicted probability of a
final model. As shown, removing instances with high ambiguity from the training dataset prior to
training a final model on the cleaned data leads to improved test error on clean labels. Specifically,
using ambiguity to drop uncertain instances reduces test error by 14.9% when dropping only 20%
of noisy training data compared to a baseline approach.

-14.9%

Ambiguity

Confidence

Figure 2: Clean test error for a LR model on
the shock_mimic dataset with 40% class-
level label noise when dropping training
instances using different confidence-based
threshold rules. We show the clean test error
vs percent of instances dropped from train-
ing using confidence measures based on pre-
dicted probabilities conf(xi) := p̂(ỹi | xi)
or ambiguity conf(xi) := 1− µ̂(xi, ỹi).

Selective Classification with Cheap Labels We use
our results to highlight how the machinery in Sec-
tion 4 can promote safer predictions. Consider the
shock_mimic dataset in Fig. 3 – here, we use the
same confidence-based threshold rule of the form
I [conf(xi) ≤ τ ] where conf(xi) is a confidence score
and τ is a threshold value. We consider confidence scores
based on standard predicted probabilities and ambigu-
ity, where ambiguity can be measured using cheaply ac-
quired test instances (e.g., noisy test data). We show how
the selective test error on clean labels and selective re-
gret change as we vary the confidence threshold value
τ ∈ (0, 1). Specifically, in a regime where 20% of the
labels are noisy, abstaining on 40% of instances using
ambiguity reduces selective error by -6.6% and selective
regret by -5.9% compared to the standard approach on
cshock_mimic.

Selective Classification for Scientific Discovery We
demonstrate how our approach can support a modern sci-
entific discovery task in biotechnology. In such tasks,
researchers perform in-vitro experiments to identify in-
stances with desired properties [e.g., identifying new an-
tibiotics 50]. Given a dataset of successful and unsuc-
cessful experiments and their characteristics, we can train
a model to predict which future experiments are likely to succeed, thereby accelerating discovery by
prioritizing high-yield experiments.

We use the enhancer dataset from Gschwind et al. [16] to predict the outcome of experiments to
discover enhancers – i.e., segments of DNA that regulate gene expression. The dataset contains
n = 992 noisy instances (xi, ỹi), each with d = 13 features (e.g., gene location, cell type, etc.).

-5.9%
Ambiguity

Confidence

-6.6%

Ambiguity

Confidence

Figure 3: Selective classification frontiers for a LR model on the shock_mimic dataset under 20% class-level
noise when abstaining from uncertain predictions at test time using a confidence-based threshold rule. We plot
the selective regret (left) and selective error (right) as we vary the percent of abstained predictions for confidence
measures based on predicted probabilities conf(xi) := p̂(ỹi | xi) and ambiguity conf(xi) := 1− µ̂(xi).
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In this setting, a noisy label ỹi = 1 indicates a statistically significant experiment (i.e., reject null
hypothesis: H0 = “no effect”). Here, label noise arises from the Type I error for each experiment:

Pr (ỹi = 1 | yi = 0) = Pr (reject H0 | H0 holds) = p-value for experiment i

We fit a LR model f and use its predictions to identify experiments that are likely to succeed
in the test sample. To avoid low-confidence predictions, we use a thresholding rule of the form
I [conf(xi) ≤ τ ] where τ is a threshold value that we can set to control the number of experiments
to perform. Confidence for an instance is measured with a score conf(xi) := 1−Disagreement(xi)
where Disagreement(xi) measures the disagreement between the predictions of f and the m plau-
sible models from Algorithm 1:

Disagreement(xi) :=
1

m

∑
k∈[m]

I
[
f̂k(xi) ̸= f(xi)

]
(6)

Fig. 4 shows that disagreement can reliably predict which experiments will be successful. We use
two strategies for abstention: (1) a standard approach thresholding according to p̂(ỹi | xi), or
(2) using disagreement rates (6). Performance is measured using test hit rate (i.e., the number of
successful experiments divided by the number of total experiments that we run). Our approach
improves the hit rate (+10.7%) compared to standard confidence-based abstention, with a modest
20% abstention rate (Fig. 4). This demonstrates that we can optimize laboratory resource allocation
and increase the discovery rate of enhancers by forgoing 20% of experiments.

+10.7%

-8.6%

Disagreement

DisagreementConfidence

Confidence

Figure 4: Selective classification frontiers for an LR model on the enhancer dataset when abstaining from
uncertain predictions using a confidence-based threshold rule. We plot the selective hit rate (left) and selective
error (right) as we increase the proportion of abstained predictions for confidence measures based on predicted
probabilities conf(xi) := p̂(ỹi | xi) and disagreement conf(xi) := 1− Disagreement(xi).

7 CONCLUDING REMARKS

Learning under label noise is a major challenge in practice. While models may perform well on
average, a model that is 99% accurate can inadvertently misclassify anyone, as label noise can
subject each individual prediction to a lottery of mistakes. In this work, we studied these effects
through the lens of regret and highlighted the inherent limits of learning in this regime.

Our results show that, even as regret is inevitable when learning from label noise, we can opera-
tionalize simple techniques to predict safely by quantifying the uncertainty in individual predictions
– e.g., by estimating ambiguity of individual predictions and using this to flag predictions where we
should abstain or examples that we should re-label.

Our use of regret extends beyond label noise – into any setting where models are trained on datasets
with a single draw of noise [e.g., for probabilistic classification 13]. In such settings, regret can
explicitly reveal the impact of predictions on individuals, and estimating it can act as a safeguard or
signal to collect more data or avoid prediction altogether.
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A OMITTED PROOFS

A.1 RESULTS FROM SECTION 3

Proof of Prop. 3. Consider any classification task with label noise. Given a point with (X, Ỹ ), let
ρX,Ỹ := Pr

(
U = 1 | X, Ỹ

)
denote the posterior noise rate and ℓ01(f(X), Ỹ ) := I

[
f(X) ̸= Ỹ

]
its zero-one loss.

By definition, a hedging algorithm [see e.g., 40] is designed to learn a classifier f such that:

EU |X,Y [e
pred(f(X), Ỹ )] = etrue(f(X), Y ).

We observe that f will achieve zero error in expectation as a result of the unbiasedness property of
hedging algorithms.

EX,Y,U

[
epred(f(X), Ỹ )− etrue(f(X), Y )

]
= EX,Y EU |X,Y

[
epred(f(X), Ỹ )− etrue(f(X), Y )

]
= 0

The last line follows from the fact that Ỹ is a deterministic function of U given Y .

We now show that will still incur regret in this regime. We begin by expressing the expected regret
for any point (X, Ỹ ) and any noise draw U as:

EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ

[
(1− 2qu) · (epred(f(X), Ỹ ) + ℓ01(f(X), Ỹ )) + 2(qu − 1) · epred(f(X), Ỹ ) · ℓ01(f(X), Ỹ ) + qu

]
EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ ,U

[
I
[
epred(f(X), Ỹ ) ̸= I

[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

]] ]
= EX,Ỹ EU|X,Ỹ

[
I
[
epred(f(X), Ỹ ) ̸= I

[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

]] ]
= EX,Ỹ EU|X,Ỹ

[
epred(f(X), Ỹ )(1− I

[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

]
)

+ (1− epred(f(X), Ỹ ))I
[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

] ]
= EX,Ỹ EU|X,Ỹ

[
epred(f(X), Ỹ )(1− I

[
f(X) ̸= Ỹ

]
(1− U)− I

[
f(X) ̸= 1− Ỹ

]
U)

+ (1− epred(f(X), Ỹ ))(I
[
f(X) ̸= Ỹ

]
(1− U) + I

[
f(X) ̸= 1− Ỹ

]
U)

]
Letting qu = Pr

(
U = 1 | X, Ỹ

)
and ℓ01(f(X), Ỹ ) = I

[
f(X) ̸= Ỹ

]
, we have:

= EX,Ỹ

[
(1− qu)(e

pred(f(X), Ỹ )(1− ℓ01(f(X), Ỹ )) + (1− epred(f(X), Ỹ ))ℓ01(f(X), Ỹ ))

+ qu(e
pred(f(X), Ỹ )(1− ℓ01(f(X), 1− Ỹ )) + (1− epred(f(X), Ỹ ))ℓ01(f(X), 1− Ỹ ))

]
EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ

[
(1− 2qu) · (epred(f(X), Ỹ ) + ℓ01(f(X), Ỹ ))

+ 2(qu − 1) · epred(f(X), Ỹ ) · ℓ01(f(X), Ỹ ) + qu
]
.

When there is no label noise, we have that qu = 0 and epred(f(X), Ỹ ) = ℓ01(f(X), Ỹ ) for all X, Ỹ .
Because they are binary terms, in this regime, we have:

EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ [0] = 0

When there is label noise, we have that qu > 0 for some X, Ỹ . In this regime, we have:

EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ [qu] > 0.
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The proof for Prop. 4 uses the following lemma.
Lemma 8. Minimizing the expected risk under the clean label distribution is equivalent to minimiz-
ing a noise-corrected (hedged) risk under the noisy label distribution.

EX,Y [I [f(X) ̸= Y ]] = EX,Ỹ

[
(1− quI

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) ̸= 1− Ỹ

]]
(7)

Here:

• qu =
(1−πỹ,x)·pu|1−ỹ,x

pu|ỹ,x·(1−πỹ,x)+(1−pu|ỹ,x)·πỹ,x

• πỹ,x = Pr (Y = ỹ|X = x) is the clean class prior an observed noisy label,
• pu = Pr (U = 1 | Y = y,X = x) is the class-level noise probability.

The result is analogous to Lemma 1 in Natarajan et al. [40]. In what follows, we include an additional
proof for the sake of completeness.

Proof.

ExpectedRisk(f) = EX,Y [I [f(X) ̸= Y ]]

= EX,Ỹ ,U

[
I
[
f(X) ̸= Ỹ (1− U) + U(1− Ỹ )

]]
= EX,Ỹ EU |X,Ỹ

[
I
[
f(X) ̸= Ỹ (1− U) + U(1− Ỹ )

]]
= EX,Ỹ EU |X,Ỹ

[
I
[
f(X) ̸= Ỹ

]
(1− U) + I

[
f(X) ̸= 1− Ỹ

]
U
]

= EX,Ỹ

[
EU |X,Ỹ [I

[
f(X) ̸= Ỹ

]
(1− U)] + EU |X,Ỹ [I

[
f(X) ̸= 1− Ỹ

]
U ]

]
= EX,Ỹ

[
Pr

(
U = 0|Ỹ , X

)
I
[
f(X) ̸= Ỹ

]
+ Pr

(
U = 1|Ỹ , X

)
I
[
f(X) ̸= 1− Ỹ

]]
= EX,Ỹ

[
Pr

(
Y = Ỹ |Ỹ , X

)
I
[
f(X) ̸= Ỹ

]
+ Pr

(
Y ̸= Ỹ |Ỹ , X

)
I
[
f(X) ̸= 1− Ỹ

]]
= EX,Ỹ

[
(1− quI

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) ̸= 1− Ỹ

]]
We can recover the statement of Lemma 8 by applying Bayes theorem to write qu in terms of the
clean class priors and class-level noise probabilities.

Proof of Prop. 4. We define umle as the noise draw for instance (X,Y ), such that using umle to
minimize the expected risk implicitly coincides with the true minimizer of the expected risk (defined
in Lemma 8). That is:

argmin
f∈F

EX,Ỹ

[
I
[
f(X) ̸= Ỹ (1− umle) + umle(1− Ỹ )

]]
= argmin

f∈F
EX,Ỹ

[
(1− qu)I

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) = Ỹ

]]
We can express the minimizer of the LHS as:

f ′ ∈ argmin
f∈F

EX,Ỹ

[
I
[
f(X) ̸= Ỹ (1− umle) + umle(1− Ỹ )

]]
(8)

= argmin
f∈F

EX,Ỹ

[
(1− umle)I

[
f(X) ̸= Ỹ

]
+ umleI

[
f(X) = Ỹ

]]
(9)

We can denote the minimizer of the RHS:

f̂ ∈ argmin
f∈F

EX,Ỹ

[
(1− qu)I

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) = Ỹ

]]
(10)

Observe that:

qu|y,x < 0.5 =⇒ f̂(X) = Ỹ

qu|y,x > 0.5 =⇒ f̂(X) = 1− Y

Thus, we have that umle := I [qu > 0.5] =⇒ f̂ = f ′, as desired.
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A.2 RESULTS FROM SECTION 4

Proof of Prop. 5. Denote the noise rate of F̂ (xi) as e, that is Pr
(
F̂ (xi) ̸= yi

)
= e.

EYi,F̂ |D̃

[
I
[
F̂ (xi) ̸= Ŷi

] ]
= EYi,F̂ |D̃

[
I
[
F̂ (xi) ̸= Ŷi | F̂ (xi) = yi

] ]
· (1− e)

+ EYi,F̂ |D̃

[
I
[
F̂ (xi) ̸= Ŷi | F̂ (xi) ̸= yi

] ]
· e

= EYi,F̂ |D̃

[
I [Yi ̸= yi]

]
· (1− e) + (1− EYi,F̂ |D̃

[
I
[
Ŷi ̸= yi

] ]
) · e

= (1− 2e) · EYi,F̂ |D̃

[
I
[
Ŷi ̸= yi

] ]
+ e

When e < 0.5, we can claim that the higher the EYi,F̂ |D̃

[
I
[
Ŷi ̸= yi

] ]
, the higher the

EYi,F̂ |D̃

[
I
[
F̂ (xi) ̸= Ŷi

] ]
, the ambiguity measure. If we assume that EYi,F̂ |D̃

[
I
[
Ŷi ̸= yi

] ]
is

monotonic in the noise rates in ui, which is intuitively true, we then establish that the higher the
noise, the higher the ambiguity measure.

A.3 ON CHOOSING AN ATYPICALITY PARAMETER

In Prop. 9, we present an additional bound that can be used to set an atypicality parameter ϵ to
guarantee that the set of plausible draws Fplaus

ϵ includes a reference noise draw with high probability.

Proposition 9. Given a set of np instances (x, ỹ) subject to noise rate pu, we determine the mini-
mum ϵ to ensure that a reference noise draw u∗ belongs to the set plausible draws Fplaus

ϵ with high
probability. That is, with probability at least 1− δ, u∗ ∈ Uϵ(ỹ) if ϵ obeys:

ϵ ≥ 1

qu|ỹ

√
ln
(
2
δ

)
2np

+ |pu − qu|ỹ|

 .

Here np represents the number of instances whose labels are corrupted by the same noise model.
For example, under class-level noise, this bound would need to be evaluated separately using the
number of instances for each class.

For example, given a dataset with n = 10, 000 instances under 20% uniform label noise, a practi-
tioner must set ϵ ≥ 6% to ensure that u∗ ∈ Fplaus

ϵ with probability at least 90%.

Proof of Prop. 9. Our goal is to show that Pr (u∗ ∈ Uϵ(ỹ)) ≥ 1− δ. for any given 0 ≤ δ ≤ 1.

The uncertainty set Uϵ(ỹ) defined on pu|ỹ is a strongly typical set (see [9]) where the true mean pu|y
and the empirical mean is p̂u := 1

n

∑n
i=1 I [ui = 1] . Thus,

u∗ ∈ Uϵ(ỹ) ⇐⇒ |p̂u − pu|ỹ| ≤ pu|ỹ · ϵ (11)

We will derive conditions to satisfy the inequality Eq. (11)

Observe that we can write

|p̂u − pu|ỹ| = |(p̂u − pu) + (pu − pu|ỹ)|
≤ |p̂u − pu|+ |pu − pu|ỹ| (by the triangle inequality)

We require |p̂u−pu|ỹ| ≤ pu|ỹ ·ϵ. Therefore we need |p̂u−pu|+ |pu−pu|ỹ| ≤ pu|ỹ ·ϵ which implies
that |p̂u − pu| ≤ pu|ỹ · ϵ− |pu − pu|ỹ|
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We observe that u∗ is a sequence of bounded, independently sampled random variables. Thus, we
can apply Hoeffding’s inequality to see that:

Pr (|p̂u − pu| ≥ α) ≤ 2 · exp(−2nα2)

Here, α = pu|ỹ · ϵ− |pu − pu|ỹ|. Rearranging, we have that:

Pr (u∗ ∈ Uϵ(ỹ)) = Pr (|p̂u − pu| ≤ α) ≥ 1− 2 · exp(−2nα2)

= 1− 2 · exp(−2n(pu|ỹ · ϵ− |pu − pu|ỹ|)2)
We invert the bound to obtain the following statement: with probability at least 1 − δ, u∗ ∈ Uϵ(ỹ)
if the number of samples n obeys:

n ≥ − ln
(
δ
2

)
2(pu|ỹ · ϵ− |pu − pu|ỹ|)2

To conclude the proof, we rearrange for ϵ, that is, given a dataset of n instances, u∗ ∈ Uϵ(ỹ) if ϵ
obeys:

ϵ ≥ 1

pu|ỹ

√
ln
(
2
δ

)
2n

+ |pu − pu|ỹ|


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B SUPPORTING MATERIAL FOR SECTION 5 AND SECTION 6

Here we include further details about the datasets used in our experimental results.

B.1 DATASETS

lungcancer We used a cohort of 120,641 lung cancer patients diagnosed between 2004-2016
who were monitored in the National Cancer Institute SEER study [41] and processed the dataset to
match the processing in James et al. [21]. The outcome variable is death within five years from any
cause, with 16.9% dying within this period. The cohort includes patients across the USA (California,
Georgia, Kentucky, New Jersey, and Louisiana), excluding those lost to follow-up. Features include
measures of tumor morphology and histology (e.g., size, metastasis, stage, node count and location),
as well as clinical interventions at the time of diagnoses (e.g., surgery, chemotherapy, radiology).

shock_eicu & shock_mimic Cardiogenic shock is an acute cardiac condition where the heart
fails to sufficiently pump enough blood [19] leading to under-perfusion of vital organs. These
datasets are designed to build algorithms to predict cardiogenic shock in ICU patients as described in
Yamga et al. [56]. Both datasets contain identical features, group attributes, and outcome variables
but they capture different patient populations. The shock_eicu dataset includes records from the
EICU Collaborative Research Database V2.0 [45], while the shock_mimic dataset includes records
from the MIMIC-III database [22]. The target variable is whether a patient with cardiogenic shock
will die in the ICU. Features include vital signs and routine lab tests (e.g., systolic BP, heart rate,
hemoglobin count) collected within 24 hours before the onset of cardiogenic shock.

mortality The Simplified Acute Physiology Score II (SAPS II) score is a risk-score designed
to predict the risk of death in ICU patients collected in [28] and used in [51]. The data contains
records of 7,797 patients from 137 medical centers in 12 countries. The outcome variable indicates
whether a patient dies in the ICU, with 12.8% patient of patients dying. Similar to the other datasets,
mortality contains features reflecting comorbidities, vital signs, and lab measurements.

support This dataset comprises 9,105 ICU patients from five U.S. medical centers, collected dur-
ing 1989-1991 and 1992-1994 [24]. Each record pertains to patients across nine disease categories:
acute respiratory failure, chronic obstructive pulmonary disease, congestive heart failure, liver dis-
ease, coma, colon cancer, lung cancer, multiple organ system failure with malignancy, and multiple
organ system failure with sepsis. The aim is to determine the individual-level 2- and 6-month sur-
vival rates based on physiological, demographic, and diagnostic data.

B.2 ADDITIONAL RESULTS FOR DNN MODELS

In Section 5, we include results for LR models. In this section, we include additional results for DNN
models trained on the same unique noise draw as in Section 5.
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pu|y=1 = 5% pu|y=1 = 20% pu|y=1 = 40%

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [45]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

13.3%
14.4%

3.0%
1.1%

52.6%

12.8%
14.0%
3.0%
1.0%

52.6%

18.6%
20.3%
10.1%
5.3%

59.7%

19.2%
22.0%
10.1%

4.7%
59.7%

37.5%
25.1%
19.7%
21.4%
69.3%

26.2%
26.7%
19.7%
13.1%
69.3%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [22]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

15.6%
17.4%

2.5%
0.4%

52.5%

15.9%
17.5%
2.5%
0.5%

52.5%

18.8%
23.9%
10.2%
3.4%

60.2%

16.8%
23.2%
10.2%

2.5%
60.2%

32.7%
26.6%
19.8%
17.7%
69.8%

22.1%
25.9%
19.8%
10.8%
69.8%

lungcancer

n = 62, 916

d = 40

NCI [41]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

29.8%
30.4%

2.5%
1.4%

52.7%

29.7%
30.4%
2.5%
1.3%

52.7%

31.5%
31.8%
10.0%
7.1%

60.2%

30.0%
33.4%
10.0%

5.0%
60.2%

37.7%
29.7%
19.7%
19.8%
69.9%

29.5%
36.7%
19.7%
9.9%

69.9%

mortality

n = 20, 334

d = 84

Le Gall et al. [28]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

17.7%
19.1%

2.2%
0.6%

52.2%

17.9%
19.4%
2.2%
0.5%

52.2%

19.2%
23.4%
9.8%
3.7%

59.8%

18.3%
24.0%

9.8%
2.7%

59.8%

24.0%
26.2%
19.5%
11.7%
69.5%

18.9%
29.5%
19.5%
6.3%

69.5%

support

n = 9, 696

d = 114

Knaus et al. [24]

True Error
Anticipated Error

Regret
Overreliance

Susceptibility

28.4%
28.2%

2.6%
2.0%

52.6%

28.6%
28.2%
2.6%
2.1%

52.6%

31.0%
28.6%
10.0%
8.7%

60.0%

30.3%
28.7%
10.0%

8.1%
60.0%

39.4%
25.2%
19.6%
22.6%
69.6%

35.7%
27.8%
19.6%
19.1%
69.6%

Table 4: Overview of performance and regret for DNN model trained on all datasets and training procedures.
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